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Scaling of the disorder operator at (2 4+ 1)d U(1) quantum criticality
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We study disorder operator, defined as a symmetry transformation applied to a finite region, across a
continuous quantum phase transition in (2 + 1)d. We show analytically that, at a conformally invariant critical
point with U(1) symmetry, the disorder operator with a small U(1) rotation angle defined on a rectangle region
exhibits power-law scaling with the perimeter of the rectangle. The exponent is proportional to the current central
charge of the critical theory. Such a universal scaling behavior is due to the sharp corners of the region and we
further obtain a general formula for the exponent when the corner is nearly smooth. To probe the full parameter
regime, we catry out systematic computation of the U(1) disorder parameter in the square lattice Bose-Hubbard
model across the superfluid-insulator transition with large-scale quantum Monte Carlo simulations, and confirm
the presence of the universal corner correction. The exponent of the corner term determined from numerical
simulations agrees well with the analytical predictions.
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Introduction. Spontaneous symmetry breaking is a funda-
mental phenomenon in nature. Symmetry-preserving states
without ordering are often called “disordered.” While they
might appear featureless at first sight, recent advances in the
classification of quantum states [1] have revealed a rich struc-
ture underlying quantum disordered phases, as condensation
of extended objects, such as symmetry domain walls or field
lines of emergent gauge field [1,2]. Such hidden structures
completely escape the grasp of local measurement, and non-
local observables sensitive to the physics of extended objects
must be exploited. A well-known example is the disorder
operator in classical or quantum Ising models [3,4], which
takes on a finite expectation value in the disordered phase. In
the dual description, the disorder operator becomes the Wilson
loop operator in a Z, gauge theory [5], which is able to dis-
tinguish confined and deconfined phases. In a closely related
line of development, generalized global symmetries, known
as “higher-form” symmetries [6—10], have been introduced
as a general theoretical framework to systematically organize
nonlocal observables. They offer new perspectives to quan-
tum phases of matter that bridge the Landau-Ginzburg-Wilson
paradigm of spontaneous symmetry breaking and more exotic
phenomena of topological order.

While extended observables (and the related higher-form
symmetries) have already found numerous conceptual appli-
cations, more quantitative aspects, such as their scaling at
quantum criticality above (1 4 1)d, are still not systemati-
cally understood. Recently, the Ising disorder operator, which
serves as the order parameter of a Z, 1-form symmetry, was
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computed by quantum Monte Carlo (QMC) simulation at
the (2 + 1)d Ising transition [11] and new universal scaling
behavior was identified. It is important to understand the
generality of these features in the broad context of quantum
criticality, and the relation between the universal feature to
intrinsic CFT data.

In this Letter, we make progress towards answering these
questions. We show that the logarithmic corner correction (to
be defined below) to the disorder operator is generally present
in U(1) CFTs in (2 4+ 1)d, and the universal coefficient can
be related to the current central charge in the limit when the
associated U(1) transformation is close to the identity. We then
compare these results with unbiased QMC simulations of the
disorder parameter across the superfluid-insulator transition in
a Bose-Hubbard model, the prototypical example of continu-
ous symmetry breaking transition. We find that as expected
the disorder operator obeys the perimeter law in the insulating
phase, and acquires a multiplicative logarithmic violation in
the superfluid phase. At the critical point, we compute the
corner correction and confirm the analytical predictions in the
limit of small U(1) rotation angle. For more general CFTs, we
derive the universal corner correction near the smooth corner
limit, which is controlled by intrinsic defect CFT data.

Disorder operator. Let us start from general consider-
ations. For a (2 4+ 1)d quantum lattice system with U(1) sym-
metry, we define a disorder operator in the following way:
suppose the U(1) symmetry transformations are implemented
by U©) =], ¢! where ny is the charge on site r. For a
region M, we define

Xy (©) =] ™. (1)
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The disorder parameter is the expectation value (Xj;(6)) on
the ground state. We note that the definition can be straight-
forwardly adapted to other symmetry groups [9,11].

Scaling of the disorder parameter. Next we discuss the scal-
ing behavior of Xj,(6) in various phases of the Bose-Hubbard
model, especially the dependence on the geometry of M. In an
insulating phase, (Xj;(6)) is expected to obey a perimeter law
|(Xp(0))| ~ e~ @' where [ is the perimeter of the region M.
The perimeter dependence in this case can be absorbed into
a local boundary term in the definition of the operator Xy, (9),
and after the redefinition |(X,,(0))| is finite for arbitrarily large
M [12]. In the superfluid phase, on the other hand, it was found
in Ref. [13] that [(X3(0))| ~ e 2@/l 3 weaker decay than
the area law for a discrete symmetry breaking state, but still
cannot be remedied by any local counterterm on the boundary
of M. In this sense, the disorder operator serves as an “order
parameter” for the disordered (i.e., insulating) phase [4,14].

We now focus on the disorder parameter in a quantum criti-
cal state described by a CFT at low energy. Previous studies of
the (2 + 1)d Ising CFT and other gapless critical field theories
[15] suggest that In |(X;,(0))| takes the following form for a
rectangle region:

In [{Xp(0))| = —ail + s Inl + ay. 2)

Here the dependence on 6 for the coefficients is suppressed.
The logarithmic correction, which translates into a power law
I* in |(Xj)|, originates from sharp corners of the region. In
general s is a universal function of both 6 and the opening
angle(s) of the corners (all 77 /2 in this case) [16]. We conjec-
ture that the corner correction is a generic feature for disorder
operators in any (2 + 1)d CFT. Below we present analytical
arguments to support the conjecture and also connect the
universal coefficient s to intrinsic CFT data.

The first argument works for any CFT with global U(1)
symmetry in the limit & — 0. For small 6, the Taylor expan-
sion of Xj;(#) to 62 order is given by

92
Xm(0) =1 - 7/ der/ d’ry (n(r))n(ry)).  (3)
M M

Here n(r) is the charge density in the continuum limit, and
without loss of generality we assume (n(r)) = 0, so the first-
order correction in the expansion vanishes. It is well known
that, in a CFT with U(1) symmetry, the two-point function
of the conserved charge density takes the following universal
form:

Cy

—mm —r2|_4. 4

(n(rpn(rz)) =

Here C; is the current central charge of the CFT, which is
proportional to the universal dc conductivity o = {£C; [17].
We can now evaluate Eq. (3) for M a L x L square region. The
integral has UV divergence, and once regularized we obtain

~ 62Cj /g l l
X (@) ~ 1 — W[(l + 3)g “In 5}, )

where § is a short-distance cutoff. Details of the evaluation
of the integral in Eq. (3) can be found in the Supplemental

Material (SM) [18]. Therefore, we find

G
4y

One can also show that such logarithmic correction is absent
when M is a disk.

We now turn to disorder operators in a generic CFT. The
universal coefficient s is generally a function of the opening
angle(s) of the corners of the region M. In the previous case of
a square M, there are four corners with opening angle 7 /2. We
now focus on the contribution from one corner, whose opening
angle « is close to 7 (so the corner is nearly smooth). Under a
generally accepted assumption about RG flow of defect lines
in a CFT we have the following formula:

s(a) = %(n —a), a— 7. (7)
Here Cyp, is the defect central charge, a universal quantity for
the disorder operator [see the SM [18] for the definition of Cp
and the derivation of Eq. (7)] [19,20]. A very similar relation
was known for entanglement entropy in CFTs [21-26], and
the derivations follow essentially the same idea. We stress the
generality of Eq. (7), which holds for any disorder parameter
in (2 4+ 1)d CFTs.

While Eq. (6) and Eq. (7) are valid only for small parameter
regimes, they provide strong evidence that the logarithmic
corner corrections are universally present. In the following
section we perform a systematic study of |(Xy;(6))] in a U(1)
boson lattice model with unbiased QMC computation and
verify the analytical result of Eq. (6). We leave the lattice
study of Eq. (7) for future works.

Superfluid-insulator transition. While the field-theoretical
approach has yielded general results about universal features
of the disorder parameter, one has to take various limits, e.g.,
f® — 0, to make progress analytically. To probe parameter
regimes where analytical results are not available, we turn to
numerical simulations.

We consider the Bose-Hubbard model on the square lattice,
which provides a concrete realization of the superfluid-
insulator transition [27]. The Hamiltonian takes the following
standard form:

H=—t Z(bjbj +He)+ % Zni(ni —1)— /LZni,

(i)
®)
where b(b) is the boson creation (annihilation) operator,
n; = bjbi is the boson number, ¢ > 0 is the hopping between
nearest-neighbor sites on the square lattice, U > 0 is the on-
site repulsion, and p is the chemical potential. We setr = 1 as
the unit of energy for convenience.

The ground state of this model has two phases: a Mott
insulator (MI) phase for large U/t and a superfluid (SF) phase
for small U /¢, separated by a continuous phase transition. At
integer filling, the transition belongs to the 3D XY universality
class, also known as the O(2) Wilson-Fisher theory [27]. For
(n) = 1, the critical point is located at U/t = 16.7424(1),
u/t = 6.21(1), determined from previous works [28-30].

Numerical results. We choose the region M to be a R x R
square region in the lattice, with perimeter / = 4R — 4. For
an illustration, see Fig. 1. To calculate the disorder operator

5(0) ~

6 — 0. 6)
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FIG. 1. Disorder operator X,, applied on regions with size R x
R and perimeter [ = 4R — 4 in the L x L square lattice of Boson-
Hubbard model.

of the Bose-Hubbard model, we employ large-scale stochastic
series expansion QMC simulations [31-33], and compute the
expectation value of Xj;(6) on a finite lattice with L = 8 =
1/T and R € [1, L/2] to access the thermodynamic limit. For
the MI and SF phases we fix 0 = 7.

First, in the MI phase the disorder parameter decays ac-
cording to the perimeter law. This is shown in Fig. 2, where, in
a semilog plot, the relation |(XM(%))| ~ e~ is clearly seen.
We also observe that the coefficient a; decreases monoton-
ically with U from U = 17 to 26, as shown in the inset of
Fig. 2, consistent with the theoretical expectation.

Inside the SF phase, the disorder parameter decays more
rapidly with the perimeter /, as depicted in Fig. 3. We find
that the data in Fig. 3 can be well fitted by the function

|(XM(% )| ~ e b ‘. Interestingly, the coefficient b extracted
from the fit is proportional to the superfluid stiffness p; =
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FIG. 3. Disorder operator [(Xy (6 = 7))| as function of / in the
SF phase (from U = 16.5 to U = 12.0) with system sizes up to
L =40 and R € [1, L/2]. Dots are the QMC results with error bars
smaller than the symbol size and the solid lines show the fit with
function e " ¢ Tnset shows the fitting parameter b as a function of
U as well as the superfluid stiffness p, for the same parameter sets.

(WZ + W) /(4Br) (where Wy y is the winding number along
x or y direction), inside the SF phase (shown in the inset of
Fig. 3), also consistent with theoretical analysis [13].

We now turn to the critical point U = U, = 16.7424. Nu-
merical results of (X,,(6)) as a function of / for various values
of 6 are shown in Fig. 4, and we find that the data can be fitted
with the scaling form in Eq. (2) with good quality, in that the
coefficient of the subleading logarithmic term s, as shown in
the inset of Fig. 4, clearly manifests a quadratic dependence
with respect to #, when 6 is small. However, one might worry
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FIG. 2. Disorder operator |(Xy (60 = 7))| as function of / in the
MI phase (from U = 17 to U = 26) with system sizes up to L = 40
and R € [1, L/2]. Dots are the QMC results with error bars smaller
than the symbol size and the solid lines are the fitting with function
e~“! Inset shows the obtained a; as a function of U.
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FIG. 4. Disorder parameter |(X,(0))| as function of / at the crit-
ical point (U, = 16.7424) with 0 = 0.3,0.5, 7 /4, 7 /2 and system
sizes up to L =48, R € [1,L/2]. Dots are the QMC results with
error bars smaller than the symbol size and the solid lines show
the fit by the function in Eq. (2). Inset shows the 6 dependence
of universal coefficient s for different system sizes. For small 6, a
quadratic dependence clearly manifests. The finite-size results con-
verge for L = 40, 48 and fitting with Eq. (6) yields the coefficient
= 2 0.011(1), close to the exact value S = 0.01145.
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FIG. 5. (a) Regions M,, M,, M3, and M, used to determine the
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corner contribution in Eq. (2) on the square lattice with open boundary

condition, and the perimeter of M, U M, is equal to that of M3 U M,. (b) Py (@) as function of /(= L) at the critical point (U, = 16.7424)
with the system size L = 16, 20, 24, 28, 32, 36, 40, 44, 48. The data points are fitted by [*®/> for each 6, as shown by the solid lines in the
main panel, to obtain s(6) for € € [0, 7] denoted by the black dots in the inset. Then fitting s(6) with S92 for 6 € [0, 0.3], one finds

(42’)2 ~ 0.0109(5). The solid line in the inset shows the fit.

whether such fitting can reliably extract the coefficient s of
the subleading logarithmic term, as the perimeter contribution
clearly dominates.

We thus apply a different method adapted from Ref. [34]
to directly extract the corner correction. In this approach,
we work on a L x L square lattice with open boundaries.
We measure disorder parameters for each of the four regions
M 3.4 as shown in Fig. 5(a). The regions are chosen such
that the perimeter of M| U M, is equal to that of M3 U My4. So
the following combination

(X, (0)) (X, (0))

PO = |———
) = | X @) Kona (0)

©))

cancels the leading term a;/ in Eq. (2). Since both M; and M,
contain one 7 /2 corner, we expect Py (8) ~ [*?)/2 which can
then be used to determine s(6). We find that the two methods
give basically identical values of s for small 6, although there
are small discrepancies when 6 gets close to m. The full
function s(0) for 8 € [0, 7] determined from the latter method
is shown in the inset of Fig. 5(b), which is very close to the
function: 0.047 sin2(§).

To corroborate the analytical results, we examine more
closely the function s(6) as & — 0. As shown in the insets
of Figs. 4 and 5, s(0) exhibits a clear 62 dependence, and the
coefficient is found to be 0.011(1) for the direct fitting method
(Fig. 4) and 0.0109(5) for the second method (Fig. 5). Using
the formula Eq. (6) and the best estimate C; = 1.8088 for the
O(2) Wilson-Fisher CFT [30,35-37], we obtain the theoretical
value for the proportionality constant (4(;-[’)2 = 0.01145. The
numerical results agree quite well with the theory.

Discussions. We briefly discuss future directions. An im-
mediate question is to verify the smooth corner limit Eq. (7)
in a lattice model, which would provide a way to extract the
defect central charge. We have mainly considered the modulus

(4n)?

of the disorder parameter (X,,). An interesting question is to
understand the phase of (X),) and how it depends on intrinsic
CFT data. According to the small 6 expansion, the leading
imaginary part appears at 6> order, which is then related to
the three-point function of the density operator.

In summary, we develop a computational and theoretical
toolkit about nonlocal observables—the disorder operator—
and the associated higher-form symmetry in the lattice model
of quantum many-body systems, and demonstrate that it can
directly reveal the CFT data of the critical point beyond the
conventional local observables. This offers a different concept
and technique in understanding an aspect of phase transi-
tions. It would be interesting to study other conformal field
theories, such as O(n) symmetry-breaking transitions [38,39]
and even more unconventional phase transitions such as the
deconfined quantum critical points [40—43] or nonconformal
scale-invariant theories such as the Lifshitz critical point [44].

Note added. We would like to draw the reader’s attention
to a closely related work by Wu, Jian, and Xu [45] in the same
arXiv listing. We also have become aware of an upcoming
work by Estienne, Stéphan, and Witczak-Krempa on related
topics [46].
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