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Abstract—Small-scale robots have the potential to impact many
areas of medicine and manufacturing including targeted drug
delivery, telemetry and micromanipulation. This paper develops an
algorithmic framework for regulating external magnetic fields to
induce motion in millimeter-scale robots in a viscous liquid, to
simulate the physics of swimming at the micrometer scale. Our
approach for planning motions for these swimmers is based on tools
from geometric mechanics that provide a novel means to design
periodic changes in the physical shape of a robot that propelsitin a
desired direction. Using these tools, we are able to derive new
motion primitives for generating locomotion in these swimmers. We
use these primitives for optimizing swimming efficiency as a function
of its internal magnetization and describe a principled approach to
encode the best magnetization distributions in the swimmers. We
validate this procedure experimentally and conclude by
implementing these newly computed motion primitives on several
magnetic swimmer prototypes that include two-link and three-link
swimmers.

|. INTRODUCTION

Planning motions for small-scale robots in a liquid can have
a huge impact for applications such as microsurgery, telemetry
and micromanipulation. Due to the small size of these robots,
locomotion at the sub-millimeter scale is dominated by low
Reynolds (Re) hydrodynamics. One consequence of swimming
in this regime is that motion is highly damped and inertial
effects have no contribution towards movement [4].
Therefore, the task of designing robots at this scale requires
accounting for the physics of swimming as well as actuation
that scales to this regime. The use of on-board actuation is not
an option because programmable micromotors that scale to
this regime do not exist. Therefore, one solution is to use an
external source of actuation such as thermal, chemical or
magnetic to wirelessly induce motion in an electrically passive
robot. Motivated by this idea, the aim of this paper is to
synthesize novel motion primitives for a magnetic robot that
responds to magnetic fields, and experimentally fabricate an
optimal swimmer for point-to-point steering.

External magnetic fields interact with the intrinsic
magnetization distributions (magnetic dipole moments) of
these robots by creating a torque or force which causes the
robot to bend in response [5, 14]. Therefore, by carefully
programming the internal magnetization profiles and
prescribing a suitable external field, we demonstrate an
algorithmic framework to orchestrate shape changes that
generate effective motions in a two-link ferromagnetic
swimmer (Fig. 1). Although, it is well known that a two-link

robot cannot achieve net displacement in a low Re regime
using internally actuated shape changes
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Fig. 1: Schematic of a two-link magnetic swimmer. Gray arrows
show external magnetic field, black arrows show internal
magnetizations and the joint between the links is springless.

(Scallop theorem [18]), the system we consider escapes this
constraint by using external actuation and asymmetric
magnetizations which allow it to locomote using reciprocal
motions. This work addresses the following technical
questions:

1) Given a magnetic swimmer, how do we determine
control inputs (i.e. external magnetic field) that induce
translation and turning motions in the swimmer ?

2) Given an input with fixed amplitude and frequency,
what are the best values of internal magnetizations that
optimize the average translational speed of swimmer?

3) Finally, how can these design variables be used to
experimentally fabricate an optimal swimmer for
locomotion?

As a first step towards addressing these questions, we
derive a physics based model for the dynamics of this swimmer
by incorporating hydrodynamic and magnetic effects
borrowing ideas from previous works [2, 3, 10] (Sec. ). Based
on this model, we identify symmetries in the dynamics which
allow us to only focus on a representative class of swimmers
that are easier to analyze and fabricate (Sec. IV). Next, we
address how to compute external field inputs (motion



primitives) for these swimmers to induce net locomotion along
a desired direction (Sec. V). To that end, we show how gait
design tools from geometric mechanics literature can be used
to our advantage to prescribe magnetic fields that advance
these swimmers in desired directions. Using these tools, we
not only motivate previously proposed primitives [11], but also
synthesize new primitives that have not been explored before.
We show that asymptotic stability offered by the existing
primitive allows us to synthesize new primitives and compose
them to realize turning in place and trajectory following
motion (Sec. VI).

Next, we analyze the efficiency of swimming measured
using average forward translational speed of the swimmer as
a function of its internal magnetization strength (Sec. VII). We
numerically solve an optimization problem that identifies the
best distribution of internal magnetizations that maximizes the
swimming efficiency for a given amplitude of magnetic field.

Although the problem of efficiency optimization is explored
in [11], we go a step further and describe a principled approach
to experimentally induce these optimal magnetization
distributions in millimeter scale ferromagnetic filaments. We
finally fabricate these optimal swimmers and validate the
motion primitives derived from simulation on these
swimmers. Specifically, we show timing test results from
fabrication, average speed v/s internal magnetizations trends
and swimming trajectories from (1) translation using classical
primitives (2) translation using curvature-function based
primitive (3) turning-in-place motions and (4) following a
rectangle by composing primitives. These results are shown in
Sec. VIII for the case of a two link swimmer. We also show
experimental results with a three-link swimmer by applying
the control inputs for a two-link swimmer to a three-link
swimmer.

I1. PRIOR WORK

Several existing approaches in the literature provide
inspiration for the results presented in this work. Of these, two
are especially relevant to the results we present. In the first
category, we describe existing tools for computing gaits for
low Re swimmers and in the following category, we describe
existing magnetic swimmers and their modes of propulsion.

A. Geometric motion planning and optimal gait synthesis

In 1976, Edward Purcell analyzed the locomotion of artificial
mechanisms in the low Re regime and established the Scallop
theorem [18]. He also proposed the simplest mechanical
device: a three-link planar swimmer capable of swimming in
this regime by using changes in its internal shape that are non-
time reversible. Since his initial work on the internally actuated
three-link planar swimmer, much of the subsequent research
has focused on planning and computing optimal gaits for the
three-link swimmer [20]. In addition to using numerical
optimization for computing optimal gaits for these planar

systems, authors in [21] use the minimum principle to derive
maximum-displacement gaits. Authors in [12] demonstrate
that using visual tools derived from geometric analysis, it is
possible to synthesize gaits for such a swimmer that make it
move along a desired direction in the world. The work in [1]
develops analytical techniques to extend gait design to
articulated systems with however many links such as a snake
like robot locomoting in granular media and a lowRe swimmer
respectively. Additionally, gait design for threedimensional
swimmers has been recently considered in [9] using ideas from
geometric mechanics.

B. Magnetic microswimmers

In contrast to these works that mostly address motion
planning for swimmers that are actuated using on board
servos, there has also been significant work on inducing
propulsion in swimmers using magnetic fields. There are three
prominent types of magnetic microswimmers that currently
exist. These include a swimmer made with a rigid helical tail
which propels with a corkscrew like motion in a rotating
magnetic field [8, 17, 19]. The second category consists of
swimmers with flexible bodies as considered in [7, 13, 16].
Under the action of an oscillating magnetic field, the flexible
body undulates in a non-reciprocal manner ultimately
resulting in net propulsion of the swimmer. Some of these
swimmers have been analytically modeled in [6, 11]. The third
category consists of articulated swimmers made with discrete
links attached to each other which undergo periodic
undulations in oscillating magnetic fields. Authors in [14]
develop such a swimmer consisting of links connected to each
other with flexible hinges. By developing a lumped parameter
model of such swimmers, authors in [10] solve a design
optimization to determine parameters that maximize
displacement and swimming speed.

IIl. MATHEMATICAL MODEL

We now derive a mathematical model for the swimmer that
captures the effects of hydrodynamic and magnetic
interactions. We will use this model for synthesizing motion
plans and computing optimal physical parameters for
maximizing swimming efficiency. Our swimmer consists of two
millimeterscale slender uniformly magnetized links connected
by a passive joint. We assume that the swimmer is fully
submerged in a liquid of high viscosity (i) such as glycerin to
simulate low Re hydrodynamics (Re = puL/u). Here p is the
liquid’s density, u is the swimmer’s speed and L is the length
(for each link). Fig. 1 shows a schematic of this swimmer.

Let W denote the inertial frame. For each link i where i €
{1,2}, the body frame b;is a frame that is rigidly attached to
the link at its vertex. The tangential axis along the body frame
is denoted by t%; and the normal axis of the body frame is
denoted by n”:. Thus, it is easy to see that t;= (cos;siné;) and
n"i= (-sinf;cosB;) where 6;is the angle between t";and X,. In



this representation, one can note that b; = {(t",n")}. The
configuration space of the swimmer is Q = SE(2)xS!where the
first component SE(2) corresponds to the position and
orientation of the body frame of the first link relative to the
world. The second component (S!) corresponds to the
orientation of the second link relative to the world. Hence the
configuration of the swimmer is identified by q = (x,),601,62) =
(p1,9) where p1 = (xy) and 8 = (61,62). We now describe
magnetic properties of the links. Each link is assumed to be
ferromagnetic which means that it has a permanent magnetic
dipole moment in its volume. Magnetization of a link is defined
relative to its body frame b;as shown in Fig. 1. Here,”% and 11,
are dimensionless numbers that quantify the strengths of
magnetization along t";and n”; of link i respectively. Let h > 0
denote the value of internal magnetization expressed in Am
units. Relative to inertial frame W, link i’'s magnetization is
expressed as
M= (mit, oml )k

= ( *rn’; cos ; — mf, sin #;, m.i sin #; mfl cosfyh (1)
For a link with length L and internal magnetization M, the
external magnetic field applies a torque on the link given by
Tym = LM x B(t) where B(t) = (Bx(t),By(t)) denotes the X,,and
Yw components of the external magnetic field measured in
Tesla/Gauss. We also assume that there is no torsional spring
connecting the two links. This is because driftlessness of the
dynamics will be necessary for synthesis of the motion plans in
Sec. V. The model of the swimmer is derived by incorporating
forces and torques from hydrodynamic and magnetic effects
as follows:

1) Fin: Hydrodynamic drag force on link i in world frame
.
2) Tk Hydrodynamic drag torque on link i about the Z, axis

passing through p, expressed in world frame

3) tim: Magnetic torque on link i expressed in world frame
where (im € {1,2}) denote link index and point index
respectively. From the assumptions of resistive force
theory, it is known that the hydrodynamic forces and
torques on a link are linear in the velocity of the link. The
exact expressions for these forces can be found in [1].
Additionally, the net force and moment on a system in
quasistatic equilibrium vanishes:

Fih+ F2,n=0 (2a)
p p
Tlt}n. + Tg‘,ltl T b Tom =t (2b)
p
Ty + Tom =0 (2¢)

After substituting the expressions for the forces and torques
([1]) and rearranging, we can rewrite Egs. 2a-2c in the form of
a control affine system. The control input to the system is
defined by the spatial magnetic fields i.e. u = (Bx(t),B,(t)) and
the state of the system is g(t).

q" = g1(q)Bx(t) + 92(q)B,(¢)
=G(q)u (3)

We define a vector m = (ml,m2,m', m2,) that denotes the
internal magnetizations of the links (the subscript indicates
tangential/normal while the superscript indicates the link
index). To emphasize on the dependence of the matrix G(q)
on m, we will explicitly denote it as G(qg,m).

IV. SYMMETRIES IN DYNAMICS

In the derivation of the dynamics model, we assumed that
each link of the swimmer has magnetization components
along the link’s tangential (ie. ™ # 0 ) and normal
directions
(ie. my # D). However, intuitively it should be possible to
modify the external field in a way such that it exerts the same
torque on each link as if it had internal magnetizations only
along its tangential direction. Swimmers with tangential only
magnetizations are more intuitive to analyze since we can
interpret their links as slender bar magnets. Additionally, as we
will show, requiring only tangential magnetizations gives
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Fig. 2: Equivalence between swimmers with tangential+normal
magnetizations and only tangential magnetizations

us a representative class of swimmers which have the same
locomotive functionalities as swimmers with both
components of magnetizations. We state this symmetry
theorem as follows:

Theorem 4.1: Any trajectory of a two link swimmer with both
normal and tangential magnetizations and a given magnetic
field can be obtained from a two link swimmer with only
tangential magnetizations and a transformed magnetic field

Proof: We begin by establishing some notation. We will
use the superscript tan + nor to refer to a swimmer with both
tangential and normal magnetization components. Likewise,
we will use the superscript tan to refer to a swimmer with only
tangential magnetization components. Recall that the
differential equations governing the dynamics of a two link
swimmer are (Eq. 3) g = G(gm)u(t) where m =
(m'ym2,mt, m2,) are the magnetization components and u(t)
= (Bx(t),By(t)) is the magnetic field. Let Gian+nor(t) be the
solution to Eq. 3 for m = mtan+nor =



(ci,c2d1,d2) for cicadi,dz € R — {0} such that E'}E

2900 = 050 u(e) = wormor(e) = (B(6),B,(6) (Fig. 2 left)

Similarly, let gwn(t) be solution to Eg. 3 for m = mi =
(c1,62,0,0),9(0) = 0 and u(t) = ute(t) =
(B;r.‘(t') + %By(f), *%Br{t} + -B‘f)(t)) (Fig. 2 right).

Then for this choice of external magnetic field and
magnetizations, we will show that gan+nor(t) = Gean(t) Vt = 0.
We know that the dynamics of the swimmer are governed by
the matrix G(g,m)u which depends on magnetic torques tTjm
aside from hydrodynamic forces and torques. We now show
that magnetic torques on these two types of swimmers (i.e.
Fig. 2 left and Fig. 2 right) are identical for the given choice of
magnetizations and external magnetic fields. For the swimmer
with both tangential and normal components (Fig.2 left), note:

B (C'?ifi + i) x umn_i_nw(t)
= (¢ T + dilly £) x atontren(y
= (e:T + d; Ry Y, x uton+mor gy

i,mtan+nor

(4) Note from the

definition of the two controls that

tan(t) o (I _ _R%)utan+nor(ﬂ
u (5)

where [ is the identity matrix. For the swimmer with only
tangential magnetizations (Fig.2 right), note that
Tf,?,f(_t} = iy % utem (1)
-~ j
=y X ([ — (_lﬁﬂ)uta'n—ihnor(i)
(] 2
= nifi o uta,n-}-naﬂ’ (/) _ diff x ]z%utan+nor{t)
= {Lff, « glentror (f) 4 diﬁg-fi w utan‘%nor(_j’)
= {4+ d@fi’,g)ff: x gtan-tnor (£)

= T,-,mtan+nor(t) (6)

Therefore, for the given choice of internal magnetizations and
external fields, the two swimmers (Fig. 2 left and Fig. 2 right)
experience same magnetic torques. Additionally, since the
hydrodynamic torques on these systems do not depend on
their magnetic properties, both swimmers experience
identical hydrodynamic effects as well, i.e. F;p" = F;p"+"°" and
Tihtan = Tihtan+nor. Hence, the dynamics of these swimmers are
identical i.e G(g,mtn+nor)ytan+nor = G(q,m*)ut" based on Eq. 2.
Since the initial condition in both systems is same, the
governing IVP for both systems is the same, therefore
Gran+nor(t) = Gean(t) YVt = 0. MTherefore, for forgoing discussion,
we will only consider swimmers with tangential internal

1 Differently from the work in [2], we use Stokes’ theorem for magnetic
swimmers without springs and visualize the effect of the limit cycles over the
full orientation space using curvature function plots in Fig. 3. Secondly, we do

magnetizations components in each link. Let mi;=c; > 0 and
m?2,= c;> 0 denote the strengths of magnetizations in links 1
and 2 respectively. We will assume that ¢, 6= c; to avoid front
back symmetry.

V. MOTION PLANNING USING GEOMETRIC MECHANICS

In Sec Ill and IV, we have formulated the equations of
motion for a two-link swimmer and identified symmetries
allowing us to focus only on a simplified swimmer. Based on
the model, we can explore the behavior of the swimmer’s
motion as a function of different types of control inputs u(t) =
(Bx(t),By(t)). In this section, we will demonstrate that by using
tools from geometric mechanics we can generate new motion
primitives for swimming compared to the ones proposed
before. We assumed that the swimmer is springless so there is
no drift vector field in the dynamics of the swimmer:

g =G(gm)u (7)

where g = (p,0), Glgm) = [g1(g,m),g2(gm)] and u(t) =
(Bx(t),B,(t)). Since the magnetic field is spatially uniform, the
instantaneous (x,y) position coordinates of the swimmer do
not effect its motion. The only state variables that influence
the dynamics are the orientation of the swimmer’s links in the
inertial frame. Therefore, the dynamics of the position
variables i.e. p" = (x,” y') depend exclusively on the orientation
variables ¥ = (61,02). Similarly, the dynamics of the orientation

variables ¢ depend exclusively on . Hence, we can break Eq.
7 into two separate sub-systems as follows:

g =G(gm)u =G(Om)u

==p =P(Gm)u (8) 9 =H(Gm)u (9)
where P(9,m) € R2x2 and H(Gm) € R¥2,
The exact expressions for these matrices
are omitted in the interest of space.
Assuming H(9m) is invertible on
[-2m,2m]x[-2m,2m], we can compute u
from Eg. 9 and substitute in Egq. 8 as

follows:
u= H‘l(t?,m)ﬂ- (10a)
== p' = P(Sm)H-1(Bm)O (10b)
(10c)

== p = JBm)S

where J(§,m) = P(9,m)H-1(9m). Note that Eq. 10c is in a form
similar to the Kinematic Reconstruction Equation
§=-A(a)a’ (11)

not require a small-angle approximation and instead illustrate the effect of
the full swing limit cycle on displacement directly.



where A(a) € R3*2is known as the local form of a connection.
It maps shape velocities to body velocities: A(a) : Tu1S x TaaSt
—-— se(2). In the literature on geometric theory of swimming
[15], this equation has been used to synthesize motion
primitives for swimmers that are internally actuated i.e. where
it is possible to command any values of a(t). On the contrary,
note that in Eq. 10c the variables (6,02) refer to the
orientation of the swimmer relative to the world. Additionally,
the left hand side of Eq. 10c also involves velocities referenced
relative to the inertial frame as opposed to the body velocities
¢ expressed in the body frame. Hence, we cannot model this
system with a principal fiber bundle structure. Nevertheless,
assuming for the moment that we can fully control (61,6), it
is possible to compute the total displacement over a cyclic

change in T ) (61,62) as
follows p Ty = J(B(t), miB{1dt
Ju
= [J(B?m)riﬂ
Wy )
e /:/ VxJ (1{91_&792. (12)
8

In Eq. 12, we have used Stokes’ theorem?! to simplify the
problem of computing line integral of the rows of J(§,m) along
y, to computing volume integrals of the curvature of J (curl J)
defined over S. We plot the x and y components of curl J in Fig.
3. To synthesize a motion primitive for translation in the X,,
direction of the world frame, we visually query and inspect
regions in Fig. 3 in the orientation angle phase space which
enclose a net non-zero volume in x component and zero
volume in the y component. Using this visual inspection, we
pick a loop in the (681,02) space that encloses such a region.
One such candidate loop is highlighted in red in Fig. 3 and is
parametrized as:

W) = (L35 sin (wi — 1.817)

Wt = 0.53sin (wt — 0.7186)

(13a)
(13b)

VxJv
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Fig. 3: curl J computed over [-m,27] x [-m,27]

HJMJ i

[} 7 & 9 10
Time(s|

L L
T T T L

Timels
Fig. 4: Magnetic field input for the red loop using Eq. 14
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With this parametrization and Eq. 10a, we compute the
control:

(6) = H™ WO, 05(1)) 0
VR v 95

u (14)

The resulting input is plotted in Fig. 4.

A. Relation to previously proposed motion primitive

Note that the magnetic field input in Fig. 4 exhibits a
discontinuity which happens whenever 6:(t) = 6,(t). This
singularity is the result of the swimmer admitting an
instantaneous straightened configuration and is not a locked
singularity. We low-pass filter these inputs to remove the
singularity and normalize them by their amplitude. This gives

By(t) = 1,B,(t) = sinwt (15)
This control input matches exactly with the ones proposed in
[2, 10]. Using this, we numerically simulate the dynamics of
the system Eq. 3 and plot the resulting trajectory of the
swimmer in Fig. 5. Note that the swimmer indeed undergoes
translation along X,, axis as we set out our initial goal.

B. Novel motion primitives

We extend this tool to synthesize new control inputs that
also result in translation along X,. To that end, consider a
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Fig. 5: Translation trajectory using Bx= 1,B, = sinwt
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Fig. 6: Translation trajectory using inputs in Eq. 17

time parametrized loop in the (61,62) defined below

(f’f{i) = (. a({)‘wjf(()sz —0.25sinwt 51112 -+ i} (i6a)
] 3
(}g{t) = (0,5 cos wt Sillg 4+ 0).25 sin wt cosg + N (16b)

This loop is depicted in black in Fig. 3. Using this
parametrization, we compute u(t) = (Bx(t),B,(t)) using Eq. 14.
Using interpolation, we write the corresponding control input

as:
4 4

B (t) m Za,’ sin (b7t + i), B, (¢) Za? sin (b¥E + ¥}
=1 iw
(17)

To save space, we omit specifying the exact values of
{af, b7, ¢t al b ¢/} We simulate the system dynamics using
this input and show the resulting displacement of the
swimmer in Fig. 6. Note from Fig. 6 that the translation
distance of the swimmer computed over 15 cycles of executing
control Eq. 17 is ~7 body lengths. However, exciting the
swimmer with 15 cycles of the control from Eq. 15 results in a
translation of ~14 body lengths as shown in Fig. 5. This
suggests that as measured using average swimming speed, the
motion generated by Eq. 15 is ~two times more efficient than
the motion generated by the control in Eq. 14. We validate
these primitives by implementing them on our fabricated
robots and show in Sec. VIl that this relative efficiency ratio is
indeed observed in experiments as well. Next, we will analyze
the stability properties of the primitives in Eq. 15 and 17.

VI. LimiT CYCLE STABILITY

From simulations, we observe that the steady state motion
of the swimmer using the input from Eq. 15 is independent of
the swimmer’s initial orientation in the world. On the other
hand, corresponding to Eqg. 17, the steady state response of
the swimmer indeed is sensitive to the initial orientation of the
links relative to the world. This observation suggests that
corresponding to input u(t) = (1,sinwt), the asymptotic
trajectory in the (61,6) phase portrait is locally asymptotically

-1 0.5 0 0.5 1

t

Fig. 7: Limit cycle (red) from different initial orientations

stable with respect to variations in the initial orientation of the
swimmer. We state this result in the theorem below:
Theorem 6.1: Given the control input u(t) = (1,sinwt), the

flows of the differential equation & = H(®)u(t), §(0)
(61(0),62(0)) converge to the same solution U*°(t) =
(67701, 05°(t)) for all 9(0) close to 9=(t) i.e. the periodic
trajectory specified by §*(t) is locally asymptotically stable.
Proof: See supplementary material B

To illustrate this, we plot the flows of the orientation
components of g(t) starting from different initial conditions in
Fig. 7 using u(t) = (1,sinwt). This figure shows that all these
flows converge to the same limit cycle (F7°{%},05°(1})
(highlighted in red). Moreover, it also illustrates that the limit
cycle is not only locally asymptotically stable but that it also
has a large basin of attraction. This suggests that it is possible
to align the swimmer with the direction of the external
magnetic field vector even when the initial orientation of
individual links of the swimmer is off by as much as m radians
relative to the direction the external field. Hence, by switching
the direction of the field vector, we can make the swimmer
turn-in-place or follow a rectangular trajectory in the
workspace. In the interest of space, we skip simulation results
and demonstrate experimentally in Fig. 9 (two-link) and Fig. 10
(three-link).

All these derivations have been done for a two-link
swimmer because exact inversion in Eq. 10a is only possible for
two inputs i.e. (Bx(t),B,(t)) and two outputs i.e. (81,62). Since
a three link swimmer has two inputs and three outputs
(61,62,65), exact inversion in Eq. 10a and control synthesis is
not possible. Therefore, for simulations and experiments, we
directly used the control inputs for the two link system and
applied them on the three link system to study its response.

VII. DESIGN OPTIMIZATION AND FABRICATION

Using stability analysis, we have demonstrated that the
input from Eq. 15 is suitable for point to point steering and
turning in place type motions. Given a fixed amplitude and
frequency of this input, we would now like to determine



parameters intrinsic to the swimmer that maximize its forward
translational speed. One such parameter is the intrinsic
magnetization of each link which dictates how much magnetic
torque that link experiences under the action of a magnetic
field. This in-turn regulates the amplitude of undulation and
hence the speed. So, we select magnetization as a design
variable for optimizing swimming efficiency for a given field
amplitude.

A. Optimizing over internal magnetization

We can either consider optimizing over magnetizations of
both links or optimizing over the magnetization of link 2 (head
link) for a fixed magnetization of link 1 (tail link). However,
note that by increasing the amplitude of external magnetic
field, we can realize a proportionate increase in the
magnetization of both links. Therefore, we will only optimize
over magnetization of link 2 for a fixed magnetization of link
1je i = ¢ = 1,m}? = cz # O.mL = m?2 = 0 e

o (in normalized units)

5 iFa i P - 502
BN/ -

1 3 s B 4
Magnetization of link 2 (in normalized units)

Magnetization of link (in normalized units)

and advances a greater distance forward. The peak from M €
(0,1) exists because the magnetization of link 2 is weak
compared to link 1 so the swimmer advances backward. Note
that the X axis in Fig. 8a is limited to 6 because the ratio of the
strongest to weakest magnetizing field we can generate with
our experimental setup (to be described next) is precisely 6.
We conducted a similar optimization for three-link swimmer
and determined the optimal magnetization ratio to be 1:4:4.

B. Experimental Fabrication

We have seen that by increasing the magnetization of the
head link relative to the tail link, the efficiency of swimming
can be improved. We now describe an experimental procedure
to fabricate a two link swimmer with a high value of interlink
magnetization ratio. For our experiments, we manufacture
ferromagnetic links that are connected with an elastomer to
make the two link swimmer. Each link is made by mixing equal
parts of unmagnetized ferromagnetic particles Magnequench

Helmholtz Coils Pair 1
Helmholtz Coils Pair 2

—Simulation
=-Experiment

i et

8 9 ]

Power Supply

(a) Average speed v/s link 2 magnetization. (b) Turning time v/s link magnetization. (c) Experimental setup for validation Fig. 8:

Displacement optimization and Turning time results from simulations/experiments and Experimental Setup.

TABLE |: Results from translation, turning in place and trajectory tracking averaged over 5 runs

Swimmer Straight locomotion | Straight locomotion | Turning (oscillating input) Turning (constant input)
(derived from Eq. 15) (derived from Eq. 17)

Links [BL/s] [BL/s] [rad/s] [rad/s]

Two-links 3.663e -3+.305e -3 1.4173e-3+.00331e-3 5.445e -1+ .468e -1 1.606e -1+.0174e -1

Three-links 200.973e -3+.321e-3 No translation observed 1.376e -1+.380e -1 9.466e -2+1.77e -2

now pose an optimization problem to compute the values of
¢z that maximize the total displacement of the swimmer in a
fixed duration from t =0to t=T. We set f= 0.8Hz same as the
frequency of actuation in our experimental setup.

Ix(T)/T|

maximize
c2

subjectto g =G(gm)u
u(t) = (1,sin27ft),q(0) = 0

We use numerical simulations to solve this optimization
problem. Fig. 8a depicts the relation between the absolute
average speed of the swimmer for several values of the
magnetization of link 2. As we can note, increasing the values
of the magnetization of link 2 relative to link 1 results in
increasing values of the speed of the swimmer. This is because
by increasing strength of magnetization of link 2, it bends with
greater amplitude, due to which it drags through more fluid

MQFP-B (D50=15um) and resin (Smooth-Cast 326). After
curing, the substrate is laser cut into 6.5 mm x 4.2 mm x 1.75
mm. rectangular links. To magnetize a link, we use a pair of
neodymium magnets that generate strong magnetizing fields
in0.1T-0.6Tin a height range of 0 to 3.5 cms (supplementary
material). Each link is suspended between these magnets
which induces magnetic moments along its length . We then
join two such links with an elastomer of low-bending stiffness
to make the complete swimmer. We assume that the strength
of magnetization in a link Minduced X Bmagnetizing between the
magnets at that height. To realize a desired inter-link
magnetization ratio, we conduct a turning time test. In this
test, we investigate the time a single link submerged in glycerin
takes to turn and align itself with constant magnetic field as a
function of its internal magnetization. From simulations, we
find that the time taken to turn is inversely related to internal



magnetization. To verify this experimentally, we magnetize
several links at different field strengths, measure the local
magnetizing field on the surface of the link with a Gaussmeter
at the placement height and measure the time to turn by % for
these links using OpenCV . As Fig. 8b shows, the experimental
data matches well with simulations, and indeed this test allows
us to compare magnetizations between different links and can
be used to fabricate a swimmer with a desired magnetizations.
Following this procedure, we fabricated a batch of 12
swimmers with identical magnetization in the first link and
varying magnetizations in the second. Each swimmer was
actuated with u(t) = Bo(1,sin2mnft) at Bo= 40G, f= 0.8Hz and
time taken to cross between two points at fixed distance was

We assume that Minduced X Bmagnetizing so the X axis for
experimental results is indeed the magnetizing field strength
in normalized units. For simulation result, we obtained an
estimate value of magnetization 0.12 + 0.02 Am by following
the magnetizing procedure in [13] for our fabricated links and
scaled it proportionately for the 12 swimmers. Hence, our
models are slightly approximate because we dont have precise
values of internal magnetizations. Controlling and estimating
precise values of induced magnetizations in these links is part
of future work

VIII. EXPERIMENTAL VALIDATION OF MOTION PLANS

After fabricating the swimmers, we are now ready to
experimentally validate motion primitives derived in Section.

(a) Translation using Eq. 15 (b) Translation using Eq.17 (c) Oscillating input turning (d) Rectangle tracking Fig. 9: Results from two-

link swimmer (magnetization: 1:6). See supplementary videos for experiments.

(a) Translation using Eq. 15 (b) Turning with constant input (c) Oscillating input turning (d) Rectangle tracking Fig. 10: Results from
three-link swimmer (magnetization: 1:4:4). See supplementary videos for these experiments.

measured, for computing average speed. We conducted five
runs per swimmer to compute mean and standard deviation
as shown in Fig. 8a. Notice that overall, the experimental result
follows the same trend as simulation ie. average speed
increases with magnetization. However, there is a significant
difference between the two curves. This can be described as
follows: our Neodymium magnet pair setup generates a highly
nonuniform magnetic field that varies from 0.1 Tto 0.6 T in a
0to 3cm long column and the height of a link itself is 0.5cm. So
precise control of numerical values of induced magnetization
in a link is difficult using our setup. Secondly, in simulated
model, we assumed that the joint between two links is
springless. However, for the experimental swimmer, we used
an elastomer to connect the links. This elastomer acts like a
torsional spring which applies a torque resisting deformation
from magnetic torque due to which the swimmer does not
undulate as much as in simulations. Links magnetized at
weaker fields experience more torsional resistance so the
experimental result tends to be further away from simulation.
Finally, note that we use normalized units to denote
magnetization on X axis in Figs. 8a, 8b because we dont have
exact measurements of magnetizations induced in the links.

V. Fig. 8c shows the setup which consists of two pairs of
Helmholtz coils connected to a power supply via a Roboclaw
motor driver. The strength of the fields produced by these coils
is ~ 40G. The size of the workspace is 6 cms x 10 cms. We
measured the magnetic field in the workspace on a grid of
equally spaced points to check for field gradients and
concluded that the field is spatially uniform (see
supplementary material for a plot). The swimmer (L = 1.3 cms)
is fully submerged in glycerin which has a viscosity 1.706 Pa.s
and density 1260 kg/m3. In translation, it has average speed
close to 0.0004 m/s. The resulting Re is = 0.0035 which is well-
within the low-Re regime. We now describe the results of
translation, turning in place and rectangular trajectory
tracking.

A. Translation using classical primitive Eq. 15

We now present our results from applying ugans(t) =
Bo(1,sin27ft) to the two link and three link swimmers. For
these experiments, we used By = 40 Gauss and f= 0.8Hz. Fig.
9a and 10a depicts snapshots of the translation in the two and
three link swimmers as a function of time. The average speed
can be noted from the second column in Table I.



B. Translation using new primitive Eq. 17

We also show translation using the new primitive (Eq. 17)
derived in Sec.V. Fig. 9b shows snapshots of the two link
swimmer with this input. The average speed of the swimmer
with this input (third column in Table I) is roughly 40% of the
average speed in the swimmer using the classical primitive,
which closely matches with the result from simulations (50%)
(Fig. 5 and Fig. 6). Additionally, from simulations, we obtained
that the trajectory from this input is sensitive to the initial
orientation of the swimmer. This explains why the trajectory
observed in experiments is not fully straight. This input does
not result in translation in three-link swimmer (neither in
simulations) so we omit that result in Table I.

C. Turn in place with oscillatory and constant inputs

We identified that input u(t) = Bo(1,sinwt) allows us to
switch the direction of magnetic field vector to induce
locomotion along a given direction. We can modulate the field
in a continuous fashion by composing it with a frequency
component slower than the actuating frequency. This causes
the swimmer to continuously rotate as the instantaneous
magnetic field vector on average also rotates. Fig. 9c and 10c
demonstrate an example of this motion. For this experiment,
we used Urot = Rosintt(t) where w = 2mf,wsiow = w/10 and f =
0.8Hz. Alternatively, we can switch and maintain a constant
magnetic along a given orientation to induce turning in place
(Fig. 10b) (similar to orientation of magnetic compass with
external field). The angular velocities for these motions can be
compared in the fourth and fifth columns in Table I.

D. Rectangular trajectory following

Similarly, we can make the swimmer track a rectangular
trajectory by synthesizing switching time instants at which the
magnetic field vector turns counter clockwise by 5 radians.
Whenever this happens, the swimmer turns in place and
exhibits a transient response while it turns, which eventually
diminishes and steady translation is obtained along the
constant component. Fig. 9d and 10d depict snapshots of
swimmers following rectangular trajectory using:

Upans(t) 0 mins < ¢ < 15 mins
Retyon.lt 15 mins < ¢ < 28 mins

() = { Hgterenall) 1D mins < LS Bmins
Brtbprgns(t) 28 mins < ¢ < 44 mins

Rg;ﬁ Uprans(t) 44 mins < £ < 62 mins

IX. CONCLUSIONS

In this paper, we explored motion planning and efficiency
optimization for a two-link magnetic swimmer actuated using
magnetic fields. Starting with a mathematical model, we
identified a representative class of swimmers and showed how
tools from geometric mechanics can be used to synthesize
novel motion primitives for this swimmer. We analyzed the
efficiency of locomotion using these primitives and further
explored how to improve it by optimizing the internal

magnetization  distributions in the swimmer. We
demonstrated an experimental procedure to fabricate these
optimal swimmers. Although our results from the model were
different from the experimental results, we still have a starting
approach for fabricating optimal swimmers through our
results. We also conducted experiments to verify translation,
trajectory tracking and turn in place motions in two link and
three link swimmers. In future, we are interested in resolving
the difference in theoretical and simulation results from
efficiency analysis, and extending the numerical design
optimization and geometric control synthesis tools to multi-
link magnetic swimmers.
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