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Abstract—Small-scale robots have the potential to impact many 

areas of medicine and manufacturing including targeted drug 
delivery, telemetry and micromanipulation. This paper develops an 
algorithmic framework for regulating external magnetic fields to 
induce motion in millimeter-scale robots in a viscous liquid, to 
simulate the physics of swimming at the micrometer scale. Our 
approach for planning motions for these swimmers is based on tools 
from geometric mechanics that provide a novel means to design 
periodic changes in the physical shape of a robot that propels it in a 
desired direction. Using these tools, we are able to derive new 
motion primitives for generating locomotion in these swimmers. We 
use these primitives for optimizing swimming efficiency as a function 
of its internal magnetization and describe a principled approach to 
encode the best magnetization distributions in the swimmers. We 
validate this procedure experimentally and conclude by 
implementing these newly computed motion primitives on several 
magnetic swimmer prototypes that include two-link and three-link 
swimmers. 

I. INTRODUCTION 

Planning motions for small-scale robots in a liquid can have 

a huge impact for applications such as microsurgery, telemetry 
and micromanipulation. Due to the small size of these robots, 

locomotion at the sub-millimeter scale is dominated by low 

Reynolds (Re) hydrodynamics. One consequence of swimming 

in this regime is that motion is highly damped and inertial 
effects have no contribution towards movement [4]. 

Therefore, the task of designing robots at this scale requires 
accounting for the physics of swimming as well as actuation 

that scales to this regime. The use of on-board actuation is not 

an option because programmable micromotors that scale to 
this regime do not exist. Therefore, one solution is to use an 

external source of actuation such as thermal, chemical or 
magnetic to wirelessly induce motion in an electrically passive 

robot. Motivated by this idea, the aim of this paper is to 

synthesize novel motion primitives for a magnetic robot that 

responds to magnetic fields, and experimentally fabricate an 
optimal swimmer for point-to-point steering. 

External magnetic fields interact with the intrinsic 

magnetization distributions (magnetic dipole moments) of 
these robots by creating a torque or force which causes the 

robot to bend in response [5, 14]. Therefore, by carefully 
programming the internal magnetization profiles and 

prescribing a suitable external field, we demonstrate an 

algorithmic framework to orchestrate shape changes that 

generate effective motions in a two-link ferromagnetic 
swimmer (Fig. 1). Although, it is well known that a two-link 

robot cannot achieve net displacement in a low Re regime 

using internally actuated shape changes 

 

Fig. 1: Schematic of a two-link magnetic swimmer. Gray arrows 
show external magnetic field, black arrows show internal 

magnetizations and the joint between the links is springless. 

(Scallop theorem [18]), the system we consider escapes this 
constraint by using external actuation and asymmetric 

magnetizations which allow it to locomote using reciprocal 
motions. This work addresses the following technical 

questions: 

1) Given a magnetic swimmer, how do we determine 

control inputs (i.e. external magnetic field) that induce 
translation and turning motions in the swimmer ? 

2) Given an input with fixed amplitude and frequency, 

what are the best values of internal magnetizations that 
optimize the average translational speed of swimmer? 

3) Finally, how can these design variables be used to 

experimentally fabricate an optimal swimmer for 

locomotion? 

As a first step towards addressing these questions, we 
derive a physics based model for the dynamics of this swimmer 
by incorporating hydrodynamic and magnetic effects 

borrowing ideas from previous works [2, 3, 10] (Sec. III). Based 

on this model, we identify symmetries in the dynamics which 

allow us to only focus on a representative class of swimmers 

that are easier to analyze and fabricate (Sec. IV). Next, we 

address how to compute external field inputs (motion 



primitives) for these swimmers to induce net locomotion along 
a desired direction (Sec. V). To that end, we show how gait 

design tools from geometric mechanics literature can be used 
to our advantage to prescribe magnetic fields that advance 

these swimmers in desired directions. Using these tools, we 

not only motivate previously proposed primitives [11], but also 

synthesize new primitives that have not been explored before. 
We show that asymptotic stability offered by the existing 

primitive allows us to synthesize new primitives and compose 
them to realize turning in place and trajectory following 

motion (Sec. VI). 

Next, we analyze the efficiency of swimming measured 
using average forward translational speed of the swimmer as 

a function of its internal magnetization strength (Sec. VII). We 
numerically solve an optimization problem that identifies the 

best distribution of internal magnetizations that maximizes the 
swimming efficiency for a given amplitude of magnetic field. 

Although the problem of efficiency optimization is explored 

in [11], we go a step further and describe a principled approach 
to experimentally induce these optimal magnetization 

distributions in millimeter scale ferromagnetic filaments. We 
finally fabricate these optimal swimmers and validate the 

motion primitives derived from simulation on these 

swimmers. Specifically, we show timing test results from 

fabrication, average speed v/s internal magnetizations trends 
and swimming trajectories from (1) translation using classical 
primitives (2) translation using curvature-function based 

primitive (3) turning-in-place motions and (4) following a 
rectangle by composing primitives. These results are shown in 

Sec. VIII for the case of a two link swimmer. We also show 

experimental results with a three-link swimmer by applying 

the control inputs for a two-link swimmer to a three-link 
swimmer. 

II. PRIOR WORK 

Several existing approaches in the literature provide 

inspiration for the results presented in this work. Of these, two 
are especially relevant to the results we present. In the first 

category, we describe existing tools for computing gaits for 
low Re swimmers and in the following category, we describe 
existing magnetic swimmers and their modes of propulsion. 

A. Geometric motion planning and optimal gait synthesis 

In 1976, Edward Purcell analyzed the locomotion of artificial 

mechanisms in the low Re regime and established the Scallop 
theorem [18]. He also proposed the simplest mechanical 

device: a three-link planar swimmer capable of swimming in 
this regime by using changes in its internal shape that are non-

time reversible. Since his initial work on the internally actuated 

three-link planar swimmer, much of the subsequent research 

has focused on planning and computing optimal gaits for the 
three-link swimmer [20]. In addition to using numerical 
optimization for computing optimal gaits for these planar 

systems, authors in [21] use the minimum principle to derive 
maximum-displacement gaits. Authors in [12] demonstrate 

that using visual tools derived from geometric analysis, it is 
possible to synthesize gaits for such a swimmer that make it 

move along a desired direction in the world. The work in [1] 

develops analytical techniques to extend gait design to 

articulated systems with however many links such as a snake 
like robot locomoting in granular media and a lowRe swimmer 

respectively. Additionally, gait design for threedimensional 
swimmers has been recently considered in [9] using ideas from 

geometric mechanics. 

B. Magnetic microswimmers 

In contrast to these works that mostly address motion 

planning for swimmers that are actuated using on board 
servos, there has also been significant work on inducing 
propulsion in swimmers using magnetic fields. There are three 

prominent types of magnetic microswimmers that currently 

exist. These include a swimmer made with a rigid helical tail 

which propels with a corkscrew like motion in a rotating 
magnetic field [8, 17, 19]. The second category consists of 

swimmers with flexible bodies as considered in [7, 13, 16]. 
Under the action of an oscillating magnetic field, the flexible 

body undulates in a non-reciprocal manner ultimately 

resulting in net propulsion of the swimmer. Some of these 

swimmers have been analytically modeled in [6, 11]. The third 
category consists of articulated swimmers made with discrete 
links attached to each other which undergo periodic 

undulations in oscillating magnetic fields. Authors in [14] 
develop such a swimmer consisting of links connected to each 

other with flexible hinges. By developing a lumped parameter 
model of such swimmers, authors in [10] solve a design 

optimization to determine parameters that maximize 
displacement and swimming speed. 

III. MATHEMATICAL MODEL 

We now derive a mathematical model for the swimmer that 

captures the effects of hydrodynamic and magnetic 
interactions. We will use this model for synthesizing motion 

plans and computing optimal physical parameters for 
maximizing swimming efficiency. Our swimmer consists of two 

millimeterscale slender uniformly magnetized links connected 

by a passive joint. We assume that the swimmer is fully 

submerged in a liquid of high viscosity (µ) such as glycerin to 
simulate low Re hydrodynamics (Re = ρuL/µ). Here ρ is the 
liquid’s density, u is the swimmer’s speed and L is the length 

(for each link). Fig. 1 shows a schematic of this swimmer. 

Let W denote the inertial frame. For each link i where i ∈ 

{1,2}, the body frame bi is a frame that is rigidly attached to 

the link at its vertex. The tangential axis along the body frame 

is denoted by tˆi and the normal axis of the body frame is 
denoted by nˆi. Thus, it is easy to see that tˆi = (cosθi,sinθi) and 
nˆi = (−sinθi,cosθi) where θi is the angle between tˆi and Xw. In 



this representation, one can note that bi = {(tˆi,nˆi)}. The 
configuration space of the swimmer is Q = SE(2)×S1 where the 

first component SE(2) corresponds to the position and 
orientation of the body frame of the first link relative to the 

world. The second component (S1) corresponds to the 

orientation of the second link relative to the world. Hence the 

configuration of the swimmer is identified by q = (x,y,θ1,θ2) = 
(p1,θ) where p1 = (x,y) and θ = (θ1,θ2). We now describe 

magnetic properties of the links. Each link is assumed to be 
ferromagnetic which means that it has a permanent magnetic 

dipole moment in its volume. Magnetization of a link is defined 

relative to its body frame bi as shown in Fig. 1. Here,  and  
are dimensionless numbers that quantify the strengths of 

magnetization along tˆi and nˆi of link i respectively. Let h > 0 
denote the value of internal magnetization expressed in Am 

units. Relative to inertial frame W, link i’s magnetization is 
expressed as 

M  

 

For a link with length L and internal magnetization Mi, the 
external magnetic field applies a torque on the link given by 
τi,m = LMi × B(t) where B(t) = (Bx(t),By(t)) denotes the Xw and 

Yw components of the external magnetic field measured in 
Tesla/Gauss. We also assume that there is no torsional spring 

connecting the two links. This is because driftlessness of the 
dynamics will be necessary for synthesis of the motion plans in 

Sec. V. The model of the swimmer is derived by incorporating 
forces and torques from hydrodynamic and magnetic effects 

as follows: 

1) Fi,h: Hydrodynamic drag force on link i in world frame 

2) : Hydrodynamic drag torque on link i about the Zw axis 
passing through pm expressed in world frame 

3) τi,m: Magnetic torque on link i expressed in world frame 

where (i,m ∈ {1,2}) denote link index and point index 

respectively. From the assumptions of resistive force 

theory, it is known that the hydrodynamic forces and 
torques on a link are linear in the velocity of the link. The 

exact expressions for these forces can be found in [1]. 
Additionally, the net force and moment on a system in 

quasistatic equilibrium vanishes: 

 F1,h + F2,h = 0 (2a) 
 p p 

  (2b) 
p 

  (2c) 

After substituting the expressions for the forces and torques 
([1]) and rearranging, we can rewrite Eqs. 2a-2c in the form of 

a control affine system. The control input to the system is 
defined by the spatial magnetic fields i.e. u = (Bx(t),By(t)) and 

the state of the system is q(t). 

q˙ = g1(q)Bx(t) + g2(q)By(t) 

 = G(q)u (3) 

We define a vector m = (m1
t,m2

t,m1
n,m2

n) that denotes the 
internal magnetizations of the links (the subscript indicates 

tangential/normal while the superscript indicates the link 
index). To emphasize on the dependence of the matrix G(q) 

on m, we will explicitly denote it as G(q,m). 

IV. SYMMETRIES IN DYNAMICS 

In the derivation of the dynamics model, we assumed that 

each link of the swimmer has magnetization components 

along the link’s tangential (i.e. ) and normal 
directions 

). However, intuitively it should be possible to 

modify the external field in a way such that it exerts the same 
torque on each link as if it had internal magnetizations only 

along its tangential direction. Swimmers with tangential only 
magnetizations are more intuitive to analyze since we can 
interpret their links as slender bar magnets. Additionally, as we 

will show, requiring only tangential magnetizations gives 

 

Fig. 2: Equivalence between swimmers with tangential+normal 
magnetizations and only tangential magnetizations 

us a representative class of swimmers which have the same 

locomotive functionalities as swimmers with both 
components of magnetizations. We state this symmetry 

theorem as follows: 

Theorem 4.1: Any trajectory of a two link swimmer with both 
normal and tangential magnetizations and a given magnetic 

field can be obtained from a two link swimmer with only 
tangential magnetizations and a transformed magnetic field 

Proof: We begin by establishing some notation. We will 

use the superscript tan + nor to refer to a swimmer with both 
tangential and normal magnetization components. Likewise, 

we will use the superscript tan to refer to a swimmer with only 
tangential magnetization components. Recall that the 

differential equations governing the dynamics of a two link 

swimmer are (Eq. 3) q˙ = G(q,m)u(t) where m = 
(m1

t,m2
t,m1

n,m2
n) are the magnetization components and u(t) 

= (Bx(t),By(t)) is the magnetic field. Let qtan+nor(t) be the 
solution to Eq. 3 for m = mtan+nor = 



(c1,c2,d1,d2) for c1,c2,d1,d2 ∈ R − {0} such that 

 and u(t) = utan+nor(t) = (Bx(t),By(t)) (Fig. 2 left) 
Similarly, let qtan(t) be solution to Eq. 3 for m = mtan = 

(c1,c2,0,0),q(0) = 0 and u(t) = utan(t) = 

 (Fig. 2 right). 

Then for this choice of external magnetic field and 

magnetizations, we will show that qtan+nor(t) = qtan(t) ∀t ≥ 0. 
We know that the dynamics of the swimmer are governed by 

the matrix G(q,m)u which depends on magnetic torques τi,m 

aside from hydrodynamic forces and torques. We now show 

that magnetic torques on these two types of swimmers (i.e. 
Fig. 2 left and Fig. 2 right) are identical for the given choice of 
magnetizations and external magnetic fields. For the swimmer 

with both tangential and normal components (Fig.2 left), note: 

τ
i,mtan+nor 

(4) Note from the 

definition of the two controls that 

 u  (5) 

where I is the identity matrix. For the swimmer with only 

tangential magnetizations (Fig.2 right), note that 

 

 = 
τ

i,mtan+nor(t) (6) 

Therefore, for the given choice of internal magnetizations and 

external fields, the two swimmers (Fig. 2 left and Fig. 2 right) 
experience same magnetic torques. Additionally, since the 

hydrodynamic torques on these systems do not depend on 
their magnetic properties, both swimmers experience 

identical hydrodynamic effects as well, i.e. Fi,h
tan = Fi,h

tan+nor and 
τi,htan = τi,htan+nor. Hence, the dynamics of these swimmers are 
identical i.e G(q,mtan+nor)utan+nor = G(q,mtan)utan based on Eq. 2. 

Since the initial condition in both systems is same, the 
governing IVP for both systems is the same, therefore 

qtan+nor(t) = qtan(t) ∀t ≥ 0. Therefore, for forgoing discussion, 

we will only consider swimmers with tangential internal 

 
1 Differently from the work in [2], we use Stokes’ theorem for magnetic 

swimmers without springs and visualize the effect of the limit cycles over the 
full orientation space using curvature function plots in Fig. 3. Secondly, we do 

magnetizations components in each link. Let m1
t = c1 > 0 and 

m2
t = c2 > 0 denote the strengths of magnetizations in links 1 

and 2 respectively. We will assume that c2 6= c1 to avoid front 
back symmetry. 

V. MOTION PLANNING USING GEOMETRIC MECHANICS 

In Sec III and IV, we have formulated the equations of 
motion for a two-link swimmer and identified symmetries 

allowing us to focus only on a simplified swimmer. Based on 
the model, we can explore the behavior of the swimmer’s 

motion as a function of different types of control inputs u(t) = 

(Bx(t),By(t)). In this section, we will demonstrate that by using 

tools from geometric mechanics we can generate new motion 
primitives for swimming compared to the ones proposed 

before. We assumed that the swimmer is springless so there is 
no drift vector field in the dynamics of the swimmer: 

 q˙ = G(q,m)u (7) 

where q = (p,θ), G(q,m) = [g1(q,m),g2(q,m)] and u(t) = 
(Bx(t),By(t)). Since the magnetic field is spatially uniform, the 
instantaneous (x,y) position coordinates of the swimmer do 

not effect its motion. The only state variables that influence 
the dynamics are the orientation of the swimmer’s links in the 

inertial frame. Therefore, the dynamics of the position 
variables i.e. p˙ = (x,˙ y˙) depend exclusively on the orientation 

variables θ = (θ1,θ2). Similarly, the dynamics of the orientation 

variables θ˙ depend exclusively on θ. Hence, we can break Eq. 

7 into two separate sub-systems as follows: 

q˙ = G(q,m)u = G(θ,m)u 

=⇒ p˙ = P(θ,m)u (8) θ˙ = H(θ,m)u (9) 

where P(θ,m) ∈ R2×2 and H(θ,m) ∈ R2×2 . 
The exact expressions for these matrices 

are omitted in the interest of space. 
Assuming H(θ,m) is invertible on 

[−2π,2π]×[−2π,2π], we can compute u 
from Eq. 9 and substitute in Eq. 8 as 

follows: 

u = H−1(θ,m)θ˙ 
(10a) 

=⇒ p˙ = P(θ,m)H−1(θ,m)θ˙ 
(10b) 

=⇒ p˙ = J(θ,m)θ˙ 
(10c) 

where J(θ,m) = P(θ,m)H−1(θ,m). Note that Eq. 10c is in a form 
similar to the Kinematic Reconstruction Equation 

 ξ = −A(α)α˙ (11) 

not require a small-angle approximation and instead illustrate the effect of 
the full swing limit cycle on displacement directly. 



where A(α) ∈ R3×2 is known as the local form of a connection. 
It maps shape velocities to body velocities: A(α) : Tα1S1 × Tα2S1 

−→ se(2). In the literature on geometric theory of swimming 
[15], this equation has been used to synthesize motion 

primitives for swimmers that are internally actuated i.e. where 

it is possible to command any values of α(t). On the contrary, 

note that in Eq. 10c the variables (θ1,θ2) refer to the 
orientation of the swimmer relative to the world. Additionally, 

the left hand side of Eq. 10c also involves velocities referenced 
relative to the inertial frame as opposed to the body velocities 

ξ expressed in the body frame. Hence, we cannot model this 

system with a principal fiber bundle structure. Nevertheless, 
assuming for the moment that we can fully control (θ1,θ2), it 

is possible to compute the total displacement over a cyclic 
change in (θ1,θ2) as 

follows p 

(12) 

In Eq. 12, we have used Stokes’ theorem1 to simplify the 

problem of computing line integral of the rows of J(θ,m) along 

γ, to computing volume integrals of the curvature of J (curl J) 

defined over S. We plot the x and y components of curl J in Fig. 
3. To synthesize a motion primitive for translation in the Xw 

direction of the world frame, we visually query and inspect 
regions in Fig. 3 in the orientation angle phase space which 

enclose a net non-zero volume in x component and zero 

volume in the y component. Using this visual inspection, we 
pick a loop in the (θ1,θ2) space that encloses such a region. 

One such candidate loop is highlighted in red in Fig. 3 and is 
parametrized as: 

 (13a) 

 (13b) 

 

Fig. 3: curl J computed over [−π,2π] × [−π,2π] 

 

Fig. 4: Magnetic field input for the red loop using Eq. 14 

With this parametrization and Eq. 10a, we compute the 

control: 

 u  (14) 

The resulting input is plotted in Fig. 4. 

A. Relation to previously proposed motion primitive 

Note that the magnetic field input in Fig. 4 exhibits a 
discontinuity which happens whenever θ1(t) = θ2(t). This 

singularity is the result of the swimmer admitting an 
instantaneous straightened configuration and is not a locked 

singularity. We low-pass filter these inputs to remove the 
singularity and normalize them by their amplitude. This gives 

 Bx(t) = 1,By(t) = sinωt (15) 

This control input matches exactly with the ones proposed in 
[2, 10]. Using this, we numerically simulate the dynamics of 

the system Eq. 3 and plot the resulting trajectory of the 
swimmer in Fig. 5. Note that the swimmer indeed undergoes 

translation along Xw axis as we set out our initial goal. 

B. Novel motion primitives 

We extend this tool to synthesize new control inputs that 

also result in translation along Xw. To that end, consider a 

 

Fig. 5: Translation trajectory using Bx = 1,By = sinωt 



 

Fig. 6: Translation trajectory using inputs in Eq. 17 

time parametrized loop in the (θ1,θ2) defined below 

 

This loop is depicted in black in Fig. 3. Using this 
parametrization, we compute u(t) = (Bx(t),By(t)) using Eq. 14. 

Using interpolation, we write the corresponding control input 

as: 

 
(17) 

To save space, we omit specifying the exact values of 

. We simulate the system dynamics using 
this input and show the resulting displacement of the 

swimmer in Fig. 6. Note from Fig. 6 that the translation 
distance of the swimmer computed over 15 cycles of executing 

control Eq. 17 is ∼7 body lengths. However, exciting the 
swimmer with 15 cycles of the control from Eq. 15 results in a 

translation of ∼14 body lengths as shown in Fig. 5. This 
suggests that as measured using average swimming speed, the 

motion generated by Eq. 15 is ∼two times more efficient than 
the motion generated by the control in Eq. 14. We validate 
these primitives by implementing them on our fabricated 

robots and show in Sec. VIII that this relative efficiency ratio is 

indeed observed in experiments as well. Next, we will analyze 

the stability properties of the primitives in Eq. 15 and 17. 

VI. LIMIT CYCLE STABILITY 

From simulations, we observe that the steady state motion 

of the swimmer using the input from Eq. 15 is independent of 

the swimmer’s initial orientation in the world. On the other 

hand, corresponding to Eq. 17, the steady state response of 

the swimmer indeed is sensitive to the initial orientation of the 
links relative to the world. This observation suggests that 
corresponding to input u(t) = (1,sinωt), the asymptotic 

trajectory in the (θ1,θ2) phase portrait is locally asymptotically 

 

Fig. 7: Limit cycle (red) from different initial orientations 

stable with respect to variations in the initial orientation of the 
swimmer. We state this result in the theorem below: 

Theorem 6.1: Given the control input u(t) = (1,sinωt), the 

flows of the differential equation θ˙ = H(θ)u(t), θ(0) = 

(θ1(0),θ2(0)) converge to the same solution θ∞(t) = 

 for all θ(0) close to θ∞(t) i.e. the periodic 
trajectory specified by θ∞(t) is locally asymptotically stable. 

Proof: See supplementary material  

To illustrate this, we plot the flows of the orientation 

components of q(t) starting from different initial conditions in 

Fig. 7 using u(t) = (1,sinωt). This figure shows that all these 

flows converge to the same limit cycle  

(highlighted in red). Moreover, it also illustrates that the limit 
cycle is not only locally asymptotically stable but that it also 

has a large basin of attraction. This suggests that it is possible 

to align the swimmer with the direction of the external 

magnetic field vector even when the initial orientation of 
individual links of the swimmer is off by as much as π radians 

relative to the direction the external field. Hence, by switching 
the direction of the field vector, we can make the swimmer 

turn-in-place or follow a rectangular trajectory in the 
workspace. In the interest of space, we skip simulation results 

and demonstrate experimentally in Fig. 9 (two-link) and Fig. 10 

(three-link). 

All these derivations have been done for a two-link 

swimmer because exact inversion in Eq. 10a is only possible for 
two inputs i.e. (Bx(t),By(t)) and two outputs i.e. (θ1,θ2). Since 

a three link swimmer has two inputs and three outputs 

(θ1,θ2,θ3), exact inversion in Eq. 10a and control synthesis is 
not possible. Therefore, for simulations and experiments, we 

directly used the control inputs for the two link system and 
applied them on the three link system to study its response. 

VII. DESIGN OPTIMIZATION AND FABRICATION 

Using stability analysis, we have demonstrated that the 

input from Eq. 15 is suitable for point to point steering and 
turning in place type motions. Given a fixed amplitude and 

frequency of this input, we would now like to determine 



parameters intrinsic to the swimmer that maximize its forward 
translational speed. One such parameter is the intrinsic 

magnetization of each link which dictates how much magnetic 
torque that link experiences under the action of a magnetic 

field. This in-turn regulates the amplitude of undulation and 

hence the speed. So, we select magnetization as a design 

variable for optimizing swimming efficiency for a given field 
amplitude. 

A. Optimizing over internal magnetization 

We can either consider optimizing over magnetizations of 

both links or optimizing over the magnetization of link 2 (head 

link) for a fixed magnetization of link 1 (tail link). However, 
note that by increasing the amplitude of external magnetic 

field, we can realize a proportionate increase in the 
magnetization of both links. Therefore, we will only optimize 

over magnetization of link 2 for a fixed magnetization of link 

1 i.e. . We 

now pose an optimization problem to compute the values of 
c2 that maximize the total displacement of the swimmer in a 

fixed duration from t = 0 to t = T. We set f = 0.8Hz same as the 
frequency of actuation in our experimental setup. 

maximize 
c2 

|x(T)/T| 

subject to q˙ = G(q,m)u 

u(t) = (1,sin2πft),q(0) = 0 

We use numerical simulations to solve this optimization 
problem. Fig. 8a depicts the relation between the absolute 

average speed of the swimmer for several values of the 
magnetization of link 2. As we can note, increasing the values 

of the magnetization of link 2 relative to link 1 results in 

increasing values of the speed of the swimmer. This is because 

by increasing strength of magnetization of link 2, it bends with 
greater amplitude, due to which it drags through more fluid 

and advances a greater distance forward. The peak from M ∈ 
(0,1) exists because the magnetization of link 2 is weak 

compared to link 1 so the swimmer advances backward. Note 
that the X axis in Fig. 8a is limited to 6 because the ratio of the 

strongest to weakest magnetizing field we can generate with 

our experimental setup (to be described next) is precisely 6. 

We conducted a similar optimization for three-link swimmer 
and determined the optimal magnetization ratio to be 1:4:4. 

B. Experimental Fabrication 

We have seen that by increasing the magnetization of the 

head link relative to the tail link, the efficiency of swimming 

can be improved. We now describe an experimental procedure 
to fabricate a two link swimmer with a high value of interlink 

magnetization ratio. For our experiments, we manufacture 
ferromagnetic links that are connected with an elastomer to 

make the two link swimmer. Each link is made by mixing equal 
parts of unmagnetized ferromagnetic particles Magnequench 

MQFP-B (D50=15µm) and resin (Smooth-Cast 326). After 
curing, the substrate is laser cut into 6.5 mm × 4.2 mm × 1.75 

mm. rectangular links. To magnetize a link, we use a pair of 
neodymium magnets that generate strong magnetizing fields 

in 0.1 T - 0.6 T in a height range of 0 to 3.5 cms (supplementary 
material). Each link is suspended between these magnets 

which induces magnetic moments along its length . We then 
join two such links with an elastomer of low-bending stiffness 
to make the complete swimmer. We assume that the strength 

of magnetization in a link Minduced ∝ Bmagnetizing between the 
magnets at that height. To realize a desired inter-link 

magnetization ratio, we conduct a turning time test. In this 

test, we investigate the time a single link submerged in glycerin 

takes to turn and align itself with constant magnetic field as a 

function of its internal magnetization. From simulations, we 

find that the time taken to turn is inversely related to internal 

 

(a) Average speed v/s link 2 magnetization. (b) Turning time v/s link magnetization. (c) Experimental setup for validation Fig. 8: 

Displacement optimization and Turning time results from simulations/experiments and Experimental Setup. 

TABLE I: Results from translation, turning in place and trajectory tracking averaged over 5 runs 
Swimmer Straight locomotion 

(derived from Eq. 15) 
Straight locomotion 

(derived from Eq. 17) 
Turning (oscillating input) Turning (constant input) 

Links [BL/s] [BL/s] [rad/s] [rad/s] 
Two-links 3.663e −3± .305e −3 1.4173e−3±.00331e−3 5.445e −1± .468e −1 1.606e −1± .0174e −1 
Three-links 200.973e −3± .321e −3 No translation observed 1.376e −1± .380e −1 9.466e −2±1.77e −2 

 



magnetization. To verify this experimentally, we magnetize 
several links at different field strengths, measure the local 

magnetizing field on the surface of the link with a Gaussmeter 

at the placement height and measure the time to turn by  for 

these links using OpenCV . As Fig. 8b shows, the experimental 

data matches well with simulations, and indeed this test allows 

us to compare magnetizations between different links and can 
be used to fabricate a swimmer with a desired magnetizations. 

Following this procedure, we fabricated a batch of 12 
swimmers with identical magnetization in the first link and 

varying magnetizations in the second. Each swimmer was 

actuated with u(t) = B0(1,sin2πft) at B0 = 40G, f = 0.8Hz and 

time taken to cross between two points at fixed distance was 

measured, for computing average speed. We conducted five 

runs per swimmer to compute mean and standard deviation 
as shown in Fig. 8a. Notice that overall, the experimental result 

follows the same trend as simulation i.e. average speed 
increases with magnetization. However, there is a significant 

difference between the two curves. This can be described as 

follows: our Neodymium magnet pair setup generates a highly 
nonuniform magnetic field that varies from 0.1 T to 0.6 T in a 

0 to 3cm long column and the height of a link itself is 0.5cm. So 
precise control of numerical values of induced magnetization 

in a link is difficult using our setup. Secondly, in simulated 
model, we assumed that the joint between two links is 

springless. However, for the experimental swimmer, we used 
an elastomer to connect the links. This elastomer acts like a 

torsional spring which applies a torque resisting deformation 
from magnetic torque due to which the swimmer does not 

undulate as much as in simulations. Links magnetized at 
weaker fields experience more torsional resistance so the 

experimental result tends to be further away from simulation. 

Finally, note that we use normalized units to denote 
magnetization on X axis in Figs. 8a, 8b because we dont have 

exact measurements of magnetizations induced in the links. 

We assume that Minduced ∝ Bmagnetizing so the X axis for 
experimental results is indeed the magnetizing field strength 

in normalized units. For simulation result, we obtained an 
estimate value of magnetization 0.12 ± 0.02 Am by following 

the magnetizing procedure in [13] for our fabricated links and 

scaled it proportionately for the 12 swimmers. Hence, our 

models are slightly approximate because we dont have precise 
values of internal magnetizations. Controlling and estimating 

precise values of induced magnetizations in these links is part 
of future work 

VIII. EXPERIMENTAL VALIDATION OF MOTION PLANS 

After fabricating the swimmers, we are now ready to 
experimentally validate motion primitives derived in Section. 

V. Fig. 8c shows the setup which consists of two pairs of 

Helmholtz coils connected to a power supply via a Roboclaw 
motor driver. The strength of the fields produced by these coils 

is ∼ 40G. The size of the workspace is 6 cms × 10 cms. We 
measured the magnetic field in the workspace on a grid of 

equally spaced points to check for field gradients and 

concluded that the field is spatially uniform (see 
supplementary material for a plot). The swimmer (L = 1.3 cms) 

is fully submerged in glycerin which has a viscosity 1.706 Pa.s 
and density 1260 kg/m3. In translation, it has average speed 

close to 0.0004 m/s. The resulting Re is ≈ 0.0035 which is well-
within the low-Re regime. We now describe the results of 

translation, turning in place and rectangular trajectory 
tracking. 

A. Translation using classical primitive Eq. 15 

We now present our results from applying utrans(t) = 
B0(1,sin2πft) to the two link and three link swimmers. For 

these experiments, we used B0 = 40 Gauss and f = 0.8Hz. Fig. 

9a and 10a depicts snapshots of the translation in the two and 

three link swimmers as a function of time. The average speed 

can be noted from the second column in Table I. 

 

(a) Translation using Eq. 15 (b) Translation using Eq.17 (c) Oscillating input turning (d) Rectangle tracking Fig. 9: Results from two-

link swimmer (magnetization: 1:6). See supplementary videos for experiments. 

 

(a) Translation using Eq. 15 (b) Turning with constant input (c) Oscillating input turning (d) Rectangle tracking Fig. 10: Results from 

three-link swimmer (magnetization: 1:4:4). See supplementary videos for these experiments. 



B. Translation using new primitive Eq. 17 

We also show translation using the new primitive (Eq. 17) 
derived in Sec.V. Fig. 9b shows snapshots of the two link 

swimmer with this input. The average speed of the swimmer 

with this input (third column in Table I) is roughly 40% of the 

average speed in the swimmer using the classical primitive, 
which closely matches with the result from simulations (50%) 

(Fig. 5 and Fig. 6). Additionally, from simulations, we obtained 
that the trajectory from this input is sensitive to the initial 

orientation of the swimmer. This explains why the trajectory 
observed in experiments is not fully straight. This input does 

not result in translation in three-link swimmer (neither in 

simulations) so we omit that result in Table I. 

C. Turn in place with oscillatory and constant inputs 

We identified that input u(t) = B0(1,sinωt) allows us to 
switch the direction of magnetic field vector to induce 

locomotion along a given direction. We can modulate the field 

in a continuous fashion by composing it with a frequency 
component slower than the actuating frequency. This causes 

the swimmer to continuously rotate as the instantaneous 
magnetic field vector on average also rotates. Fig. 9c and 10c 

demonstrate an example of this motion. For this experiment, 
we used urot = Rωslowtu(t) where ω = 2πf,ωslow = ω/10 and f = 

0.8Hz. Alternatively, we can switch and maintain a constant 
magnetic along a given orientation to induce turning in place 

(Fig. 10b) (similar to orientation of magnetic compass with 
external field). The angular velocities for these motions can be 

compared in the fourth and fifth columns in Table I. 

D. Rectangular trajectory following 

Similarly, we can make the swimmer track a rectangular 
trajectory by synthesizing switching time instants at which the 

magnetic field vector turns counter clockwise by  radians. 

Whenever this happens, the swimmer turns in place and 
exhibits a transient response while it turns, which eventually 
diminishes and steady translation is obtained along the 

constant component. Fig. 9d and 10d depict snapshots of 
swimmers following rectangular trajectory using: 

u  

IX. CONCLUSIONS 

In this paper, we explored motion planning and efficiency 

optimization for a two-link magnetic swimmer actuated using 
magnetic fields. Starting with a mathematical model, we 

identified a representative class of swimmers and showed how 

tools from geometric mechanics can be used to synthesize 

novel motion primitives for this swimmer. We analyzed the 

efficiency of locomotion using these primitives and further 

explored how to improve it by optimizing the internal 

magnetization distributions in the swimmer. We 
demonstrated an experimental procedure to fabricate these 

optimal swimmers. Although our results from the model were 
different from the experimental results, we still have a starting 

approach for fabricating optimal swimmers through our 

results. We also conducted experiments to verify translation, 

trajectory tracking and turn in place motions in two link and 
three link swimmers. In future, we are interested in resolving 

the difference in theoretical and simulation results from 
efficiency analysis, and extending the numerical design 

optimization and geometric control synthesis tools to multi-

link magnetic swimmers. 
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