INEQUALITIES FOR THE DERIVATIVES OF THE RADON
TRANSFORM ON CONVEX BODIES

WYATT GREGORY AND ALEXANDER KOLDOBSKY

ABSTRACT. It was proved in [22] that the sup-norm of the Radon trans-
form of an arbitrary probability density on an origin-symmetric convex
body of volume 1 is bounded from below by a positive constant de-
pending only on the dimension. In this note we extend this result to
the derivatives of the Radon transform. We also prove a comparison
theorem for these derivatives.

1. A SLICING INEQUALITY FOR FUNCTIONS.

Let K be an origin-symmetric convex body of volume 1 in R™, and let f
be any non-negative measurable function on K with | x J = 1. Does there
exist a constant ¢, depending only on n so that for any such K and f there
exists a direction & € S"! with fKngi f > ¢,? Here ¢+ = {z € R" :
(x,€) = 0} is the central hyperplane perpendicular to £, and integration is
with respect to Lebesgue measure on &4, It was proved in [22] that, in spite
of the generality of the question, the answer to this question is positive, and
one can take ¢, > ﬁ In [5] this result was extended to non-symmetric

bodies K. Moreover, it was shown in [13] that this estimate is optimal up
to a logarithmic term, and the logarithmic term was removed in [14], so,
finally, ¢, ~ ﬁ We write a ~ b if there exist absolute constants ¢y, co > 0
such that cja < b < caa.
Note that the same question for volume, where f = 1, is the matter of
the slicing problem of Bourgain [1, 2]. In this case, the best known result is
1

¢n > cn” 4, where ¢ > 0 is an absolute constant, and is due to Klartag [12]
who removed a logarithmic term from an earlier result of Bourgain [3].

The constant ¢, does not depend on the dimension for several classes of
bodies K. For example, it was proved in [23] that if K belongs to the class
of unconditional convex bodies, the constant ¢, = i works for all functions
f and all dimensions n. The same happens for intersection bodies [21], and
for the unit balls of subspaces of L,, p > 2, where the constant is of the
order p~1/2 [25].
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Denote by
Rf(€.) = [ f)de,  €esv teR

Kn{zeR":(z,£)=t}
the Radon transform of f. The result described above means that the sup-
norm of the Radon transform of a probability density on an origin-symmetric
convex body in R™ is bounded from below by a positive constant depending
only on the dimension n.

In this note we prove a similar estimate for the derivatives of the Radon
transform. Let us define the fractional derivatives. Let m € N U {0} and
suppose that A is an even continuous function on R that is m times continu-
ously differentiable in some neighborhood of zero. For ¢ € C, —1 < R(q) <
m, q #0,1,...,m—1, the fractional derivative of the order ¢ of the function
h at zero is defined as the action of the distribution t;l_q/F(—q) on the
function h, as follows:

W90 = F(ifJ)

m—1

1
—1—¢q . _ 3 (m-1) t
/D (00 = () = = D) )

o m—1
! / 1 79h(t) dt + - ! nH) (1)

I'(-q) /1 (—q) &= Kl(k—q)

It can be seen that for a fixed ¢ the definition does not depend on the choice
of m > R(q), as long as h is m times continuously differentiable. Note
that without dividing by I'(—q) the expression for the fractional derivative
represents an analytic function in the domain {¢ € C : R(q) > —1} not
including integers, and has simple poles at integers. The function I'(—gq)
is analytic in the same domain and also has simple poles at non-negative
integers, so after the division we get an analytic function in the whole domain
{g€ C: m > R(q) > —1}, which also defines fractional derivatives of integer
orders. Moreover, computing the limit as ¢ — k, where k is a non-negative
integer, we see that the fractional derivatives of integer orders coincide with
usual derivatives up to a sign (when we compute the limit the first two
summands in the right-hand side of (1) converge to zero, since I'(—¢q) — oo,
and the limit in the third summand can be computed using the property
I'(x 4+ 1) = 2I'(z) of the I'-function):

k
W9(0) = (<1 Teh(Dlims. 2

The sign does not matter, because h is an even function, and its derivatives
of odd orders at the origin are equal to zero. Also, in the case where h is
even, for m — 2 < g < m the expression (1) becomes

1 (m—2)/2 12

B L _ 12
F(_q)/o - Y G @O e @)

J=0
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We also note that if —1 < ¢ < 0 then

(9) — 1 / Oo —1—q
h(0) —a Jo t h(t) dt. (4)

A closed bounded set K in R” is called a star body if every straight line
passing through the origin crosses the boundary of K at exactly two points,
the origin is an interior point of K, and the Minkowski functional of K
defined by ||z||x = min{a > 0: x € aK} is a continuous function on R™. If
x € "1 then ||z||" = 7k (z) is the radius of K in the direction of x. A
star body K is origin-symmetric if K = —K. A star body K is called convex
if for any z,y € K and every 0 < A< 1, Az + (1 — \)y € K.

We say that a star body K in R” is infinitely smooth if the restriction
to the unit sphere of the Minkowski functional of K belongs to the space
C>(S™1) of infinitely differentiable functions on the sphere. For an origin-
symmetric infinitely smooth convex body K in R™, an infinitely differentiable
function f on K, fixed ¢ € S"!, and ¢ € C, R¢ > —1, we denote the
fractional derivative of the order ¢ at zero of the function t — Rf(,t), t € R,
by

()
wmw%w{/ ﬂWﬂ(W
Kn{z: (z,£)=t} ‘
The estimate that we prove is as follows.

Theorem 1. There exists an absolute constant ¢ > 0 so that for any infin-
itely smooth origin-symmetric convexr body K of volume 1 in R™, any even
infinitely smooth probability density f on K, and any ¢ € R, 0 < q <n —2,
which is not an odd integer, there exists a direction £ € S~ so that

q+1

L) < R o) 5)

nlog?’(%)

If g =2k, k € NU{0}, is an even integer, then (Rf(f,t))g%)(O) is the usual
derivative and
2k+1

c(2k +1) < (~DF(RF(E ) (0).

n 10g3(2£i1 )

If g =2k —1, k € N, is an odd integer, then in the right-hand side of (5)
we have %, and computing the limit as ¢ — 2k — 1 we get that there exists a
direction ¢ € S"~! so that

2%k
2kc

nlog3(g—g)
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E
—
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We deduce Theorem 1 from a more general result. Note that in the case
where g = 0 the following theorem was proved in [23].

< (-1t | T [ Ryent) (RF(€.0)P(0) | d.
0

Il
=)

J

Theorem 2. Suppose K is an infinitely smooth origin-symmetric convez
body in R™, f is a non-negative even infinitely smooth function on K and
—1 < g <n—11isnot an odd integer. Then

n q;&;l n q+1
/Kf(x)dx = (n—q—1) 2073 (L) I (onl L)

1 ()
X R ), 6
i, s (R(E0)710), )
Here |K| stands for the volume of K. By L, we denote the class of
star bodies D in R” for which the space (R",|| - |p) embeds in L_j_g, i.e.
the function || - ||;" 5 ! represents a positive definite distribution; see Section
3 for details.

If A is a class of compact sets in R™, the outer volume ratio distance from
K to A is defined by

. |D| 1/n
dovr(K,A):lnf m : KCD, DeA;.

Let 0 < ¢ <n — 2 in Theorem 2. Since n/(n —q— 1) < ™! and by the
Stirling formula, if |[K| =1 and [, f = 1, the estimate (6) turns into

g+1

c(g+1) ’
5esnxl cos( )(Rf(f t)) ( ) = (dovr(K,Lnlq)> , (7)

where ¢ is an absolute constant. This means that the lower estimate for the
derivatives of the Radon transform is completely controlled by the distance
doyr (K, L’_‘l_q). Indeed, if this distance is equal to 1 or is bounded by an
absolute constant, then, for every probability density f and every K with
volume 1, the right-hand side of (7) depends only on g :

1 g+1

m Rf(, )) () (c(g+1)) 2

The distance doy, (K, L";_,) is known to be bounded by an absolute con-
stant in the following cases.

Proposition 1. Let ¢ € R be any number from the interval (—1,n — 1).
(i) If K is the unit ball of an n-dimensional subspace of Ly, 0 < p <2,
then K € L",_, so dovr (K, L’llfq) =1.
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(i) If K is an unconditional conver body in R™, i.e. for every vector
(21, ..., ) € K the vectors (£, ..., xx,) € K for all choices of signs, then
dovr(K, L’ll_q) <e.

(1) If K is the unit ball of an n-dimensional subspace of Ly, p > 2, then
dovr (K, L’jl_q) < ¢\/p, where c is an absolute constant.

Proof : (i) Proved in [17] and [15, Theorem 6.17].
(ii) It follows from (i) that the ¢}-ball

BY ={x e R" : |x1| 4+ ... + |z,| < 1}

belongs to L, for every ¢ € (—1,n — 1). Also, the classes L"; _ are
invariant with respect to linear transformations of R", which follows from
the connection between the Fourier transform and linear transformations,
so T'(BY) € L™, _, for every linear operator 7" on R", det(T') # 0.

By a result of Lozanovskii [30] (see the proof in [36, Corollary 3.4]), there

exists a linear operator 7' on R" so that T'(Bl) C K C nT(BY}), where
B, is the cube with sidelength 2 in R". Let D = nT'(BY) € L",_,. Since
|B?| = 2" /n!, we have |D|'/™ < 2e|det T'|'/™. On the other hand, |T(B%)| =
2" det T|, and T(B%) C K, so |D|'/* < e |K|'/™.
(iii) It follows from (i) with p = 2 that all n-dimensional origin-symmetric
ellipsoids belong to the class L™, for every ¢ € (=1,n —1). This can also
be shown directly using formula (14). Now the result follows from [33] (see
also [25]), where it was proved that the outer volume ratio distance from
the unit ball of a subspace of Ly, p > 2 to the class of ellipsoids is bounded
by ¢,/p, where c is an absolute constant.

|

Let us show how to get the result of Theorem 1 from the estimate of
Theorem 2. In general, one cannot expect to get an estimate for the distance
Aoy (K, L’_Ll_q) independent of the dimension n. In fact, it was shown in
[13, 14] that in the case ¢ = 0 this distance can be of the order /n. Since
the classes L™;_ contain ellipsoids, one can use John’s theorem [9] to prove
that doy: (K, L";_,) < /n for every origin-symmetric convex body K in R"
and every q € (—1,n — 1). However, the estimate of Theorem 1 is better for
large values of q.

To prove this better estimate, we need to introduce another class of bodies.
For p > 0, the radial p-sum of star bodies K and L in R" is defined as a
new star body K+,L whose radius in every direction £ € S7=1 s given by

rher (6 =rk(© +rE(©),  veesh
The radial metric in the class of origin-symmetric star bodies is defined by

p(K,L) = sup [rx(§)—rr(§)l.
gesn—1
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Definition 1. Let 0 < p < n. We define the class of generalized p-
intersection bodies BP) in R™ as the closure in the radial metric of radial
p-sums of finite collections of origin-symmetric ellipsoids in R™.

Note that when p = k is an integer, we get the class of generalized k-
intersection bodies introduced by Zhang [39].

The following estimate was proved in [27, Th. 1.1.] for integers p, but the
proof remains exactly the same for non-integers. Also note that a mistake
in the proof in [27] was corrected in [23, Section 5].

Proposition 2. ([27]) For every p € [1,n — 1] and every origin-symmetric
convex body K in R"
nlog3(ne
dovr(Ka BP;) S C 717)7
p

where C' is an absolute constant.

It was proved in [20] (see also [34, 28]) that for any integer k, 1 <k <n
every generalized k-intersection body belongs to the class L",. We need an
extension of this fact to non-integers, as follows.

Proposition 3. For every 0 < p <n, we have BP, C L™,

Proof : We need to prove that for any star body K € BPj, the function
| - || & represents a positive definite distribution in R”. As mentioned in the
proof of Proposition 1, the powers of the Euclidean norm |z|,”, 0 <p <n
represent positive definite distributions in R™; see formula (14). Because
of the connection between the Fourier transform of distributions and linear
transformations, for any origin-symmetric ellipsoid £ in R"™, the function
| - ||g” represents a positive definite distribution. Note that for any unit
vector x € S"~! and any star body K, ri(z) = ||z||5". Therefore, radial
p-sums of ellipsoids in R™ belong to the class L" . The fact that positive
definiteness is preserved under limits in the radial metric follows from [15,
Lemma 3.11], which proves the result.

|

Deduction of Theorem 1 from Theorem 2. By Propositions 2 and 3,
forany 0 < q <n—2,

e )
et ®

nlog?(
dOVI‘(K7 L ) < dovr(Ka BPZ+1) < C

—1—q
Now the first estimate (5) of Theorem 1 follows from Theorem 2, in the form
of (7), combined with (8).

In order to prove the case of even integers in Theorem 1, put ¢ = 2k in
(5). In the case of odd integers, we use the expression for the fractional
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derivative (3) to find the limit in (5) as ¢ — 2k —1:

O (RfEDP0) 1
T ) T e T o)
0o k—1 2
9k o = (24)

Now use I'(z + 1) = 2I'(x) to compute

lim TI'(—q)cos (@)

q—2k—1 2
~ lim [(=q+2k) o (la=26+1)TN
_qelzk—l (—)(1—q)---(2k-1-q) < 2 >( 2
= (—1)
2(2k — 1)!

The proof of Theorem 2 is presented in Section 4.

We conclude this section by showing the place of the classes L™, _ in
the general theory of convex bodies. These classes are generalizations of the
concept of an intersection body introduced by Lutwak in [31]. Intersection
bodies are an important component of Lutwak’s dual Brunn-Minkowski the-
ory, and they played the crucial role in the solution of the Busemann-Petty
problem; see Section 2.

Definition 2. ([31]) For star bodies D, L in R™, we say that D is the inter-
section body of L if

rp(€) =|LN&r,  VEe st

Taking the closure in the radial metric of the class of intersection bodies of
star bodies, we define the class of intersection bodies.

A generalization of the concept of an intersection body was introduced in
[20].

Definition 3. For an integer k, 1 < k <n and star bodies D, L in R"™, we
say that D 1is the k-intersection body of L if

\IDNHY =|LNH|, VHEGr, .

Taking the closure in the radial metric of the class of k-intersection bodies
of star bodies, we define the class of k-intersection bodies.

It was proved in [17] for £ = 1, and in [20] for £ > 1, that an origin-
symmetric star body K in R™ is a k-intersection body if and only if the
function || - || " represents a positive definite Schwartz distribution in R”.
This result is related to embeddings in L,-spaces. By L,, p > 0 we mean
the L,-space of functions on [0, 1] with Lebesgue measure. It was shown in
[16] that an n-dimensional normed space embeds isometrically in L, where
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p > 0 and p is not an even integer, if and only if the Fourier transform in
the sense of Schwartz distributions of the function I'(—p/2)]| - [|P is a non-
negative distribution outside of the origin in R™. The concept of embedding
of finite dimensional normed spaces in L, with negative p was introduced in
[19, 20], as an analytic extension of embedding into L, with p > 0.

Definition 4. For 0 < p < n, we say that star body D belongs to the class
L™, or, in other words, the space (R",||-||p) embeds in L_p, if the function
|- |57 represents a positive definite Schwartz distribution on R™.

A connection between k-intersection bodies and embedding in L, with
negative p was found in [20].

Proposition 4. ([20]) Let 1 < k < n. An origin symmetric star body D
in R™ is a k-intersection body if and only if D € L™, or, equivalently, the
space (R™,|| - ||p) embeds in L_y.

The classes L, were studied by a number of authors. The advantage
of Proposition 4 is that one can take any result about the usual L,-spaces,
extend it to L_,, and immediately get a geometric application to intersection
bodies. Let us mention one of the results. If n —3 < p < n, the class L”
contains all origin-symmetric convex bodies in R"; see [15, Corollary 4.9].
This result was proved as an extension of the fact that every two-dimensional
normed space embeds in L;. The result implies that every origin-symmetric
convex body in R?* is an intersection body, which provides an affirmative
answer to the Busemann-Petty problem in the critical 4-dimensional case.
More results about embeddings in L_, can be found in [10, 27, 24, 33, 34,
29, 38], [15, Chapter 6] and [28].

2. A COMPARISON THEOREM FOR THE DERIVATIVES OF THE RADON
TRANSFORM.

Our next result is related to the Busemann-Petty problem [4] which is the
following question. Let K, L be origin-symmetric convex bodies in R", and
suppose that the (n — 1)-dimensional volume of every central hyperplane
section of K is smaller than the same for L, i.e. |K N&L| < |LN &L for
every £ € S, Does it necessarily follow that the n-dimensional volume of
K is smaller than the volume of L, i.e. |K| < |L|? The answer is affirmative
if the dimension n < 4, and it is negative when n > 5; see [6, 15] for the
solution and its history.

It was proved in [18] (see also [15, Theorem 5.12]) that the answer to the
Busemann-Petty problem becomes affirmative if one compares the deriva-
tives of the parallel section function of high enough orders. Namely, denote
by

Age(t) = R(xk)(§,t) = [KN{z e R": (2,§) =1}, teR
the parallel section function of K in the direction £. If K, L are infinitely
smooth origin-symmetric convex bodies in R", n >4, g € [n—4,n—1) is
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not an odd integer, and for every ¢ € S"~! the fractional derivatives of the
order ¢ of the parallel section functions at zero satisfy

L @ L @
AVl < AV
COS(7r2q) K,g(o) = COS(7T2q) L’§(0)7

then |K| < |L|. For —1 < ¢ < n — 4 this is no longer true.

Another generalization of the Busemann-Petty problem, known as the iso-
morphic Busemann-Petty problem, asks whether the inequality for volumes
holds up to an absolute constant. Does there exist an absolute constant C
so that for any dimension n and any origin-symmetric convex bodies K, L in
R™ satisfying |[K N &L < |[LNEL| for all € € S*L, we have |K| < C|L|? As
shown in [35], this question is equivalent to the slicing problem of Bourgain
mentioned in Section 1.

Zvavitch [40] considered an extension of the Busemann-Petty problem
to general Radon transforms, as follows. Suppose that K, L are origin-
symmetric convex bodies in R™, and f is an even continuous strictly positive
function on R™. Suppose that R(f|x)(&,t)(0) < R(f|5)(&, t)(0) for every
¢ € S"7 1 where f|x is the restriction of f to K. Does it necessarily follow
that |K| < |L|? The answer is exactly the same as in the case of volume.
Isomorphic versions of this result were proved in [29, 26].

In this note we generalize these results to general Radon transforms as
follows. In the case ¢ = 0 this result was proved in [26].

Theorem 3. Let K, L be infinitely smooth origin-symmetric convezr bodies
in R™ f, g non-negative infinitely differentiable functions on K and L, re-
spectively, ||gllcc = g(0) =1, and q € (=1,n — 1) is not an odd integer. If
for every € € S71

e (RFE ) (0) € — o (Ra(6.)((0)
cos() cos()
then
n n q+1 271 g+1
/Kf(l’)dﬂf S (dove(E, L1 _y)) </L Q(x)d95> K|

3. THE MAIN TOOLS

We often use integration in polar coordinates x =76, x € R", r >0, 0 €
S"~1: see [32, Ch.6, Th. 5.2]. If f is an integrable function on R”, then

. f(z)dz = /S . ( /0 - rl f(r&)dr) do. (9)

If K is a star body in R", putting f(z) = xx(z), the indicator function of
K, we get a formula for volume:

611" 1
|K| = / Xk (z)dz = / / r"tdr | df = / 165" d6.
R” Sn—1 0 n Jgn-1 (10)
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Our main tool is the Fourier transform of distributions; see [15, 28] for
a comprehensive introduction to the Fourier approach in convex geometry.
The Fourier transform of a distribution f is defined by ( 1, o) = (f, <ZA>> for
every test function ¢ from the Schwartz space S of rapidly decreasing infin-
itely differentiable functions on R™. For any even distribution f, we have
(/)N = (2m)"f; see [37, Th. 7.7] for the inversion formula for the Fourier
transform.

If K is a star body and 0 < p < n, then || - || is a locally integrable
function on R™ and represents a distribution acting on test functions by
integration. Suppose that K is infinitely smooth, i.e. || -|x € C®(S" 1)
is an infinitely differentiable function on the sphere. Then by [15, Lemma
3.16], the Fourier transform of || - || is an extension of some function g €
C>(S™ 1) to a homogeneous function of degree —n + p on R™. When we

A
write (|| : ||;<p) (¢), we mean g(£), £ € "L If K, L are infinitely smooth

star bodies, the following spherical version of Parseval’s formula was proved
in [18] (see [15, Lemma 3.22]): for any p € (—n,0)

Jord (1Y @ Q177) @ = [ el as.

A distribution is called positive definite if its Fourier transform is a positive
distribution in the sense that (f,¢) > 0 for every non-negative test function
o.

We need a lemma that can be found in [15, Lemma 3.14]. We include the
proof for completeness.

Lemma 1. Let —1 < q¢ < 0. For every even test function ¢ and every fized
vector § € S 1

/n ’(9’€)|—1—q¢(£)d§ _ 2I'(—q) cos(mq/2) /OOO tqqz?(te)dt.

s

Proof : A well-known connection between the Fourier and Radon trans-
forms is that, for any test function ¢, the function ¢ — ¢(tf) is the Fourier
transform of the function z — f(9 €)=z #(&)dE; see for example [15, Lemma

2.11]. Using the Fubini theorem and the formula for the Fourier transform
of ||t (see [15, Lemma 2.23])

(|77 (t) = 2D (~q) cos(mq/2) [t|%,

—l=q = 2|71 z
6.0 o= | 14 ( /. ¢(§>d£>d

=(en [ ey = 5

we get

(20 (—q) cos(mq/2)[t|7, $(t0))

™
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_ P(_Q) COS(WQ/2) / |t|q¢2(t(9)dt.
n R

Finally, recall that ¢ is an even function.

|

Our next lemma generalizes Theorem 1 from [7] (see also [15, Th. 3.18]).

Lemma 2. Let K be an infinitely smooth origin-symmetric convex body in
R™, let f be an even infinitely smooth function on K, and let ¢ € (—1,n—1).
Then for every fized £ € S™~1

(RF(£,1)(0) (12)

[zl2 ’
- ety <r| </ () d)) ©

Proof: Let —1 < ¢ < 0. Then, using the definitions of the Radon transform
and the fractional derivative (4), the Fubini theorem and integration in polar
coordinates (9) with x = rf, we get

(RF(&1){7(0) = 2p(1_q) /_OO 1t~ 1-9 (/m{ o f(x)da:) dt
= it [ O @a

R R
- 57 L 10! ( [ f(r@)dr) .

Consider the latter as a homogeneous of degree —1 — ¢ function of £ €
R™\ {0}, apply it to an even test function ¢ and use Lemma 1:

(RF(E.6)17(0), )

~ 5 L #© < L oo ( / e r"—q—2f<re>dr> d@) ¢
_ COS(ZJ:T/Q) /S - ( /0 - tqqg(tﬁ)dt) ( /0 L f(rﬁ)dr) do.

On the other hand, if we apply the function in the right-hand side of (12)
to the test function ¢ we get

[z|2 A
<C()S(7;‘rq/2) <’x|2n+q+1 (/0 2l g ’I“n_q_2f <|Z|L‘2) dT)) (5)7¢(£)>

zlo
= cos(mq/2) /Rn Fians (/0 el r"q2f(m)d"f’> $(z)da

m |z]2
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— COS(Z‘J/Q) /Shl </OOO tq(i(t@)dt) (/OIIGIIKl r"_q_2f(r9)dr> do,

where in the last step we use integration in polar coordinates (9) with x = ¢6.
Comparing the computations, we see that, for any even test function ¢,

(RF(E,6))1”(0), ) (13)

_ [ eostmas2) (e ([T s r A
< - <\|2 (0 f(H)d)) <£>,¢<§>>-

Since both distributions are even, this proves the lemma for —1 < ¢ < 0. By
an argument similar to that in Lemma 2.22 from [15], one can see that both
sides of (13) are analytic functions of ¢ in the domain —1 < Rg < n — 1. By
analytic extension, (13) holds for all —1 < ¢ < n — 1, which completes the
proof.

O

Let us compute the fractional derivatives of the Radon transform in the
case where f =1 and K = BY, the unit Euclidean ball.

Corollary 1. For -1 <g<n—1 and every 5 e st
20+l "3 (4L cos( )
(n—q -1 (*=4=)
Proof : First, we use Lemma 2 with f =1 and K = BY :

cos()

(ROcmp) (&) (0) = = g (laly ™ ) €),

Next, we apply the formula for the Fourier transform of powers of the Eu-
clidean norm (see [8]):

(R(xsp) (€ 1)(0) =

20t 5 (

L=

(lal3™ 1) (E) = j)ra; T VECR™\ {0},

(14)
|
Note that if we replace the unit Euclidean ball by the Euclidean ball of

volume 1, the constant in Corollary 1 has to be divided by |By | e , and it
matches the estimate of Theorem 2 for bodies K of volume 1; see 1nequahty
(7). We leave this computation for the interested reader.

4. PROOFS OF THE MAIN RESULTS

Proof of Theorem 3. The assumption of the theorem is that, for every
gesm,

(@)
oz R E O 0) € (o (Ra(e D)I70)
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By Lemma 2, for every £ € S”!, this assumption is equivalent to

lzlo A
(\xb"*q“ ( /0 I a2y (ﬁ) d)) () (15)

|z

(e ([* o)) o

Let 0 > 0, and let D € L™,_ be such that K C D and

IDIMY™ < (14 8)dow (K, L™ _o)| K| (16)

By approximation, we can assume that D is infinitely smooth; see [15,
Lemma 4.10]. Then (Hx||517q)/\ is a non-negative function on the sphere.
Multiplying both sides of (15) by (||:E||E)17q)A(£), integrating over the sphere
and using Parseval’s formula on the sphere (11) we get

R
e ( /
gn—1 0

L ozt )

< [ e [ e Retyar ) as
gn—1 0

or, using the formula for integration in polar coordinates (9) with = = r6,

1

r”_q_2f(r0)dr> do

/ el " f (2)de < / lel5 g (@) de. (17)
K L
Since K C D, we have ||z|[p <1 for every x € K, and thus
/ el 51 f (2)de > / f(x)da. (18)
K K

On the other hand, by the Lemma from section 2.1 from Milman-Pajor
(35, p.76],

2l g @)de Y ) g(@)da
( Ty lelp e ) << I, do ) - 19

By (9) and (10),

11— 11—
[l e = [ felp o (e
D R™

e ey
:/ 0], ¢ / "1 2dr | df
Sn—l 0
1 n
L 0||7"dd = | ————|D|.
1 | el = [ D]
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Now we can rewrite (19) as

[ lellp gt < 2 ([ <x>dw)nsl|m”ﬁ. (20)

Combining estimates (17), (1 ) and (20) with the definition of D, (16), and
sending d to zero, we get

n—g—1

/f _n_q_1</ (x)dx) U (o (B L7y ) T K

which is the conclusion of the theorem.

|

Proof of Theorem 2. Consider a number £ > 0 such that, for every
gesmt

1 (a) €
— (R t )< —
COS(WQ/2)( f(gv ))t ( )-— COS(WQ/2)

By Lemma 2, for every ¢ € "1,

[z]2 A
<|x|2"+q+1 (/0 K pa=2f (fo|2> dr))x () < n—;q—l (| |2n+q+1> ()

Let 6 > 0, and let D € L™, be such that K C D and

R(xsy) (&, 0)2(0).

D™ < (14 8)dowe (K, L™y )| K| (21)

By approximation, we can assume that D is infinitely smooth. Then (Hx||51_q)/\
is a non-negative function on the sphere. Multiplying both sides of the latter
inequality by (||| 5"~ %) (€), integrating over the sphere and using Parseval’s
formula on the sphere we get (like in the proof of Theorem 3)

11— e 11—
[lelp e < = [ Jalp e 22)

Since K C D, we have

—1—q i
/K el 5 f (@) > /K el f () de > /K f@yde.  (23)

On the other hand, by Holder’s inequality with the exponents q% and
and by (10),

n— q n—q—1°
—1— _1,p=g9=1 g+l g+1
[ lallp e < 57w D) (24)
where (see for example [15, Corollary 2.20])
27.rn/2

n—1
5= Ty
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Combining (22), (23), (24), we get

n—1|n= q 1 +
| faae <= D
n—q—1
Now replace D by K using (21):
6|Sn 1|n q—1 qu g+1 n q+1 g+1
[ Hoe < S 1 5y (a0 ) KT

and put

N W(Rf(f £);”(0)
§65" ™ marny By ) (&, £)i”(0)

Replace the denominator in the expression for € using Corollary 1, and
substitute the formula for |S™7| :

q+1

/Kf(x)da: < c(n,q)(1 +6)7 (dowe (X, Lﬁl,q))q+1 |K| (25)

1 (@)
X ggixl W(Rf(fa t))tq (0)’

where
—ag—1 qg+1 n—qg-—1 n—g—1
n—

n n—g—1 *
201w T (47 (D(3))
Now use I'(z + 1) = 2I'(x) and the inequality
I‘(”qu*1 +1)
n n—g—1
T(z+1)

which follows from the log-convexity of the I'-function (see [15, Lemma
2.14]). We get

C(”: Q) -

<1,

c(n,q) = n IS+
I - _ n—q—1
2075 (25 (n — g — 1) (I( q

n

< b
207 D(4 ) (n — g — 1)

|3
+
—
~
~—
3

and (25) implies

n +1 g+l
f(ﬂ?)dl‘ S — (1+5)q+1 dovr(K Ln ) a |K| "
/K 20T T(L)(n — g — 1) ( o)

max 71 (a)
XEES” 1 COS(7T(]/2) (Rf(gvt))t (0)

Finally, send § to zero to get the result.
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