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Abstract. It was proved in [22] that the sup-norm of the Radon trans-
form of an arbitrary probability density on an origin-symmetric convex
body of volume 1 is bounded from below by a positive constant de-
pending only on the dimension. In this note we extend this result to
the derivatives of the Radon transform. We also prove a comparison
theorem for these derivatives.

1. A slicing inequality for functions.

Let K be an origin-symmetric convex body of volume 1 in Rn, and let f
be any non-negative measurable function on K with

∫
K f = 1. Does there

exist a constant cn depending only on n so that for any such K and f there
exists a direction ξ ∈ Sn−1 with

∫
K∩ξ⊥ f ≥ cn? Here ξ⊥ = {x ∈ Rn :

(x, ξ) = 0} is the central hyperplane perpendicular to ξ, and integration is
with respect to Lebesgue measure on ξ⊥. It was proved in [22] that, in spite
of the generality of the question, the answer to this question is positive, and
one can take cn >

1
2
√
n
. In [5] this result was extended to non-symmetric

bodies K. Moreover, it was shown in [13] that this estimate is optimal up
to a logarithmic term, and the logarithmic term was removed in [14], so,
finally, cn ∼ 1√

n
. We write a ∼ b if there exist absolute constants c1, c2 > 0

such that c1a ≤ b ≤ c2a.
Note that the same question for volume, where f ≡ 1, is the matter of

the slicing problem of Bourgain [1, 2]. In this case, the best known result is

cn > cn−
1
4 , where c > 0 is an absolute constant, and is due to Klartag [12]

who removed a logarithmic term from an earlier result of Bourgain [3].
The constant cn does not depend on the dimension for several classes of

bodies K. For example, it was proved in [23] that if K belongs to the class
of unconditional convex bodies, the constant cn = 1

2e works for all functions
f and all dimensions n. The same happens for intersection bodies [21], and
for the unit balls of subspaces of Lp, p > 2, where the constant is of the

order p−1/2 [25].
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Denote by

Rf(ξ, t) =

∫
K∩{x∈Rn:(x,ξ)=t}

f(x)dx, ξ ∈ Sn−1, t ∈ R

the Radon transform of f. The result described above means that the sup-
norm of the Radon transform of a probability density on an origin-symmetric
convex body in Rn is bounded from below by a positive constant depending
only on the dimension n.

In this note we prove a similar estimate for the derivatives of the Radon
transform. Let us define the fractional derivatives. Let m ∈ N ∪ {0} and
suppose that h is an even continuous function on R that is m times continu-
ously differentiable in some neighborhood of zero. For q ∈ C, −1 < <(q) <
m, q 6= 0, 1, ...,m− 1, the fractional derivative of the order q of the function
h at zero is defined as the action of the distribution t−1−q+ /Γ(−q) on the
function h, as follows:

h(q)(0) =
1

Γ(−q)

∫ 1

0
t−1−q

(
h(t)− h(0)− ...− h(m−1)(0)

tm−1

(m− 1)!

)
dt+

1

Γ(−q)

∫ ∞
1

t−1−qh(t) dt+
1

Γ(−q)

m−1∑
k=0

h(k)(0)

k!(k − q)
. (1)

It can be seen that for a fixed q the definition does not depend on the choice
of m > <(q), as long as h is m times continuously differentiable. Note
that without dividing by Γ(−q) the expression for the fractional derivative
represents an analytic function in the domain {q ∈ C : <(q) > −1} not
including integers, and has simple poles at integers. The function Γ(−q)
is analytic in the same domain and also has simple poles at non-negative
integers, so after the division we get an analytic function in the whole domain
{q ∈ C : m > <(q) > −1}, which also defines fractional derivatives of integer
orders. Moreover, computing the limit as q → k, where k is a non-negative
integer, we see that the fractional derivatives of integer orders coincide with
usual derivatives up to a sign (when we compute the limit the first two
summands in the right-hand side of (1) converge to zero, since Γ(−q)→∞,
and the limit in the third summand can be computed using the property
Γ(x+ 1) = xΓ(x) of the Γ-function):

h(k)(0) = (−1)k
dk

dtk
h(t)|t=0. (2)

The sign does not matter, because h is an even function, and its derivatives
of odd orders at the origin are equal to zero. Also, in the case where h is
even, for m− 2 < <q < m the expression (1) becomes

h(q)(0) =
1

Γ(−q)

∫ ∞
0

t−1−q

h(t)−
(m−2)/2∑
j=0

t2j

(2j)!
h(2j)(0)

 dt. (3)
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We also note that if −1 < q < 0 then

h(q)(0) =
1

Γ(−q)

∫ ∞
0

t−1−qh(t) dt. (4)

A closed bounded set K in Rn is called a star body if every straight line
passing through the origin crosses the boundary of K at exactly two points,
the origin is an interior point of K, and the Minkowski functional of K
defined by ‖x‖K = min{a ≥ 0 : x ∈ aK} is a continuous function on Rn. If
x ∈ Sn−1, then ‖x‖−1K = rK(x) is the radius of K in the direction of x. A
star body K is origin-symmetric if K = −K. A star body K is called convex
if for any x, y ∈ K and every 0 < λ < 1, λx+ (1− λ)y ∈ K.

We say that a star body K in Rn is infinitely smooth if the restriction
to the unit sphere of the Minkowski functional of K belongs to the space
C∞(Sn−1) of infinitely differentiable functions on the sphere. For an origin-
symmetric infinitely smooth convex body K in Rn, an infinitely differentiable
function f on K, fixed ξ ∈ Sn−1, and q ∈ C, <q > −1, we denote the
fractional derivative of the order q at zero of the function t→ Rf(ξ, t), t ∈ R,
by

(Rf(ξ, t))
(q)
t (0) =

(∫
K∩{x: (x,ξ)=t}

f(x)dx

)(q)

t

(0).

The estimate that we prove is as follows.

Theorem 1. There exists an absolute constant c > 0 so that for any infin-
itely smooth origin-symmetric convex body K of volume 1 in Rn, any even
infinitely smooth probability density f on K, and any q ∈ R, 0 ≤ q ≤ n− 2,
which is not an odd integer, there exists a direction ξ ∈ Sn−1 so that c(q + 1)√

n log3( ne
q+1)

q+1

≤ 1

cos(πq2 )
(Rf(ξ, t))

(q)
t (0). (5)

If q = 2k, k ∈ N∪{0}, is an even integer, then (Rf(ξ, t))
(2k)
t (0) is the usual

derivative and c(2k + 1)√
n log3( ne

2k+1)

2k+1

≤ (−1)k(Rf(ξ, t))
(2k)
t (0).

If q = 2k − 1, k ∈ N, is an odd integer, then in the right-hand side of (5)
we have 0

0 , and computing the limit as q → 2k− 1 we get that there exists a

direction ξ ∈ Sn−1 so that  2kc√
n log3(ne2k )

2k
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≤ (−1)k(2k − 1)!

∫ ∞
0

t−2k

Rf(ξ, t)−
k−1∑
j=0

t2j

(2j)!
(Rf(ξ, t))

(2j)
t (0)

 dt.

We deduce Theorem 1 from a more general result. Note that in the case
where q = 0 the following theorem was proved in [23].

Theorem 2. Suppose K is an infinitely smooth origin-symmetric convex
body in Rn, f is a non-negative even infinitely smooth function on K and
−1 < q < n− 1 is not an odd integer. Then∫

K
f(x)dx ≤ n

(n− q − 1) 2qπ
q−1
2 Γ( q+1

2 )
|K|

q+1
n
(
dovr(K,L

n
−1−q)

)q+1

× max
ξ∈Sn−1

1

cos(πq2 )
(Rf(ξ, t))

(q)
t (0). (6)

Here |K| stands for the volume of K. By Ln−1−q we denote the class of

star bodies D in Rn for which the space (Rn, ‖ · ‖D) embeds in L−1−q, i.e.

the function ‖ · ‖−1−qD represents a positive definite distribution; see Section
3 for details.

If A is a class of compact sets in Rn, the outer volume ratio distance from
K to A is defined by

dovr(K,A) = inf

{(
|D|
|K|

)1/n

: K ⊂ D, D ∈ A

}
.

Let 0 ≤ q ≤ n− 2 in Theorem 2. Since n/(n− q − 1) < eq+1 and by the
Stirling formula, if |K| = 1 and

∫
K f = 1, the estimate (6) turns into

max
ξ∈Sn−1

1

cos(πq2 )
(Rf(ξ, t))

(q)
t (0) ≥

(
c(q + 1)

dovr(K,Ln−1−q)

) q+1
2

, (7)

where c is an absolute constant. This means that the lower estimate for the
derivatives of the Radon transform is completely controlled by the distance
dovr(K,L

n
−1−q). Indeed, if this distance is equal to 1 or is bounded by an

absolute constant, then, for every probability density f and every K with
volume 1, the right-hand side of (7) depends only on q :

1

cos(πq2 )
Rf(ξ, t))

(q)
t (0) ≥ (c(q + 1))

q+1
2 .

The distance dovr(K,L
n
−1−q) is known to be bounded by an absolute con-

stant in the following cases.

Proposition 1. Let q ∈ R be any number from the interval (−1, n− 1).
(i) If K is the unit ball of an n-dimensional subspace of Lp, 0 < p ≤ 2,

then K ∈ Ln−1−q, so dovr(K,L
n
−1−q) = 1.
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(ii) If K is an unconditional convex body in Rn, i.e. for every vector
(x1, ..., xn) ∈ K the vectors (±x1, ...,±xn) ∈ K for all choices of signs, then
dovr(K,L

n
−1−q) ≤ e.

(iii) If K is the unit ball of an n-dimensional subspace of Lp, p > 2, then
dovr(K,L

n
−1−q) ≤ c

√
p, where c is an absolute constant.

Proof : (i) Proved in [17] and [15, Theorem 6.17].

(ii) It follows from (i) that the `n1 -ball

Bn
1 = {x ∈ Rn : |x1|+ ...+ |xn| ≤ 1}

belongs to Ln−1−q for every q ∈ (−1, n − 1). Also, the classes Ln−1−q are
invariant with respect to linear transformations of Rn, which follows from
the connection between the Fourier transform and linear transformations,
so T (Bn

1 ) ∈ Ln−1−q for every linear operator T on Rn, det(T ) 6= 0.

By a result of Lozanovskii [30] (see the proof in [36, Corollary 3.4]), there
exists a linear operator T on Rn so that T (Bn

∞) ⊂ K ⊂ nT (Bn
1 ), where

Bn
∞ is the cube with sidelength 2 in Rn. Let D = nT (Bn

1 ) ∈ Ln−1−q. Since

|Bn
1 | = 2n/n!, we have |D|1/n ≤ 2e| detT |1/n. On the other hand, |T (Bn

∞)| =
2n| detT |, and T (Bn

∞) ⊂ K, so |D|1/n ≤ e |K|1/n.
(iii) It follows from (i) with p = 2 that all n-dimensional origin-symmetric
ellipsoids belong to the class Ln−1−q for every q ∈ (−1, n− 1). This can also

be shown directly using formula (14). Now the result follows from [33] (see
also [25]), where it was proved that the outer volume ratio distance from
the unit ball of a subspace of Lp, p > 2 to the class of ellipsoids is bounded
by c
√
p, where c is an absolute constant.

2

Let us show how to get the result of Theorem 1 from the estimate of
Theorem 2. In general, one cannot expect to get an estimate for the distance
dovr(K,L

n
−1−q) independent of the dimension n. In fact, it was shown in

[13, 14] that in the case q = 0 this distance can be of the order
√
n. Since

the classes Ln−1−q contain ellipsoids, one can use John’s theorem [9] to prove

that dovr(K,L
n
−1−q) ≤

√
n for every origin-symmetric convex body K in Rn

and every q ∈ (−1, n− 1). However, the estimate of Theorem 1 is better for
large values of q.

To prove this better estimate, we need to introduce another class of bodies.
For p > 0, the radial p-sum of star bodies K and L in Rn is defined as a
new star body K+̃pL whose radius in every direction ξ ∈ Sn−1 is given by

rp
K+̃pL

(ξ) = rpK(ξ) + rpL(ξ), ∀ξ ∈ Sn−1.

The radial metric in the class of origin-symmetric star bodies is defined by

ρ(K,L) = sup
ξ∈Sn−1

|rK(ξ)− rL(ξ)|.
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Definition 1. Let 0 < p < n. We define the class of generalized p-
intersection bodies BPnp in Rn as the closure in the radial metric of radial
p-sums of finite collections of origin-symmetric ellipsoids in Rn.

Note that when p = k is an integer, we get the class of generalized k-
intersection bodies introduced by Zhang [39].

The following estimate was proved in [27, Th. 1.1.] for integers p, but the
proof remains exactly the same for non-integers. Also note that a mistake
in the proof in [27] was corrected in [23, Section 5].

Proposition 2. ([27]) For every p ∈ [1, n− 1] and every origin-symmetric
convex body K in Rn

dovr(K,BPnp ) ≤ C

√
n log3(nep )

p
,

where C is an absolute constant.

It was proved in [20] (see also [34, 28]) that for any integer k, 1 ≤ k < n
every generalized k-intersection body belongs to the class Ln−k. We need an
extension of this fact to non-integers, as follows.

Proposition 3. For every 0 < p < n, we have BPnp ⊂ Ln−p.

Proof : We need to prove that for any star body K ∈ BPnp , the function

‖ · ‖−pK represents a positive definite distribution in Rn. As mentioned in the

proof of Proposition 1, the powers of the Euclidean norm |x|−p2 , 0 < p < n
represent positive definite distributions in Rn; see formula (14). Because
of the connection between the Fourier transform of distributions and linear
transformations, for any origin-symmetric ellipsoid E in Rn, the function
‖ · ‖−pE represents a positive definite distribution. Note that for any unit

vector x ∈ Sn−1 and any star body K, rK(x) = ‖x‖−1K . Therefore, radial
p-sums of ellipsoids in Rn belong to the class Ln−p. The fact that positive
definiteness is preserved under limits in the radial metric follows from [15,
Lemma 3.11], which proves the result.

2

Deduction of Theorem 1 from Theorem 2. By Propositions 2 and 3,
for any 0 ≤ q ≤ n− 2,

dovr(K,L
n
−1−q) ≤ dovr(K,BPnq+1) ≤ C

√
n log3( ne

q+1)

q + 1
. (8)

Now the first estimate (5) of Theorem 1 follows from Theorem 2, in the form
of (7), combined with (8).

In order to prove the case of even integers in Theorem 1, put q = 2k in
(5). In the case of odd integers, we use the expression for the fractional
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derivative (3) to find the limit in (5) as q → 2k − 1 :

lim
q→2k−1

(Rf(ξ, t))
(q)
t (0)

cos(πq2 )
= lim

q→2k−1

1

Γ(−q) cos(πq2 )

×
∫ ∞
0

t−2k

Rf(ξ, t)−
k−1∑
j=0

t2j

(2j)!
(Rf(ξ, t))

(2j)
t (0)

 dt.

Now use Γ(x+ 1) = xΓ(x) to compute

lim
q→2k−1

Γ(−q) cos
(πq

2

)
= lim

q→2k−1

Γ(−q + 2k)

(−q)(1− q) · · · (2k − 1− q)
sin

(
(q − 2k + 1)π

2

)
(−1)k

=
π

2(2k − 1)!
(−1)k

2

The proof of Theorem 2 is presented in Section 4.

We conclude this section by showing the place of the classes Ln−1−q in
the general theory of convex bodies. These classes are generalizations of the
concept of an intersection body introduced by Lutwak in [31]. Intersection
bodies are an important component of Lutwak’s dual Brunn-Minkowski the-
ory, and they played the crucial role in the solution of the Busemann-Petty
problem; see Section 2.

Definition 2. ([31]) For star bodies D,L in Rn, we say that D is the inter-
section body of L if

rD(ξ) = |L ∩ ξ⊥|, ∀ξ ∈ Sn−1.
Taking the closure in the radial metric of the class of intersection bodies of
star bodies, we define the class of intersection bodies.

A generalization of the concept of an intersection body was introduced in
[20].

Definition 3. For an integer k, 1 ≤ k < n and star bodies D,L in Rn, we
say that D is the k-intersection body of L if

|D ∩H⊥| = |L ∩H|, ∀H ∈ Grn−k.
Taking the closure in the radial metric of the class of k-intersection bodies
of star bodies, we define the class of k-intersection bodies.

It was proved in [17] for k = 1, and in [20] for k > 1, that an origin-
symmetric star body K in Rn is a k-intersection body if and only if the
function ‖ · ‖−kK represents a positive definite Schwartz distribution in Rn.
This result is related to embeddings in Lp-spaces. By Lp, p > 0 we mean
the Lp-space of functions on [0, 1] with Lebesgue measure. It was shown in
[16] that an n-dimensional normed space embeds isometrically in Lp, where
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p > 0 and p is not an even integer, if and only if the Fourier transform in
the sense of Schwartz distributions of the function Γ(−p/2)‖ · ‖p is a non-
negative distribution outside of the origin in Rn. The concept of embedding
of finite dimensional normed spaces in Lp with negative p was introduced in
[19, 20], as an analytic extension of embedding into Lp with p > 0.

Definition 4. For 0 < p < n, we say that star body D belongs to the class
Ln−p, or, in other words, the space (Rn, ‖ ·‖D) embeds in L−p, if the function

‖ · ‖−pD represents a positive definite Schwartz distribution on Rn.

A connection between k-intersection bodies and embedding in Lp with
negative p was found in [20].

Proposition 4. ([20]) Let 1 ≤ k < n. An origin symmetric star body D
in Rn is a k-intersection body if and only if D ∈ Ln−k, or, equivalently, the
space (Rn, ‖ · ‖D) embeds in L−k.

The classes Ln−p were studied by a number of authors. The advantage
of Proposition 4 is that one can take any result about the usual Lp-spaces,
extend it to L−p, and immediately get a geometric application to intersection
bodies. Let us mention one of the results. If n − 3 ≤ p < n, the class Ln−p
contains all origin-symmetric convex bodies in Rn; see [15, Corollary 4.9].
This result was proved as an extension of the fact that every two-dimensional
normed space embeds in L1. The result implies that every origin-symmetric
convex body in R4 is an intersection body, which provides an affirmative
answer to the Busemann-Petty problem in the critical 4-dimensional case.
More results about embeddings in L−p can be found in [10, 27, 24, 33, 34,
29, 38], [15, Chapter 6] and [28].

2. A comparison theorem for the derivatives of the Radon
transform.

Our next result is related to the Busemann-Petty problem [4] which is the
following question. Let K,L be origin-symmetric convex bodies in Rn, and
suppose that the (n − 1)-dimensional volume of every central hyperplane
section of K is smaller than the same for L, i.e. |K ∩ ξ⊥| ≤ |L ∩ ξ⊥| for
every ξ ∈ Sn−1. Does it necessarily follow that the n-dimensional volume of
K is smaller than the volume of L, i.e. |K| ≤ |L|? The answer is affirmative
if the dimension n ≤ 4, and it is negative when n ≥ 5; see [6, 15] for the
solution and its history.

It was proved in [18] (see also [15, Theorem 5.12]) that the answer to the
Busemann-Petty problem becomes affirmative if one compares the deriva-
tives of the parallel section function of high enough orders. Namely, denote
by

AK,ξ(t) = R(χK)(ξ, t) = |K ∩ {x ∈ Rn : (x, ξ) = t}|, t ∈ R
the parallel section function of K in the direction ξ. If K,L are infinitely
smooth origin-symmetric convex bodies in Rn, n ≥ 4, q ∈ [n − 4, n − 1) is
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not an odd integer, and for every ξ ∈ Sn−1 the fractional derivatives of the
order q of the parallel section functions at zero satisfy

1

cos(πq2 )
A

(q)
K,ξ(0) ≤ 1

cos(πq2 )
A

(q)
L,ξ(0),

then |K| ≤ |L|. For −1 < q < n− 4 this is no longer true.
Another generalization of the Busemann-Petty problem, known as the iso-

morphic Busemann-Petty problem, asks whether the inequality for volumes
holds up to an absolute constant. Does there exist an absolute constant C
so that for any dimension n and any origin-symmetric convex bodies K,L in
Rn satisfying |K ∩ ξ⊥| ≤ |L ∩ ξ⊥| for all ξ ∈ Sn−1, we have |K| ≤ C|L|? As
shown in [35], this question is equivalent to the slicing problem of Bourgain
mentioned in Section 1.

Zvavitch [40] considered an extension of the Busemann-Petty problem
to general Radon transforms, as follows. Suppose that K,L are origin-
symmetric convex bodies in Rn, and f is an even continuous strictly positive
function on Rn. Suppose that R(f |K)(ξ, t)(0) ≤ R(f |L)(ξ, t)(0) for every
ξ ∈ Sn−1, where f |K is the restriction of f to K. Does it necessarily follow
that |K| ≤ |L|? The answer is exactly the same as in the case of volume.
Isomorphic versions of this result were proved in [29, 26].

In this note we generalize these results to general Radon transforms as
follows. In the case q = 0 this result was proved in [26].

Theorem 3. Let K,L be infinitely smooth origin-symmetric convex bodies
in Rn, f, g non-negative infinitely differentiable functions on K and L, re-
spectively, ‖g‖∞ = g(0) = 1, and q ∈ (−1, n − 1) is not an odd integer. If
for every ξ ∈ Sn−1

1

cos(πq2 )
(Rf(ξ, t))

(q)
t (0) ≤ 1

cos(πq2 )
(Rg(ξ, t))

(q)
t (0),

then∫
K
f(x)dx ≤ n

n− q − 1

(
dovr(K,L

n
−1−q)

)q+1
(∫

L
g(x)dx

)n−q−1
n

|K|
q+1
n .

3. The main tools

We often use integration in polar coordinates x = rθ, x ∈ Rn, r ≥ 0, θ ∈
Sn−1; see [32, Ch.6, Th. 5.2]. If f is an integrable function on Rn, then∫

Rn

f(x)dx =

∫
Sn−1

(∫ ∞
0

rn−1f(rθ)dr

)
dθ. (9)

If K is a star body in Rn, putting f(x) = χK(x), the indicator function of
K, we get a formula for volume:

|K| =
∫
Rn

χK(x)dx =

∫
Sn−1

(∫ ‖θ‖−1
K

0
rn−1dr

)
dθ =

1

n

∫
Sn−1

‖θ‖−nK dθ.
(10)
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Our main tool is the Fourier transform of distributions; see [15, 28] for
a comprehensive introduction to the Fourier approach in convex geometry.
The Fourier transform of a distribution f is defined by 〈f̂ , φ〉 = 〈f, φ̂〉 for
every test function φ from the Schwartz space S of rapidly decreasing infin-
itely differentiable functions on Rn. For any even distribution f , we have
(f̂)∧ = (2π)nf ; see [37, Th. 7.7] for the inversion formula for the Fourier
transform.

If K is a star body and 0 < p < n, then ‖ · ‖−pK is a locally integrable
function on Rn and represents a distribution acting on test functions by
integration. Suppose that K is infinitely smooth, i.e. ‖ · ‖K ∈ C∞(Sn−1)
is an infinitely differentiable function on the sphere. Then by [15, Lemma

3.16], the Fourier transform of ‖ · ‖−pK is an extension of some function g ∈
C∞(Sn−1) to a homogeneous function of degree −n + p on Rn. When we

write
(
‖ · ‖−pK

)∧
(ξ), we mean g(ξ), ξ ∈ Sn−1. If K,L are infinitely smooth

star bodies, the following spherical version of Parseval’s formula was proved
in [18] (see [15, Lemma 3.22]): for any p ∈ (−n, 0)∫

Sn−1

(
‖ · ‖−pK

)∧
(ξ)
(
‖ · ‖−n+pL

)∧
(ξ) = (2π)n

∫
Sn−1

‖x‖−pK ‖x‖
−n+p
L dx.

(11)

A distribution is called positive definite if its Fourier transform is a positive
distribution in the sense that 〈f̂ , φ〉 ≥ 0 for every non-negative test function
φ.

We need a lemma that can be found in [15, Lemma 3.14]. We include the
proof for completeness.

Lemma 1. Let −1 < q < 0. For every even test function φ and every fixed
vector θ ∈ Sn−1∫

Rn

|(θ, ξ)|−1−qφ(ξ)dξ =
2Γ(−q) cos(πq/2)

π

∫ ∞
0

tqφ̂(tθ)dt.

Proof : A well-known connection between the Fourier and Radon trans-
forms is that, for any test function φ, the function t→ φ̂(tθ) is the Fourier
transform of the function z →

∫
(θ,ξ)=z φ(ξ)dξ; see for example [15, Lemma

2.11]. Using the Fubini theorem and the formula for the Fourier transform
of |z|−1−q (see [15, Lemma 2.23])

(|z|−1−q)∧(t) = 2Γ(−q) cos(πq/2)|t|q,

we get ∫
Rn

|(θ, ξ)|−1−qφ(ξ)dξ =

∫
R
|z|−1−q

(∫
(θ,ξ)=z

φ(ξ)dξ

)
dz

=
〈
|z|−1−q,

∫
(θ,ξ)=z

φ(ξ)dξ
〉

=
1

2π

〈
2Γ(−q) cos(πq/2)|t|q, φ̂(tθ)

〉
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=
Γ(−q) cos(πq/2)

π

∫
R
|t|qφ̂(tθ)dt.

Finally, recall that φ is an even function.

2

Our next lemma generalizes Theorem 1 from [7] (see also [15, Th. 3.18]).

Lemma 2. Let K be an infinitely smooth origin-symmetric convex body in
Rn, let f be an even infinitely smooth function on K, and let q ∈ (−1, n−1).
Then for every fixed ξ ∈ Sn−1

(Rf(ξ, t))
(q)
t (0) (12)

=
cos(πq/2)

π

(
|x|−n+q+1

2

(∫ |x|2
‖x‖K

0
rn−q−2f

(
r
x

|x|2

)
dr

))∧
x

(ξ).

Proof : Let−1 < q < 0. Then, using the definitions of the Radon transform
and the fractional derivative (4), the Fubini theorem and integration in polar
coordinates (9) with x = rθ, we get

(Rf(ξ, t))
(q)
t (0) =

1

2Γ(−q)

∫ ∞
−∞
|t|−1−q

(∫
K∩{x: (x,ξ)=t}

f(x)dx

)
dt

=
1

2Γ(−q)

∫
Rn

|(x, ξ)|−1−qf(x)χK(x)dx

=
1

2Γ(−q)

∫
Sn−1

|(θ, ξ)|−1−q
(∫ ‖θ‖−1

K

0
rn−q−2f(rθ)dr

)
dθ.

Consider the latter as a homogeneous of degree −1 − q function of ξ ∈
Rn \ {0}, apply it to an even test function φ and use Lemma 1:

〈(Rf(ξ, t))
(q)
t (0), φ〉

=
1

2Γ(−q)

∫
Rn

φ(ξ)

(∫
Sn−1

|(θ, ξ)|−1−q
(∫ ‖θ‖−1

K

0
rn−q−2f(rθ)dr

)
dθ

)
dξ

=
cos(qπ/2)

π

∫
Sn−1

(∫ ∞
0

tqφ̂(tθ)dt

)(∫ ‖θ‖−1
K

0
rn−q−2f(rθ)dr

)
dθ.

On the other hand, if we apply the function in the right-hand side of (12)
to the test function φ we get〈

cos(πq/2)

π

(
|x|−n+q+1

2

(∫ |x|2
‖x‖K

0
rn−q−2f

(
rx

|x|2

)
dr

))∧
x

(ξ), φ(ξ)

〉

=
cos(πq/2)

π

∫
Rn

|x|−n+q+1
2

(∫ |x|2
‖x‖K

0
rn−q−2f(

rx

|x|2
)dr

)
φ̂(x)dx
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=
cos(πq/2)

π

∫
Sn−1

(∫ ∞
0

tqφ̂(tθ)dt

)(∫ ‖θ‖−1
K

0
rn−q−2f(rθ)dr

)
dθ,

where in the last step we use integration in polar coordinates (9) with x = tθ.
Comparing the computations, we see that, for any even test function φ,

〈(Rf(ξ, t))
(q)
t (0), φ〉 (13)

=

〈
cos(πq/2)

π

(
|x|−n+q+1

2

(∫ |x|2
‖x‖K

0
rn−q−2f

(
rx

|x|2

)
dr

))∧
x

(ξ), φ(ξ)

〉
.

Since both distributions are even, this proves the lemma for −1 < q < 0. By
an argument similar to that in Lemma 2.22 from [15], one can see that both
sides of (13) are analytic functions of q in the domain −1 < <q < n− 1. By
analytic extension, (13) holds for all −1 < q < n − 1, which completes the
proof.

2

Let us compute the fractional derivatives of the Radon transform in the
case where f ≡ 1 and K = Bn

2 , the unit Euclidean ball.

Corollary 1. For −1 < q < n− 1 and every ξ ∈ Sn−1

(R(χBn
2
)(ξ, t))

(q)
t (0) =

2q+1π
n−2
2 Γ( q+1

2 ) cos(πq2 )

(n− q − 1)Γ(n−q−12 )
.

Proof : First, we use Lemma 2 with f ≡ 1 and K = Bn
2 :

(R(χBn
2
)(ξ, t))

(q)
t (0) =

cos(πq2 )

π(n− q − 1)
(|x|−n+q+1

2 )∧(ξ).

Next, we apply the formula for the Fourier transform of powers of the Eu-
clidean norm (see [8]):

(|x|−n+q+1
2 )∧(ξ) =

2q+1π
n
2 Γ( q+1

2 )

Γ(n−q−12 )
|ξ|−1−q2 , ∀ξ ∈ Rn \ {0}.

(14)

2

Note that if we replace the unit Euclidean ball by the Euclidean ball of

volume 1, the constant in Corollary 1 has to be divided by |Bn
2 |

n−q−1
n , and it

matches the estimate of Theorem 2 for bodies K of volume 1; see inequality
(7). We leave this computation for the interested reader.

4. Proofs of the main results

Proof of Theorem 3. The assumption of the theorem is that, for every
ξ ∈ Sn−1,

1

cos(πq2 )
(Rf(ξ, t))

(q)
t (0) ≤ 1

cos(πq2 )
(Rg(ξ, t))

(q)
t (0).
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By Lemma 2, for every ξ ∈ Sn−1, this assumption is equivalent to(
|x|−n+q+1

2

(∫ |x|2
‖x‖K

0
rn−q−2f

(
r
x

|x|2

)
dr

))∧
x

(ξ) (15)

≤

(
|x|−n+q+1

2

(∫ |x|2
‖x‖L

0
rn−q−2g

(
r
x

|x|2

)
dr

))∧
x

(ξ).

Let δ > 0, and let D ∈ Ln−1−q be such that K ⊂ D and

|D|1/n ≤ (1 + δ)dovr(K,L
n
−1−q)|K|1/n. (16)

By approximation, we can assume that D is infinitely smooth; see [15,

Lemma 4.10]. Then (‖x‖−1−qD )∧ is a non-negative function on the sphere.

Multiplying both sides of (15) by (‖x‖−1−qD )∧(ξ), integrating over the sphere
and using Parseval’s formula on the sphere (11) we get∫

Sn−1

‖θ‖−1−qD

(∫ ‖θ‖−1
K

0
rn−q−2f(rθ)dr

)
dθ

≤
∫
Sn−1

‖θ‖−1−qD

(∫ ‖θ‖−1
L

0
rn−q−2g(rθ)dr

)
dθ,

or, using the formula for integration in polar coordinates (9) with x = rθ,∫
K
‖x‖−1−qD f(x)dx ≤

∫
L
‖x‖−1−qD g(x)dx. (17)

Since K ⊂ D, we have ‖x‖D ≤ 1 for every x ∈ K, and thus∫
K
‖x‖−1−qD f(x)dx ≥

∫
K
f(x)dx. (18)

On the other hand, by the Lemma from section 2.1 from Milman-Pajor
[35, p.76], (∫

L ‖x‖
−1−q
D g(x)dx∫

D ‖x‖
−1−q
D dx

)1/(n−q−1)

≤
(∫

L g(x)dx∫
D dx

)1/n

. (19)

By (9) and (10), ∫
D
‖x‖−1−qD dx =

∫
Rn

‖x‖−1−qD χD(x)dx

=

∫
Sn−1

‖θ‖−1−qD

(∫ ‖θ‖−1
D

0
rn−q−2dr

)
dθ

=
1

n− q − 1

∫
Sn−1

‖θ‖−nD dθ =

∫
n

n− q − 1
|D|.
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Now we can rewrite (19) as∫
L
‖x‖−1−qD g(x)dx ≤ n

n− q − 1

(∫
L
g(x)dx

)n−q−1
n

|D|
q+1
n . (20)

Combining estimates (17), (18) and (20) with the definition of D, (16), and
sending δ to zero, we get∫

K
f(x)dx ≤ n

n− q − 1

(∫
L
g(x)dx

)n−q−1
n (

dovr(K,L
n
−1−q)

)q+1 |K|
q+1
n ,

which is the conclusion of the theorem.

2

Proof of Theorem 2. Consider a number ε > 0 such that, for every
ξ ∈ Sn−1,

1

cos(πq/2)
(Rf(ξ, t))

(q)
t (0) ≤ ε

cos(πq/2)
R(χBn

2
)(ξ, t))

(q)
t (0).

By Lemma 2, for every ξ ∈ Sn−1,(
|x|−n+q+1

2

(∫ |x|2
‖x‖K

0
rn−q−2f

(
r
x

|x|2

)
dr

))∧
x

(ξ) ≤ ε

n− q − 1

(
|x|−n+q+1

2

)∧
(ξ)

Let δ > 0, and let D ∈ Ln−1−q be such that K ⊂ D and

|D|1/n ≤ (1 + δ)dovr(K,L
n
−1−q)|K|

1
n . (21)

By approximation, we can assume that D is infinitely smooth. Then (‖x‖−1−qD )∧

is a non-negative function on the sphere. Multiplying both sides of the latter
inequality by (‖x‖−1−qD )∧(ξ), integrating over the sphere and using Parseval’s
formula on the sphere we get (like in the proof of Theorem 3)∫

K
‖x‖−1−qD f(x)dx ≤ ε

n− q − 1

∫
Sn−1

‖x‖−1−qD dx. (22)

Since K ⊂ D, we have∫
K
‖x‖−1−qD f(x)dx ≥

∫
K
‖x‖−1−qK f(x)dx ≥

∫
K
f(x)dx. (23)

On the other hand, by Hölder’s inequality with the exponents n
q+1 and

n
n−q−1 , and by (10),∫

Sn−1

‖x‖−1−qD dx ≤ |Sn−1|
n−q−1

n n
q+1
n |D|

q+1
n , (24)

where (see for example [15, Corollary 2.20])

|Sn−1| = 2πn/2

Γ(n/2)
.
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Combining (22), (23), (24), we get∫
K
f(x)dx ≤ ε|Sn−1|

n−q−1
n n

q+1
n

n− q − 1
|D|

q+1
n .

Now replace D by K using (21):∫
K
f(x)dx ≤ ε|Sn−1|

n−q−1
n n

q+1
n

n− q − 1
(1 + δ)q+1

(
dovr(K,L

n
−1−q)

)q+1 |K|
q+1
n ,

and put

ε = max
ξ∈Sn−1

1
cos(πq/2)(Rf(ξ, t))

(q)
t (0)

1
cos(πq/2)R(χBn

2
)(ξ, t))

(q)
t (0)

.

Replace the denominator in the expression for ε using Corollary 1, and
substitute the formula for |Sn−1| :∫

K
f(x)dx ≤ c(n, q)(1 + δ)q+1

(
dovr(K,L

n
−1−q)

)q+1 |K|
q+1
n (25)

× max
ξ∈Sn−1

1

cos(πq/2)
(Rf(ξ, t))

(q)
t (0),

where

c(n, q) =
πΓ(n−q−12 )n

q+1
n 2

n−q−1
n π

n−q−1
2

2q+1π
n
2 Γ( q+1

2 )
(
Γ(n2 )

)n−q−1
n

.

Now use Γ(x+ 1) = xΓ(x) and the inequality

Γ(n−q−12 + 1)(
Γ(n2 + 1)

)n−q−1
n

≤ 1,

which follows from the log-convexity of the Γ-function (see [15, Lemma
2.14]). We get

c(n, q) =
n Γ(n−q−12 + 1)

2qπ
q−1
2 Γ( q+1

2 )(n− q − 1)
(
Γ(n2 + 1)

)n−q−1
n

≤ n

2qπ
q−1
2 Γ( q+1

2 )(n− q − 1)
,

and (25) implies∫
K
f(x)dx ≤ n

2qπ
q−1
2 Γ( q+1

2 )(n− q − 1)
(1+δ)q+1

(
dovr(K,L

n
−1−q)

)q+1 |K|
q+1
n

× max
ξ∈Sn−1

1

cos(πq/2)
(Rf(ξ, t))

(q)
t (0).

Finally, send δ to zero to get the result.

2
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