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ABSTRACT

Player engagement and task effectiveness are crucial factors in
human computation games. However, collecting data and making
design changes towards these goals can be time-consuming. In
this work, we incorporate rapid crowdsourced playtesting via the
ARAPID (As Rapid As Possible Iterative Design) system to iterate
on the design of a human computation platformer game. For each
level in the game, the player’s goal is to collect items relevant to a
given scenario while avoiding irrelevant items. We extended the
visualization modules in the existing ARAPID system to include a
multi-level data visualization and item collection task effectiveness
plot. A designer from the project team used the system to iterate
on the game’s level design, with the goal of increasing relevant and
decreasing irrelevant items collected by players. A large-scale test
with the game versions created during the iterative analysis found
that the designer was able to use ARAPID to improve the specified
goal parameters.
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1 INTRODUCTION

Playtesting is an integral part of the game development lifecycle.
However, organizing playtests and extracting feedback can be time-
consuming due to the set of processes (recruiting users, organizing
tests and collecting feedback) involved in the playtesting pipeline.
The rise of crowdsourced providers and playtesting platforms [2,
23] has been supportive in organizing online playtesting. These
existing online playtesting platforms involve either outsourcing
the playtesting task to a third party or conducting the playtests
through dedicated crowdsourced platforms (e.g. [2]). This decouples
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the testing and development phases and as a result, introduces a
needless latency in the development cycle.

Previous work developed a prototype system called ARAPID (As
Rapid As Possible Iterative Design) [22] to streamline the playtest-
ing process within the Unity game development engine. ARAPID
allows game designers to launch user tests, visualize playtest out-
comes and make design revisions, all within Unity. In previous
work, ARAPID focused only on simple entertainment games (2D
and 3D platformers) with a single level.

In this work, we extended the previously developed ARAPID
system for use with a human computation game (HCG) and carried
out an experiment involving iteratively playtesting the game and
evaluating the changes made. The HCG used was Iowa James, a
platformer HCG where the player collects items relevant to a given
scenario and avoids irrelevant items. This work covers:

Extension of ARAPID to a multi-level HCG — Our primary goal
was to use ARAPID to address the task effectiveness aspect of HCG
design. We implemented three new visualizations in ARAPID: multi-
level data visualization, a player item collection task effectiveness
plot, and consolidated player trajectories. These were intended to
support the game designer to iterate on the design parameters of
Towa James.

Iterative analysis — A project member designed three new levels
for the game, and another project member used ARAPID to improve
the HCG. The goal of the test was to improve the total correctness
(relevant minus irrelevant items collected) of the players by de-
termining the best counts and placements of HCG item locations
in three levels of the game. The project member used ARAPID to
conduct 8 iterations using data from 50 playtesters per iteration.

Large-scale evaluation — After all the iterations, we identified the
worst and best versions of the game, based on total correctness, and
ran a large-scale test by randomly assigning 400 players to either
the first, worst or best version. For the analysis, we considered
three parameters from this test: 1) correctness, 2) number of levels
completed, and 3) gameplay duration. We observed a statistically
significant difference between all three versions in total correctness,
with the best version from the iterations also having the best cor-
rectness during this test. We also found a difference among all three
versions in number of levels completed and a difference between
the best version and the other two for gameplay duration.

In this work, we demonstrate the use of ARAPID to improve
player effectiveness in a human computation game through several
iterations.
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2 RELATED WORK

2.1 Human Computation Games

Games are increasingly used as a means for human computation.
For such games, which must be both engaging to players and effec-
tive at contributing to a real-world problem, the design process is
especially challenging. An iterative approach involving playtest-
ing can help with this design process [7]. From the initial work
of the ESP Game [30], games have been applied in a variety of
ways for image labeling, categorization, data mapping, information
retrieval, solving scientific puzzles and analysis [6, 17]. Addition-
ally, games have been employed in a broad range of domains for
human computation, crowdsourcing, and citizen science. These
range from neuron tracing [18] and software verification [19] to
capturing facial expressions [27]. Most closely related to the game
used in our work, Gwario [25] is a platformer in which the player
collects items to categorize them into different scenarios. Siu and
Riedl [26] created a reward system using a cooking-themed HCG
and performed a comparative analysis between the choice of re-
wards and randomly assigned rewards. The results suggest that
giving choice of rewards could provide better task completion and
player experience. Disguise, a purpose driven game developed by
Ahmed et al. [1] facilitated in evaluating visualization algorithms
and this also focused on eliminating the latency involved in the
development process of visualization research. HCGs are also used
for training purposes; e.g. Clark et al. [5], created an HCG to evalu-
ate optical coherence tomography scans for effective diagnosis of
patients with Age-Related Macular Degeneration (AMD). Instead
of an explicit training on the process, the game mechanics were
crafted effectively to support the evaluation process. HCGs not only
contribute to solving crucial problems but also act as a vital tool
for data mapping and information gathering.

2.2 Playtesting and Game Analytics

Playtesting is a crucial part of the game development process [10]
and has thus inspired a large body of work. Zook et al. [32] use an
active learning approach to automatically tune in-game parameters
to achieve specified design objectives based on gameplay data. Prior
work has also looked at improving playtesting for games via utiliz-
ing Al-based methods to help automate the process. Holmgard et al.
[15] developed psychologically grounded player models using a
variant of Monte Carlo Tree Search (MCTS) and used them to auto-
matically evaluate level playability. Garcia-Sanchez et al. [12] used
evolutionary algorithms to automate playtesting in Hearthstone by
evolving different card decks which are then evaluated using the
agent. Gudmundsson et al. [13] employed a more general approach
to playtesting by training deep neural networks on player data in
order to be able to evaluate levels by using predictions of player
actions to simulate human behavior. Within the domain of HCGs,
Horn et al. [16] proposed a hybrid approach combining MCTS and
skill chains to automate playtesting. In their work, they designed AI
agents of varying skill levels and used them to analyze the difficulty
progression in the puzzle HCG Foldit.

Prior work has also looked at different ways of visualizing playtest-
ing data such as by combining quantitative and qualitative data
[20] as well as by aggregation [31]. Project Vixen [8] provides a
plugin within Unity to manage the visualizations in-editor and also
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supports dynamic interaction of playtesting data. Representing the
datapoints of a large scale data set can be challenging and at times
the crowding of data can make the visualizations hard to interpret.
Feltwell et al. [9] approached the the issue of data visualization in
large and crowded data sets like heatmaps and activity histogram.

Using crowdsourcing for gathering information on user experi-
ence was proposed by Birk and Mandryk [4] and there exist many
crowdsourced user testing and design platforms. Games for Crowds
by Guy et al. [14] enables collaborative design and playing games
via the collective intelligence of crowds of users. CrowdStudy by
Nebeling et al. [21] is a toolkit for crowdsourced automated usabil-
ity testing while The UX Crowd [28] is a usability testing platform
that combines crowdsourcing with voting-based evaluation.

Game analytics helps designers understand playtesting data pat-
terns, game logs, events, and trends. Companies like GameAnalytics
[11] and Playfab [3] offer solutions for analytics and data visualiza-
tion. Unity has an in-built analytics tool that can offer livestream
data and heatmaps [29].

3 OVERVIEW

3.1 ARAPID System

The previously developed ARAPID system (a thorough description
can be found in [22]) aims to leverage online crowdsourcing and
custom game analytics to extract playtesting feedback instantly
and to visualize the data in Unity. The functionality of ARAPID has
been wrapped and integrated as a plugin within the Unity game de-
velopment engine. The system consists of three main components:

Control Panel - a custom interface in Unity through which game
designers can launch playtests and visualize the test outcomes
in Unity’s scene view. The control panel comprises several data
visualization options such as player trajectories, game completion
ratios, trap markers, and survival analysis plots.

Online Data Coordinator — this module handles game versions
and gameplay data in the backend. We used Amazon DynamoDB,
a NoSQL database, for storing gameplay data and Amazon S3 for
storing game versions.

Recruiter — an online crowdsourced platform used to recruit
players and assign them tasks. In this module, we used Amazon
Mechanical Turk (MTurk) and integrated the functionalities of it
within the control panel through open-source Javascript SDK from
Amazon Web Services. This module allows the game designers to
configure playtests, launch HITs (Human Intelligence Tasks), and
approve HITs directly from the control panel in Unity.

Using ARAPID, the designer performs cyclical steps of edit (de-
sign changes and adjustments to the level layout), test (use the
updated version of game and conduct a crowdsourced playtest), and
analyze (visualize the test outcomes in Unity scene view through
several plots in ARAPID). When players complete an assignment
(gameplay task) in MTurk, they receive a secret code that can later
be used to receive payment. For each assignment in this work, we
paid $0.40 regardless of whether the players completed or failed the
game. This payment was allocated based on the estimated average
gameplay duration of 90 seconds (resulting in $16/hr).
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Figure 1: Labeled screenshot of Iowa James HCG.

3.2 Jowa James

The game used in this work, Iowa James [24] (see Figure 1), is a
platformer based on Gwario [25]. Both are similar to Super Mario
Bros., but they introduce a human computation aspect by replac-
ing the traditional collectibles with shopping items (e.g. clothes,
vegetables, chocolates) and a scenario for each level, thus using
gameplay to gather common-sense knowledge about these items
based on which ones the player collects. We used three levels from
Iowa James, designed with increasing complexity such that level 1
comprises no traps, level 2 comprises spikes on various platforms
and the ground, and level 3 comprises a combination of spikes and
rising spikes on platforms and the ground. In each level, multiple
collectible items are placed at various locations and the goal of the
players is to collect the relevant items corresponding to the given
shopping scenario (level 1 - grocery store; level 2 - clothing store;
level 3 - tools shop) and ignore the irrelevant items and reach the
treasure chest at the end of the level.

In the version of Jowa James used in this work, it was known
which items were relevant and irrelevant. Each level in the game has
a number of item locations where items appear. Each item location
is randomly assigned either a relevant or an irrelevant item. The
count of total items in the level is an even number so that half of the
items in the level are relevant and the remaining half are irrelevant.
Players are assigned a shopping cart and a count of relevant items
they need to collect for each level. When they fill the cart with
the required number of collectibles, a treasure chest at the end of
the level unlocks which then leads to the next level. Players have
three lives to complete each level. Whenever players step into a
trap (spikes and rising spikes) or collect an item irrelevant to the
shopping scenario, they lose a life and their current position resets
to the start of the particular level. In addition to this, every time
a player collects an irrelevant item, the game provides feedback
indicating that the item was irrelevant to the current scenario.

3.3 ARAPID Visualizations

Along with the existing visualizations in the ARAPID system, we
incorporated three new visualizations for Iowa James: task effec-
tiveness plots, multi-level survival analysis plot, and level-wise
consolidated player trajectories. These visualizations were created
to support the design iterations of this multi-level Iowa James HCG.

Task effectiveness plots — these show the total number of relevant
and irrelevant items collected for each item location in all 3 levels.
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Figure 2: Example of ARAPID’s task effectiveness plot
which is displayed in each level of the game in Unity’s scene
view and shows the total relevant (green) and irrelevant (red)
items collected by players for each item location.
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Figure 3: Example of ARAPID’s multi-level survival analy-
sis plot.

Green and red boxes are assigned for relevant and irrelevant items
respectively. The scale of the boxes depends on the number of
relevant items/irrelevant items collected. The designer uses this
plot during iterations to determine the task effectiveness of each
item location. An optimal outcome is a higher scale size of green
boxes compared to red boxes for each item location (see Figure 2).

Multi-level survival analysis plot — a survival analysis plot shows
the percentage of players progressing to various points in the level.
We created a widget that encompasses the survival analysis plots
of all three levels in one place. This plot informs the designer about
the percentage of player success on all three levels e.g., in Figure 3
- 96.92% of players completed level 1, 81.58% of players completed
level 2, and 73.33% of players completed level 3. Whenever a player
loses all their lives in a level, there will be a drop in the plot denoting
the decrease in completion proportion.
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Figure 4: (left) Total correctness for each iteration is the sum of relevant minus irrelevant items collected for all 50 players in
the test. Itr 7 (highlighted in green) denotes the best iteration, itr 4 (highlighted in red) denotes the worst, and itr 1 (highlighted
in blue) denotes the first. These three iterations were used in the large-scale test for a comparative study. (right) Mean gameplay
duration and percentage of players to complete all three levels for each iteration.

Iteration
‘ Base 1 2 3 4 5 6 7 8
Level 1 0 6 4 4 4 10 6 6 6
Level 2 0 8 6 6 4 10 8 8 8
Level 3 0 8 6 6 4 10 8 8 8

Table 1: Number of item locations placed in all three levels
in each iteration.

Consolidated player trajectories — this plot shows the overall
player trajectories in each level and informs the designer about
the paths taken by players in the level. This feature is applicable
by opening a particular level and clicking a button on the ARA-
PID control widget to pull the data, whereas the task efficiency
and multi-level survival analysis plots are automated and once the
playtest starts they will update every five seconds.

4 ITERATION
4.1 Method

Our aim for system evaluation was to improve player task effective-
ness in Iowa James by using ARAPID. For this, one of the project
members (PM-A) designed three new level layouts with increasing
difficulty that had no item locations; a different project member
(PM-B) used ARAPID to iterate on item locations and improved task
effectiveness in those three levels. PM-B and other project members
(other than PM-A) did not have experience with the specific level
layouts used in this work before starting iterations. Between some
iterations, PM-B would discuss their approach and playtesting re-
sults with another project member; however, after designing the
levels, PM-A had no involvement with the game design or iterations.
These project members are paper authors.

The goal assigned to PM-B was to place collectible item locations
in each level and maximize the players’ total correctness (relevant
minus irrelevant) of all item locations in three levels through itera-
tive process. During iterations, fotal correctness of all players was
considered since each playtest had the same number of players.

In each iteration, the test specifications set for PM-B were: 1) add
or remove collectible item locations in each level; due to the game’s
base logic (half of the total items in a level were relevant and the
other half were irrelevant) for populating items in level, PM-B was
allowed to place only even numbered item locations ranging from

2 (minimum) to 10 (maximum) in each level, 2) use ARAPID vi-
sualizations (task effectiveness plot, multi-level survival analysis
plot and consolidated player trajectories) and determine ideal posi-
tions for item locations in each level, 3) adjust the position of item
locations to maximize total correctness, and 4) update the game
version after each iteration and upload the new game version for
the next iteration. For every iteration, PM-B recruited 50 players
per playtest. Due to the fact that the last few assignments can take
a disproportionately long time, we recruited 15 additional players
for each playtest (i.e. a total of 65 players) [22]. During evaluation
of the results, we considered gameplay data of the first 50 users
that were recorded. Players who played an iteration were not able
to play subsequent iterations.

4.2 Process

A summary of the iterative process is given in Table 1 and Figure
4. PM-B initiated the test with the base level layout and this was
considered as iteration 0, because neither the item locations were
added nor any changes were made to the levels. PM-B used this
iteration to understand how exactly the players were traversing
through the three levels and determine item locations in each level
for the next iteration. After iteration 0 (base), PM-B started iteration
(abbreviated as itr) 1, by adding item locations in all three levels. At
the end of the editing phase, PM-B ended up adding 6, 8, and 8 item
locations in levels 1, 2, and 3, respectively (abbreviated as 6/8/8).
On the subsequent iterations, PM-B decreased the item locations at
all levels and as a result of it, total correctness started to reduce on
every iteration after itr 1 and outcomes (total correctness) were the
worst at itr 4 (with an item location configuration of 4/4/4).

For itr 5, PM-B maximized the item counts compared to the
previous iterations and this is to see if increasing item counts could
impact the total correctness. In itr 5, PM-B went with 10 items at
each level (10/10/10) and at the end of itr 5, PM-B observed that the
total correctness drastically improved compared to the previous
three iterations (itr 4, itr 3, and itr 2). But still the total correctness
was slightly lower than itr 1 (this trend can be seen in Figure 4),
leaving itr 1 as the best iteration so far.

As the total correctness was low even after maximum item lo-
cations (10/10/10) for each level, PM-B decided to revert back to
the item locations configuration used in itr 1 (6/8/8). So, in itr 6,
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Correctness Level Gameplay
Completion Duration (s)
First (Itr 1) 6 2 66.5
Worst (Itr 4) 5 3 62.0
Best (Itr 7) 9 3 73.0

Table 2: Median values of measures for large-scale test.

Correctness Level Gameplay
Completion Duration (s)
Omnibus p <.001 p < .001 p<.05
x2(3) = 42.68 x2(3) = 26.74 x(3) = 8.98
First - Best p <.001 p<.05 p<.05
Z =-3.66 Z=-2.30 Z=-218
Worst — Best P <.001 p<.05 p <.05
Z=-6.18 Z=-242 Z =-2.90
First - Worst p<.05 p <.001 n.s.
Z =-3.86 Z=-522 Z=-0.93

Table 3: Results of statistical analyses performed for the
large-scale test.

PM-B used the same item locations configuration as in itr 1 with
slight modifications to the locations of items that received poor
correctness scores in three levels in itr 1. Results of itr 6 showed a
considerable increase in correctness score, which was higher than
the previous iteration (itr 5), but still lower than itr 1.

At this point, PM-B decided to tune the system by keeping the
count of item locations to be the same as itr 1, but adjusting the
item locations to achieve a higher score than itr 1. Itr 7 involved the
same item locations count (6/8/8) with modified item locations. In
the result of itr 7, the total correctness was much higher than all of
the previous iterations and itr 7 turned out to be the best iteration
thus far. PM-B observed that item locations configuration of having
the maximum (10/10/10) on all levels was not the best for achieving
total correctness. Also, reducing the item location configuration
below 6/8/8 would reduce the correctness score as well.

Further, PM-B identified 6/8/8 as the best counts for item loca-
tions on respective levels to achieve better correctness score. Since
the best case was derived based on the best score achieved in itr 7,
PM-B further extended one more iteration with 6/8/8 with slight
adjustments to the locations of item locations to cross-validate if
the correctness score can be further increased from itr 7 with item
locations configuration 6/8/8. PM-B initiated itr 8 with 6/8/8 and a
few adjustments to the item locations. The results of itr 8 reduced
the correctness score much more than the previous two iterations
and this may have been due to the changes of item locations in itr
8. Thus, PM-B concluded the study with 8 iterations and identified
itr 4 as the worst and itr 7 as the best iterations (see Figure 4).

5 LARGE-SCALE EVALUATION
5.1 Method

To get a better comparison of the versions of the game produced
during the design iterations, we ran a large-scale evaluation of three
versions. In this large-scale test, we included the first iteration (itr
1), the worst iteration (itr 4), and the best iteration (itr 7). Itr 1 was
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the first version that PM-B actually started from the base version,
and after itr 1, the correctness score started to decrease until itr 4
so we wanted to investigate the difference involved between first
(itr 1), worst (itr 4) and best (itr 7) cases. For this test, we uploaded
the three game versions (first, worst, and best) to Amazon S3. We
kept the recruitment count to 400 players.

5.2 Analysis

The 400 players were randomly assigned to one of the three versions
(first, worst, and best). 156 users received the first version, 130 users
received the worst version, and 114 users received the best version.
After completion of the large-scale test, we conducted comparative
statistical tests between the three versions. For statistical analysis,
we looked at the per-player correctness (relevant minus irrelevant
items collected), and to additionally examine gameplay measures
of engagement, we considered number of levels completed and
gameplay duration. We compared these three parameters between
the three versions of the game (first, worst, and best).

First, we conducted a Shapiro-Wilk test for normality and Lev-
ene’s test for homogeneity of variances. The normality and homo-
geneity of variances have been violated (p < 0.05) in correctness
(Shapiro-Wilk Test: W(400) = 0.960, p < 0.001; Levene’s test: F(2,397)
=61.89, p < 0.001) and number of levels completed (Shapiro-Wilk
test: W(400) = 0.778, p < 0.001; Levene’s test: F(2,397) = 21.52,
p < 0.001). Whereas in case of gameplay duration, normality has
been violated (Shapiro-Wilk test: W(400) = 0.750, p < 0.001), but
the Levene’s test for homogeneity of variances turned out to be
non-significant (F(2,397) = 1.35, p > 0.05).

Next, we conducted an Omnibus Kruskal-Wallis test on total cor-
rectness, number of levels completed and total gameplay duration
and found differences across versions to be statistically significant.
We then conducted a pairwise Wilcoxon rank sum test for post-hoc
analysis with the Bonferroni correction to investigate the actual
difference between groups. We observed a statistical significance
between all three versions (first, worst, and best) in correctness
and number of levels completed. In gameplay duration, statistical
significance was observed only between first (itr 1) with best (itr 7)
and worst (itr 4) with best (itr 7), and comparison between first (itr
1) with worst (itr 4) turned out to be non-significant (see Table 3).

Table 2 shows the median values of correctness, number of levels
completed and gameplay duration of three versions used in large-
scale test and figure 5 shows box plots. There were some outliers in
gameplay duration due to the fact that no additional players were
recruited, so the last couple of players took much longer to complete
the tests. Also, the patterns observed between three versions in
the correctness box plot denote the level of outcomes variations
involved between the three versions. This analysis supports that
the different iterations had different correctness distribution; we
found the best iteration (itr 7) had the highest median correctness
out of the three versions in the large-scale test.

6 DISCUSSION

Iterative analysis — Our primary goal was to explore the use of rapid
iteration via ARAPID to improve task effectiveness in Iowa James
by iterating on the game’s design starting from its base version.
Thus our major focus during iterations was on total correctness.
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Figure 5: Plots of data from large-scale test, showing quartiles and outliers. (left) correctness; (middle) level completion; (right)

gameplay duration.

We observed that when reducing the item locations in each level,
the total correctness started to decrease, as depicted in Figure 4.
PM-B started the iteration with 6/8/8 item locations in the three
levels, and on subsequent iterations, these numbers were reduced.
As an effect of this, correctness score constantly decreased from itr
1 and finally landed at itr 4 (with 4/4/4 item locations) which had
the worst score compared to all previous iterations. In fact, itr 4 had
the worst correctness score during iterations as shown in Figure 4.
This makes sense as there were simply fewer items to collect in the
iterations with fewer item locations.

After itr 4, item locations were increased or were kept the same
as itr 1 (from itr 5 to itr 8), so the correctness score started to in-
crease from itr 5 to itr 7. In itr 5, the item locations were raised
to the maximum on all levels (10/10/10 item locations), resulting
in a drastic increase in correctness in itr 5 immediately after itr 4;
however, itr 5 still had lower correctness than itr 1 during playtest-
ing, which indicated that maximizing the number of item locations
may not be the best strategy for improving correctness. The best
iteration (itr 7) had the same number of item locations as itr 1, but
with some changes to the locations of the item locations which
had lower correctness in itr 1. Thus, during iterations, it appeared
that not only the number of item locations matter but also their
location in the level affect correctness. If some items are placed
in certain locations in levels, it may be hard for players to collect
or avoid them (e.g. needing to go far out of their way to collect
a relevant item, or having to land on an item to complete a jump
making it hard to avoid an irrelevant item), which would impact
the correctness in a negative way. An ideal location for an item
location should be the one in which the players should have control
to collect or avoid an item as needed. Thus, it is essential for the
designer to use the three visualizations in ARAPID and determine
good locations for items in the iterative process. During iterations
it appeared that: 1) decreasing the item locations too much would
decrease correctness, 2) simply increasing item locations to the
maximum number would not necessarily yield better correctness,
and 3) a balance of number of item locations and good locations
could increase correctness.

In this game, a player’s lives is affected by two factors: 1) collect-
ing irrelevant items, and 2) stepping into traps, specifically in level

2 and level 3. These two factors can cause a player to lose the game.
We computed the percentage of players who completed the entire
game (all three levels) in all iterations. Figure 4 shows that in the
base version of the game, 76% of players completed the entire game.
Despite there being no items locations in the base version, 24% of
players failed in level 2 and level 3 because of running into traps.
Adding up item locations started to reduce the game completion
percentage as shown in Figure 4, with the completion ratio from
itr 1 to itr 8 ranging between 34% — 62%, which was lower than the
base version (76%). The base version had higher game completion
percentage denoting the fact that having no item locations in lev-
els would increase the chance of game completion, as there is no
crucial task involved in the game other than evading the obstacles.
Whereas in itr 1 to 8, players not only had to manage to collect
only relevant items, but also avoid the traps, and this combina-
tion induced more game complexity and affected the overall game
completion percentage.

Itr 4 had the fewest item locations in the entire iteration series,
and an increase in game completion percentage was noted in itr
4 when compared to three previous iterations (itr 3, itr 2, and itr
1). In contrast to this, itr 5 had the most item locations at all lev-
els (10/10/10 item locations), so the game completion percentage
recorded in this iteration was 34% and this was the lowest out of
all the iterations. This aspect denotes that setting up the maximum
item count on all levels could reduce the game completion per-
centage. In itr 7, the item locations were adjusted to provide more
control for users to collect or avoid an item compared to all of
the previous iterations, so this had an effect on game completion
percentage. It can be noted from Figure 4 that itr 7 not only had the
highest correctness score but also had a better game completion
percentage (62%) compared to the itr 1.

Large-scale evaluation - Looking at correctness, there was a sta-
tistical significance between all three versions tested (first, worst,
best). Although the first version produced during iteration was
fairly good in terms of correctness, further iteration to explore the
design space was able to improve on this in a later iteration (best).

We also conducted an analysis on number of levels completed
by each player in the three versions of the large-scale test. There
was a statistical significance observed between all three versions.



Applying Rapid Crowdsourced Playtesting to a Human Computation Game

Table 2 shows that the median number of levels completed in the
worst (itr 4) and best (itr 7) versions is 3, and this denotes that most
players completed the entire game in these two specific iterations,
while for the first version (itr 1) the median is 2. This also suggests
that reducing number of items and adjusting the item locations can
improve the level and game completion ratios.

Additionally, we conducted a comparison of gameplay durations
between the three versions in the large-scale test. A statistical
significance was observed between first (itr 1) and best (itr 7) and
between worst (itr 4) and best (itr 7), and no statistical significance
was observed between first (itr 1) and worst (itr 4).

7 CONCLUSION

In this work, we extended the existing ARAPID system to be ap-
plied to a human computation game and demonstrated that through
rapid iteration on base game design, ARAPID can be used to suc-
cessfully improve the effectiveness of an HCG. Existing playtesting
frameworks involve either outsourcing of user tests to a third-party
or executing the tests completely outside the development environ-
ment on crowdsourcing platforms. The ARAPID system manages to
recruit users, organize playtests, and inform the game analytics di-
rectly within the development environment. This system facilitates
the rapid closure of iterative cycles involved in the development
pipeline. Previous work [22] tested the ARAPID system with simple
2D and 3D platform games with only one level in each game. In
this work, the extended features of the existing ARAPID system
were used to improve the task effectiveness in a multi-level HCG.

For future work, we plan to include an additional analysis by
allowing the designer to adjust more aspects of the levels, such
as trap positions in addition to the item locations and targets to
maximize the game completion percentage along with correctness.
Another limitation of the current work is that the entire framework
was tested with one project member; thus in the future, we plan
to explore recruiting multiple game designers and conducting a
comparative analysis between the approaches used by different
designers to iterate on game designs using ARAPID.
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