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Gravitational waves (GWs) from merging black holes allow for unprecedented probes of strong-field

gravity. Testing gravity in this regime requires accurate predictions of gravitational waveform templates in

viable extensions of general relativity. We concentrate on scalar Gauss-Bonnet gravity, one of the most

compelling classes of theories appearing as the low-energy limit of quantum gravity paradigms, which

introduces quadratic curvature corrections to gravity coupled to a scalar field and allows for black hole

solutions with scalar charge. Focusing on inspiraling black hole binaries, we compute the leading-order

corrections due to curvature nonlinearities in the GW and scalar waveforms, showing that the new

contributions, beyond merely the effect of scalar field, appear at first post-Newtonian order in GWs. We

provide ready-to-implement GW polarizations and phasing. Computing the GW phasing in the Fourier

domain, we perform a parameter-space study to quantify the detectability of deviations from general

relativity. Our results lay important foundations for future precision tests of gravity with both parametrized

and theory-specific searches.

DOI: 10.1103/PhysRevD.103.L121503

I. INTRODUCTION

Gravitational waves (GWs) from merging black hole

(BH) binaries are exploring new frontiers in strong-field

gravity, e.g., [1].Akey challenge is to testwhether Einstein’s

theory of general relativity (GR) describes gravity accu-

rately at all scales accessible to BHs, and to discover

signatures of quantum gravity. Several BH mergers have

already been detected by the LIGO and Virgo interferom-

eters [2–6]. We anticipate an ever-increasing number and

high-precision measurements starting with the upcoming

fourth observing run of the GW detector network.

To detect and to measure the properties of merging BH

binaries, we crucially rely on detailed theoretical models to

interpret GW signals. At present, models to test gravity are

mostly null tests against GR, with parametrized deviations

from GR waveforms. These tests are performed only on

single coefficients [7–9] and thus, such strategies remain

limited when interpreting theoretical constraints. Therefore,

there is an urgent need to compute inspiral-merger-ring-

down waveforms from alternative theories of gravity in

order to allow for an informed mapping of parametrized

approaches to extensions of GR, consistent theory-specific

comparisons against observations, and for a systematic

search of quantum gravity signatures in GW detections.

In this paper, we provide, for the first time, analytical

waveforms that include the effect of nonlinear curvature

corrections to inspiraling binaries beyond the weak-

coupling limit, for a well-motivated class of beyond GR

theories. These theories contain contributions from the

Gauss-Bonnet (GB) topological invariant class through the

scalar RGB ¼ R2 − 4RμνRμν þ RμνρσRμνρσ, which respects

the Lorentz and CPT symmetries (this differs from the

dynamical Chern-Simons theory [10,11], for instance), and

is coupled to a dynamical scalar. Scalar Gauss-Bonnet

(SGB) gravity theories are ghost-free and arise in the low-

energy limit of quantum gravity paradigms such as string

theories and loop quantum gravity [12–14], which makes

them promising effective theories at the energy scales

relevant for astrophysical BHs. In SGB theories, BHs

can spontaneously scalarize [15,16] or develop scalar hair

[14,17–22]. The scalar and higher-curvature contributions

modify the BH binary’s dynamics and GWs, making BH

mergers the most interesting avenue to test these theories.*
b.shiralilou@uva.nl
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Previous work on analytical models in SGB gravity has

focused on the leading-order contributions to BH binary

waveforms [23], which are impacted only by the scalar field

and not by the curvature nonlinearities, and on computing

the Lagrangian for the dynamics [24]. The effects of an extra

scalar field on GWs of binary inspirals have also been

analytically computed in scalar-tensor (ST) theories [25–29],

where, however, only neutron stars scalarize.

The first numerical relativity simulations of SGB gravity

used an effective-field-theoretical treatment [30,31] or the

decoupling limit [32] due to challenges in the time evolution

formulation for general couplings [33,34]. Recent progress

in the formulation of the SGB as a well-posed initial value

problem [35,36] was used in the first numerical evolution of

the nonlinear field equations [37].

This work makes important progress on three fronts:

(i) We compute, for the first time, analytical waveforms

during the inspiral stage of binary evolution with the effect

of higher-curvature corrections. Previous work in [23]

captured only the corrections due to the scalar field.

(ii) Our calculation and methods are not limited to the

small-coupling approximation; they are applicable to all

coupling strengths that lie within the theoretical bound

[14,17] as well as general couplings that remain uncon-

strained. (iii) We perform a parameter-space study by

varying the coupling parameter, coupling function, and

BH masses, for scalar as well as tensor radiation-dominated

inspirals. We further demonstrate that the effect of the GB

scalar is distinct from the scalar in ST theories due to

explicit GB-coupling-dependent terms. This has conse-

quences for interpreting GW signals from BH–neutron-star

binaries [38].

Using the post-Newtonian (PN) approach, we compute

the scalar and tensor waves to half and one relative PN

order [∼Oð1=cÞ and ∼Oð1=c2Þ, where c is the speed of

light used here as the formal PN expansion parameter],

respectively. We also calculate the GW phasing, to which

measurements are very sensitive, as well as the polarization

waveforms. Our results include higher-order strong-field

effects than previously computed, which are critical for

GWmeasurements. Such effects in alternative theories may

mimic biases in fundamental source parameters when

analyzing with GR-only waveforms. This work lays the

foundation for potential discoveries and provides the

framework for computing new stringent constraints on

nonlinear curvature effects of gravity.

II. BLACK HOLE BINARIES IN SCALAR

GAUSS-BONNET THEORY

The gravitational action with the GB higher-curvature

terms is

S ¼
Z

d4x
c3

ffiffiffiffiffiffi

−g
p

16πG
½R − 2ð∇ϕÞ2 þ αfðϕÞRGB�: ð1aÞ

The coupling constant α has dimensions of length squared.

Choosing the coupling function fðϕÞ ¼ e2ϕ=4 corresponds
to Einstein dilaton Gauss-Bonnet gravity [14], and

fðϕÞ ¼ ϕ to shift symmetric SGB (SSGB) gravity [17].

The skeletonized matter action [39] Sm describing two

BHs labeled by A, B added linearly to S is

Sm ¼ −c

Z

MAðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμνdx
μ
Adx

ν
A

q

þ ðA↔ BÞ: ð1bÞ

Here x
μ
A is the world line of particle A. With this ansatz, the

self-gravity of the compact objects enters through the

scalar-dependent mass MAðϕÞ. In the weak-field limit, it

can be expanded as

MAðϕÞ ¼ mA

�

1þ α0Aδϕþ 1

2
ðα0A2 þ β0AÞδϕ2

�

þOðδϕ3Þ; ð2Þ

with δϕ the perturbation of ϕ around its background value

ϕ0 and mA the asymptotic value of the mass. The scalar-

charge parameter and its derivative are defined as

α0A ¼ dlnMAðϕÞ
dϕ

�

�

�

�

ϕ¼ϕ0

; β0A ¼ dαAðϕÞ
dϕ

�

�

�

�

ϕ¼ϕ0

: ð3Þ

Within the small-coupling approximation, the explicit

form of the scalar charge α0A for nonspinning BHs has been

derived to fourth order in the coupling in [24]. To the leading

order, α0A ≡ −αf0ðϕ0Þ=2m2

A for all coupling functions.

III. GRAVITATIONAL AND

SCALAR RADIATION

To compute the dynamics and gravitational radiation of

BH binaries in the theory (1), we introduce the gothic

metric g
αβ ¼ ffiffiffiffiffiffi

−g
p

gαβ and decompose it in the weak-field

limit as gμν ¼ hμν þ ημν, where ημν is the flat metric and hμν
is the tensor perturbation. Specializing to harmonic gauge,

where ∂νg
μν ¼ 0, we write the field equations derived from

action (1) in a relaxed form [40], finding that

□hαβ ¼ 16πG

c4
ð−gÞTαβ

m þ Λ
αβ
GB þ Λ

αβ
GR; ð4aÞ

□ϕ ¼ 4πG

c4
Sm;ϕ
ffiffiffiffiffiffi

−g
p −

αf0ðϕÞ
4

RGB; ð4bÞ

where Λ
αβ
GR contains terms that are quadratic in hαβ and its

derivatives [40] and T
αβ
m is the stress-energy tensor derived

from the matter action in Eq. (1b). For the explicit GB

contribution to the metric field equation, we find
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Λ
αβ
GB ¼ −8αð−gÞ�R̂�cαβd∇cdfðϕÞ

þ∇cϕ∇dϕð2gαcgβd − g
αβ
g
cdÞ; ð5Þ

where, �R̂�cαβd is the gauge-fixed dual Riemann tensor. The

formal solutions to Eq. (4) are computed with the retarded

Green’s function approach

hμνðt;xÞ¼ 1

4π

Z

sμνðt0;x0Þδðt0− tþjx−x0j=c2Þ
jx−x0j d4x0; ð6Þ

where sμν denotes the source terms on the right-hand side of

(4a), and similarly for the scalar field. The integral in

Eq. (6) extends over the past light cone of the field point

ðct;xÞ. To calculate the solution of the integral, we split the
spacetime into three regions: (i) the strong-field zones close

to each of the BHs [at the boundaries of these zones, we

extract the massesMAðϕÞ, and treat their interior regions as
a skeletonized worldline [39,41]], (ii) the near-zone, where

the separation between source and field point is less than

the characteristic wavelength of the GWs, and (iii) the far

zone at larger distances. With this splitting, we can use the

post-Newtonian direct integration of the relaxed Einstein

equations (DIRE) [42] formalism to divide the integration

of Eq. (6) into four different calculations, corresponding to

the near and far zone contributions for each relative

location of the source and field points.

More specifically, to turn the formal solutions of Eq. (6)

into a practical scheme, we make the PN assumption

that hμν and δϕ are small, and perturbatively expand the

nonlinear terms in sμν and its scalar analog using the formal

expansion parameter 1=c2, keeping terms up to the relative

first PN order. We follow the methods of [42] for evaluating

the four different contributions to the integrals, and

compute the equations of motion from the 1PN

Lagrangian given in Ref. [24] to eliminate accelerations.

The technical details of the calculations are given in [43].

The energy radiated in tensor (T) and scalar (S) waves is

computed from

_E ¼ _ET þ _ES ¼
c3R2

32πG

I

½ _hijTT _h
ij
TT þ _ϕ2�d2Ω; ð7Þ

where R is the distance between the source and the far zone

field point i.e., the detectors, and TT denotes the transverse-

traceless projection. In the following, we specialize to

circular-orbit binary systems. Analogous to ST theories

[44], we define the binary parameters

ᾱ≡ ð1þα0Aα
0
BÞ; γ̄≡−2

α0Aα
0
B

ᾱ
; β̄A≡

1

2

β0Aðα0BÞ2
ᾱ2

; ð8Þ

where Δm ¼ mA −mB, with the conventionmA < mB, and

m ¼ mA þmB is the total mass. We obtain, omitting

corrections of Oðc−4Þ,

_ET ¼ F̄N

�

1þF 1PN
GR −

16β̃þv̄
2

3c2
−
10γ̄v̄2

3c2
−
ϵf0ðϕ0Þv̄6
G2ᾱ5=2c2

×

�

8S1;1;0þ
16S3;1;0

3ᾱ
−
261ðS1;0;1−2ηS1;0;−1Þ

7

��

; ð9Þ

_ES ¼ F̄D

�

S2
−−

2S2
−ð20β̃þþ5γ̄−2ηÞ

3

v̄2

c2

þð4S2
þ−54S2

−Þ
5

v̄2

c2
−
8S−

γ̄
ðS−β̃þþSþβ̃−Þ

v̄2

c2

−
v̄6

c2
ϵf0ðϕ0Þ
G2ᾱ5=2

�

32S3;1;0S
2
−

3ᾱ
þηΔmSþS−S1;1;0

8m

	�

: ð10Þ

Here, η ¼ mAmB=m
2 is the symmetric mass ratio. Note that

the circular-orbit velocity v̄ ¼ ðGmᾱωÞ1=3 differs from its

GR definition by a factor of ᾱ. The leading-order energy

flux in tensor radiation is F̄N ¼ 32η2v̄10=ð5Gc5ᾱ2Þ, where
N denotes the Newtonian-order contribution. The contri-

bution up to 1PN order F 1PN
GR is given, e.g., in [45]. The

prefactor of the leading-order flux of scalar radiation due to

dipole emission is F̄D ¼ 4η2v̄8=ð3Gᾱc3Þ. We have also

defined

S� ¼ α0A � α0B

2
ffiffiffi

ᾱ
p ; β̃� ¼ β̄Að1 − Δm

m
Þ � β̄Bð1þ Δm

m
Þ

2
;

ϵ ¼ α

m2
; Sa;b;c ¼ aSþ þ

�

b
Δm

m
þ c

	

S−; ð11Þ

where ϵ is the dimensionless coupling parameter.

Our result for the energy fluxes has a similar structure to

those of a ST theory (see [27,28]) but differ through the

additional ϵ-dependent terms entering first at relative 1PN

order.This feature can be used in distinguishing the two

theories when analyzing BH–neutron-star binaries. We also

note that the scaling of the GB contributions in the PN

expansion is Oðc−2Þ, irrespective of the value of the

coupling. However, due to the different scaling with v̄,

the GB contributions (∼v̄6) are suppressed at large sepa-

ration compared to the other 1PN terms (∼v̄2).
From the Lagrangian in [24], we derive the circular-orbit

binding energy [43] to Oðc−2Þ,

E ¼ −ηmv̄2
�

E1PN
GR þ ð2β̃þ − γ̄Þv̄2

3c2
þ 11S3;1;0v̄

6

3ᾱc2
ϵf0ðϕ0Þ
G2ᾱ5=2

�

;

ð12Þ

where E1PN
GR is the 1PN correction in GR [45].

IV. GRAVITATIONAL WAVE PHASING

The GW measurements are very sensitive to the

phase evolution of the waveform. An approximation for

the phasing can be derived from energy balance
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dEðv̄Þ=dt ¼ −F ðv̄Þ, which is valid as long as _ω=ω2 ≪ 1.

This yields the differential equations

dφ

dt
−

v̄3

Gᾱm
¼ 0;

dv̄

dt
þ F ðv̄Þ
E0ðv̄Þ ¼ 0: ð13Þ

We solve this system in the Taylor T4 approximation [46]

by expanding the entire ratio F ðv̄Þ=E0ðv̄Þ to 1PN order and

solving Eq. (13) numerically for the phase evolution.

As the parametrized tests of gravity are mainly based on

waveforms in the Fourier domain, we also compute the

Fourier domain phase ψðfÞ at the dominant GW frequency

f ¼ ω=π in the stationary phase approximation (SPA) [47]

by using

ψðfÞ ¼ 2πft0 − ϕ0 þ 2

Z

v0

vf

ðv3f − v3ÞE
0ðvÞ

F ðvÞ dv: ð14Þ

The subscript 0 refers to a reference point in the binary

evolution. To solve for the GW phase from (14), we

distinguish systems whose inspiral is driven by scalar-

dipolar versus tensor-quadrupolar radiation, with the scalar-

dipolar-driven (DD) regime relevant for

v̄2DD ≪
5c2S2

−ᾱ

24
or fDD ≪

�

5

24

	

3=2 c3S3
−

ffiffiffi

ᾱ
p

πGm
: ð15Þ

At higher frequencies, the system is quadrupole driven

(QD). The phase evolution in the QD regime for equal

masses (mass ratio q ¼ mA=mB ¼ 1) is given by

ψ
QD
q¼1

¼ 3c5ᾱ

128v̄5ξ̄

�

1þ20v̄2

9c2

�

1247

336ξ̄
−
3

2
þ
�

980

336ξ̄
−
1

6

	

η

þ
�

448

336ξ̄
−
4

3

	

γ̄þ2

�

896

336ξ̄
þ4

3

	

β̃þ

�

−
25c1PNS ᾱv̄2

54ξ̄c2

−
40Sþv̄

6

c2
f0ðϕ0Þϵ
g2ᾱ5=2

�

12

ξ̄
þ495ð1−2ηÞ

28ξ̄
þ88

ᾱ

	�

; ð16Þ

with ξ̄ ¼ 1þ S2
þᾱ=6. The full expression for arbitrary

masses and for the DD regime is given in Ref. [43]. We

note that the QD phasing has contributions from 1PN scalar

flux indicated as c1PNS . We calculated the scalar waveform

to 0.5PN order, leaving this contribution undetermined.

Following the strategy employed for 2PN tidal effects [48],

we will keep all the other 1PN terms and set the missing

contributions to zero. The c1PNS term is expected to have a

similar structure to other terms and possibly depend on the

parameter Sþ. The inclusion of this term would increase the

overall energy flux and thus the phase differences between

SGB and GR.

V. READY-TO-USE GRAVITATIONAL WAVE

POLARIZATIONS

In the time domain, GW detectors measure the linear

combination of polarization waveforms hþðtÞ and h×ðtÞ.
We derive the two GW polarizations from the solution to

Eq. (6) solved explicitly in [43]. To 1PN order, we obtain

hþ;× ¼ 2Gμ

Rc2
v̄2

c2

�

H0
þ;× þ v̄

c
H

1=2
þ;× þ v̄2

c2
H1

þ;×

þ v̄6

c2
ϵf0ðϕ0Þ
24G2ᾱ5=2

H1
þ;×GB þOðc−3Þ

�

; ð17Þ

where the normal to the orbit differs from the radial

direction to the observer by an inclination angle {. The
coefficients of the plus polarization are

H0
þ ¼ H0

þðGRÞ; H
1=2
þ ¼ H

1=2

þðGRÞ;

H1
þ ¼ H1

þðGRÞ þ
2

3
ðγ̄ þ β̄þÞð1þ cos2ðiÞÞ cosð2φÞ;

H1

þðGBÞ ¼ 192½ðcosð2iÞ þ 3Þ cosð2φÞS2;1;0 þ sin2ðiÞS3;1;0�
þ 32S3;1;0½ðcos2ðiÞ þ 1Þ cosð2φÞ − 3sin2ðiÞ�
þ 18½ð2ηþ 1ÞS− þ ð1 − 2ηÞSþ�
× ½2sin2ð2iÞ cosð2φÞ
− sin2ðiÞðcosð2iÞ þ 3Þð3 cosð4φÞ þ 1Þ�; ð18Þ

and for the cross polarization, they are

H0
× ¼ H0

×ðGRÞ; H
1=2
× ¼ H

1=2

×ðGRÞ;

H1
× ¼ H1

×ðGRÞ þ
4

3
cosðiÞ sinð2φÞ

�

γ̄ þ 2βþ − 2
Δm

m
β−

�

;

H1

×ðGBÞ ¼ cosðiÞf2 sinð2φÞ½9sin2ðiÞðS108;52;0 − 3

þ ð2ηþ 1ÞS− þ ð1− 2ηÞSþÞ�
− 27sin2ðiÞ sinð4φÞ½ð2ηþ 1ÞS− þ ð1− 2ηÞSþ�g:

ð19Þ

In Fig. 1, we show the GW polarization and phase

evolution in time. Exemplarily, we choose an intermediate

coupling value ϵ ¼ 0.03 for a BH binary with m ¼ 15 M⊙

and q ¼ 1=2. We also show a comparison to the 1PN

waveforms within GR. The evolution starts at a GW

frequency of f ¼ 10 Hz, i.e., when the GWs would first

enter the sensitivity band of current ground-based GW

detectors. We observe that the dephasing of the waves starts

early in the evolution, while the difference between the

amplitudes remains relatively small until the binary reaches

frequencies of around f ≈ 60 Hz, after which the GB

phasing and amplitude increase rapidly and the difference

with GR waveform becomes significant.

BANAFSHEH SHIRALILOU et al. PHYS. REV. D 103, L121503 (2021)

L121503-4



VI. IMPACT OF HIGHER-CURVATURE

GRAVITY ON GWs

Considering EDGB and SSGB theories, we study the

impact of the GB coupling parameter on the phase

evolution of quasicircular BH binaries in the Aþ LIGO

sensitive frequency band [49].

Requiring regular BH horizons limits the coupling

parameter to ϵ < 0.619 in EDGB [14] and ϵ≲ 0.3 in

SSGB [17]. Simulations of BH mergers predict a bound

on the coupling of ϵ≲ 0.03 (i.e.,
ffiffiffi

α
p

≲ 3.2 km for an

equal-mass binary of 20 M⊙) from current GW observa-

tions [30,31]. This is consistent with the GW-based con-

straints of [50] and constraints from low-mass x-ray

binaries [51].

Here, we choose ϵ ¼ 0.03, in correspondence with

Fig. 1, and also ϵ ¼ 0.005. As we will show, the latter

choice marks the threshold for detectability of SGB phase

modifications for many low-mass BH binary systems. We

use the explicit result of [24] for the scalar charges, valid to

first order in the coupling. As we are mainly interested in

the behavior of the theory at high-curvature regimes (i.e.,

low BH masses), we choose a total mass of m ¼ 15 M⊙

and vary the individual BH masses for mass ratios

q ¼ 1; 1=2; 1=4. For the binaries with q ¼ 1, the scalar

radiation is very small, as S− vanishes in this case.

The GB corrections to the inspiral phase evolution are

determined by the GB coupling parameter α ¼ ϵm2, which

also sets the scalar charges. For instance, the threshold (15)

indicates that for a relatively large ϵ, those systems with

1=2 ≤ q < 1 are DD when they enter the LIGO band. Yet

for small ϵ, having a DD regime and transition to QD in the

ground-based detector bands requires low-mass-ratio bina-

ries with individual BHs as light as 2 M⊙. This means that

for such small couplings, binary BHs are typically QD

systems in the ground-based detector bands, yet mixed

binaries may have a DD regime. For example, in the case of

15 M⊙ BH binaries with ϵ ¼ 0.1, the q ¼ 1=2 system is a

DD inspiral that transitions to the QD regime, and the q ¼
1=4 case is DD throughout the entire inspiral.

In Fig. 2, we show the phase evolution of binary BHs in

EDGB gravity as compared to the corresponding phase in

GR to 3.5PN order, for the aforementioned choices of ϵ. To

isolate the GB effects, we also compare the phasing with

that of GR to 1PN order. The upper frequency bound is

chosen as fmax ¼ 2ð63=2πmÞ−1 ≈ 586 Hz, and to simplify

the comparison, all phases are aligned with the 1PN equal-

mass phase in GR at the minimum frequency limit. These

systems represent the most relevant regime for the majority

of binaries observable with the current detectors LIGO/

Virgo/KAGRA.

We only show the EDGB phase evolution as the phase

difference between the SSGB and EDGB theories is

relatively small compared to the overall phase evolution.

This is to be expected as we are using a first-order

FIG. 1. The time evolution of GW signal for a m ¼ 15 M⊙ binary with q ¼ 1=2 and ϵ ¼ 0.03, and the corresponding GW frequency

evolution. The blue dashed curve indicates the EDGB waveform and the black curve the 1PN GR waveform. The orbit is viewed edge-

on (i ¼ π=2) and t ¼ 0 indicates the time corresponding to f ¼ 10 Hz. The shaded colored regions correspond to different snapshots of

the waveform.
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approximation to α0A. We note here that for q ≠ 1 binaries,

this difference is within the limit of detectability once

having ϵ > 0.1; i.e., for ϵ ¼ 0.01 the phases differ by

Oð10Þ GW cycles.

As shown in Fig. 2, the SGB phases are always less than

their 1PN GR analog, decreasing the overall phase of an

equal-mass BH binary by ∼322 GW cycles if ϵ ¼ 0.03,

and by ∼9 GW cycles if ϵ ¼ 0.005. As can be seen from

the plot, this phase difference increases significantly for

q ≠ 1 binaries, which also emit energy through scalar

dipole radiation. Overall, decreasing the value of ϵ results

in smaller deviations from the GR phase. For very small

values of the coupling parameter (not shown here) such as

ϵ ¼ 0.001, the change in the number of GW cycles of

binaries with q < 1=2 is of the order of several cycles,

making the GB effects still within the limit of detectability.

VII. CONCLUSIONS

We have studied GWs from BH binary inspirals for

gravity theories with higher-curvature corrections charac-

terized by the coupling of the GB invariant to a scalar

field. We have computed novel signatures from nonlinear

curvature corrections to 1PN order beyond the leading

quadrupole emission in the gravitational waveform, and to

0.5PN order in the scalar waveform, in addition to scalar

effects considered in previous work [23]. We have provided

ready-to-implement 1PN inspiral GW templates. By deriv-

ing the SPA gravitational phase and evaluating it for

examples of BH binaries in SSGB and EDGB theories,

we have shown that the inspirals are accelerated compared

to the 1PN GR case, with the deviation being strongly

dependent on the coupling parameter of the theory.

Our results are not restricted to specific choices of the

coupling function or to the weak-coupling limit. In par-

ticular, they allow us to investigate a wide class of SGB

gravity including those that yield spontaneously scalarized

BHs [15,16], a truly nonlinear effect that is suppressed by a

weak-coupling treatment. Thus, our work lays the founda-

tion to explore dynamical scalarization or descalarization of

BH binaries [32] during the early inspiral.

Our results provide a critical first step toward construct-

ing inspiral-merger-ringdown GW templates at high-cur-

vature regimes and provide a useful benchmark for

numerical relativity simulations of the merger phase

[43]. By further showing that the scalar-charge-induced

dipole radiation as well as the higher-curvature effects

are potentially observable in Aþ LIGO=Virgo=KAGRA

FIG. 2. Top: GW inspiral phase ψðfÞ as a function of frequency f for a m ¼ 15 M⊙ binary with q ¼ 1 (solid lines), q ¼ 1=2 (dashed
lines), and q ¼ 1=4 (dot-dashed lines), with ϵ ¼ 0.03 (left) and ϵ ¼ 0.005 (right). The red curves indicate EDGB gravity. In blue, we

show the corresponding 1PN GR phase, and in black, the 3.5PN GR phase. Bottom: GW phase difference between EDGB ψEdGB and

1PN GR ψGR shown for aforementioned systems.
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sensitivity bands, we have provided the baseline for more
extensive parameter estimation studies, which we have left
for future work, for both ground-based and multiband GW
observations.
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