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Abstract—Assist-as-needed (AAN) control aims at promoting
therapeutic outcomes in robot-assisted rehabilitation by encour-
aging patients’ active participation. Impedance control is used by
most AAN controllers to create a compliant force field around a
target motion to ensure tracking accuracy while allowing mod-
erate kinematic errors. However, since the parameters governing
the shape of the force field are often tuned manually or adapted
online based on simplistic assumptions about subjects’ learning
abilities, the effectiveness of conventional AAN controllers may be
limited. In this work, we propose a novel adaptive AAN controller
that is capable of autonomously reshaping the force field in a
phase-dependent manner according to each individual’s motor
abilities and task requirements. The proposed controller consists
of a modified Policy Improvement with Path Integral algorithm,
a model-free, sampling-based reinforcement learning method
that learns a subject-specific impedance landscape in real-time,
and a hierarchical policy parameter evaluation structure that
embeds the AAN paradigm by specifying performance-driven
learning goals. The adaptability of the proposed control strategy
to subjects’ motor responses and its ability to promote short-
term motor adaptations are experimentally validated through
treadmill training sessions with able-bodied subjects who learned
altered gait patterns with the assistance of a powered ankle-foot
orthosis.

Index Terms—Assist-as-needed control, robot-assisted gait
training, reinforcement learning, wearable robotics, rehabilita-
tion robotics, powered orthosis.

I. INTRODUCTION

IN motor rehabilitation, patients who suffered a neurological
injury such as stroke, spinal cord injury, or traumatic brain

injury must re-learn the correct spatiotemporal muscle activa-
tion pattern to achieve a target movement through exercise
therapy. The ultimate goal of rehabilitation robotics is to
encourage the recovery of motor ability in these patients by au-
tomating exercise protocols that are traditionally administered
by physical therapists [1]. Compared with manual assistance,
robot-assisted training has the potential to increase frequency
and intensity of treatments and enable highly repetitive prac-
tice, all of which have been shown to benefit rehabilitation
outcomes [2]. However, despite over two decades of research
into robot-assisted rehabilitation, how to control a robot to best
promote motor recovery is still an open research problem [3].

The study of how able-bodied individuals adapt to robot-
applied forces while performing a motion task has been used
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as a paradigm to understand mechanisms of motor re-learning
after neurological injury, since motor adaptation and motor
recovery share similar learning processes [4]. Pioneering stud-
ies on perturbed reaching [5] and walking tasks [6] indicated
that the human motor control system progressively adapts to
robot-applied forces by forming internal feed-forward models.
These models have been mathematically interpreted as P-type
iterative learning control (ILC) rules with forgetting term,
which greedily optimize the weighted sum of movement error
and physical effort at each movement repetition [6]. As a
result, during robot-assisted training, individuals may let the
robot “take over” the motion tasks completely – if given
the opportunity – thereby reducing their physical effort [7].
Because active effort is a critical enabler of motor learning,
this “slacking” effect is detrimental for robot-assisted training
[8]–[10]. To mitigate the slacking effect, rehabilitation robots
should provide only the amount of assistance required for
a subject to complete the target motion and should allow
a controlled level of kinematic error to encourage learning.
Controllers designed to achieve these goals are called assist-
as-needed (AAN) controllers [11], [12].

Early AAN controllers aimed at adapting the level of robotic
assistance by following an ILC law that approximates the way
the human motor control system adapts to a training task [13].
To mitigate the “slacking effect”, these ILC-AAN controllers
must reduce the assistive forces at a faster rate than the rate
at which subjects reduce their effort [14]. Later studies on
ILC-AAN replaced the explicit human learning model with
heuristic parameters, thereby expanding its applicability at the
expense of introducing time-consuming tuning processes [15].
More recent implementations of the AAN paradigm rely on
adaptive error-dependent force fields shaped by an underlying
impedance control law [16], [17]. The force field provides
zero assistance in the proximity of the target trajectory –
thereby allowing small kinematic errors – while establishing a
relationship between kinematic errors and corrective forces to
assist the subject when movements deviate substantially from
the target trajectory. These AAN controllers require less tuning
than ILC-AAN controllers, however they do not self-adapt to
an individual’s motor ability.

Reinforcement Learning (RL) solves optimal control prob-
lems by learning a control policy online, through repeated
interactions between a learning agent and its environment
[18]. Applications of RL in wearable robotics have so far
focused on self-tuning of assistive exoskeletons [19]–[23] and
active prostheses [24]–[26], with only a handful of studies
addressing robot-assisted rehabilitation [27]–[29]. In assistive



2 IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS

exoskeletons and active prostheses, the goal of the RL-based
controller is to track a predefined trajectory or minimize
human physical effort. However, in rehabilitation robots, the
goal is profoundly different, since tracking errors and human
efforts are enabling factors rather than costs [30]. These two
factors should be continuously balanced (in a subject-specific
fashion) during the human learning process by the adaptive
controller, until the robot’s assistance is no longer needed for
the subject to complete the target motion task, in line with the
AAN paradigm. Because the goal-oriented behavior and the
reward-based feedback of a RL agent echo the way humans
learn new motor skills [31], we argue that the RL framework
holds great potential for the design of more individualized
adaptive controllers in rehabilitation robotics.

Based on action-dependent heuristic dynamic programming
(ADHDP) [32], our previous work on robot-assisted gait
training (RAGT) incorporated the AAN paradigm into the RL
framework via the actor-critic method [29], [33]. By correlat-
ing the actor control objective with the subject’s tracking errors
in recent gait cycles, the ADHDP-AAN control framework
automatically stiffens the assistive force field when the subject
struggles to complete the training task, and progressively
increases compliance when sustained good performances are
detected. Unlike traditional ILC-AAN strategies that diminish
assistance levels at a predefined rate [14], the ADHDP-AAN
approach does not rely on presumptions about one’s learning
ability and can modify the control law in real-time based on an
individual’s motor responses. However, the adaptation of the
ADHDP-AAN controller was limited to the stride level (i.e.,
the same stiffness parameter holds in the entire gait cycle).
Because gait abnormalities may vary substantially between
different individuals and may affect certain gait phases more
than the others [34], [35], a more desirable control strategy
should adapt the control law at the gait phase level.

In this work, we introduce a modified Policy Improvement
with Path Integral (PI2) algorithm which greatly extends the
adaptability of the ADHDP-AAN control strategy described
above, by enabling individualized and phase-dependent assis-
tance. The impedance of the force field is parameterized by
a set of phase-locked Gaussian-like kernel functions that are
equally spaced across the gait cycle. An impedance landscape
is formed by the weighted sum of the kernel functions. The
underlying weight parameters are learned and updated through
a PI2 algorithm adapted from the work of Theodorou et al.
[36]. The uniqueness of the proposed approach lies in the
integration of the AAN paradigm into the PI2 framework,
which is achieved through a hierarchical policy parameter
evaluation structure that specifies different learning objec-
tives based on the subject’s training progress. Specifically,
the high-level evaluation is directly linked to the subject’s
recent training performances and is used to determine the
learning modes for the low-level policy iterations, to raise or
recede the impedance landscape as needed. In contrast to the
conventional PI2 algorithm that terminates when the trajectory
cost falls within a certain limit, the proposed hierarchical
evaluation approach allows the PI2-AAN algorithm to operate
continuously during gait training sessions while mimicking the
behavior of a physical therapist who constantly modifies the
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Fig. 1. Control scheme of the PI2-AAN controller. The PI2 procedure for
impedance landscape modulation is shown in the upper shaded area (ϕ: gait
phase; k stride index; g impedance coefficient).

assistance levels with the goal of promoting motor learning.
This paper is organized as follows. Sec. II introduces the

PI2-AAN controller. In Sec. III, the adaptability of the PI2-
AAN controller and its effectiveness in promoting human
short-term motor adaptation is evaluated through walking
experiments wherein able-bodied individuals were asked to
learn a target gait pattern with the help of a powered ankle-
foot orthosis. Experimental results are presented in Sec. IV
and discussed in Sec. V. We conclude with additional remarks
in Sec. VI.

II. AAN CONTROL WITH PI2

Figure 1 illustrates the block diagram of the proposed PI2-
AAN controller for RAGT. We define the impedance control
law that shapes the underlying phase-dependent assistive force
field as

|τ | = τmax[1− e−(∆θ g)2 ], (1)

where ∆θ indicates the tracking error between the desired
trajectory θd and the measured trajectory θm, and g dictates
the impedance of the assistive force field. As we shall discuss
in Sec. II-A, g is a function of the current gait phase ϕ. τmax
determines the upper bound in the magnitude of the assistive
torque τ . The direction of τ is determined by sign(∆θ),
such that the force field exerts a restoring action to assist
the limb motion towards the desired path. A deadband θdb is
introduced to impose null assistance in the proximity of θd, so
that slight gait variations can be properly accommodated [37].
The relationship between θd, θm, θdb, and ∆θ is expressed as
follows:

∆θ̃ = θd − θm (2)

∆θ =

{
sign(∆θ̃)

(
|∆θ̃| − θdb

)
if |∆θ̃| ≥ θdb,

0 if |∆θ̃| < θdb.
(3)

The key feature that sets the PI2-AAN apart from conven-
tional AAN controllers [16], [38]–[40] and from our previous
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Fig. 2. (a) The set of phase-locked Gaussian basis functions Ψ(ϕ) centered
at ϕ1∼P (orange curves) and the associated set of adaptive shape parameters
w determine the impedance landscape g(ϕ) (blue curve) according to (4); (b)
Assistive force field generated from g(ϕ) according to (1) and (4). Dashed
lines at ±θdb delimit the null-assistance band.

work on RL controllers [29], [33] is its ability to continuously
modulate the impedance coefficient g in a phase-dependent
manner based on the subject’s training performance. This
adaptability is made possible through the parameterization
of g using phase-locked shape parameters. In the following
subsections, we describe the phase-locked Gaussian basis
functions that generate the impedance landscape g(ϕ), the
online adaptation of the impedance landscape through a mod-
ified PI2 algorithm, and the dual-objective policy evaluation
rule that embeds the AAN paradigm in the PI2 algorithm
by updating the learning goal based on the wearer’s recent
training performance.

A. Phase-Dependent Impedance Landscape

The online estimation of the gait phase ϕ ∈ [0, 2π] relies
on a pool of adaptive frequency oscillators [41], [42] that
take the measured trajectory θm as input. The smooth phase
error compensator introduced in [43], is used to align the
null values of ϕ with the heel-strike (HS) events. This gait
phase estimation method is commonly used in oscillator-based
controllers for active orthoses and exoskeletons [44], therefore
it is not described here for the sake of brevity.

The estimated gait phase ϕ acts as the pace-maker for the
PI2-AAN controller. To this end, the gait cycle is divided into
P equal gait phase segments whose midpoints are indicated as
ϕ1, ϕ2, ..., ϕP . A set of P Gaussian basis functions centered
at each ϕi (i.e., Ψ(ϕ) = {ψ1(ϕ), ψ2(ϕ), ..., ψP (ϕ)}T ), and
an associated set of shape parameters w = {w1,w2, ...,wP }T
are used to form a phase-locked impedance landscape g(ϕ),

as depicted in Fig. 2(a). The magnitude of g at a generic gait
phase instant ϕ is computed as

g(ϕ) =

∑P
i=1 ψi(ϕ) wi∑P
i=1 ψi(ϕ)

, (4)

where ψi(ϕ) indicates the Gaussian basis function centered at
ϕi and evaluated at ϕ

ψi(ϕ) = e−0.5µ (ϕ−ϕi)2 , (5)

and the constant parameter µ defines the width of the basis
functions.

The gait-phase parameterization decouples the basis func-
tions from the lapsed time and ensures consistent indexing
of the impedance landscape (4) within each gait cycle, despite
stride-to-stride variations in the duration of each cycle , which
typically occur during walking. Furthermore, owning to the
vast expressive power of the basis functions [45], smooth
trajectories of arbitrary shape can be created by a proper set
of shape parameters w [36], [46]. An example of force field
resulting from (1) and (4) is illustrated in Fig. 2(b).

B. On-line Adaptation of Impedance Landscape Using PI2

The PI2 algorithm approaches the reinforcement learning
problem from the viewpoint of nonlinear stochastic opti-
mal control and learns optimal policies through Monte-Carlo
evaluations [36]. PI2 generalizes the path integral control
framework [47], [48] and extends its range of application
to stochastic dynamic systems. In past studies, PI2 has been
successfully applied to high dimensional planning and control
problems [49], [50]. The core of the PI2 algorithm consists of
a parameterized policy that is represented by a set of shape
parameters w. Policy improvement is achieved iteratively
through a repeating sequence of system trajectory sampling,
policy update, and policy evaluation. This sequence forms
an epoch. Within each epoch, K exploration roll-outs with
stochastic actions w + ε (with ε indicating the exploration
noise) are first sampled, followed by a parameter update that
assigns higher weights to the actions that demonstrate higher
probabilities of lowering the overall trajectory cost in the
sampled roll-outs. Immediately after the parameter update,
a noiseless roll-out with the updated shape parameters w
is carried out to evaluate the new policy. Subsequently, the
trajectory cost measured in the evaluation trial serves as a
performance metric that determines the next action: terminate
the policy improvement process if a specified convergence
criterion is met, or proceed to the next epoch otherwise.

To tailor the original PI2 framework for RAGT applications
we treat each gait cycle (stride) as one roll-out and regard
the shape parameters w defining the impedance landscape
(4) as the parameterized policy to be optimized. Additionally,
the discrete-time learning procedure of PI2 is replaced with
a gait phase-indexed approach that updates the PI2 trajectory
costs at N equally spaced gait phase instants ϕ1, ϕ2, ..., ϕN .
Similar to the phase-dependent impedance landscape described

in Sec. II-A, a gait phase segment of width
2π

N
is associated

with each phase instant. The update procedure of the modified
PI2 can be summarized as follows:
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i) For each stride k in the current set of K exploration roll-
outs, compute S(ξn,k), the cost-to-go associated with a
partial trajectory ξn,k that starts at ϕn and extends to
the end of the stride. This is achieved using forward
integration:

S(ξn,k) =
N∑
j=n

rj,k+
1

2

N∑
j=n

WT
j,k R Wj,k (6a)

for all n = 1, ..., N and k = 1, ...,K , where

Wj,k =w + Mj εj,k (6b)

Mj =
R−1 Ψ(ϕj) Ψ(ϕj)

T

Ψ(ϕj)T R−1 Ψ(ϕj)
. (6c)

Mj ∈ RP×P is a projection matrix designed to eliminate
the policy parameters that do not contribute to the overall
control cost. It depends on Ψ(ϕj) ∈ RP , the vector of
P Gaussian basis functions (5) evaluated at phase instant
ϕj , and R ∈ RP×P , a positive semi-definite matrix that
weighs the control cost. εj,k ∈ RP is the exploration
noise drawn at stride k and phase ϕj from a distribution
N (0, σ2). rj,k indicates the immediate cost of the current
policy computed at stride k across the j-th gait phase
segment centered at ϕj :

rj,k = λθ ∆θ
2

j,k + λg g2(ϕj). (7)

∆θj,k is the root-mean-square (RMS) tracking error
across the j-th phase segment and g(ϕj) is the impedance
landscape (4) evaluated at the center of the same segment.
Thus, rj,k is a weighted sum of movement errors and
robot assistance accrued over the phase segment associ-
ated with ϕj . The weights λθ and λg are constant within
the K exploration strides, however they are updated every
M epochs, using the high-level policy evaluation rules
described in Sec. II-C. Equation (6a) is evaluated for
all N gait-phase instants, across all the K exploration
strides, thereby resulting in K × N estimations of the
cost-to-go S(ξn,k).

ii) Compute the discrete probability associated with each
cost-to-go

P(ξn,k) =
e−

1
λS(ξn,k)∑K

k=1[e−
1
λS(ξn,k)]

, (8)

such that partial trajectories resulting in lower costs
S(ξn,k) are designated with a higher value of P(ξn,k).
The sensitivity of P(ξn,k) to each exponentiated S(ξn,k)
is modulated by λ. As suggested in [36], one can optimize
λ for every phase instant ϕn, n = 1, ..., N , to maximally
discriminate among the K exploration roll-outs. This is
equivalent to replacing the exponential terms in (8) with

e−
1
λS(ξn,k) = e

−h
S(ξn,k)−minj S(ξn,j)

maxj S(ξn,j)−minj S(ξn,j) , (9)

where h is a user-defined constant, and the functions min
and max are taken over all K exploration strides [36].

iii) Compute the update δw = {δw1, δw2, ..., δwP }T by
first taking the probability-weighted average at each phase
instant ϕn, along the direction of the K explored strides

δwn =
K∑
k=1

P(ξn,k) Mn εn,k n = 1, ..., N, (10)

and then by taking a second average along the direction
of the N phase instants:

δwi =
∑N
n=1(N−n)ψi(ϕn) 〈δwn,ei〉∑N

n=1(N−n)ψi(ϕn)
i = 1, ..., P. (11)

In the previous expression, ψi(ϕn) indicates the i-th basis
function as defined in (5), while 〈δwn, ei〉 is a scalar
product yielding the i-th entry of vector δwn ∈ RN
defined in (10). By evaluating (11) for all P indices,
we obtain the update δw ∈ RP . From (8) and (10), it
can be inferred that P(ξn,k) determines the weighting
of local controls with the cost S(ξn,k), such that the
contributions of the explorations that resulted in lower
costs are maximized.

iv) Update the policy parameters using δw:

w← w + δw. (12)

It is worth noting that the number of gait phase instants N
determines the granularity with which the exploration roll-
outs are evaluated, whereas the number of basis functions P
defines the granularity of the parameterized policy. Thus, N
and P are independent parameters.

The PI2 algorithm adjusts the policy parameters directly via
a learning rule, which optimizes over states-action trajectories
ξk = (ϕ1, g(ϕ1), . . . , ϕN , g(ϕN )), without the need for a
value function to be computed explicitly [50]. This type of di-
rect policy learning from sampled roll-outs (strides) lends itself
to applications wherein prior knowledge of the environment
is limited. Thus, it is particularly suitable for robot-assisted
rehabilitation, in which an accurate model of the human-
robot co-adaptation processes is typically very difficult to
obtain [13]. Furthermore, the absence of matrix inversions and
gradient learning rates in the update equations of PI2 allows
for better computational efficiency and numerical robustness
compared to other probabilistic algorithms and policy gradient
algorithms [36], eluding numerical pitfalls that can potentially
be induced by the varying human motor capabilities [37].

C. Hierarchical Policy Parameter Evaluation

The processes of human motor learning and human-robot
co-adaptation involve complex dynamics that can hardly be
represented by a single objective function. In traditional
therapist-assisted gait training, the level of physical assistance
changes depending on the subjects’ performances. Assistance
can be substantial at times, to support intense exercise regi-
mens for severely impaired subjects [51], but it may be pro-
gressively reduced over time to keep the subjects challenged
throughout the training sessions [52]. From the perspective
of the learning algorithm, this translates into the need for
a varying cost function that can specify different learning
goals based on the subject’s training progress. To this end,
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and the corresponding weight vector Λ = {λθ, λg}T for the next iteration.

we propose a dual-objective convergence rule that yields large
assistance when subjects deviate too far away from the target
path (intervention mode), and relaxes the assistance if the
tracking performance is satisfactory over a certain time period
(compliance mode). The two modes share the same form of the
immediate cost (7), however, the weight vector Λ = {λθ, λg}T
is configured as λθ � λg in intervention mode to prioritize
tracking accuracy, and as λθ � λg in compliance mode to
facilitate the gradual decrease of robotic assistance and thus
encourage subject’s participation. The alternation between the
two learning modes is determined by a hierarchical evaluation
structure, as shown in Fig. 3.

At the low level, trajectory costs S(ξn,k) collected during
K exploration strides within the current epoch Ξm are used
to update the policy parameters w, as described in Sec. II-B.
Subsequently, a noiseless evaluation stride ξeval,m is carried
out to determine the cost J(Ξm) associated with the current
epoch, which is quantified as the RMS tracking error accrued
over the evaluation stride:

J(Ξm) = ∆θ(ξeval,m) (13)

In contrast to the conventional PI2 algorithm, convergence
of the current learning mode is not based solely on the cost
J(Ξm). Instead, we regard J(Ξm) as a temporal abstraction
of the cost associated with Ξm, and evaluate the current
policy at a higher level, from the costs collected across M
consecutive epochs: J(Ξ1), J(Ξ2), ..., J(ΞM ). The average
of these higher level costs, denoted as J(Ξ), determines
the termination/switching condition specified by the current
learning mode:{

compliance→ intervention mode, if J(Ξ) > βu,

intervention→ compliance mode, if J(Ξ) < βl.
(14)

The upper error bound βu represents the largest cumulative
errors one is allowed to make while the orthosis is controlled
in compliant mode, above which the intervention mode will be

activated to guide the limb motion towards the desired pattern
with stiffer assistance. Conversely, βl represents the smallest
cumulative errors for which the subject receives stiff assistance
from the orthosis, before the compliance mode takes over and
begins reducing the assistance level to discourage the subject
from over-relying on the robot assistance. After the onset of
the compliance mode, two alternative scenarios may occur: i)
the subject has not learned the desired motion, which results
in an increase in tracking errors that causes J(Ξ) to eventually
reach βu and trigger the intervention mode; or ii) the subject
has learned the motion and is able to maintain the tracking
error below the acceptable error bound βu, even when the
robotic assistance has diminished to nearly zero. The latter
scenario, in which the algorithm appears to be “trapped” in
the compliance mode, is regarded as an indicator of human
motor adaptation to the target trajectory.

To allow the human-robot co-adaptation process to even-
tually reach a steady-state, a decay parameter γ is imposed
on σ2 (the variance of the exploration noise ε), which has
the effect of mitigating the changes to the adaptive force field
over time. Sufficient exploration is ensured by resetting σ to
its starting value each time the learning mode is changed.

A brief overview of the update procedure of the PI2-AAN
algorithm is listed in Algorithm 1, while the source code is
made available as supplementary material1. It is worth noting
that, since the high-level cost (13) is determined exclusively
by the tracking errors, the level of robotic assistance accounted
for in the lower level cost (7) is disregarded at the higher level
when computing the switching conditions (14). Therefore,
the PI2-AAN algorithm can operate indefinitely during each
RAGT session to continuously optimize the assistance level
with the goal of facilitating the human motor adaptation
process. This allows the PI2-AAN controller to mimic the
behavior of a physical therapist who constantly modulates the

1https://github.com/wearable-robotic-systems-lab/Powered-Orthosis

https://github.com/wearable-robotic-systems-lab/Powered-Orthosis
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Algorithm 1 Pseudocode of the PI2-AAN algorithm
Input :
– P : number of Gaussian kernel functions forming the

parameterized policy.
– N : number of discrete phase instants for exploration roll-outs.
– K: number of exploration strides performed before policy

updates.
– M : number of epochs performed before high-level evaluations.
– µ: width of each kernel function.
– σ2, γ: variance and decay parameter determining the distribution

N (0, γ(# of updates since last reset)·σ2), from which the exploration
noise ε is drawn.

– Λ: learning mode weight vector.
– βu, βl: error bounds determining the learning mode.
Initialize:
– winit: initial policy parameters
– Jinit: initial high-level cost for learning mode selection

while RAGT session is in progress do
Compute J(Ξ) and determine learning mode using (14)
Reset γ if selected mode differs from previous iteration
Carry out M epochs to evaluate high-level cost J:
for m = 1, 2, ...M do

Perform K exploration roll-outs to update w:
for k = 1, 2, ...K do

for j = 1, 2, ...N do
Evaluate rj,k using (7)
Compute Wj,k, Mj using (6b), (6c)

end for
Evaluate low-level cost-to-go S(ξn,k) using (6a), (7)

end for
Compute P(ξn,k) using (8), (9)
Update w using (10), (11), (12)
Deploy noiseless g(ϕ) for one stride using (4)
Compute J(Ξm) using (13)

end for
end while

assistance level while pursuing the long-term goal of coaching
patients to perform the desired motion by themselves.

III. EXPERIMENTS

To validate the PI2-AAN algorithm in RAGT, walking
experiments involving learning of a new ankle gait pattern
were carried out with a group of able-bodied individuals. A
powered ankle-foot orthosis was used to provide assistance to
the study participants during training.

A. Motor Learning Task

Sufficient foot clearance is closely related to an individual’s
ability to dorsiflex the foot during the swing phase and is a
key element of stable ambulation [53]. The lack of ankle dor-
siflexion during swing is a common impairment among stroke
survivors due to overreactivity of plantarflexor muscles, inabil-
ity to generate sufficient dorsiflexion moment, or shortening
of the plantar flexor muscles [54]. Recent studies on RAGT
have shown that the foot clearance can be efficiently increased
by supplying upward assistive forces to subject’s ankle via
an impedance-controlled exoskeleton [55]. Studies have also
found that the minimum toe clearance, which typically takes
place at approximately 51% of the swing phase, plays a critical
role in foot clearance and can be increased by enlarging the
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during swing. (b) On-board components of the SAFE orthosis.

ankle dorsiflexion angle at that phase instant [53], [56].
In this vein, we specify the RAGT task as an ankle

movement that amplifies one’s ankle dorsiflexion angle during
midswing. As shown in Fig. 4(a), the desired trajectory θd is
defined as the sum of the subject’s natural gait pattern and
a Gaussian curve centered at the gait phase where his/her
ankle joint reaches the maximum dorsiflexion during swing.
The magnitude of the Gaussian curve is set to 5 deg for all
participants, and its width is configured to fade the altered
trajectory to effectively zero in the stance phase. Since the
normal ankle range of motion in the dorsiflexion direction
during locomotion varies between approximately 5 and 20 deg
[57], an additional 5 deg of dorsiflexion represents a marked
modification to an individual’s baseline gait. Moreover, this
approach proved to be an effective means to induce measurable
changes to a subject’s natural gait while not endangering gait
stability [33].

B. Apparatus

The Stevens Ankle-Foot Electromechanical (SAFE) ortho-
sis, shown in Fig. 4(b), is a cable-driven device built off
of a modified articulated ankle-foot orthosis. An antagonistic
mechanism formed by a pair of Bowden cables allows the
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Fig. 5. Experimental protocol (BSLN: baseline session; T-1∼4: training
sessions; PT-1∼3: post-training sessions).

device to provide active torque control over plantarflexion and
dorsiflexion. Two BLDC motors (EC45, Maxon, Switzerland)
placed on an off-board platform control the tension in each
Bowden-cable. A load cell (LSB200, Futek, USA) is con-
nected in-line with each cable to close the inner torque control
loop (Fig. 1). A quadrature encoder is used to measure the
ankle joint angle and close the outer position control loop
of the impedance controller. Two force sensitive resistors are
located underneath the calcaneus and the hallux to detect HS
and toe-off events, respectively. Data acquisition and high/low-
level control are carried out by a myRIO board (National
Instrument, USA) with the low-level torque control loop
running at 400 Hz and the high-level RL-AAN controller at
100 Hz. The total weight of the worn components of the SAFE
orthosis is 1.04 kg. More details on the device can be found
in [58].

C. Experimental Protocol

A total of 10 able-bodied subjects (all males, age 28.4±0.5
years, weight 72.5±6.4 kg, height 176.2±2.9 cm) participated
in the treadmill-walking tests. Participants were selected such
that their right foot and lower leg could fit comfortably in the
SAFE orthosis. The study was approved by Stevens Institu-
tional Review Board and all participants provided informed
consent prior to testing.

The experimental protocol is illustrated in Fig. 5. A 5-min
walking bout was first administered to evaluate the subjects’
baseline (BSLN) gait. During the BSLN session, the orthosis
was controlled in transparent (i.e., zero-impedance) mode [59].
The average ankle trajectory recorded from the last minute of
this session was regarded as each subject’s natural gait pattern
and was used to derive his target trajectory, as described
in Sec. III-A. Afterwards, subjects underwent four 10-min
training sessions (T-1∼4) to learn the target ankle motion with
the assistance provided by the SAFE orthosis, which was then
set to operate under the PI2-AAN controller. Four 1-min breaks
were given before and after each T session. Following the T
sessions, three post-training sessions (PT-1∼3) were carried
out, in which the SAFE orthosis operated under transparent
mode, to examine training effects. The PT sessions started 1
minute, 10 minutes, and 20 minutes after the end of the last T
session, respectively. The treadmill was paced at 1 m/s for all
walking bouts. The first 30 seconds of each walking bout were
allocated as a ramp-up period to allow the treadmill speed, the
subject’s walking pattern, and the gait phase estimator to reach
steady state.

D. Parameter Selection

The PI2-AAN parameters were selected as follows:
• P = 10, µ = 5. The selected P exceeds the number

of functional sub-phases of the gait cycle [57], and
therefore it was deemed appropriate to match different
shape parameters with different functional gait tasks. µ
was tuned to provide sufficient overlapping between the
Gaussian kernels given the selected P .

• N = 10, K = 4, M = 4. N was chosen as a trade-off
between granularity in the evaluation of the exploration
roll-outs and computational complexity of the controller.
By performing K = 4 exploration roll-outs before each
evaluation trial and M = 4 epochs before each high-level
evaluation, the subject’s performance and the effective-
ness of the current learning mode were evaluated every
20 strides.

• σ = 0.03, γ = 0.992. σ was selected to ensure
sufficient exploration while preventing abrupt stride-to-
stride changes in the impedance landscape during the
exploration roll-outs. γ was chosen to ensure that the
algorithm continued to explore in the event that the same
learning mode persisted for an extended period of time.
Quantitatively, the selected decay factor reduces σ to
approximately 20% of its initial value after 200 strides.

• βu = 1.5 deg, βl = 0.5 deg. Because the target
motor task involved alteration to the swing-phase ankle
trajectory, we limited the performance evaluation (13) to
the RMS tracking error measured during the latter half
of the gait cycle (i.e., ϕ6∼10). The average cost J(Ξ) was
then compared with the error bounds βu,l to determine
the learning mode for the next iteration.

• Λ = {80, 5}T and {5, 80}T in intervention and compli-
ance mode, respectively.

• winit = 0, Jinit = 2.5 deg. All T sessions started with
a “flat” impedance landscape and with the intervention
mode, to gradually conform the landscape to the subject’s
performance.

• τmax = 5 Nm, θdb = 1 deg. These values were deter-
mined based on previous work [33], so that the assistive
torque (1) could be modulated from effectively zero to a
sufficiently large value to guide the subject’s ankle joint.

E. Data Analysis

To investigate subjects’ motor adaptation processes, we
analyzed steady-state ankle trajectories measured during the
last 9 minutes of the T sessions and the last minute of the PT
sessions. HS events were used to segment these trajectories
into gait cycles, and RMS errors between the target and
the segmented measured trajectories were used as the main
performance metric indicating gait adaptation. To this end,
one sample t-tests with Bonferroni correction were carried
out on the RMS errors to check for significant differences
(α = 0.05) between subjects’ performances in BSLN and
PT sessions. Moreover, the phase-dependent impedance (4)
evaluated at the kernel centers (i.e., g(ϕ1), ..., g(ϕ2), ...,
g(ϕ10)) was logged at each gait cycle during the T sessions,
to investigate the effectiveness of the PI2-AAN algorithm
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φnφn

g(φ1~5)
g(φ6)
g(φ7)
g(φ8)
g(φ9)
g(φ10)

100 strides 
(20 ξeval)

Fig. 6. (a) Change of RMS errors J(Ξm) (top) and impedance coefficients
g(ϕi) (bottom) extracted from the evaluation strides ξeval,m occurring during
the T sessions of a representative subject. Each vertical line delimits a
10-minute training bout, while shaded areas indicate the periods in which
the intervention mode was engaged. Swing-phase impedance coefficients
g(ϕ6) ∼ g(ϕ10) are color-coded to evidence their larger magnitudes
compared to their stance-phase counterparts g(ϕ1) ∼ g(ϕ5). The stiffest
impedance landscapes measured in T-1 and T-4 from the same subject are
shown in (b) and (c), respectively.

in shaping individualized impedance landscapes. A Boolean
variable indicating the on/off state of the intervention mode
was also recorded to provide additional insights into the
human-robot co-adaptation processes. Linear regression was
performed on the group averages of each g(ϕi), as well as on
the percentage on-time of the intervention mode over each T
session, to examine the changes of subjects’ reliance on the
robot assistance. All data analysis was conducted using custom
scripts developed in MATLAB (MathWorks, USA).

IV. RESULTS

Figure 6(a) shows the training progress of a representative
subject and the trend of the learned impedance coefficients
measured in the evaluation strides throughout the T sessions.
The shaded/non-shaded areas correspond to the periods in
which the intervention/compliance modes were engaged, re-
spectively. Noticeably, the intervention mode was effective in
increasing the impedance magnitudes (and thereby the assis-
tance levels) to help the subject follow the target movement.
This scenario was consistent across the four training sessions.
When the average RMS error J(Ξ) fell below βl = 0.5 deg,
the compliance mode came into effect and began to progres-
sively reduce the assistance levels to encourage the subject’s

active participation, as can be observed from the swiftly
decreased impedance magnitudes immediately following the
onset of each compliance period. The rate at which the
tracking accuracy deteriorates after the onset of the compliance
mode affects its duration. Therefore, inspecting the duration of
the compliance mode across the T sessions provides insights
into the subject’s motor adaptation progress. For example, the
subject’s insufficient ability to follow the target motion during
the first compliance period in T-1 resulted in a rapid increase
in tracking errors that quickly triggered a switch-back to the
intervention mode. In contrast, the compliance mode remained
in effect for most of the T-4 session as the subject maintained
the average tracking error below βu = 1.5 deg, even after
the assistance had faded to nearly zero. Because the target
movement remained the same throughout the training sessions,
the magnitudes of the impedance coefficients g(ϕi) during the
intervention mode can be interpreted as a surrogate measure of
the amount of external assistance the subject required in order
to follow the target movement. Thus, the overall downward
trend of the impedance magnitudes from T-1 to T-4 suggests
an increase in the subject’s participation and an improvement
in his ability to follow the target movement. Figure 6(b) and (c)
show the impedance coefficients g(ϕ1) to g(ϕ10) occurring in
T-1 and T-4 at the gait cycle wherein the impedance landscape
was the stiffest for the session. Evidently, the stiffest force
field generated in T-4 was less pronounced compared to the
one in T-1. Since the intended training was designed to only
alter subject’s gait in the swing phase, the relatively small
magnitudes of g(ϕ1) ∼ g(ϕ5) further indicate the ability
of the PI2-AAN algorithm to generate assistance only at the
gait phases where it is needed. Moreover, the magnitude of
g(ϕ8) conforms to the training task, which imposed the largest
alternation to the subject’s natural motion at approximately
80% of the gait cycle (Fig. 4(a)).

Group-wise averages of the impedance coefficients g(ϕ6) ∼
g(ϕ10) during the intervention periods are shown in Fig. 7(a),
alongside the percentage on-time of the intervention mode.
Consistent with observations from the representative subject
in Fig. 6(a), we notice that the largest impedance coefficient
was g(ϕ8), while the other coefficients quickly diminished as
their associated phases move away from ϕ8. This suggests that
the resulting impedance landscapes adapted well to the gait
modification pattern shown in Fig. 4(a). The linear regression
analysis shown in Fig. 7(a) evidenced a significant decreasing
trend in both impedance coefficients and percentage on-time of
the intervention mode over the four T sessions, indicating that
the participants were able to progressively adapt to the target
trajectory and reduce their reliance on the robot assistance.
The decreasing trends also highlight the effectiveness of the
hierarchical evaluation structure in specifying an appropri-
ate learning mode that fades assistance when subjects are
performing well. In this respect, it is worth noting that,
unlike g(ϕ7) and g(ϕ8), the other impedance coefficients did
not strictly follow a downward trend and were instead kept
at relatively small magnitudes throughout the training. This
can be explained by the design of the cost function in the
intervention mode, which moderately penalizes the control
effort that does not significantly contribute to the reduction of
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Fig. 7. (a) Group-wise average magnitudes of the impedance coefficients
g(ϕ6) ∼ g(ϕ10) during the intervention periods in the four T sessions. The
gray bars indicate the percentage on-time of the intervention mode within each
T session. B1,2 are the angular coefficients of the regression lines obtained
from the within-session averages of g(ϕ6) ∼ g(ϕ10) and from the percentage
on-time of the intervention mode across T-1∼4, respectively. (b) Group
averages of the RMS errors across all walking bouts. � indicates p < 0.0001
(Bonferroni-adjusted p values). Error bars indicate ±1SE (standard error).

tracking errors. In other words, the prioritization of g(ϕ7) and
g(ϕ8) indicates that the robot assistance during 70∼80% of the
gait cycle played the most crucial role in helping individuals
achieve the training task.

Figure 7(b) shows group averages of the RMS errors in all
walking bouts. Because the target motion pattern is derived
from each individual’s baseline gait with the addition of the
same Gaussian curve, the baseline RMS error is the same (i.e.,
approximately 2.5 deg) for all subjects. A slight decrease in
average tracking errors can be seen in T-3,4 compared to T-1,2,
which, along with the decreased magnitude and duration of the
assistance discussed above, suggest an overall improvement
of subjects’ ability to follow the target motion. Additionally,
the one sample t-tests revealed significant retention of the
target movement across PT-1∼3, reflecting the efficacy of
the proposed control strategy in promoting short-term motor
adaptations.

V. DISCUSSION

Control strategies that promote subjects’ active participation
during robot-assisted training have been widely accepted as
effective means to facilitate motor recovery [8]–[10]. In partic-
ular, impedance control-based assistive strategies have gained
significant interests due to their compliant nature, allowing
for small kinematic errors that are critical enablers of motor
(re)learning [3], [13], [60]. To maintain a proper balance
between kinematic errors and subjects’ physical efforts, adap-
tive AAN controllers such as the ILC-based AAN controllers

were introduced in pioneering works [11], [12]. These ILC
schemes, however, typically require tedious manual tuning.
This paper introduced a new AAN control approach for lower-
extremity robotic trainers based on the RL paradigm, which
allows an underlying impedance controller to self-modulate
the control stiffness in a phase-dependent manner given a
subject’s motor capability and training progress. Unlike recent
Bayesian optimization-based AAN methods [61], the proposed
controller relies on the amount of assistance provided by the
robotic trainer as a proxy to gauge subjects’ active efforts,
without the need for surface EMG measurements. The phase-
dependent adaptability was made possible through the param-
eterization of the impedance landscape via phase-locked basis
functions and through the use of a modified PI2 algorithm.
The correlation between a subject’s training performance and
the stiffness of the force field was established through a
hierarchical evaluation structure that continuously alters the
controller’s priority between tracking accuracy and control
effort, based on the subject’s recent motor behaviors. Since the
robot’s control effort complements the subject’s physical effort
in a given training task, the proposed PI2-AAN algorithm
implicitly took subjects’ effort into account when regulating
the assistance levels.

Our previous works on ADHDP-AAN controllers success-
fully leveraged the reinforcement learning paradigm to es-
tablish adaptive correlations between the control stiffness of
a powered orthosis and the subject’s training performance
[29], [33]. However, in those ADHDP-AAN controllers the
granularity of the adaptation was limited to the stride level,
whereby the same stiffness parameter was enforced across the
entire gait cycle. The main contribution of this paper is the
extension of the control adaptability to enable modulations
at the phase level. To achieve this goal, we introduced a
new PI2-based strategy that explicitly learns and updates the
impedance coefficient in a phase-dependent fashion. Although
it is feasible to setup parallel ADHDP blocks for independent
phases and enable a similar phase-dependent adaptability [24],
the independent update of ADHDP blocks may lead to dis-
continuous inter-phase actions due to the lack of extrapolation
across contiguous blocks. On the contrary, by parameterizing
the impedance landscape through a vector of basis functions,
each phase-dependent impedance value derived by the PI2-
AAN algorithm is jointly determined by a combination of
weighted basis functions equally distributed along the gait
phase axis, which intrinsically ensures smooth inter-phase
transitions. Moreover, the probability-based learning of PI2-
AAN provided additional benefits that are well suited for
RAGT. Firstly, instead of indiscriminately accepting all new
sampled states to update the current knowledge about the
environment (i.e., the human-robot interaction), the PI2-AAN
algorithm performs policy update by evaluating probability-
weighted averages over multiple roll-outs (i.e., strides) and
relies primarily on the ones that have higher probabilities of
reducing trajectory costs, which greatly reduces the potential
influence induced by the uncertain and varying human motor
learning dynamics [62]. Secondly, the empirical evaluation of
the sampled trajectories eliminates the need for calculating
the gradient of a cost function, which represents a distinctive
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advantage over policy gradient methods like ADHDP for
dealing with non-smooth cost functions constructed with noisy
kinematic errors [20], [24], [33]. Thirdly, since the exploration
of policy parameters is strictly controlled by the exploration
noise ε and the updated policy parameters are confined within
the convex hull encircled by w+ε [50], [63], the control output
is naturally bounded during the PI2-AAN policy improvement
process.

The proposed hierarchical approach to policy parameter
evaluation stems from the hierarchical RL paradigm, in which
temporally-extended activities are stimulated to benefit learn-
ing tasks that do not require immediate actions at each step
[64]. Admittedly, the hierarchical structure proposed here does
not assign separate sub-goals at different levels [63] but rather
consolidates the optimality of the updated policy in the current
mode by evaluating it over a longer term. In the context
of RAGT, such temporally-extended evaluation is particularly
valuable because it ensures that the optimized policy (i.e., the
assistance level) can benefit the training subject in a consistent
and repeatable manner [65]. Additionally, the hierarchical ap-
proach inherently prevents accidental convergence misguided
by a single unstable stride.

The method introduced in this paper can be best compared
to [55], [66], in which phase-dependent modulation of AAN
controllers was achieved through the use of ILC-based update
laws. The level of adaptability of these ILC-based approaches
is primarily controlled by the so-called forgetting factor, which
is typically determined based on simplistic assumptions about
human motor learning dynamics [14]. Since the process of
motor learning involves large uncertainties and the level of
neurologic injury varies between patients, the applicability
of such approaches to clinical populations may be limited
[14], [37], [62]. In the PI2-AAN framework, such limita-
tion is circumvented by the dual-objective learning mode
that automatically increases/decreases the assistance when a
subject’s recent performance deteriorates/improves. To this
end, the subject’s learning ability is not only evaluated online
through their recent behaviors, but also directly linked to
the learning goal of the PI2-AAN algorithm that ultimately
guides control decisions. Moreover, owning to the model-free
nature of the PI2, the parameter update procedure relies solely
on probability-weighted sampled states rather than estimated
dynamic models [67], [68] or approximated motor ability
models [7]. As such, the proposed strategy may be more robust
to variations in system dynamics or human motor learning
abilities compared to model-based approaches. Besides, the
known scalability of the PI2 algorithm for high dimensional
control tasks [69] makes this strategy applicable to most
multi-DOF gait trainers that feature low-level force/torque
control loops [16], [38], [55]. Thus, although the experimental
validation performed in this work focused on gait training,
the PI2-AAN controller can potentially be extended to other
repetitive rehabilitation tasks (e.g., arm reaching exercises for
upper extremity rehabilitation [70]).

Future studies involving patients with neurological disorders
must be carried out to investigate whether the PI2-AAN
controller’s adaptability exhibited with able-bodied popula-
tions transfers to patients with gait disabilities, and to exam-

ine how patients would react to the continuously changing
assistance levels. Moreover, a future study comparing the
longitudinal effects of the PI2-AAN strategy with those of
the ADHDP-AAN controller and more conventional AAN
controllers may provide additional insights into the benefits
of individualization and adaptability in robot-assisted exercise
therapy. The applicability of the proposed strategy to error-
enhancing controllers, which leverage destabilizing force fields
as opposed to stabilizing force fields, will also be examined
[71]. Additionally, the robustness of the PI2-AAN controller
will be further evaluated through overground walking experi-
ments. From an algorithm perspective, the adaptability of the
PI2-AAN controller may be extended by incorporating the
Covariance Matrix Adaptation strategy to allow autonomous
modulation of the exploration noise [72]. Further investigation
and exploration on other types of kernel functions may also
be valuable for improving the effectiveness and robustness
of the proposed method. The magnitudes of the upper and
lower error bound βu,l may also be adaptively regulated by
specifying sub-goals at the higher level to progressively reduce
the tolerable error region as subjects make progress, possibly
through the addition of a performance-related terminal cost
that penalizes the magnitudes of βu,l over time. Ongoing work
also includes the study of exoskeleton design individualization
as an additional means to personalize future robot-assisted
rehabilitation interventions [73].

VI. CONCLUSION

This work introduced a novel adaptive AAN controller
for lower-extremity powered orthoses used in RAGT, which
enables individualized and phase-dependent assistance. The
proposed strategy consists of a modified PI2 algorithm that
shapes phase-locked impedance landscapes, and a temporally-
extended evaluation structure that alters the PI2 learning goal
according to the subject’s recent performances. Walking ex-
periments conducted with a group of able-bodied individuals
validated the effectiveness of the PI2-AAN controller in pro-
viding individualized assistance and promoting short-term gait
adaptations.
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