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Abstract

Transcription is controlled by interactions of cis-acting DNA elements with diffusible trans-acting factors.
Changes in cis or trans factors can drive expression divergence within and between species, and their
relative prevalence can reveal the evolutionary history and pressures that drive expression variation.
Previous work delineating the mode of expression divergence in animals has largely used whole body
expression measurements in one condition. Since cis-acting elements often drive expression in a subset
of cell types or conditions, these measurements may not capture the complete contribution of cis-acting
changes. Here, we quantify the mode of expression divergence in the Drosophila fat body, the primary
immune organ, in several conditions, using two geographically distinct lines of D. melanogaster and their
F1 hybrids. We measured expression in the absence of infection and in infections with Gram-negative S.
marcescens or Gram-positive E. faecalis bacteria, which trigger the two primary signaling pathways in the
Drosophila innate immune response. The mode of expression divergence strongly depends on the
condition, with trans-acting effects dominating in response to Gram-positive infection and cis-acting
effects dominating in Gram-negative and pre-infection conditions. Expression divergence in several
receptor proteins may underlie the infection-specific trans effects. Before infection, when the fat body
has a metabolic role, there are many compensatory effects, changes in cis and trans that counteract
each other to maintain expression levels. This work demonstrates that within a single tissue, the mode of
expression divergence varies between conditions and suggests that these differences reflect the diverse

evolutionary histories of host-pathogen interactions.



Introduction

Differences in gene expression are drivers of phenotypic divergence in closely related species (King and
Wilson 1975). These expression differences can arise through sequence changes in cis-regulatory
elements, such as enhancers, or in the coding regions of trans-acting factors, such as transcription
factors. These two types of changes differ in their impact. Changes in cis are local, typically affecting the
expression of one gene at a time, whereas changes in trans can be broad, affecting all downstream
targets of a gene. The relative prevalence of each of these types of changes may give insight into how
expression divergence arises in a particular setting: through the accumulation many fine-tuning cis-acting
changes, by a smaller number of large impact trans-acting changes, or both.

The prevalence and relative contributions of cis and trans changes are being explored in various
model systems (Signor and Nuzhdin 2018). For example, within individual Drosophila melanogaster lines
or between Drosophila species, the contributions of cis-acting changes generally increase with
phylogenetic distance, and the precise balance of cis versus trans effects depends on the phylogenetic
relationships and demographics of the genotypes being compared (Wittkopp et al., 2004, Wittkopp et al.,
2008, McManus et al., 2010, Coolon et al., 2014, Osada et al., 2017). These studies have elucidated the
mode and tempo of the changes driving expression divergence; however, most studies use whole body
measurements of expression, thus averaging signal across multiple tissues. Therefore, these studies
cannot examine the prevalence of cis and trans changes in specific biological processes, which may be
subject to different types of selection pressure. In addition, given that many cis-regulatory elements act in
a tissue-specific manner, studies that measure cis and trans effects with tissue-specific resolution may
reveal effects undetectable in heterogenous samples.

Drosophila have an innate, but not adaptative, immune response, and this response is a powerful
system for measuring the contributions of cis and trans changes for several reasons. First, the immune
response is inducible, with active and inactive states. This allows for the clear delineation of the

transcriptional response of the immune system from that of other processes. Second, the fat body within



the immune system is an optimal tissue for study. Though other tissues participate in the immune system,
the fat body is a primary driver of the humoral response (Buchon et al., 2014), and it is relatively easy to
isolate. Lastly, there is ample variation in the resistance, survival, and transcriptional response to infection
between individual D. melanogaster lines (Lazzaro et al., 2004, Lazzaro et al., 2006, Sackton et al., 2010,
Hotson and Schneider 2015), suggesting there are many sequence changes driving these differences.

To quantify changes in cis and trans that drive transcriptional divergence in the immune response,
we use allele-specific expression analysis of RNA-seq data (Wittkopp et al. 2004, Signor and Nuzhdin 2018,
Frochaux et al 2020). In this approach, we compare a gene’s expression levels in two parental lines to the
expression levels of each parental allele in the resulting F1 hybrids. Differences in expression due to
changes in cis, e.g. a sequence change in a promoter or enhancer, will only affect the expression of the
corresponding parental allele. Thus, changes in cis are independent of cellular environment and will be
observed as allelic imbalance between the parents that is maintained in the hybrids. Differences in trans,
e.g. a coding sequence change in a transcription factor, will affect the expression of both alleles in the F1
hybrids and thus will be observed as differential expression in the parental lines that is not maintained in
the F1 hybrids. Combining allele-specific expression analysis analysis with RNA-seq allows us to determine
the prevalence of cis and trans changes genome-wide.

When comparing the innate immune response of different D. melanogaster lines, it is not clear
whether cis or trans changes will dominate. Changes in cis generally affect a single gene’s expression and
thus may be easily tolerated, as they only introduce small amounts of phenotypic variation. Changes in
trans can affect the expression of many genes at once and efficiently introduce a large amount of
phenotypic variation, but changes in trans may be harder for the organism to tolerate, as they also increase
the likelihood of deleterious effects. However, the specific biology of the innate immune response may
temper this expectation. Antimicrobial peptides (AMPs) are among the most highly up-regulated genes in
response to infection, but the deletion of individual AMP genes often has little to no measurable effect on

infection survival (Hanson et al., 2019). This suggests that to get an appreciable phenotypic effect,



synchronous changes in gene expression are required, which can result from a trans-acting change. In
addition, within D. melanogaster lines, trans changes are typically more prevalent (Wittkopp et al., 2008,
Coolon et al., 2014). In this setting, the observation of a large number of cis-acting changes would imply
that immune-responsive expression divergence is achieved through the divergence of one gene at a time,
suggesting a fine-tuning process. Conversely, a preponderance of trans-acting changes would imply that
expression divergence is achieved through changes in upstream factors that can simultaneously modulate
the expression of many target genes.

To measure the contributions of cis and trans-acting changes in the Drosophila innate immune
response, we measured fat body gene expression in two sequenced inbred D. melanogaster lines and their
F1 hybrids, in control and infection conditions. To find signaling pathway-specific effects, we separately
infected the animals with either Gram-positive Enterococcus faecalis or the Gram-negative Serratia
marcescens. These bacteria have different strengths of virulence and separately trigger the two primary
immune signaling pathways in the fly. We quantified the contribution of cis and trans effects in the control
and in each infection condition. This approach enabled us to examine the evolutionary changes that drive
expression divergence in response to a stimulus, while minimizing the confounding effects of multiple

tissue types.

Results

Two geographically distinct lines show genotype-specific immune response

To measure the relative contributions of cis- and trans-acting effects in the innate immune response, we
needed two inbred, sequenced strains of D. melanogaster with abundant genetic variation and
phenotypic differences in the immune response. The founder lines of the Drosophila Synthetic Population
Resource fit these requirements, making them ideal candidates (King et al., 2012). To maximize the
likelihood of finding variation in these lines, we selected two lines from different continents, the A4 line,

also known as KSA2, collected from the Koriba Dam in South Africa, and the B6 line, collected from Ica,



Peru. Using the available SNP data, we found 462,548 SNPs between A4 and B6, with about half of them
falling into exonic regions, indicating that 0.9% of exonic bases varied between the genotypes, with an
average of 25.3 variants per gene. The extensive variation in the coding regions allowed us to map, on
average, 11.2% (+1.3%) of RNA-seq reads in an allele-specific manner.

To assess the divergence in the A4 and B6 immune responses, we measured gene expression
pre- and post-infection in the abdominal fat body, the primary site of immune response. To do so, we
performed RNA-seq on the dissected fat bodies of 4-day old males from both lines that had been
infected with either Gram-positive Enterococcus faecalis (Efae) or Gram-negative Serratia marcescens
(Smar). We selected these bacteria because in D. melanogaster, Gram-positive infections generally
stimulate the Toll pathway, and Gram-negative infections generally stimulate the IMD pathway, though
there is additional nuance due to signaling crosstalk and the contributions of other signaling pathways
(Buchon et al., 2014; Busse et al., 2007; Lemaitre and Hoffmann 2007; Taniji et al., 2010; Troha et al.,
2018). We measured expression pre-infection and three hours post-infection, to capture the early
transcriptional response prior to the complicating effects of feedback. As a control, we performed RNA-
seq on the fat bodies of uninfected, unwounded animals from each genotype (see Methods). This choice
means that, when compared to the control, the expression response observed in the infected samples
includes both wound healing and infection responses.

In response to Efae infection, we found sizable genotype-specific effects in the immune response.
To detect these effects, we performed two types of differential gene expression analysis: we compared
control and infected samples to find Efae-responsive genes, and then within this group, we looked for
genes differentially expressed between the A4 and B6 genotypes. We found 1165 differentially expressed
genes between the control and infected samples regardless of genotype (Figure 1A). We categorized
these Efae-responsive genes into four groups based on their differential expression between genotypes.
Group 1 genes showed no genotype specific expression, Group 2 genes are differentially expressed only

in the control samples, Group 3 genes are differentially expressed only in the infected samples, and



Group 4 genes are differentially expressed in both control and infected samples. Of the 500 Efae-
responsive genes showing genotype effects, 87% (433 genes) are in Group 3, while only 10 genes are in
Group 1 and 57 genes in Group 4 (Figure 1B). This indicates that many Efae-responsive genes show
genotype-specific expression, and these differences are typically only revealed in response to infection.

In response to the Smar infection, we found 1203 differentially expressed genes between the
control and infected samples (Figure 1A). To look for genotype-specific expression, we categorized the
1203 Smar-responsive genes into the three previously mentioned groups. For this infection, we found
roughly equal numbers of genes in Groups 2-4, with 88, 91, and 84 genes, respectively (Figure 1B). This
indicates that a higher fraction of Smar-responsive genes show genotype effects prior to infection than
Efae-responsive genes (p = 1.7 x 10™"", Chi-square test, Bonferroni corrected), while a higher fraction of
Efae-responsive genes show genotype effects after infection (p = 9.5 x 10°®, Chi-square test, Bonferroni
corrected).

To assess whether there is also phenotypic divergence on the organismal level, we performed the
Efae and Smar infections and measured survival and bacterial load. In response to Efae infection, we
found differences in the ability to survive infection between genotypes, with B6 surviving infection longer
than A4 (Supplemental Figure S1A). In response to Smar, we found there were no significant differences
in survival, but bacterial load was lower in A4 than in B6 (Supplemental Figure S1B, S1C). Together,
these data demonstrate that there are differences between the two lines in their ability to resist or survive
infection.

To compare our tissue-specific measurements to previous work, we intersected our Efae- and
Smar-responsive genes to an existing list of immune-responsive genes. This list is an expanded version
of the Drosophila immune responsive genes set (DIRGS) and constitutes the summation of more than two
decades of work in Drosophila (De Gregorio et al., 2001; Lemaitre and Hoffman 2007; Troha et al., 2018).
Of 538 genes on this list, we found more than half of these (297 genes) were identified as immune-

responsive in our data (Figure 1C). Troha and colleagues identified a subset of immune-responsive genes



as core, i.e., the genes that are differentially expressed regardless of the type of bacterial infection (Troha
et al., 2018). Of these 252 core genes, approximately 40% were found to be both Smar- and Efae-
responsive in our data. Therefore, despite differences in the genetic background, tissue (previous studies
were typically done with whole body sampling), and time points, our findings show concordance with
previous studies of gene expression in response to infection. We also show that the A4 and B6 lines
have divergence in immune-responsive expression, making them suitable for subsequent F1 hybrid

experiments.

Cis-acting effects dominate expression variation in the uninfected fat body
To effectively quantify cis and trans effects, we needed to accurately analyze the allelic expression in F1
hybrids. Using the Allele-Specific Alignment Pipeline (ASAP) (Krueger,

https://www.bioinformatics.babraham.ac.uk/projects/ASAP/), we quantified allele-specific expression in

our samples. Since we are working with males, we were able to use the fraction of misassigned X
Chromosome reads as a metric of our pipeline's accuracy (Supplemental Methods). On average, 0.5% of
X Chromosome reads were mis-assigned (standard deviation = 3%; Supplemental Table S1). The
consistent, low level of mis-assigned reads verifies our ability to accurately quantify allelic expression.
We next sought to quantify cis and trans effects in the control samples. We used the complete set
of parental RNA-seq reads and the subset of the F1 hybrid reads that could be assigned to a specific
allele. Using three separate generalized linear models, we tested for differential expression in the parents,
allelic imbalance in the F1 hybrids, and trans effects between parents and F1 hybrids (see Methods)
(Davidson and Balakrishnan, 2016; Osada et al., 2017; Takada et al., 2017). We then categorized each
gene into one of six categories (Figure 2A). Genes showing no differential expression in the parents or F1
hybrids are conserved. Genes showing differential expression in both the parents and F1 hybrids and no
trans signal are cis-only. Genes showing differential expression in the parents and not the F1 hybrids are

trans-only. Some genes show evidence of both cis and trans effects and are either compensatory (if the



changes on expression are in opposite directions) or cis + trans (if the changes on expression are
coherent). Genes that do not fall into any of these categories are undetermined.

Of the 4959 genes that were expressed in the pre-infection fat body that could be detected in an
allele-specific manner, 77% were conserved (3802 genes; Figure 2B, F). We found 151genes showing
unambiguous cis or trans effects. Among these 151 genes, cis effects dominated the signal: 90% of
genes (135 genes) showed cis signal (including cis-only, cis + trans and compensatory genes), and 57%
(87 genes) showed cis-only effects. 42% of genes (64 genes) showed trans signal and only 10% of genes
(16 genes) showed trans-only effects. One-quarter of genes (37 genes) were compensatory, even when
using an experimental design to avoid the artificial inflation of compensatory signal (Methods; Zhang and
Emerson, 2019; Fraser et al., 2019). Additionally, to ensure that any differences in the quality of our in-
house A4 and B6 transcriptomes do not affect our conclusions, we quantified cis and trans effects using
sets of high confidence genes at multiple levels of stringency and found that this had negligible effects on
the detected signal (Methods; Supplemental Figure S2; Supplemental Table S2). From these data, we
can conclude that in the unstimulated state, most genes have conserved expression levels in the fat
body, and among those genes that diverge, cis effects dominate, with a sizable number of genes

showing compensatory cis and trans changes.

More cis than trans effects are found in Efae-infected fat body expression

We quantified cis and trans effects in Efae-infected samples following the same methodology. We found
roughly 52% of genes (2580 genes) are conserved and 379 genes showed unambiguous cis or trans
effects (Figure 2C). To identify genes whose expression divergence is specific to the immune response,
we eliminated genes that show cis or trans signal in the control sample. After this filtering, roughly 69% of
the genes showing cis or trans effects (263 genes) remained; 66% of these genes (174 genes) show cis-
only signal, and 28% (75 genes) show trans-only signal. Only 8 genes (3%) show concordant cis + trans

effects, and only 6 genes show compensatory effects. Of the genes that show cis-only signal, roughly
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even numbers of genes show higher expression in each genotype, consistent with the idea that cis-acting
changes affect a single gene at a time. In contrast, of the genes showing trans-only signal, nearly twice
as many were expressed more highly in the B6 genotype (48 genes) than in the A4 genotype (27 genes)
(p = 0.0105, Chi-square test). This suggests that one or a few changes in upstream regulatory factors are
responsible for this observation, and below, we identify candidate genes. Since we do not observe this
trend towards higher B6 expression in the control samples and have removed genes that showed any
evidence of mapping bias (Methods), we are confident this trend reflects true biological differences in the
immune response. In sum, we find both cis and trans effects drive Efae-responsive expression

divergence, with cis effects dominating.

Trans effects dominate expression variation in the Smar-infected fat body

Lastly, we quantified cis and trans effects in response to Smar infection. We found roughly 82% of genes
(4106 genes) are conserved, and 355 genes showed unambiguous cis or trans signal (Figure 2D). We
again filtered out genes that show cis or trans effects in the control samples and were left with 251 genes
that have immune-specific signal. Of these, 31% (79 genes) showed cis-only signal, and roughly equal
numbers of cis-only genes showed higher expression in each genotype. Seven genes showed cis + trans
effects, and 16 genes had compensatory signal. 59% of genes (149 genes) showed trans-only signal.
Within trans-only genes, we found that 71% (106 genes) showed greater expression in B6. In summary, in
response to Smar infection, trans effects drive the majority of expression divergence between the two

genotypes and few genes show compensatory effects.

Comparisons of cis and trans signals in different conditions reveal both infection-specific and
shared divergence
To systematically assess modes of expression variance under different conditions, we compared the

proportion of genes falling into the different categories (Figure 2E). The control and Efae-infected samples
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had a greater proportion of cis-only genes than the Smar samples (control vs. Smar p = 4.0 x 10°°, Efae
vs. Smar p = 6.8 x 10, Chi-square test, Bonferroni-corrected). All three groups differ in the proportion of
trans-only genes, with Smar-infected samples showing more than twice the proportion of genes with
trans-only signal, followed by Efae, and then the control samples (control vs. Efae p = 3.5 x 10™, control
vs. Smar p < 1.5 x 107'°, Efae vs. Smar p = 3.1 x 10", Chi-square test, Bonferroni-corrected). We also
found that the uninfected fat body showed significantly more compensatory signal than either infected
sample (control vs. Efae p < 1.5 x 1076, control vs. Smar p = 1.8 x 10, Chi-square test, Bonferroni-
corrected). Taken together, this suggests one of two possibilities. One possibility is that before infection,
when the fat body is carrying out its metabolic functions, there is less pressure for expression
divergence. An alternative interpretation is that immune-responsive genes are more tolerant of expression
divergence and subiject to less pressure to maintain expression levels. In response to infection, there is
ample expression divergence, which is driven by both cis and trans effects. The extent to which each
type of effect contributes is dependent on the particular pathogen, suggesting that the relative
importance of local and pleiotropic changes is specific to different infection pressures.

Though we generally expect the two infections to regulate gene expression via distinct signaling
pathways, we also anticipated some genes would be regulated in both infections, either due to crosstalk
between the IMD and Toll pathways (Busse et al., 2007; Taniji et al., 2010) or via more general infection
and wound responses. We found 86 genes with unambiguous cis and/or trans signal in response to both
Efae and Smar infection (Supplemental Data S1). Of these genes, 71 showed concordant classification.
Therefore, in the majority of genes shared between these two infections, the same genetic differences are

likely driving the expression divergence in both infection conditions.

Differential expression of detection genes is a likely source for genotype expression bias in

observed trans effects
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Since we observed that genes with trans-only effects tended to be more highly expressed in B6 than in
A4 in both infection conditions, we hypothesized that changes in a handful of upstream immune factors
are responsible for this phenomenon. The changes in upstream regulators could either be infection-
specific or shared. Out of 202 genes showing trans-only signal in either infection, only 17 genes were
shared, indicating that the bulk of trans-acting changes are likely infection-specific.

Immune detection genes, signaling genes, or transcription factors differentially expressed
between genotypes are likely sources of trans-acting changes, since these genes have the ability to
affect the expression of many downstream targets. We posited that these genotype-specific differences
had to be present in the control to have the effects at the 3-hour post-infection timepoint. Of the 295
genes that are differentially expressed between genotypes in the control samples, we found 22 genes
that are prime candidates, which we will refer to as trans-source candidates (Table 1).

Five peptidoglycan recognition proteins (PGRP) genes are potential mediators of the large number
of trans effects observed in the Smar infection. Four of these PGRPs (PGRP-SC1a, PGRP-SC1b, PGRP-
SC2, PGRP-LB) are negative regulators of the IMD response, and the last gene, PGRP-SD is positive Toll
and IMD regulator (Bischoff et al., 2006; Zaidman-Rémy et al., 2006; latsenko et al., 2016; Charroux et al.,
2018; Lu et al., 2020). Three of the negative regulators, PGRP-SC1a, PGRP-SC1b, PGRP-SC2, are more
highly expressed in A4. Given that these are negative regulators of the IMD pathway, this finding is
congruent with the observation that genes showing trans-only signal tend to show greater expression in
B6. PGRP-SD is more highly expressed in B6, and, given its role as a positive regulator of the IMD
response, it is also consistent with the trend of higher B6 expression of genes showing trans-only signal.
The last negative regulator of IMD response, PGRP-LB, has higher expression in B6. Since three of the
four negative regulators are more highly expressed in A4, it is possible this balance can account for the
expression trend in Smar trans-only genes. It is also possible that the greater expression of PGRP-SD is

enough to account for the differences observed.
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Though there were fewer trans effects in the Efae-infected samples than in the Smar-infected
samples, the pattern wherein most frans-only genes showed greater expression in B6 than A4 was
maintained. Of the 22 trans-source candidates, we found two Toll-specific genes: Spatzle-Processing
Enzyme (SPE) and spatzle (spz), which are both more highly expressed in B6. Spatzle encodes the Toll
receptor ligand, and SPE is required to generate the active form of spz, so differential expression of these
genes can drive a large number of downstream changes. In addition, PGRP-SD protein can act as a
positive regulator of both the Toll and IMD responses and is also found to have higher expression in the
B6 line.

In addition to differences in expression between genotypes, function-altering differences in the
coding sequences of immune genes may also be the source of trans-acting changes. As a first approach,
we analyzed the coding sequence differences between A4 and B6 in the 22 trans source candidates
identified above using the Ensembl Variant Effect Predictor (McLaren et al., 2016). There are a number of
nonsynonymous changes, some of which fall into functional domains (Supplemental Figure S3,
Supplemental Table S3 and S4). Predicting the effect of these mutations on individual protein function,
however, remains a challenge.

As an alternative approach, we analyzed the proportions of synonymous to nonsynonymous
coding changes between A4 and B6 in several larger gene sets. Previous work has demonstrated that
immune-related genes have a higher average rate of adaptive evolution than other gene classes
(Sackton, et al. 2007; Obbard, et al. 2009). We wanted to see if, for our particular genotypes and genes of
interest, the same held true. We considered all genes expressed in the fat body above a threshold of 1
count per million (CPM), and then sorted them into two groups: genes that are differentially expressed in
response to either or both infections (DE infection) and those that are not (fat body detected). We then
intersected each of these gene lists with our curated immune-responsive gene set to generate both a list
of differentially and non differentially-expressed immune genes (DE immune and non-DE immune

respectively; Figure 3A). We posited that, given the large number of trans effects in response to infection,
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differentially-expressed immune-related genes may have a greater proportion of honsynonymous
changes compared to the fat body detected gene set. We found that DE immune genes have a
significantly higher fraction of nonsynonymous sequence changes (24%) compared to the fat body
detected genes (21%) (p = 0.01, Chi-square test, Bonferroni-corrected), suggesting that some of these
changes may be under selection and possibly the source of our trans-acting signal (Figure 3A-B). By

comparison, the non-DE immune genes had a lower proportion of nonsynonymous changes (19 %, p=1.6

x 1074, Chi-square test, Bonferroni-corrected), suggesting that the elevated rate of nonsynonymous

changes in DE immune genes is not simply reflective of their immune status. In summary, we find that
differentially-expressed immune genes have a larger proportion of nonsynonymous changes between our
genomes of interest than fat body detected or non-differentially expressed immune genes. Some of these
nonsynonymous changes may be capable of altering the function of these proteins and therefore drive

expression divergence of downstream genes in a trans-acting fashion.

Genes with cis effects have greater transcription factor binding site divergence than to genes with
trans effects

The above analysis sought to identify changes in expression or protein sequence that may drive
the observed trans effects Cis-acting changes also drive expression divergence of a large number of
genes. These changes encompass mutations in several types of DNA features, including promoters,
enhancers, and untranslated regions. We analyzed the patterns of divergence in immune-responsive
transcription factor binding sites (TFBS) to see if they were consistent with our delineation of cis and
trans-acting effects. We hypothesized that genes whose divergence was due to cis-acting effects would
show more divergence in the associated TFBS than those without them.

We scanned potential regulatory regions of our genes of interest for TFBS in the A4 and B6

genomes. There are relatively few characterized immune-responsive enhancers in the fat body, so
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instead we extracted 1kb regions upstream of the transcription start site of genes showing any cis or
trans-acting changes in infected conditions. We searched these regions for binding sites corresponding
to four known immune-responsive transcription factors Dorsal (DI), Relish (Rel), Serpent (Srp) and CrebA
(Shazman et al., 2014). CrebA modulates transcription in response to both Gram-positive and Gram-
negative bacteria (Troha et al., 2018). Srp binding sites have been previously used to identify immune-
responsive enhancers (Senger et al., 2004). Relish is a NF-kB transcription factor downstream of the IMD
pathway, and DI and its paralog Dorsal-related immunity factor (Dif) are downstream of the Toll signaling
pathway. For this analysis however, only DI was considered since Dif homodimers have less specific
binding preferences than DI and Dif/Rel heterodimers bind sequences similar to Rel homodimers (Senger
et al., 2004). Given the cross-talk between the Toll and IMD pathways, we searched both Efae- and
Smar-responsive genes for both DI and Rel binding sites. For each gene, we calculated the difference in
the total number of TFBS in the A4 and B6 genomes. We then compared the genotype differences
between genes showing any cis effects and genes showing exclusively trans effects (see Methods). We
hypothesized that genes showing cis effects would have more differences in TFBS than the trans effected
genes, which would be observed as a broader distribution in TFBS differences.

For all transcription factors except DI (Figure 4A-E), the genes with cis effects did indeed show a
broader distribution of difference than those with trans effects (all TFs: p = 8.8 x 10", Rel: p = 2.9 x 107,
Srp: p=7.1x 107, CrebA: p = 1.5 x 107, F-test to compare distribution variances, Bonferroni corrected).
While most genes do not differ in TFBS numbers, 22% of genes with cis changes differed, as opposed to
only 18% of trans affected genes, though this difference was not significant (Figure 4F). As the number of
characterized immune-responsive enhancers and transcription factors increases, we will be able to refine

this analysis to more accurately identify potential causative mutations of cis-effects.

Discussion
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Here, we quantified the mode and extent of expression divergence in the Drosophila abdominal fat body,
both in an uninfected control condition, where it carries out a variety of metabolic roles, and in response
to two types of infection. We found that two geographically isolated lines of D. melanogaster are
phenotypically distinct in their immune responses, differing both on the organismal and transcriptional
levels. By comparing gene expression in the fat body between these lines and their F1 hybrids, we
quantified the contributions of cis and trans effects to expression divergence in the uninfected control,
Efae-infected and Smar-infected conditions. Both the control and Efae infection conditions were
dominated by cis effects, while the Smar infection condition had an abundance of trans effects. The
uninfected control also showed a greater proportion of compensatory effects, suggesting that there is
stabilizing selection to maintain fat body expression levels of certain genes in the absence of an infection.
Among the genes showing changes in trans, we found that expression of the B6 allele is typically higher,
and we identified expression divergence in a group of proteins that may drive these trans effects. By
analyzing the TFBS content of upstream regions of genes, we found that genes with cis effects show
evidence of more TFBS divergence than genes with trans effects. Overall, we find that the mode of
evolution in expression divergence can vary between conditions in a single tissue and likely represents
condition-specific selection pressures.

Our unique approach to measuring the mode of expression divergence gave rise to several novel
observations about the relative contributions of cis and trans effects on expression variation. While there
have been a number of studies aimed at disentangling the contribution of cis and trans changes to gene
expression in Drosophila, few have sought to answer this question using a single organ or with different
physiological stimuli (Wittkopp et al., 2004, Wittkopp et al., 2008, McManus et al., 2010, Coolon et al.,
2014, Osada et al., 2017). Our approach allows us to examine evolutionary changes in response to
perturbation while minimizing the confounding effects of multiple tissue types. A previous study by
Juneja, et al. (2016) found, among geographically distinct flies, a large number of cis-acting changes that

cause whole body expression divergence in response to an infection with mixture of bacteria. This is
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concordant with our finding of a large number of cis-acting changes in both infection conditions, but this
study did not quantify trans-acting changes or distinguish between Toll- and IMD-specific responses. By
measuring expression in the heads and abdomens of multiple D. melanogaster lines, another group
reported the predominance of changes in cis over those in frans but did not measure these differences in
different physiological states or attempt to dissect individual tissues in the head or abdomen (Osada et
al., 2017). Most recently, two studies sought to uncover the underlying genetics of resistance to either P.
entomophila or E. faecalis infection, and each identified novel drivers of phenotypic divergence (Chapman
et al., 2020; Frochaux et al., 2020). Here, we sought to directly assess the contribution of cis and trans
sequence changes in a single tissue in the context of multiple treatment conditions, giving a uniquely
high-resolution view of the evolutionary sequence changes underlying expression divergence.

With our approach we were able to uncover two key trends. First, we found that compensatory
mutations were more frequent in the control samples than in either of the infected conditions. Previous
studies in several organisms had suggested that compensatory effects were very prevalent (McManus et
al., 2010, Gonclaves et al., 2012, Schaefke et al., 2013, Coolon et al., 2014). However, certain choices in
experimental design can inflate estimates of compensatory effects (Zhang and Emerson 2019; Fraser et
al., 2019). Our study avoids this artifact, and therefore yields a more accurate estimate of compensatory
effects across multiple conditions. Additionally, a large proportion of studies addressing cis and trans
effects in animals do so in “control” conditions, which may not reveal the full extent of selection forces
that act on gene expression (Gonclaves et al., 2012, Osada et al., 2017, Davidson and Balakrishnan
2016, Signor and Nuzhdin 2018). We find evidence that the genes involved in the maintenance of basic
metabolic functions of the uninfected fat body are under different selective pressures than those involved
in immune response. Unlike the immune-responsive genes, which must contend with a continuously
evolving pathogen landscape, the genes carrying out metabolic functions may be subject to stabilizing

selection, given relatively unchanging nutritional availability. In future studies, it will be interesting to
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further probe which systems and conditions show enrichment for these different patterns of expression
divergence.

Secondly, we observe that the relative contribution of cis- and trans-acting changes are
perturbation-specific. In response to Efae infection, cis effects dominate expression changes, while in the
Smar infection, trans changes are predominant. The prevalence of either cis or trans effects can be
reasonably justified in our system, but we did not anticipate that the proportion of these effects would be
infection specific. Because changes in trans factors have pleiotropic effects, it has been suggested that
changes to these factors are under more selective constraint than cis-acting elements, and, thus, cis
effects can more readily introduce small-scale variation into a system (Schaefke et al., 2013). In some
cases, however, arriving at a more fit phenotype may require the coordinated alteration of expression of
many genes, which may be more readily achieved by changes to trans-acting factors. In our D.
melanogaster lines, S. marcescens is more virulent than E. faecalis — a higher dose of E. faecalis is
needed to achieve similar levels of mortality to that of S. marcescens (Supplemental Figure S1). It is
possible that adaptation to highly virulent pathogens or rapidly evolving pathogens requires large-scale,
synchronous changes to expression, whereas adaptation to less virulent pathogens is possible with
smaller, localized mutations. Experiments with a wider range of pathogens, particularly those that trigger
the same signaling pathway, will further illuminate the relationship between the mode of expression
divergence and the host-pathogen relationship. In addition, expansion of the study to more D.
melanogaster genotypes or to other time points will yield a more complete picture of the modes of
expression divergence in the immune response.

In summary, we find that the mode of expression divergence, as represented by the proportion of
cis and trans effects in a system, is condition-specific in the Drosophila melanogaster abdominal fat
body. This specificity may be a result of the distinct selective pressures that different host-pathogen
interactions exert on the D. melanogaster immune system. In the course of our study, we found several

candidate genes that may be the sources of the observed trans effects, which are most prominent in
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Smar infection. In the future, we can combine the data sets presented here with other types of functional
genomics experiments to identify the specific sequence changes that drive cis-acting divergence. Taken
together, these studies will provide a more comprehensive view of how regulation of expression in this

rapidly changing system is wired and evolves.

Methods

Animal genotypes, infection protocols, and survival analysis

The A4 and B6 D. melanogaster lines, SNP tables, and genomic reads were received from the Drosophila
Synthetic Population Resource (King et al., 2012). Flies were reared at 25°C on standard cornmeal fly
food (Brent and Oster 1974). For all RNA-seq experiments four-day-old males were infected with
approximately 15 nL of Aseo = 0.5 OD solution of either Enterococcus faecalis or Serratia marcescens via
microinjection, yielding an infection of ~10,000 CFUs/fly (Khalil et al., 2015). Survival and bacterial load
experiments were performed using a modified infection protocol (Supplemental Methods). Uninfected
controls were placed on a carbon dioxide pad for 6 minutes to mimic the effects of anesthesia used for
microinjection. Bacteria were grown in liquid culture on a shaker at 37°C overnight and then diluted
1:1000 in fresh media in the morning. Cultures were grown until exponential phase then pelleted down
and resuspended in PBS for OD measurement and injection. Injections took place between 3:00 and 5:00
pm to account for the impact of circadian rhythm on immune response (Scheiermann et al., 2013).

To determine the number of unique SNPs between A4 and B6, we downloaded published SNP
tables from the DSPR website (King et al., 2012). We selected SNPs that were not shared between lines
and that also showed a reference allele frequency of < 0.05 . We then calculated total SNP differences for
exonic and non-exonic regions using exon coordinates from FlyBase (dm6/iso-1: FB2019_01) (Thurmond
et al., 2019).

Preparation and sequencing of RNA-seq libraries
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For sequencing experiments abdominal filets with the attached fat bodies were prepared as in (Krupp
and Levine et al., 2010) 3 hours post infection. Three fat bodies per sample were suspended in TRIzol on
ice (Life Technologies) and immediately stored at -80°C for later extraction (Kono et al., 2016). To mitigate
the impact of batch effects, injections and RNA extractions were done in groupings of 6-8 samples, with
at least two treatment conditions and two genotypes (A4, B6, A4B6 or B6A4) represented in each batch.
A minimum of three biological replicates were collected for each treatment condition/genotype
combination. Both the order of treatment and the order of RNA extraction was randomized for each
batch. RNA was extracted using Zymo Research Direct-zol RNA Extraction Kits. Library construction was
completed protocol outlined in (Serra et al., 2018). Samples were then sequenced on lllumina NextSeq
Platform with NextSeq 500/550 High Output Kit v2.5 to generate 43bp paired end reads. Data was
imported to the UCI High Performance Computational Cluster for trimming and mapping of sequenced
reads.

Differential expression analysis

Reads were trimmed and filtered using Trimmomatic 0.35 (Bolger et al., 2014), specifying the parameters
ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:6 SLIDINGWINDOW:4:15 MINLEN:30. Count and TPM
data for each sample was then calculated using Salmon 0.12.0 aligner (Patro et al., 2017) using the
dmé6/iso-1 transcriptome and the parameters -I A --validateMappings. Count matrices of gene-level data
were then constructed in R using the Tximport 1.12.3 package (Soneson et al., 2015). To find genes
either differentially expressed in response to each infection, compared to control, or differentially
expressed between genotypes, we used the edgeR 3.26.5 package (Robinson et al., 2010, McCarthy
et al., 2012). For this analysis we excluded lowly expressed genes (CPM<1), accounted for extraction
batch in our model, and corrected p-values with false discovery rate (Benjamini and Yekutieli et al., 2001).
Genes with an FDR < 0.05 were considered differentially expressed. Additionally, we assessed the

potential effect of absolute expression on our ability to call genotype effects, and we did not find any
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significant sources of bias (Supplemental Figure S5). Code and accompanying files related to this section
are in Supplemental Code as both R-notebooks and HTML documents (Script1_fig1).

Generation of A4 and B6 transcriptome annotations

To map RNA-seq reads in an allele-specific manner, we created two reference transcriptomes by lifting
over iso-1 genome annotations to sequenced A4 and B6 genomes. Using the UCSC liftOver suite,
custom chain files were created by mapping iso-1 homologous sequences to the A4 or B6 genome using
BLAT (parameters -tileSize=12 -minScore=100 -minldentity=98 )(Salinas et al., 2016). A subset of 7654
high confidence genes were used for the subsequent analysis (Supplemental Methods)

Allele-specific expression analysis

RNA reads were assigned parental alleles using Allele Specific Alignment Pipeline (Krueger,

https://www.bioinformatics.babraham.ac.uk/projects/ASAP/) using the A4 and B6 genomes and allowing

for no mismatches. Non-uniquely assignable reads were discarded. Count and TPM data were then
generated by aligning allelic reads to the corresponding transcriptome. Count matrices of gene-level data
were then constructed in R using the Tximport 1.12.3 package (Soneson et al., 2015).

To characterize expression divergence into cis and trans categories, differential expression was
determined with unparsed parental reads and allele-specific reads from the F1 hybrids, using edgeR and
three distinct GLM structures. Lowly expressed genes (CPM<1) and X Chromosome genes were
excluded from the analysis. For each condition, we first tested for differential gene expression between
parental samples ( Murad et al., 2019). Next, we tested for allelic imbalance, taking into account parent of
origin and maternal genotype effects as outlined in (Osada et al., 2017; Takada et al., 2017). For this test
we used half of the F1 hybrid samples. Finally, we tested for trans effects using parental samples and the
remaining F1 hybrid samples (J. Coolon pers. comm., Supplemental_Code: Script2_fig2.rmd Section 4).
In all three tests, we assigned significance after adjusted p-values for multiple comparisons using the
False Discovery Rate method (Benjamini and Yekutieli et al., 2001). Using the results from each test, we

categorized each gene into one of five classes using the logic outlined in Table 2, which is based on
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previous studies (Emerson and Li 2010, McManus et al., 2010). Any genes that did not fit into the
described patterns were categorized as “undetermined” and were excluded from further analysis. A
complete list of genes and their categories for each condition is available in the Supplemental Data S1.
Code and accompanying files related to this section are available Supplemental Code as both R-
notebook and HTML document form (Script2_fig2).

Identification of sources of trans effects

To investigate potential sources of observed trans effects, we looked for genes differentially expressed in
uninfected samples. We selected genes that show differential expression between A4 and B6 in
uninfected samples. These genes were then intersected with a list of known Drosophila transcription
factors as well as known immune genes (De Gregorio et al., 2001; Lemaitre and Hoffman 2007;
Hammonds et al., 2013, Troha et al., 2018). Only genes that were transcription factors, immune detection
genes, or immune signaling genes were considered to be candidates.

Analysis of SNPs in coding sequences

To better understand the effects of sequence changes on coding regions between our lines we used the
Ensembl Variant Effect Predictor Tool (VEP) to predict the effects of SNPs on the resulting amino acid
sequence (McLaren et al., 2016). The fat body expressed gene set consists of genes expressed in the
unstimulated fat body above a CPM of 1 and excludes genes differentially expressed in response to
infection. DE infeciton genes are those differentially expressed in response to infection with either Efae or
Smar. DE immune genes are those differentially expressed genes that are also previously verified immune
response genes, and non-DE immune genes are previously-verified immune genes in the fat body
expression gene set. Unless otherwise stated, figures were generated using ggplot2 3.3.2 package
iNR 3.6.0 (Wickham 2016, R Core Team 2019). Code and accompanying files related to this section
are available in Supplemental Code as both R-notebook and HTML document form (Script3_figure3).

Analysis of transcription factor binding site variation
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To investigate the effects of noncoding sequence changes on observed expression divergence, we
identified differences in TFBS in potential cis elements of genes showing evidence of expression
divergence. We selected 1kb regions upstream of the transcription start site of genes showing cis or
trans effects in response to infection (421 genes). TFBS for these regions were passed through the tool
for Finding Individual Motif Occurrences (FIMO) from the MEME suite (v 5.1.0 ) at p-value thresholds of
either p =0.001, or p =0.0001 and using default parameters (Bailey et al., 2009). MEME motif files were
generated using the sites2meme utility and TFBS sequences from OnTheFly (Shazman et al., 2014).
Binding site data was downloaded into R 3. 6.0 for analysis and plotting (R core Team 2019). Binding
sites with a p-value < .001 were considered in downstream analysis. This threshold was selected based
on the ability to call a majority of previously identified Rel and Srp binding sites in four immune
responsive enhancers (Senger et al 2004, Supplemental Table S5). For comparison, we categorized
genes into two groups cis genes or trans genes. Cis genes were defined as genes showing any cis effect
(cis-only, cis + trans and compensatory categories) in response to either infection (219 genes). Trans
genes were defined and genes that showed trans-only effects and no other effects in response to either
infection (199 genes). Genes showing any combination of trans-only and any cis effects were excluded
from this analysis (3 genes). Differences in the number of TFBS were calculated by subtracting the
number of TFBS for each gene’s upstream region in B6 from A4, for all TFs combined as well as for each
TF separately. We tested for significance in the distribution of these TFBS differences between the cis
and trans affected genes using an F test for variance with the R 3.6.0 function var.test. We also repeated
this analysis using the TFBS score instead of number, and the results mirrored those found for the TFBS
number (Supplemental Figure S4). Code and accompanying files related to this section can be found in

Supplemental Code as both R-notebooks and HTML document form (Script4_fig4).

Description of statistical tests
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p-values for all single and multiple proportion comparisons were calculated using the R 3.6.0 prop.test
function which performs a Chi-square test with Yate's continuity correction. For data where more than
one statistical test was performed on the same set of data, p-values were Bonferroni corrected for

familywise type | error by multiplying the p-value by the number of tests performed.

Data Access
All raw and processed sequencing data generated in this study have been submitted to the NCBI Gene

Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE155033.
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Table 1
FB Gene Gene Type Log More A4 B6 Immune involvement
ID Symbol Fold Highly | Average | Average
Change | Expres | CPM CPM
(B6/A4) | sedin:
FBgn0029 | CG12236 TF -3.13 A4 28 2.7 Unclear
822
FBgn0039 | CG4393 | Signalin 2.06 B6 8.8 39 Unclear
075 g
FBgn0038 | tHMGT1 TF 3.06 B6 7 57 Unclear
978
FBgn0287 esg TF -3.27 Ad 11 1 Unclear
768
FBgn0039 fuss TF 2.50 B6 1.1 6.3 Wound healing
932
FBgn0250 gfzf TF 8.24 B6 0 2 Unclear
732
FBgn0000 Hr3 TF -4.12 A4 10 0.7 Unclear
448
FBgn0016 | Lectin- | Detectio 2.72 B6 79 570 Binding and agglutination
675 galC1 n
FBgn0035 | Nf-YA TF -10.16 A4 10 0 Unclear
993
FBgn0028 | NimB4 | Detectio | -1.08 A4 40 22 Phagocytosis and microbial
542 n pattern recognition
FBgn0259 | NimC1 | Detectio | -3.06 A4 97 27 Phagocytosis and microbial
896 n pattern recognition
FBgn0003 Poxn TF -4.38 Ad 1.2 0.07 Unclear
130
FBgn0014 Sr-ClI Detectio | -2.39 A4 84 38.6 Phagocytosis and microbial
033 n pattern recognition
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FBgn0004 zfh1 Signalin 1.77 B6 50 17 Hematopoiesis
606 g/TF
FBgn0031 | Spn28Dc | Signalin 2.56 B6 9.4 24 Negative regulator of
973 g melanization
FBgn0037 | PGRP- | Detectio | 4.536 B6 111.9 75.2 Negative regulator of IMD
906 LB n pathway
FBgn0043 | PGRP- | Detectio | -5.57 Ad 4.3 6.8 Negative regulator of IMD
576 SC1a n pathway
FBgn0033 | PGRP- | Detectio | -5.24 A4 3.9 0.2 Negative regulator of IMD
327 SC1b n pathway
FBgn0043 | PGRP- | Detectio | -4.02 Ad 15 1.3 Negative regulator of IMD
575 SC2 n pathway
FBgn0035 | PGRP- | Detectio 4.25 B6 97.6 19.2 Positive regulator of IMD
806 SD n pathway
FBgn0039 SPE Signalin 2.41 B6 491.9 255.2 Positive regulator of Toll
102 g pathway
FBgn0003 spz Signalin 0.68 B6 72.8 45.5 Positive regulator of Toll
495 g pathway
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Table 2
Category Differential gene F1 allelic imbalance Trans test
expression in parents

cis only True True False

trans only True False True

cis + trans True True True

Compensatory False True True

Conserved False False False
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Figure 1. The A4 and B6 D. melanogaster lines have variation in their response to Gram-positive E.
faecalis infection and Gram-negative S. marcescens

A) We measured expression in the fat bodies of the A4 and B6 lines infected with Gram-positive
Enterococcus faecalis (Efae) or with Gram-negative Serratia marcescens (Smar), 3 hours post-infection.
We found 1165 and 1205 differentially expressed in response to infection to Efae and Smar respectively,
relative to control samples. Mean centered log. average CPM values for each condition are displayed.
We categorized the infection responsive genes into four groups, based on their differential expression
between the two fly genotypes: genes showing no genotype-specific expression (Group 1), genes
showing genotype-specific expression only in the control condition (Group 2), genes showing genotype-
specific expression only in the infected condition (Group 3) and genes showing genotype-specific
expression in both control and infected conditions (Group 4). B) Among genes showing genotype effects,
the majority of genes in Efae fell into the Group 2 classification, indicating a large amount of genotype-
specific expression variation is revealed upon infection with Efae. Among Smar-responsive genes,
roughly equal numbers show expression differences between the genotypes before (Group 2), after
(Group 3), and both before and after infection (Group 4). C) We intersected the genes we identified as
differentially expressed in response to infection and a list of previously published immune responsive
genes. More than half of the verified immune genes were identified as differentially expressed in the
abdominal fat body, with half of these immune genes being shared between conditions. Among these
previously identified immune genes, core genes are differentially expressed across all infections. We
detected roughly 40% of the core set as differentially expressed in both our infection conditions, despite
differences in the genetic background, tissue type, and time point used in our study versus previous
work.

Figure 2. The relative contributions of cis and trans effects to expression divergence are condition
specific.

A) Here we show a schematic of the expected locations for genes falling into four classifications of
causes of expression divergence in plots that show the expression ratio of a gene in the parental lines (x-
axis) against the allele expression ratio in the F1 hybrids (y-axis). B) In the uninfected control condition, of
4960 genes that could be detected in an allele-specific manner, 153 genes showed cis or trans signal. Of
these 153 genes, most showed cis-acting effects. Panel F) displays the precise numbers of genes in each
category. C) In response to Efae infection, expression divergence is driven predominantly by changes in
cis. D) In response to Smar infection, expression divergence is dominated by changes in trans. E) We
compared the fraction of genes categorized into each divergence class in the three conditions and found
that the modes of expression divergence were condition-specific.

Figure 3: There is a greater proportion of nonsynonymous SNPs in previously identified immune-
responsive genes.

A) To look for the prevalence of nonsynonymous SNPs in our genotypes and genes of interest, we
defined four gene sets. Among genes detected in the fat body samples, we separated genes into those
that were differentially expressed in response to either infection (DE infection) and those that were not (fat
body detected). Within the fat body detected genes, we defined previously identified immune genes
showing no differential expression in response to infection (Non-DE Immune), and among the DE
infection genes, we refined the gene list to include previously identified immune genes (DE immune). The
numbers indicate the total number of SNPs found in each gene set and the percentages of synonymous
and nonsynonymous SNPs. B) DE immune genes have a higher proportion of nonsynonymous SNPs than
the fat body expressed genes, which suggests they may carry function-altering SNPs at a higher rate
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than the fat body expressed genes. p-values are Bonferroni-corrected from Chi-square tests with the
proportion of nonsynonymous SNPS relative to the fat body expressed gene set.

Figure 4: There are greater differences in TFBS in cis affected genes than trans affected genes.

A) We identified TFBS for 4 immune responsive transcription factors DI, Rel, Srp and CrebA in 1kb region
upstream of 219 cis-affected genes and 199 trans-affected genes. Differences in total TFBS numbers
between genotypes were calculated for each gene and plotted. We find that variance in the distribution of
these differences is significantly greater in genes showing cis effects (F-test to compare distribution
variances, Bonferoni corrected). B) For DI TFBS, there was not a a significant difference in the width of
the TFBS distribution between genes showing cis effects and trans effects. C-E) For Rel, Srp and CrebA
TFBS, there was a broader distribution of TFBS differences in genes with cis effects than genes with
trans effects. F) A larger proportion of genes showing cis effects had a differences in total TFBS than
genes showing trans effects, though the differences in these proportions were not significant.

Table 1: Transcription factors and immune genes identified as potential sources of trans effects in
infection.

List of genes potentially driving the trans effects for Efae and Smar infection. Candidate genes were
identified by finding genes that had genotype-specific expression differences in the uninfected control
conditions and that were classified as either a transcription factor, immune signaling gene, or immune
detection gene.

Table 2: Logic for cis and trans effect gene categories.
Genes were designated into categories based on the results of three statistical tests. Here, 'True'
indicates a significant test result at FDR < 0.05 and 'False' indicates an insignificant test result.
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Supplemental Methods

Survival and Bacterial load tracking of A4 and B6 lines.

To more effectively ascertain differences in survival, we used lower doses of bacteria for the survival
analysis than for the RNA-seq analysis (5,000 CFUs of E. faecalis or 1,000 CFUs of S. marcescens). Once
per day following infection, the survival status of the flies was recorded and the bacterial load was
measured via dilution plating of a live flies as in (Khalil et al., 2015; Supplemental Figure S1). Kaplan-Meier
estimates of survival were calculated using the survival 3.2-3 package in R (Therneau et al., 2000;
Therneau et al.,2020), and log-rank tests and plotting were performed using the survminer 0.4.4

package (Kassambara and Kosinski 2019).

Filtering low confidence annotations from A4 and B6 transcriptome annotations.

To assess the quality of our annotations and remove genes with poor annotations, genomic sequencing
reads for A4 and B6 from the DSPR website were downloaded and aligned to our transcriptome files using
Salmon 0.12.0 aligner (Thurmond et al., 2019). We hypothesized that well-annotated genes would show
similar coverage of genomic reads in both the A4 and B6 transcriptomes. We then filtered genes using two
methods for outlier calling: a Poisson distribution-based method and a negative binomial generalized linear
model (GLM) method, similar to that used for differential gene expression in RNA-seq experiments. For the
Poisson method, we fitted a Poisson distribution to gene count data for the A4 and B6 transcriptomes
separately, using the fitdistributionplus 1.0-14 package in R and called outlier genes using three
thresholds of increasing stringency p = 0.001, 0.01 and 0.025 (Delignette-Muller & Dutang 2015). For the
GLM-based approach, we looked for gene counts that were significantly different between the A4 and B6
transcriptomes and filtered genes using FDR thresholds of 0.01, 0.05 and 0.09. As our threshold for
significance became more stringent, we filtered out an increasing number of genes but the differences
between the final filtered sets show about a 3% difference in terms of total genes and less than 1%

difference in genes shown to be differentially expressed (Supplemental Figure S2). Genes found not to be



outliers in either the Poisson or GLM method were then combined into gene sets based on the stringency of
filtering. These gene sets were then used to quantify cis and trans effects for all three conditions. We found
that the stringency of filtering did not significantly impact the total number or proportions of cis and trans
effects between conditions. For the allele-specific expression analysis presented in Figure 3, we used a set

of genes filtered using a combination of both methods at medium stringency.

Assessing accuracy of ASAP allele calling using X Chromosome reads.

To verify the accuracy of our quantification allelic expression in F1 hybrids, we used the RNA-seq data from

the A4 and B6 parental lines and data from the F1 hybrids (A4 J3'x B6%) and reciprocal crosses (B63F x A4%),

in the control, Efae-infected, and Smar-infected conditions. Since we are using males, if our allele-specific
expression analysis is correct, none of the X Chromosome reads should map to the paternal genotype.
Using the published A4 and B6 genomes and the Allele-Specific Alignment Pipeline (ASAP) (Krueger,

https://www.bioinformatics.babraham.ac.uk/projects/ASAP/), we quantified the fraction of X Chromosome

reads that incorrectly map to the paternal genotype. On average, samples had 0.5% mis-assigned reads
(standard deviation = 3%), with the highest fraction being 1.2% (Supplemental Table S1). The consistent,
low level of mis-assigned reads verifies our ability to accurately quantify allelic expression.

Given that all the flies are male, any reads aligning to the paternal X Chromosome can definitively be

classified as mis-assigned.
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Supplemental Figure S1: A4 and B6 lines show differences in survival in response to Gram-positive
but not Gram-negative infection.

A) Survival curves and confidence intervals for flies infected with an average 1000 CFUs of S. marcescens,
observed once per day. P-value was calculated using a log-rank test. B6 flies survive Efae infection for
longer than the A4 flies. B) Survival curves and confidence intervals for flies infected with approximately
5000 CFUs of E. faecalis, observed once per day. P-value was calculated using a log-rank test. There is no
significant difference in infection survival between the two genotypes. C) Bacterial load of A4 and B6 lines in
response to S. marcescens infection, assessed by dilution plating of homogenized infected flies. Points
represent a single animal’s bacterial load measurement (an average of three technical replicates per animal),
and solid lines indicate the median values of bacterial load for each day. Though the flies do not show a
significant difference in survival, it appears that A4 shows greater resistance to Smar, while B6 shows
greater tolerance of the infection. D) Table showing sample sizes for the results depicted in this figure.
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Supplemental Figure S2: Differences in assembly quality minimally affect cis and trans effects in
downstream analysis.
To quantify the effects of assembly quality of on cis and trans effects, we filtered out genes with poor
annotations at increasingly restrictive thresholds and quantified differences in cis and trans effects
(Supplemental Table S2). We identified potentially problematic genes by aligning A4 and B6 genomic reads
to their respective transcriptomes. We posited that each gene of the lifted over transcriptome should
receive roughly the same amount of coverage once normalized for gene length and that genes deviating
from this coverage were poorly annotated. We used two methods for calling outlier genes: a Poisson

distribution-based method and a GLM based method (see Methods for details). A) Here we report the non-
outlier (retained) gene numbers for different methods and degrees of stringency. The gene numbers do not
decrease rapidly with increasing stringency. B-D) These graphs plot the gene counts in transcripts per
million (TPM) using the A4 and B6 genomic reads mapped to their respective transcriptomes. Outlier genes
are shown in teal and retained genes are shown in pink. The quantification of cis and trans effects for these
different gene sets are shown in Supplemental Table S2.
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Supplemental Figure S3: Most nonsynonymous mutations have non-negative BLOSUMG62 scores.

As a coarse-grained approximation of the effects of non-synonymous changes on protein function, we
analyzed the distribution of BLOSUMG62 scores for the four gene sets described. The BLOSUMG62 score is a
homology-based metric that describes the likelihood of a particular residue change, positive numbers
indicate frequently observed changes, while negative numbers indicate rare amino acid substitution
(Pearson 2013). For all gene sets, non-negative scores dominate, with 67% for fat body detected, 67 % for
DE infected, and 71% for DE immune, 55% Non-DE immune. This suggests that there are some
nonsynonymous mutations that may alter protein function, but the fraction of these disruptive mutations
does not significantly differ between gene sets.
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A) We quantified TFBS score for four immune responsive transcription factors: DI, Rel, Srp and CrebA in
1kb region upstream of 219 cis affected genes and 199 trans affected genes. The differences in total TFBS
score in the B6 and A4 upstream regions were calculated for each gene. We find that variance in the

distribution of these differences is greater in genes showing cis effects (F-test to compare distribution
variances, Bonferoni corrected). We then looked at the distribution of these differences for each of the four
transcription factors separately. B-C) The variances in the score difference distributions for DI and Rel were
not significantly different between genes showing cis effects and trans effects. D-E) The variances of the
score differnt distributions for Srp and CrebA are significantly differet between genes showing cis effects
and trans effects. F) A higher fraction of genes showing cis effects had differences in total TFBS score than
genes showing trans effects, though these fractions were not significantly different.
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Supplemental Figure S5: Average CPM for genes across different identified gene groups.

A) To determine if absolute expression between immune stimulated and control samples may be biasing our
ability to detect genotype-specific effects, we looked at average CPM values for differentially expressed
genes in both infection conditions. Specifically, we wanted to ensure that we were not finding more
expression divergence effects in the infected samples because genes have higher expression in response
to infection than in the control condition. The expression levels of differentially expressed genes in Efae
(1165 genes) and Smar (1203 genes) conditions were compared to the corresponding genes in the control
samples, E_CO2 and S_CO2 respectively (Supplemental Code, Script1_fig1). We performed two-sided
Wilcoxon rank-sum tests to compare average CPM values from immune stimulated samples to average
cpm values of the corresponding genes in the control conditions. Using a p-value threshold of p=0.05 we
found no significant differences in average CPM of infection-responsive genes between treated samples
and untreated controls (two-sample Wilcoxon rank sum test, Bonferroni corrected). B) Here we show
average CPM values for each of the four gene groups showing different genotype effects in response to
Efae infection (as shown in Figure 1). We do not observe a significantly different average CPM between
treated and control conditions (two-sample Wilcoxon rank sum test, Bonferroni corrected). C) Here we show
average CPM values for the four gene groups showing different genotype effects in response to Smar
infections (as shown in Figure 1). No group shows significance in average CPM value between the treated
and control samples (two sample Wilcoxon rank sum test, Bonferroni corrected).



Supplemental Table S1: Sample read numbers and alignment statistic.
Sample treatment categories are uninfected (control), E. faecalis-infected (Efae) and S. marcescens-infected
(Smar). Genotype of samples are listed to indicate hybrid cross order: male genotype is listed first and
female genotype second. We also show counts of 43bp paired end reads for each sample before and after
alignment, percentages for A4 and B6 uniquely mapping reads, and percentages of mis-assigned X
Chromosome reads (total mis-assigned X Chromosome reads over total X Chromosome genotype-specific

10

reads).
Sample | Treatment | Genotype Total Mapped % % % Mis-assigned to X
SIQ Reads Reads Uniquely Uniquely Chromosome
Aligned to | Aligned to
A4 B6
1 control A4 26369673 | 24364366 9.4 0.1 0.3
2 control A4 14870917 | 13878016 9.5 0.1 0.3
3 control A4 18732323 | 17558251 9.4 0.1 0.3
4 control A4 34580046 | 32442180 10.3 0.1 0.4
5 control A4B6 41318671 | 19649962 5.4 6.4 0.6
6 control A4B6 41205951 | 19378946 5.6 6.6 0.6
7 control A4B6 53666239 | 50178799 4.6 55 0.8
8 control A4B6 82417525 | 65605513 5.7 6.4 0.6
9 control B6 17980721 | 16879587 0.4 10.2 0.6
10 control B6 19997738 | 18798790 0.4 8.7 0.8
11 control B6 19129651 | 17946593 0.4 10.4 0.8
12 control B6 24984658 | 23547941 0.3 9.1 1.0
13 control B6A4 53543764 | 10893030 6.0 4.5 0.3
14 control B6A4 47079732 | 24895491 6.7 5.0 0.3
15 control B6A4 47509119 | 21329979 6.3 4.7 0.3
16 control B6A4 49562943 | 46726476 6.0 4.6 0.3
17 Efae A4 11521847 | 10597039 10.9 0.0 0.4
18 Efae A4 26211400 | 24598530 12.2 0.1 0.4
19 Efae A4 16272150 | 15204121 12.0 0.0 0.3
20 Efae A4 24759445 | 23361494 11.0 0.1 0.3
21 Efae A4B6 36234287 | 33302637 5.4 6.0 0.9
22 Efae A4B6 54770680 | 51649242 6.0 6.7 0.5
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23 Efae A4B6 37724992 | 35152256 5.5 6.0 0.7
24 Efae A4B6 52373459 | 49185996 7.4 8.0 0.4
25 Efae B6 20269632 | 18651459 0.2 104 1.1
26 Efae B6 22075327 | 20668129 0.3 11.9 0.5
27 Efae B6 28118298 | 26565158 0.3 9.2 1.2
28 Efae B6 28488360 | 26831112 0.3 12.7 0.6
29 Efae B6A4 43346696 | 39878989 5.9 4.8 0.4
30 Efae B6A4 50841666 | 47062579 6.6 5.2 0.3
31 Efae B6A4 45437286 | 42562754 6.2 4.9 0.3
32 Efae B6A4 62113778 | 57926378 6.6 5.2 0.3
33 Smar A4 20932070 | 19569646 10.7 0.1 0.3
34 Smar A4 22220731 20314035 7.7 0.1 0.3
35 Smar A4 13096294 | 12215786 11.5 0.1 0.3
36 Smar A4 19474264 | 17939316 10.8 0.0 0.3
37 Smar A4B6 46702136 | 13363924 5.2 6.3 0.6
38 Smar A4B6 42722535 | 19500222 6.1 6.7 0.5
39 Smar A4B6 70196188 | 17932361 6.0 6.8 0.5
40 Smar A4B6 49839957 | 22491147 5.7 6.5 0.5
41 Smar A4B6 48904532 | 45834532 6.3 6.7 0.5
42 Smar B6 9730094 9132793 0.4 104 0.5
43 Smar B6 11254219 | 10569215 0.4 11.7 0.4
44 Smar B6 16858117 | 15638969 0.2 10.3 0.8
45 Smar B6A4 45215266 8235284 6.4 4.8 0.2
46 Smar B6A4 70994061 11427623 6.0 4.7 0.3
47 Smar B6A4 54223062 | 50351817 6.8 5.4 0.4
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Supplemental Table S2: Increased stringency of problematic gene filtering minimally impacts overall
number of cis and trans effects.

For each treatment, using sets of genes filtered at various levels of stringency, we quantified the number of
genes falling into each of the cis and trans categories. We found that within treatment conditions the
number and proportions of genes did not greatly differ as we increased the stringency of filtering.

Stringency | Treatment | Cis- Trans- | Cis + | Compensatory | Conserved | Undetermined
only only Trans genes genes genes
genes | genes | genes
Poisson Control 86 16 11 38 3808 1001
Med
Combined Control 89 16 10 46 3989 1046
Low
Combined Control 86 16 11 38 3808 1001
Med
Combined Control 86 15 13 35 3688 962
High
Poisson Efae 169 73 8 6 2586 1993
Med
Combined Efae 177 75 8 5 2734 2064
Low
Combined Efae 169 73 8 6 2586 1993
Med
Combined Efae 165 77 8 8 2488 1929
High
Poisson Smar 72 144 6 18 4107 496
Med
Combined Smar 77 153 6 15 4319 500
Low
Combined Smar 72 144 6 18 4107 496
Med
Combined Smar 69 139 7 19 3965 485
High
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Supplemental Table S3: Sequence changes in the list of candidate genes identified as being potential
sources of trans effects.
Of the 46 SNPs falling into the coding regions of 22 genes identified as potential trans sources, 37 SNPs
resulted in amino acid substitutions in 12 genes. Roughly 20% (8 SNPs) of these SNPs fell into the
phagocytic gene NimC1 alone. In all cases, the majority of affected protein domains were in unnamed
domains. Of the 5 PGRPs, only 2 (SC2 and SD) were found to carry mutations that resulted in coding region
substitutions. These mutations fell into a transmembrane helix domain for PGRP-SC2 but in an unknown
domain for PGRP-SD. Additionally we found 5 missense mutations in Spaetzle processing enzyme and a
single mutation in Spaetzle, though in both cases these mutations fell on unnamed protein domains. This
underscores the large gap in our understanding of many of the domains important in the function of innate
immunity genes and may serve as potential points of interest for future investigation.

Location | Allele Gene Gene Feature CDS Protein | Amino | Codons | BLOSUM®62
Symbol position | position | acids
2L:4122 T Sr-Cl FBgn00 | FBtr034 526 176 H/Y | Cac/Tac 2
351 14033 6582
2L:4122 C Sr-Cl FBgn00 | FBtr007 947 316 S/T aGc/aC 1
897 14033 7467 o}
2L:4123 T Sr-Cl FBgn00 | FBtr034 1406 469 K/M | aAg/aTg -1
356 14033 6582
2L.:8005 A Spn28Dc | FBgn0OO | FBtr0O07 763 255 A/S Geg/Tc 1
499 31973 9549 g
2L:8005 G Spn28Dc | FBgn00 | FBtr007 739 247 I/L Att/Ctt 2
523 31973 9549
2L:8005 G Spn28Dc | FBgn00 | FBtr007 713 238 V/A | gTc/gCc 0
549 31973 9549
2L:8006 A Spn28Dc | FBgn00 | FBtr007 682 228 T/S | Aca/Tca 1
451 31973 9549
2L.:8006 C Spn28Dc | FBgn00 | FBtr007 269 90 N/S aAc/aG 1
864 31973 9549 c
2L:1396 C NimB4 FBgn00 | FBtr008 832 278 T/A Acc/Gc 0
8919 28542 0617 o}
2L:1397 G NimC1 FBgn02 | FBtr008 1787 596 I/T aTa/aCa -1
4306 59896 0615
2L:1397 T NimC1 FBgn02 | FBtr034 1409 470 P/H cCt/cAt -2
4690 59896 3644
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2L:1397 NimC1 FBgn02 | FBtr008 | 1390 464 S/P | Tca/Cca -1
4703 59896 0615

2L:1397 NimC1 FBgn02 | FBtr008 730 244 V/M | Gtg/Atg 1
5363 59896 0615

2L:1397 NimC1 FBgn02 | FBtr008 713 238 G/D | gGc/gA -1
5380 59896 0615 c

2L:1397 NimC1 FBgn02 | FBtr008 578 193 V/A | gTc/gCc 0
5515 59896 0615

2L:1397 NimC1 FBgn02 | FBtr008 358 120 G/S | Ggc/Ag 0
5735 59896 0615 c

2L:1397 NimC1 FBgn02 | FBtr034 40 14 S/A | Tca/Gca 1
6157 59896 3644

2R:8717 PGRP- FBgn00 | FBtr008 70 24 Y Atc/Gtc 3
036 SC2 43575 8709

2R:1020 Hr3 FBgn00 | FBtr033 | 1570 524 P/A | Cca/Gc -1
7902 00448 0609 a

2R:1023 Hr3 FBgn00 | FBtr045 439 147 S/T | Tcg/Acg 1
2873 00448 2140

2R:1023 Hr3 FBgn00 | FBtrO11 23 8 N/T | aAc/aCc 0
7018 00448 2799

3L:7651 PGRP-SD | FBgn00 | FBtr007 548 183 S/F | tCc/tTc -2
752 35806 6807

3L:9441 Nf-YA FBgn00 | FBtr007 17 6 S/l | aGc/aTc -2
876 35993 6504

3R:7148 gfzf FBgn02 | FBtr033 | 1480 494 H/D | Cac/Ga -1
618 50732 4671 c

3R:7150 ofzf FBgn02 | FBtr009 10 4 P/S | Ccc/Tcc -1
621 50732 1512

3R:2337 CG4393 | FBgn0O | FBtr033 | 3322 1108 L/I Tta/Ata 2
8558 39075 9617

3R:2337 CG4393 | FBgn00O | FBtr030 | 3313 1105 P/A | Cca/Gc -1
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8567 39075 1085 a

3R:2337 CG4393 | FBgn00O | FBtr033 | 3309 1103 E/D | gaG/ga 2
8571 39075 9616 T

3R:2337 CG4393 | FBgn00O | FBtr033 | 2375 792 Q/P | cAa/cCa -1
9640 39075 9617

3R:2337 CG4393 | FBgn0O | FBtr030 | 2374 792 Q/K | Caa/Aaa 1
9641 39075 1085

3R:2338 CG4393 | FBgn00 | FBtr030 548 183 T/N | aCc/aAc 0
1986 39075 1085

3R:2706 spz FBgn0O | FBtr008 199 67 T/P | Acc/Ccc -1
6830 03495 5137

3R:3077 zfh1 FBgn00 | FBtr033 232 78 Q/K | Cag/Aa 1
3707 04606 1180 g

3R:3077 zfh1 FBgn00 | FBtr008 386 129 K/M | aAg/aTg -1
4111 04606 5701

3R:3077 zfh1 FBgn00 | FBtr033 398 133 AN | gCc/gTc 0
4123 04606 1180

3R:3077 zfh1 FBgn00 | FBtr008 440 147 S/T | aGc/aC 1
4165 04606 5701 c

3R:3078 zfh1 FBgn0O | FBtrO08 | 2861 954 AN | gCg/gT 0
5831 04606 5701 g
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Supplemental Table S4: Domains associated with sequence changes in the list of candidate genes
identified as being potential sources of trans effects.
List of protein domains affected by sequence changes in exonic regions from Supplemental Table S3.

5

Location Allele | Gene Domains
Symbol

2L:4122351 | T Sr-Cl Gene3D:2.60.120.200,Pfam:PF00629,PROSITE_profiles:PS50060,PANTHER:PTHR2
3282,SMART:SM00137,Superfamily:SSF49899,CDD:cd06263

2L:4122897 | C Sr-Cl Gene3D:2.60.120.200,PANTHER:PTHR23282

21:4123356 | T Sr-Cl PANTHER:PTHR23282,MobiDB_lite:mobidb-lite,Low_complexity_(Seg):seg

2L:8005499 | A Spn28Dc | Gene3D:3.30.497.10,Pfam:PF00079,PANTHER:PTHR11461,PANTHER:PTHR11461:
SF281,SMART:SM00093,Superfamily:SSF56574,CDD:cd00172

2L:8005523 | G Spn28Dc | Gene3D:3.30.497.10,Pfam:PF00079,PANTHER:PTHR11461,PANTHER:PTHR11461:
SF281,SMART:SM00093,Superfamily:SSF56574,CDD:cd00172

2L:8005549 | G Spn28Dc | Gene3D:3.30.497.10,Pfam:PF00079,PANTHER:PTHR11461,PANTHER:PTHR11461:
SF281,SMART:SM00093,Superfamily:SSF56574,CDD:cd00172

2L:8006451 | A Spn28Dc | Gene3D:3.30.497.10,Pfam:PF00079,PANTHER:PTHR11461,PANTHER:PTHR11461:
SF281,SMART:SM00093,Superfamily:SSF56574,CDD:cd00172

2L:8006864 | C Spn28Dc | PANTHER:PTHR11461,PANTHER:PTHR11461:SF281,Superfamily:SSF56574

2L:1396891 | C NimB4 PANTHER:PTHR24047,Gene3D:2.10.25.10,SMART:SM00181

9

2L:1397430 | G NimC1 PANTHER:PTHR24047,PANTHER:PTHR24047:SF29, Transmembrane_helices: TMhel

6 ix

2L:1397469 | T NimC1 PANTHER:PTHR24047,PANTHER:PTHR24047:SF29

0

2L:1397470 | G NimC1 PANTHER:PTHR24047,PANTHER:PTHR24047:SF29

3

2L:1397536 | T NimC1 Gene3D:2.10.25.10,PANTHER:PTHR24047,PANTHER:PTHR24047:SF29,SMART:S

3 MO00181,Superfamily:SSF57184

2L:1397538 | T NimC1 Gene3D:2.10.25.10,PANTHER:PTHR24047,PANTHER:PTHR24047:SF29,SMART:S

0 MO00181,Superfamily:SSF57184

2L:1397551 | G NimC1 Gene3D:2.10.25.10,PANTHER:PTHR24047,PANTHER:PTHR24047:SF29,SMART:S

MO00181
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2L.:1397573 NimC1 Gene3D:2.10.25.10,PROSITE_patterns:PS00022,PANTHER:PTHR24047,PANTHER:

5 PTHR24047:SF29,SMART:SM00181

2L:1397615 NimC1 Cleavage_site_(Signalp):SignalP-noTM

7

2R:871703 PGRP- Gene3D:3.40.80.10,PIRSF:PIRSF037945,PANTHER:PTHR11022,SMART:SM00701,

6 Sc2 Superfamily:SSF55846, Transmembrane_helices: TMhelix

2R:102079 Hr3 Low_complexity_(Seg):seg

02

2R:102328 Hr3 -

73

2R:102370 Hr3 PANTHER:PTHR45805,PANTHER:PTHR45805:SF2

18

3L:7651752 PGRP- Gene3D:3.40.80.10,PIRSF:PIRSF037945,PANTHER:PTHR11022,PANTHER:PTHR11
SD 022:SF67,Superfamily:SSF55846

3L:9441876 Nf-YA -

3R:714861 gfzf PANTHER:PTHR43969,PANTHER:PTHR43969:SF7

8

3R:715062 gfzf PANTHER:PTHR43969,PANTHER:PTHR43969:SF7

y

3R:233785 CG4393 | PANTHER:PTHR24174,PANTHER:PTHR24174:SF1,MobiDB_lite:mobidb-lite

58

3R:233785 CG4393 | PANTHER:PTHR24174,PANTHER:PTHR24174:SF1,MobiDB_lite:mobidb-lite

67

3R:233785 CG4393 | PANTHER:PTHR24174,PANTHER:PTHR24174:SF1,MobiDB_lite:mobidb-lite

71

3R:233796 CG4393 | PANTHER:PTHR24174,PANTHER:PTHR24174:SF1,MobiDB_lite:mobidb-lite

40

3R:233796 CG4393 | PANTHER:PTHR24174,PANTHER:PTHR24174:SF1,MobiDB_lite:mobidb-lite

41

3R:233819 CG4393 | Gene3D:1.25.40.20,PROSITE_profiles:PS50297, PANTHER:PTHR24174,PANTHER:P

86 THR24174:SF1,Superfamily:SSF48403

3R:270668 spz PANTHER:PTHR23199,PANTHER:PTHR23199:SF4

30
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3R:307737 zfh1 Pfam:PF13912,PROSITE_patterns:PS00028,PROSITE_profiles:PS50157,PANTHER:
07 PTHR24391,PANTHER:PTHR24391:SF27,SMART:SM00355

3R:307741 zfth1 PANTHER:PTHR24391,PANTHER:PTHR24391:SF27,MobiDB_lite:mobidb-

11 lite,MobiDB_lite:mobidb-lite

3R:307741 zfth1 PANTHER:PTHR24391,PANTHER:PTHR24391:SF27,MobiDB_lite:mobidb-

23 lite,MobiDB_lite:mobidb-lite,Low_complexity_(Seg):seg

3R:307741 zfh1 PANTHER:PTHR24391,PANTHER:PTHR24391:SF27,MobiDB_lite:mobidb-

65 lite,MobiDB_lite:mobidb-lite,Low_complexity_(Seg):seg

3R:307858 zfth1 PANTHER:PTHR24391,PANTHER:PTHR24391:SF27

31
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Supplemental Table S5: Determination of ap-value threshold for transcription factor binding site
analysis

To determine an appropriate p-value threshold for identifying transcription factor binding sites (TFBS), we
tested FIMO'’s ability to detect previously identified Rel and Srp binding sites in the upstream regions of four
immune responsive genes. The Identified Rel sites and Identified Srp sites columns give the total identified
binding sites for the selected TF by the FIMO utility. The Matched Rel sites and Matched Srp sites columns
give the number of identified sites that match the previously described binding sites (Senger et al., 2004).
The Missing Rel sites and Missing Srp sites columns give the number of previously identified sites that were
not able to be detected by a given threshold. Based on this analysis, we used a p-value threshold of 0.001
for our TFBS analysis.

Genotype | P-value Identified | Matched | Missing Identified Matched Missing
threshold | Rel sites | Rel sites Rel sites Srp sites Srp sites Srp sites
A4 .001 26 10 1 13 7 0
A4 .0001 12 4 7 7 0 7
B6 .001 29 11 0 13 7 0
B6 .0001 12 4 7 7 0 7
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