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Abstract 

Transcription is controlled by interactions of cis-acting DNA elements with diffusible trans-acting factors. 

Changes in cis or trans factors can drive expression divergence within and between species, and their 

relative prevalence can reveal the evolutionary history and pressures that drive expression variation. 

Previous work delineating the mode of expression divergence in animals has largely used whole body 

expression measurements in one condition. Since cis-acting elements often drive expression in a subset 

of cell types or conditions, these measurements may not capture the complete contribution of cis-acting 

changes. Here, we quantify the mode of expression divergence in the Drosophila fat body, the primary 

immune organ, in several conditions, using two geographically distinct lines of D. melanogaster and their 

F1 hybrids. We measured expression in the absence of infection and in infections with Gram-negative S. 

marcescens or Gram-positive E. faecalis bacteria, which trigger the two primary signaling pathways in the 

Drosophila innate immune response. The mode of expression divergence strongly depends on the 

condition, with trans-acting effects dominating in response to Gram-positive infection and cis-acting 

effects dominating in Gram-negative and pre-infection conditions. Expression divergence in several 

receptor proteins may underlie the infection-specific trans effects. Before infection, when the fat body 

has a metabolic role, there are many compensatory effects, changes in cis and trans that counteract 

each other to maintain expression levels. This work demonstrates that within a single tissue, the mode of 

expression divergence varies between conditions and suggests that these differences reflect the diverse 

evolutionary histories of host-pathogen interactions.   
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Introduction 

Differences in gene expression are drivers of phenotypic divergence in closely related species (King and 

Wilson 1975). These expression differences can arise through sequence changes in cis-regulatory 

elements, such as enhancers, or in the coding regions of trans-acting factors, such as transcription 

factors. These two types of changes differ in their impact. Changes in cis are local, typically affecting the 

expression of one gene at a time, whereas changes in trans can be broad, affecting all downstream 

targets of a gene. The relative prevalence of each of these types of changes may give insight into how 

expression divergence arises in a particular setting: through the accumulation many fine-tuning cis-acting 

changes, by a smaller number of large impact trans-acting changes, or both. 

The prevalence and relative contributions of cis and trans changes are being explored in various 

model systems (Signor and Nuzhdin 2018). For example, within individual Drosophila melanogaster lines 

or between Drosophila species, the contributions of cis-acting changes generally increase with 

phylogenetic distance, and the precise balance of cis versus trans effects depends on the phylogenetic 

relationships and demographics of the genotypes being compared (Wittkopp et al., 2004, Wittkopp et al., 

2008, McManus et al., 2010, Coolon et al., 2014, Osada et al., 2017). These studies have elucidated the 

mode and tempo of the changes driving expression divergence; however, most studies use whole body 

measurements of expression, thus averaging signal across multiple tissues. Therefore, these studies 

cannot examine the prevalence of cis and trans changes in specific biological processes, which may be 

subject to different types of selection pressure. In addition, given that many cis-regulatory elements act in 

a tissue-specific manner, studies that measure cis and trans effects with tissue-specific resolution may 

reveal effects undetectable in heterogenous samples.  

 Drosophila have an innate, but not adaptative, immune response, and this response is a powerful 

system for measuring the contributions of cis and trans changes for several reasons. First, the immune 

response is inducible, with active and inactive states. This allows for the clear delineation of the 

transcriptional response of the immune system from that of other processes. Second, the fat body within 
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the immune system is an optimal tissue for study. Though other tissues participate in the immune system, 

the fat body is a primary driver of the humoral response (Buchon et al., 2014), and it is relatively easy to 

isolate. Lastly, there is ample variation in the resistance, survival, and transcriptional response to infection 

between individual D. melanogaster lines (Lazzaro et al., 2004, Lazzaro et al., 2006, Sackton et al., 2010, 

Hotson and Schneider 2015), suggesting there are many sequence changes driving these differences. 

To quantify changes in cis and trans that drive transcriptional divergence in the immune response, 

we use allele-specific expression analysis of RNA-seq data (Wittkopp et al. 2004, Signor and Nuzhdin 2018, 

Frochaux et al 2020). In this approach, we compare a gene’s expression levels in two parental lines to the 

expression levels of each parental allele in the resulting F1 hybrids. Differences in expression due to 

changes in cis, e.g. a sequence change in a promoter or enhancer, will only affect the expression of the 

corresponding parental allele. Thus, changes in cis are independent of cellular environment and will be 

observed as allelic imbalance between the parents that is maintained in the hybrids. Differences in trans, 

e.g. a coding sequence change in a transcription factor, will affect the expression of both alleles in the F1 

hybrids and thus will be observed as differential expression in the parental lines that is not maintained in 

the F1 hybrids. Combining allele-specific expression analysis analysis with RNA-seq allows us to determine 

the prevalence of cis and trans changes genome-wide. 

When comparing the innate immune response of different D. melanogaster lines, it is not clear 

whether cis or trans changes will dominate. Changes in cis generally affect a single gene’s expression and 

thus may be easily tolerated, as they only introduce small amounts of phenotypic variation. Changes in 

trans can affect the expression of many genes at once and efficiently introduce a large amount of 

phenotypic variation, but changes in trans may be harder for the organism to tolerate, as they also increase 

the likelihood of deleterious effects. However, the specific biology of the innate immune response may 

temper this expectation. Antimicrobial peptides (AMPs) are among the most highly up-regulated genes in 

response to infection, but the deletion of individual AMP genes often has little to no measurable effect on 

infection survival (Hanson et al., 2019). This suggests that to get an appreciable phenotypic effect, 
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synchronous changes in gene expression are required, which can result from a trans-acting change. In 

addition, within D. melanogaster lines, trans changes are typically more prevalent (Wittkopp et al., 2008, 

Coolon et al., 2014). In this setting, the observation of a large number of cis-acting changes would imply 

that immune-responsive expression divergence is achieved through the divergence of one gene at a time, 

suggesting a fine-tuning process. Conversely, a preponderance of trans-acting changes would imply that 

expression divergence is achieved through changes in upstream factors that can simultaneously modulate 

the expression of many target genes. 

To measure the contributions of cis and trans-acting changes in the Drosophila innate immune 

response, we measured fat body gene expression in two sequenced inbred D. melanogaster lines and their 

F1 hybrids, in control and infection conditions. To find signaling pathway-specific effects, we separately 

infected the animals with either Gram-positive Enterococcus faecalis or the Gram-negative Serratia 

marcescens. These bacteria have different strengths of virulence and separately trigger the two primary 

immune signaling pathways in the fly. We quantified the contribution of cis and trans effects in the control 

and in each infection condition. This approach enabled us to examine the evolutionary changes that drive 

expression divergence in response to a stimulus, while minimizing the confounding effects of multiple 

tissue types.  

 

Results 

Two geographically distinct lines show genotype-specific immune response      

To measure the relative contributions of cis- and trans-acting effects in the innate immune response, we 

needed two inbred, sequenced strains of D. melanogaster with abundant genetic variation and 

phenotypic differences in the immune response. The founder lines of the Drosophila Synthetic Population 

Resource fit these requirements, making them ideal candidates (King et al., 2012). To maximize the 

likelihood of finding variation in these lines, we selected two lines from different continents, the A4 line, 

also known as KSA2, collected from the Koriba Dam in South Africa, and the B6 line, collected from Ica, 



6 

Peru. Using the available SNP data, we found 462,548 SNPs between A4 and B6, with about half of them 

falling into exonic regions, indicating that 0.9% of exonic bases varied between the genotypes, with an 

average of 25.3 variants per gene. The extensive variation in the coding regions allowed us to map, on 

average, 11.2% (±1.3%) of RNA-seq reads in an allele-specific manner. 

To assess the divergence in the A4 and B6 immune responses, we measured gene expression 

pre- and post-infection in the abdominal fat body, the primary site of immune response. To do so, we 

performed RNA-seq on the dissected fat bodies of 4-day old males from both lines that had been 

infected with either Gram-positive Enterococcus faecalis (Efae) or Gram-negative Serratia marcescens 

(Smar). We selected these bacteria because in D. melanogaster, Gram-positive infections generally 

stimulate the Toll pathway, and Gram-negative infections generally stimulate the IMD pathway, though 

there is additional nuance due to signaling crosstalk and the contributions of other signaling pathways 

(Buchon et al., 2014; Busse et al., 2007; Lemaitre and Hoffmann 2007; Tanji et al., 2010; Troha et al., 

2018). We measured expression pre-infection and three hours post-infection, to capture the early 

transcriptional response prior to the complicating effects of feedback. As a control, we performed RNA-

seq on the fat bodies of uninfected, unwounded animals from each genotype (see Methods). This choice 

means that, when compared to the control, the expression response observed in the infected samples 

includes both wound healing and infection responses. 

In response to Efae infection, we found sizable genotype-specific effects in the immune response. 

To detect these effects, we performed two types of differential gene expression analysis: we compared 

control and infected samples to find Efae-responsive genes, and then within this group, we looked for 

genes differentially expressed between the A4 and B6 genotypes. We found 1165 differentially expressed 

genes between the control and infected samples regardless of genotype (Figure 1A). We categorized 

these Efae-responsive genes into four groups based on their differential expression between genotypes. 

Group 1 genes showed no genotype specific expression, Group 2 genes are differentially expressed only 

in the control samples, Group 3 genes are differentially expressed only in the infected samples, and 
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Group 4 genes are differentially expressed in both control and infected samples. Of the 500 Efae-

responsive genes showing genotype effects, 87% (433 genes) are in Group 3, while only 10 genes are in 

Group 1 and 57 genes in Group 4 (Figure 1B). This indicates that many Efae-responsive genes show 

genotype-specific expression, and these differences are typically only revealed in response to infection. 

In response to the Smar infection, we found 1203 differentially expressed genes between the 

control and infected samples (Figure 1A). To look for genotype-specific expression, we categorized the 

1203 Smar-responsive genes into the three previously mentioned groups. For this infection, we found 

roughly equal numbers of genes in Groups 2-4, with 88, 91, and 84 genes, respectively (Figure 1B). This 

indicates that a higher fraction of Smar-responsive genes show genotype effects prior to infection than 

Efae-responsive genes (p = 1.7 × 10-11, Chi-square test, Bonferroni corrected), while a higher fraction of 

Efae-responsive genes show genotype effects after infection (p = 9.5 × 10-67, Chi-square test, Bonferroni 

corrected). 

To assess whether there is also phenotypic divergence on the organismal level, we performed the 

Efae and Smar infections and measured survival and bacterial load. In response to Efae infection, we 

found differences in the ability to survive infection between genotypes, with B6 surviving infection longer 

than A4 (Supplemental Figure S1A). In response to Smar, we found there were no significant differences 

in survival, but bacterial load was lower in A4 than in B6 (Supplemental Figure S1B, S1C). Together, 

these data demonstrate that there are differences between the two lines in their ability to resist or survive 

infection.  

To compare our tissue-specific measurements to previous work, we intersected our Efae- and 

Smar-responsive genes to an existing list of immune-responsive genes. This list is an expanded version 

of the Drosophila immune responsive genes set (DIRGS) and constitutes the summation of more than two 

decades of work in Drosophila (De Gregorio et al., 2001; Lemaitre and Hoffman 2007; Troha et al., 2018). 

Of 538 genes on this list, we found more than half of these (297 genes) were identified as immune-

responsive in our data (Figure 1C). Troha and colleagues identified a subset of immune-responsive genes 
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as core, i.e., the genes that are differentially expressed regardless of the type of bacterial infection (Troha 

et al., 2018). Of  these 252 core genes, approximately 40% were found to be both Smar- and Efae-

responsive in our data. Therefore, despite differences in the genetic background, tissue (previous studies 

were typically done with whole body sampling), and time points, our findings show concordance with 

previous studies of gene expression in response to infection. We  also show that the A4 and B6 lines 

have divergence in immune-responsive expression, making them suitable for subsequent F1 hybrid 

experiments. 

  

Cis-acting effects dominate expression variation in the uninfected fat body 

To effectively quantify cis and trans effects, we needed to accurately analyze the allelic expression in F1 

hybrids. Using the Allele-Specific Alignment Pipeline (ASAP) (Krueger, 

https://www.bioinformatics.babraham.ac.uk/projects/ASAP/), we quantified allele-specific expression in 

our samples. Since we are working with males, we were able to use the fraction of misassigned X 

Chromosome reads as a metric of our pipeline's accuracy (Supplemental Methods).  On average, 0.5% of 

X Chromosome reads were mis-assigned (standard deviation = 3%; Supplemental Table S1). The 

consistent, low level of mis-assigned reads verifies our ability to accurately quantify allelic expression. 

We next sought to quantify cis and trans effects in the control samples. We used the complete set 

of parental RNA-seq reads and the subset of the F1 hybrid reads that could be assigned to a specific 

allele. Using three separate generalized linear models, we tested for differential expression in the parents, 

allelic imbalance in the F1 hybrids, and trans effects between parents and F1 hybrids (see Methods) 

(Davidson and Balakrishnan, 2016; Osada et al., 2017; Takada et al., 2017). We then categorized each 

gene into one of six categories (Figure 2A). Genes showing no differential expression in the parents or F1 

hybrids are conserved. Genes showing differential expression in both the parents and F1 hybrids and no 

trans signal are cis-only. Genes showing differential expression in the parents and not the F1 hybrids are 

trans-only. Some genes show evidence of both cis and trans effects and are either compensatory (if the 
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changes on expression are in opposite directions) or cis + trans (if the changes on expression are 

coherent). Genes that do not fall into any of these categories are undetermined. 

Of the 4959 genes that were expressed in the pre-infection fat body that could be detected in an 

allele-specific manner, 77% were conserved (3802 genes; Figure 2B, F). We found 151genes showing 

unambiguous cis or trans effects. Among these 151 genes, cis effects dominated the signal: 90% of 

genes (135 genes) showed cis signal (including cis-only, cis + trans and compensatory genes), and 57% 

(87 genes) showed cis-only effects. 42% of genes (64 genes) showed trans signal and only 10% of genes 

(16 genes) showed trans-only effects. One-quarter of genes (37 genes) were compensatory, even when 

using an experimental design to avoid the artificial inflation of compensatory signal (Methods; Zhang and 

Emerson, 2019; Fraser et al., 2019). Additionally, to ensure that any differences in the quality of our in-

house A4 and B6 transcriptomes do not affect our conclusions, we quantified cis and trans effects using 

sets of high confidence genes at multiple levels of stringency and found that this had negligible effects on 

the detected signal (Methods; Supplemental Figure S2; Supplemental Table S2). From these data, we 

can conclude that in the unstimulated state, most genes have conserved expression levels in the fat 

body, and among those genes that diverge, cis effects dominate, with a sizable number of genes 

showing compensatory cis and trans changes. 

 

More cis than trans effects are found in Efae-infected fat body expression 

We quantified cis and trans effects in Efae-infected samples following the same methodology. We found 

roughly 52% of genes (2580 genes) are conserved and 379 genes showed unambiguous cis or trans 

effects (Figure 2C). To identify genes whose expression divergence is specific to the immune response, 

we eliminated genes that show cis or trans signal in the control sample. After this filtering, roughly 69% of 

the genes showing cis or trans effects (263 genes) remained; 66% of these genes (174 genes) show cis-

only signal, and 28% (75 genes) show trans-only signal. Only 8 genes (3%) show concordant  cis + trans 

effects, and only 6 genes show compensatory effects. Of the genes that show cis-only signal, roughly 
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even numbers of genes show higher expression in each genotype, consistent with the idea that cis-acting 

changes affect a single gene at a time. In contrast, of the genes showing trans-only signal, nearly twice 

as many were expressed more highly in the B6 genotype (48 genes) than in the A4 genotype (27 genes) 

(p = 0.0105, Chi-square test). This suggests that one or a few changes in upstream regulatory factors are 

responsible for this observation, and below, we identify candidate genes. Since we do not observe this 

trend towards higher B6 expression in the control samples and have removed genes that showed any 

evidence of mapping bias (Methods), we are confident this trend reflects true biological differences in the 

immune response. In sum, we find both cis and trans effects drive Efae-responsive expression 

divergence, with cis effects dominating. 

 

Trans effects dominate expression variation in the Smar-infected fat body  

Lastly, we quantified cis and trans effects in response to Smar infection. We found roughly 82% of genes 

(4106 genes) are conserved, and 355 genes showed unambiguous cis or trans signal (Figure 2D). We 

again filtered out genes that show cis or trans effects in the control samples and were left with 251 genes 

that have immune-specific signal. Of these, 31% (79 genes) showed cis-only signal, and roughly equal 

numbers of cis-only genes showed higher expression in each genotype. Seven genes showed cis + trans 

effects, and 16 genes had compensatory signal. 59% of genes (149 genes) showed trans-only signal. 

Within trans-only genes, we found that 71% (106 genes) showed greater expression in B6. In summary, in 

response to Smar infection, trans effects drive the majority of expression divergence between the two 

genotypes and few genes show compensatory effects. 

 

Comparisons of cis and trans signals in different conditions reveal both infection-specific and 

shared divergence 

To systematically assess modes of expression variance under different conditions, we compared the 

proportion of genes falling into the different categories (Figure 2E). The control and Efae-infected samples 
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had a greater proportion of cis-only genes than the Smar samples (control vs. Smar p = 4.0 × 10-6, Efae 

vs. Smar p = 6.8 × 10-14, Chi-square test, Bonferroni-corrected). All three groups differ in the proportion of 

trans-only genes, with Smar-infected samples showing more than twice the proportion of genes with 

trans-only signal, followed by Efae, and then the control samples (control vs. Efae p = 3.5 × 10-4, control 

vs. Smar p < 1.5 × 10-16, Efae vs. Smar p = 3.1 × 10-11, Chi-square test, Bonferroni-corrected). We also 

found that the uninfected fat body showed significantly more compensatory signal than either infected 

sample (control vs. Efae p < 1.5 × 10-16, control vs. Smar p = 1.8 × 10-6, Chi-square test, Bonferroni-

corrected). Taken together, this suggests one of two possibilities. One possibility is that before infection, 

when the fat body is carrying out its metabolic functions, there is less pressure for expression 

divergence. An alternative interpretation is that immune-responsive genes are more tolerant of expression 

divergence and subject to less pressure to maintain expression levels. In response to infection, there is 

ample expression divergence, which is driven by both cis and trans effects. The extent to which each 

type of effect contributes is dependent on the particular pathogen, suggesting that the relative 

importance of local and pleiotropic changes is specific to different infection pressures. 

Though we generally expect the two infections to regulate gene expression via distinct signaling 

pathways, we also anticipated some genes would be regulated in both infections, either due to crosstalk 

between the IMD and Toll pathways (Busse et al., 2007; Tanji et al., 2010) or via more general infection 

and wound responses. We found 86 genes with unambiguous cis and/or trans signal in response to both 

Efae and Smar infection (Supplemental Data S1). Of these genes, 71 showed concordant classification. 

Therefore, in the majority of genes shared between these two infections, the same genetic differences are 

likely driving the expression divergence in both infection conditions. 

 

Differential expression of detection genes is a likely source for genotype expression bias in 

observed trans effects  
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Since we observed that genes with trans-only effects tended to be more highly expressed in B6 than in 

A4 in both infection conditions, we hypothesized that changes in a handful of upstream immune factors 

are responsible for this phenomenon. The changes in upstream regulators could either be infection-

specific or shared. Out of 202 genes showing trans-only signal in either infection, only 17 genes were 

shared,  indicating that the bulk of trans-acting changes are likely infection-specific. 

  Immune detection genes, signaling genes, or transcription factors differentially expressed 

between genotypes are likely sources of trans-acting changes, since these genes have the ability to 

affect the expression of many downstream targets. We posited that these genotype-specific differences 

had to be present in the control to have the effects at the 3-hour post-infection timepoint. Of the 295 

genes that are differentially expressed between genotypes in the control samples, we found 22 genes 

that are prime candidates, which we will refer to as trans-source candidates (Table 1).  

Five peptidoglycan recognition proteins (PGRP) genes are potential mediators of the large number 

of trans effects observed in the Smar infection. Four of these PGRPs (PGRP-SC1a, PGRP-SC1b, PGRP-

SC2, PGRP-LB) are negative regulators of the IMD response, and the last gene, PGRP-SD is positive Toll 

and IMD regulator (Bischoff et al., 2006; Zaidman-Rémy et al., 2006; Iatsenko et al., 2016; Charroux et al., 

2018; Lu et al., 2020). Three of the negative regulators, PGRP-SC1a, PGRP-SC1b, PGRP-SC2, are more 

highly expressed in A4. Given that these are negative regulators of the IMD pathway, this finding is 

congruent with the observation that genes showing trans-only signal tend to show greater expression in 

B6. PGRP-SD is more highly expressed in B6, and, given its role as a positive regulator of the IMD 

response, it is also consistent with the trend of higher B6 expression of genes showing trans-only signal. 

The last negative regulator of IMD response, PGRP-LB, has higher expression in B6. Since three of the 

four negative regulators are more  highly expressed in A4, it is possible this balance can account for the 

expression trend in Smar trans-only genes. It is also possible that the greater expression of PGRP-SD is 

enough to account for the differences observed.  
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Though there were fewer trans effects in the Efae-infected samples than in the Smar-infected 

samples, the pattern wherein most trans-only genes showed greater expression in B6 than A4 was 

maintained. Of the 22 trans-source candidates, we found two Toll-specific genes: Spatzle-Processing 

Enzyme (SPE) and spatzle (spz), which are both more highly expressed in B6. Spatzle encodes the Toll 

receptor ligand, and SPE is required to generate the active form of spz, so differential expression of these 

genes can drive a large number of downstream changes. In addition, PGRP-SD protein can act as a 

positive regulator of both the Toll and IMD responses and is also found to have higher expression in the 

B6 line. 

In addition to differences in expression between genotypes, function-altering differences in the 

coding sequences of immune genes may also be the source of trans-acting changes. As a first approach, 

we analyzed the coding sequence differences between A4 and B6 in the 22 trans source candidates 

identified above using the Ensembl Variant Effect Predictor (McLaren et al., 2016). There are a number of 

nonsynonymous changes, some of which fall into functional domains (Supplemental Figure S3, 

Supplemental Table S3 and S4). Predicting the effect of these mutations on individual protein function, 

however, remains a challenge. 

As an alternative approach, we analyzed the proportions of synonymous to nonsynonymous 

coding changes between A4 and B6 in several larger gene sets.  Previous work has demonstrated that 

immune-related genes have a higher average rate of adaptive evolution than other gene classes 

(Sackton, et al. 2007; Obbard, et al. 2009). We wanted to see if, for our particular genotypes and genes of 

interest, the same held true. We considered all genes expressed in the fat body above a threshold of 1 

count per million (CPM), and then sorted them into two groups: genes that are differentially expressed in 

response to either or both infections (DE infection) and those that are not (fat body detected). We then 

intersected each of these gene lists with  our curated immune-responsive gene set to generate both a list 

of differentially and non differentially-expressed immune genes (DE immune and non-DE immune 

respectively; Figure 3A). We posited that, given the large number of trans effects in response to infection, 
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differentially-expressed immune-related genes may have a greater proportion  of nonsynonymous 

changes compared to the fat body detected gene set. We found that DE immune genes have a 

significantly higher fraction of nonsynonymous sequence changes (24%) compared to the fat body 

detected genes (21%) (p = 0.01, Chi-square test, Bonferroni-corrected), suggesting that some of these 

changes may be under selection and possibly the source of our trans-acting signal (Figure 3A-B). By 

comparison, the non-DE immune genes had a lower proportion of nonsynonymous changes (19 %, p=1.6 

× 10!", Chi-square test, Bonferroni-corrected), suggesting that the elevated rate of nonsynonymous 

changes in DE immune genes is not simply reflective of their immune status.  In summary, we find that 

differentially-expressed immune genes have a larger proportion of nonsynonymous changes between our 

genomes of interest than fat body detected or non-differentially expressed immune genes. Some of these 

nonsynonymous changes may be capable of altering the function of these proteins and therefore drive 

expression divergence of downstream genes in a trans-acting fashion. 

 

Genes with cis effects have greater transcription factor binding site divergence than to genes with 

trans effects 

The above analysis sought to identify changes in expression or protein sequence that may drive 

the observed trans effects Cis-acting changes also drive expression divergence of a large number of 

genes. These changes encompass mutations in several types of DNA features, including promoters, 

enhancers, and untranslated regions. We analyzed the patterns of divergence in immune-responsive 

transcription factor binding sites (TFBS) to see if they were consistent with our delineation of cis and 

trans-acting effects. We hypothesized that genes whose divergence was due to cis-acting effects would 

show more divergence in the associated TFBS than those without them. 

We scanned potential regulatory regions of our genes of interest for TFBS in the A4 and B6 

genomes. There are relatively few characterized immune-responsive enhancers in the fat body, so 
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instead we extracted 1kb regions upstream of the transcription start site of genes showing any cis or 

trans-acting changes in infected conditions. We searched these regions for binding sites corresponding 

to four known immune-responsive transcription factors Dorsal (Dl), Relish (Rel), Serpent (Srp) and CrebA 

(Shazman et al., 2014). CrebA modulates transcription in response to both Gram-positive and Gram-

negative bacteria (Troha et al., 2018). Srp binding sites have been previously used to identify immune-

responsive enhancers (Senger et al., 2004). Relish is a NF-kB transcription factor downstream of the IMD 

pathway, and Dl and its paralog Dorsal-related immunity factor (Dif) are downstream of the Toll signaling 

pathway. For this analysis however, only Dl was considered since Dif homodimers have less specific 

binding preferences than Dl and Dif/Rel heterodimers bind sequences similar to Rel homodimers (Senger 

et al., 2004). Given the cross-talk between the Toll and IMD pathways, we searched both Efae- and 

Smar-responsive genes for both Dl and Rel binding sites. For each gene, we calculated the difference in 

the total number of TFBS in the A4 and B6 genomes. We then compared the genotype differences 

between genes showing any cis effects and genes showing exclusively trans effects (see Methods). We 

hypothesized that genes showing cis effects would have more differences in TFBS than the trans effected 

genes, which would be observed as a broader distribution in TFBS differences.  

For all transcription factors except Dl (Figure 4A-E), the genes with cis effects did indeed show a 

broader distribution of difference than those with trans effects (all TFs: p = 8.8 × 10-13, Rel: p = 2.9 × 10-2, 

Srp: p = 7.1 × 10-10, CrebA: p = 1.5 × 10-7, F-test to compare distribution variances, Bonferroni corrected). 

While most genes do not differ in TFBS numbers, 22% of genes with cis changes differed, as opposed to 

only 18% of trans affected genes, though this difference was not significant (Figure 4F). As the number of 

characterized immune-responsive enhancers and transcription factors increases, we will be able to refine 

this analysis to more accurately identify potential causative mutations of cis-effects.  

 

Discussion 
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Here, we quantified the mode and extent of expression divergence in the Drosophila abdominal fat body, 

both in an uninfected control condition, where it carries out a variety of metabolic roles, and in response 

to two types of infection. We found that two geographically isolated lines of D. melanogaster are 

phenotypically distinct in their immune responses, differing both on the organismal and transcriptional 

levels. By comparing gene expression in the fat body between these lines and their F1 hybrids, we 

quantified the contributions of cis and trans effects to expression divergence in the uninfected control, 

Efae-infected and Smar-infected conditions. Both the control and Efae infection conditions were 

dominated by cis effects, while the Smar infection condition had an abundance of trans effects. The 

uninfected control also showed a greater proportion of compensatory effects, suggesting that there is 

stabilizing selection to maintain fat body expression levels of certain genes in the absence of an infection. 

Among the genes showing changes in trans, we found that expression of the B6 allele is typically higher, 

and we identified expression divergence in a group of proteins that may drive these trans effects. By 

analyzing the TFBS content of upstream regions of genes, we found that genes with cis effects show 

evidence of more TFBS divergence than genes with trans effects. Overall, we find that the mode of 

evolution in expression divergence can vary between conditions in a single tissue and likely represents 

condition-specific selection pressures.  

  Our unique approach to measuring the mode of expression divergence gave rise to several novel 

observations about the relative contributions of cis and trans effects on expression variation. While there 

have been a number of studies aimed at disentangling the contribution of cis and trans changes to gene 

expression in Drosophila, few have sought to answer this question using a single organ or with different 

physiological stimuli (Wittkopp et al., 2004, Wittkopp et al., 2008, McManus et al., 2010, Coolon et al., 

2014, Osada et al., 2017). Our approach allows us to examine evolutionary changes in response to 

perturbation while minimizing the confounding effects of multiple tissue types. A previous study by 

Juneja, et al. (2016) found, among geographically distinct flies, a large number of cis-acting changes that 

cause whole body expression divergence in response to an infection with mixture of bacteria. This is 
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concordant with our finding of a large number of cis-acting changes in both infection conditions, but this 

study did not quantify trans-acting changes or distinguish between Toll- and IMD-specific responses. By 

measuring expression in the heads and abdomens of multiple D. melanogaster lines, another group 

reported the predominance of changes in cis over those in trans but did not measure these differences in 

different physiological states or attempt to dissect individual tissues in the head or abdomen (Osada et 

al., 2017). Most recently, two studies sought to uncover the underlying genetics of resistance to either P. 

entomophila or E. faecalis infection, and each identified novel drivers of phenotypic divergence (Chapman 

et al., 2020; Frochaux et al., 2020). Here, we sought to directly assess the contribution of cis and trans 

sequence changes in a single tissue in the context of multiple treatment conditions, giving a uniquely 

high-resolution view of the evolutionary sequence changes underlying expression divergence. 

 With our approach we were able to uncover two key trends. First, we found that compensatory 

mutations were more frequent in the control samples than in either of the infected conditions. Previous 

studies in several organisms had suggested that compensatory effects were very prevalent (McManus et 

al., 2010, Gonclaves et al., 2012, Schaefke et al., 2013, Coolon et al., 2014). However, certain choices in 

experimental design can inflate estimates of compensatory effects (Zhang and Emerson 2019; Fraser et 

al., 2019). Our study avoids this artifact, and therefore yields a more accurate estimate of compensatory 

effects across multiple conditions. Additionally, a large proportion of studies addressing cis and trans 

effects in animals do so in “control” conditions, which may not reveal the full extent of selection forces 

that act on gene expression (Gonclaves et al., 2012, Osada et al., 2017, Davidson and Balakrishnan 

2016, Signor and Nuzhdin 2018). We find evidence that the genes involved in the maintenance of basic 

metabolic functions of the uninfected fat body are under different selective pressures than those involved 

in immune response. Unlike the immune-responsive genes, which must contend with a continuously 

evolving pathogen landscape, the genes carrying out metabolic functions may be subject to stabilizing 

selection, given relatively unchanging nutritional availability. In future studies, it will be interesting to 
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further probe which systems and conditions show enrichment for these different patterns of expression 

divergence. 

Secondly, we observe that the relative contribution of cis- and trans-acting changes are 

perturbation-specific. In response to Efae infection, cis effects dominate expression changes, while in the 

Smar infection, trans changes are predominant. The prevalence of either cis or trans effects can be 

reasonably justified in our system, but we did not anticipate that the proportion of these effects would be 

infection specific. Because changes in trans factors have pleiotropic effects, it has been suggested that 

changes to these factors are under more selective constraint than cis-acting elements, and, thus, cis 

effects can more readily introduce small-scale variation into a system (Schaefke et al., 2013). In some 

cases, however, arriving at a more fit phenotype may require the coordinated alteration of expression of 

many genes, which may be more readily achieved by changes to trans-acting factors. In our D. 

melanogaster lines, S. marcescens is more virulent than E. faecalis – a higher dose of E. faecalis is 

needed to achieve similar levels of mortality to that of S. marcescens (Supplemental Figure S1). It is 

possible that adaptation to highly virulent pathogens or rapidly evolving pathogens requires large-scale, 

synchronous changes to expression, whereas adaptation to less virulent pathogens is possible with 

smaller, localized mutations. Experiments with a wider range of pathogens, particularly those that trigger 

the same signaling pathway, will further illuminate the relationship between the mode of expression 

divergence and the host-pathogen relationship. In addition, expansion of the study to more D. 

melanogaster genotypes or to other time points will yield a more complete picture of the modes of 

expression divergence in the immune response. 

In summary, we find that the mode of expression divergence, as represented by the proportion of 

cis and trans effects in a system, is condition-specific in the Drosophila melanogaster abdominal fat 

body. This specificity may be a result of the distinct selective pressures that different host-pathogen 

interactions exert on the D. melanogaster immune system. In the course of our study, we found several 

candidate genes that may be the sources of the observed trans effects, which are most prominent in 
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Smar infection. In the future, we can combine the data sets presented here with other types of functional 

genomics experiments to identify the specific sequence changes that drive cis-acting divergence. Taken 

together, these studies will provide a more comprehensive view of how regulation of expression in this 

rapidly changing system is wired and evolves.  

 

Methods 

Animal genotypes, infection protocols, and survival analysis 

The A4 and B6 D. melanogaster lines, SNP tables, and genomic reads were received from the Drosophila 

Synthetic Population Resource (King et al., 2012).  Flies were reared at 25˚C on standard cornmeal fly 

food (Brent and Oster 1974). For all RNA-seq experiments four-day-old males were infected with 

approximately 15 nL of A600 = 0.5 OD solution of either Enterococcus faecalis or Serratia marcescens via 

microinjection, yielding an infection of ~10,000 CFUs/fly (Khalil et al., 2015). Survival and bacterial load 

experiments were performed using a modified infection protocol (Supplemental Methods). Uninfected 

controls were placed on a carbon dioxide pad for 6 minutes to mimic the effects of anesthesia used for 

microinjection. Bacteria were grown in liquid culture on a shaker at 37˚C overnight and then diluted 

1:1000 in fresh media in the morning. Cultures were grown until exponential phase then pelleted down 

and resuspended in PBS for OD measurement and injection. Injections took place between 3:00 and 5:00 

pm to account for the impact of circadian rhythm on immune response (Scheiermann et al., 2013).  

To determine the number of unique SNPs between A4 and B6, we downloaded published SNP 

tables from the DSPR website (King et al., 2012). We selected SNPs that were not shared between lines 

and that also showed a reference allele frequency of < 0.05 . We then calculated total SNP differences for 

exonic and non-exonic regions using exon coordinates from FlyBase (dm6/iso-1: FB2019_01) (Thurmond 

et al., 2019). 

 Preparation and sequencing of RNA-seq libraries 
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For sequencing experiments abdominal filets with the attached fat bodies were prepared as in (Krupp 

and Levine et al., 2010) 3 hours post infection. Three fat bodies per sample were suspended in TRIzol on 

ice (Life Technologies) and immediately stored at -80˚C for later extraction (Kono et al., 2016). To mitigate 

the impact of batch effects, injections and  RNA extractions were done in groupings of 6-8 samples, with 

at least two treatment conditions and two genotypes (A4, B6, A4B6 or B6A4) represented in each batch. 

A minimum of three biological replicates were collected for each treatment condition/genotype 

combination.  Both the order of treatment and the order of RNA extraction was randomized for each 

batch. RNA was extracted using Zymo Research Direct-zol RNA Extraction Kits. Library construction was 

completed protocol outlined in (Serra et al., 2018). Samples were then sequenced on Illumina NextSeq 

Platform with NextSeq 500/550 High Output Kit v2.5 to generate 43bp paired end reads. Data was 

imported to the UCI High Performance Computational Cluster for trimming and mapping of sequenced 

reads. 

 Differential expression analysis 

Reads were trimmed and filtered using Trimmomatic 0.35 (Bolger et al., 2014), specifying the parameters 

ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:6 SLIDINGWINDOW:4:15 MINLEN:30. Count and TPM 

data for each sample was then calculated using Salmon 0.12.0 aligner (Patro et al., 2017) using the 

dm6/iso-1 transcriptome and the parameters -l A --validateMappings. Count matrices of gene-level data 

were then constructed in R using the Tximport 1.12.3 package (Soneson et al., 2015). To find genes 

either differentially expressed in response to each infection, compared to control, or differentially 

expressed between genotypes, we used the edgeR 3.26.5 package (Robinson et al., 2010, McCarthy 

et al., 2012). For this analysis we excluded lowly expressed genes (CPM<1), accounted for extraction 

batch in our model, and corrected p-values with false discovery rate (Benjamini and Yekutieli et al., 2001). 

Genes with an FDR < 0.05 were considered differentially expressed. Additionally, we assessed the 

potential effect of absolute expression on our ability to call genotype effects, and we did not find any 
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significant sources of bias (Supplemental Figure S5). Code and accompanying files related to this section 

are in Supplemental Code as both R-notebooks and HTML documents (Script1_fig1).  

 Generation of A4 and B6 transcriptome annotations 

To map RNA-seq reads in an allele-specific manner, we created two reference transcriptomes by lifting 

over iso-1 genome annotations to sequenced A4 and B6 genomes. Using the UCSC liftOver suite, 

custom chain files were created by mapping iso-1 homologous sequences to the A4 or B6 genome using 

BLAT (parameters -tileSize=12 -minScore=100 -minIdentity=98 )(Salinas et al., 2016). A subset of 7654 

high confidence genes were used for the subsequent analysis (Supplemental Methods)  

Allele-specific expression analysis 

RNA reads were assigned parental alleles using Allele Specific Alignment Pipeline (Krueger, 

https://www.bioinformatics.babraham.ac.uk/projects/ASAP/) using the A4 and B6 genomes and allowing 

for no mismatches. Non-uniquely assignable reads were discarded. Count and TPM data were then 

generated by aligning allelic reads to the corresponding transcriptome. Count matrices of gene-level data 

were then constructed in R using the Tximport 1.12.3 package (Soneson et al., 2015).  

  To characterize expression divergence into cis and trans categories, differential expression was 

determined with unparsed parental reads and allele-specific reads from the F1 hybrids, using edgeR and 

three distinct GLM structures. Lowly expressed genes (CPM<1) and X Chromosome genes were 

excluded from the analysis. For each condition, we first tested for differential gene expression between 

parental samples ( Murad et al., 2019). Next, we tested for allelic imbalance, taking into account parent of 

origin and maternal genotype effects as outlined in (Osada et al., 2017; Takada et al., 2017). For this test 

we used half of the F1 hybrid samples. Finally, we tested for trans effects using parental samples and the 

remaining F1 hybrid samples (J. Coolon pers. comm., Supplemental_Code: Script2_fig2.rmd Section 4). 

In all three tests, we assigned significance after adjusted p-values for multiple comparisons using the 

False Discovery Rate method (Benjamini and Yekutieli et al., 2001). Using the results from each test, we 

categorized each gene into one of five classes using the logic outlined in Table 2, which is based on 
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previous studies (Emerson and Li 2010, McManus et al., 2010). Any genes that did not fit into the 

described patterns were categorized as “undetermined” and were excluded from further analysis. A 

complete list of genes and their categories for each condition is available in the Supplemental Data S1. 

Code and accompanying files related to this section  are available Supplemental Code as both R-

notebook and HTML document form (Script2_fig2).  

Identification of sources of trans effects 

To investigate potential sources of observed trans effects, we looked for genes differentially expressed in 

uninfected samples. We selected genes that show differential expression between A4 and B6 in 

uninfected samples. These genes were then intersected with a list of known Drosophila transcription 

factors as well as known immune genes (De Gregorio et al., 2001; Lemaitre and Hoffman 2007; 

Hammonds et al., 2013, Troha et al., 2018). Only genes that were transcription factors, immune detection 

genes, or immune signaling genes were considered to be candidates.  

 Analysis of SNPs in coding sequences 

To better understand the effects of sequence changes on coding regions between our lines we used the 

Ensembl Variant Effect Predictor Tool (VEP) to predict the effects of SNPs on the resulting amino acid 

sequence (McLaren et al., 2016). The fat body expressed gene set consists of  genes expressed in the 

unstimulated fat body above a CPM of 1 and excludes  genes differentially expressed in response to 

infection. DE infeciton genes are those differentially expressed in response to infection with either Efae or 

Smar. DE immune genes are those differentially expressed genes that are also previously verified immune 

response genes, and non-DE immune genes are previously-verified immune genes in the fat body 

expression gene set. Unless otherwise stated, figures were generated using ggplot2 3.3.2 package 

in R 3.6.0 (Wickham 2016, R Core Team 2019). Code and accompanying files related to this section  

are available in Supplemental Code as both R-notebook and HTML document form (Script3_figure3).  

Analysis of transcription factor binding site variation  
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To investigate the effects of noncoding sequence changes on observed expression divergence, we 

identified differences in TFBS in potential cis elements of genes showing evidence of expression 

divergence. We selected 1kb regions upstream of the transcription start site of genes showing cis or 

trans effects in response to infection (421 genes). TFBS for these regions were passed through the tool 

for Finding Individual Motif Occurrences (FIMO) from the MEME suite ( v 5.1.0 ) at p-value thresholds of 

either p =0.001, or p =0.0001 and using default parameters (Bailey et al., 2009). MEME motif files were 

generated using the sites2meme utility and TFBS sequences from OnTheFly (Shazman et al., 2014). 

Binding site data was downloaded into R 3.6.0 for analysis and plotting (R core Team 2019). Binding 

sites with a p-value < .001 were considered in downstream analysis. This threshold was selected based 

on the ability to call a majority of previously identified Rel and Srp binding sites in four immune 

responsive enhancers (Senger et al 2004, Supplemental Table S5). For comparison, we categorized 

genes into two groups cis genes or trans genes. Cis genes were defined as genes showing any cis effect 

(cis-only, cis + trans and compensatory categories) in response to either infection (219 genes). Trans 

genes were defined and genes that showed trans-only effects and no other effects in response to either 

infection (199 genes). Genes showing any combination of trans-only and any cis effects were excluded 

from this analysis (3 genes). Differences in the number of TFBS were calculated by subtracting the 

number of TFBS for each gene’s upstream region in B6 from A4, for all TFs combined as well as for each 

TF separately. We tested for significance in the distribution of these TFBS differences between the cis 

and trans affected genes using an F test for variance with the R 3.6.0 function var.test. We also repeated 

this analysis using the TFBS score instead of number, and the results mirrored those found for the TFBS 

number (Supplemental Figure S4). Code and accompanying files related to this section  can be found in 

Supplemental Code as both R-notebooks and HTML document form (Script4_fig4).  

 

Description of statistical tests 
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p-values for all single and multiple proportion comparisons were calculated using the R 3.6.0 prop.test 

function which performs a Chi-square test with Yate's continuity correction. For data where more than 

one statistical test was performed on the same set of data, p-values were Bonferroni corrected for 

familywise type I error by multiplying the p-value by the number of tests performed.  

 

Data Access 

All raw and processed sequencing data generated in this study have been submitted to the NCBI Gene 

Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE155033. 
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Table 1 
FB Gene 

ID 
Gene 

Symbol 
Type Log2 

Fold 
Change 
(B6/A4) 

More 
Highly 
Expres
sed in:  

A4 
Average 

CPM 

B6 
Average 

CPM 

Immune involvement 

FBgn0029
822 

CG12236 TF -3.13 A4 28 2.7 Unclear 

FBgn0039
075 

CG4393 Signalin
g 

2.06 B6 8.8 39 Unclear  

FBgn0038
978 

tHMG1 TF 3.06 B6 7 57 Unclear 

FBgn0287
768 

esg TF -3.27 A4 11 1 Unclear  

FBgn0039
932 

fuss TF 2.50 B6 1.1 6.3 Wound healing 

FBgn0250
732 

gfzf TF 8.24 B6 0 2 Unclear 

FBgn0000
448 

Hr3 TF -4.12 A4 10 0.7 Unclear 

FBgn0016
675 

Lectin-
galC1 

Detectio
n 

2.72 B6 79 570 Binding and agglutination 

FBgn0035
993 

Nf-YA TF -10.16 A4 10 0 Unclear 

FBgn0028
542 

NimB4 Detectio
n 

-1.08 A4 40 22 Phagocytosis and  microbial 
pattern recognition 

FBgn0259
896 

NimC1 Detectio
n 

-3.06 A4 97 27 Phagocytosis and  microbial 
pattern recognition 

FBgn0003
130 

Poxn TF -4.38 A4 1.2 0.07 Unclear 

FBgn0014
033 

Sr-CI Detectio
n 

-2.39 A4 84 38.6 Phagocytosis and  microbial 
pattern recognition 
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FBgn0004
606 

zfh1 Signalin
g / TF 

1.77 B6 50 17 Hematopoiesis  

FBgn0031
973 

Spn28Dc Signalin
g 

2.56 B6 9.4 2.4 Negative regulator of 
melanization 

FBgn0037
906 

PGRP-
LB 

Detectio
n 

4.536 B6 111.9 75.2 Negative regulator of IMD 
pathway  

FBgn0043
576 

PGRP-
SC1a 

Detectio
n 

-5.57 A4 4.3 6.8 Negative regulator of IMD 
pathway 

FBgn0033
327 

PGRP-
SC1b 

Detectio
n 

-5.24 A4 3.9 0.2 Negative regulator of IMD 
pathway 

FBgn0043
575 

PGRP-
SC2 

Detectio
n 

-4.02 A4 15 1.3 Negative regulator of IMD 
pathway  

FBgn0035
806 

PGRP-
SD 

Detectio
n 

4.25 B6 97.6 19.2 Positive regulator of IMD 
pathway 

FBgn0039
102 

SPE Signalin
g 

2.41 B6 491.9 255.2 Positive regulator of Toll 
pathway 

FBgn0003
495 

spz Signalin
g 

0.68 B6 72.8 45.5 Positive regulator of Toll 
pathway 
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Table 2 
Category Differential gene 

expression in parents 
F1 allelic imbalance Trans test 

cis only True True False 

trans only True False True 

cis + trans True True True 

Compensatory False True True 

Conserved False False False 
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Figure 1. The A4 and B6 D. melanogaster lines have variation in their response to Gram-positive E. 
faecalis infection and Gram-negative S. marcescens 
A) We measured expression in the fat bodies of the A4 and B6 lines infected with Gram-positive 
Enterococcus faecalis (Efae) or with Gram-negative Serratia marcescens (Smar), 3 hours post-infection. 
We found 1165 and 1205 differentially expressed in response to infection to Efae and Smar respectively, 
relative to control samples. Mean centered log2 average CPM values for each condition are displayed. 
We categorized the infection responsive genes into four groups, based on their differential expression 
between the two fly genotypes: genes showing no genotype-specific expression (Group 1), genes 
showing genotype-specific expression only in the control condition (Group 2), genes showing genotype-
specific expression only in the infected condition (Group 3) and genes showing genotype-specific 
expression in both control and infected conditions (Group 4). B) Among genes showing genotype effects, 
the majority of genes in Efae fell into the Group 2 classification, indicating a large amount of genotype-
specific expression variation is revealed upon infection with Efae. Among Smar-responsive genes, 
roughly equal numbers show expression differences between the genotypes before (Group 2), after 
(Group 3), and both before and after infection (Group 4). C) We intersected the genes we identified as 
differentially expressed in response to infection and a list of previously published immune responsive 
genes. More than half of the verified immune genes were identified as differentially expressed in the 
abdominal fat body, with half of these immune genes being shared between conditions. Among these 
previously identified immune genes, core genes are differentially expressed across all infections. We 
detected roughly 40% of the core set as differentially expressed in both our infection conditions, despite 
differences in the genetic background, tissue type, and time point used in our study versus previous 
work.  
 
 
Figure 2. The relative contributions of cis and trans effects to expression divergence are condition 
specific. 
 A) Here we show a schematic of the expected locations for genes falling into  four classifications  of 
causes of expression divergence in plots that show the expression ratio of a gene in the parental lines (x-
axis) against the allele expression ratio in the F1 hybrids (y-axis). B) In the uninfected control condition, of 
4960 genes that could be detected in an allele-specific manner, 153 genes showed cis or trans signal. Of 
these 153 genes, most showed cis-acting effects. Panel F) displays the precise numbers of genes in each 
category. C) In response to Efae infection, expression divergence is driven predominantly by changes in 
cis. D) In response to Smar infection, expression divergence is dominated by changes in trans. E) We 
compared the fraction of genes categorized into each divergence class in the three conditions and found 
that the modes of expression divergence were condition-specific.  
 
 
 
Figure 3: There is a greater proportion of nonsynonymous SNPs in previously identified immune-
responsive genes. 
A) To look for the prevalence of nonsynonymous SNPs in our genotypes and genes of interest, we 
defined four gene sets. Among genes detected in the fat body samples, we separated genes into those 
that were differentially expressed in response to either infection (DE infection) and those that were not (fat 
body detected). Within the fat body detected genes, we defined previously identified immune genes 
showing no differential expression in response to infection (Non-DE Immune), and  among the DE 
infection genes, we refined the gene list to include previously identified immune genes (DE immune). The 
numbers indicate the total number of SNPs found in each gene set and the percentages of synonymous 
and nonsynonymous SNPs. B) DE immune genes have a higher proportion of nonsynonymous SNPs than 
the fat body expressed genes, which suggests they may carry function-altering SNPs at a higher rate 
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than the fat body expressed genes. p-values are Bonferroni-corrected from Chi-square tests with the 
proportion of nonsynonymous SNPS relative to the fat body expressed gene set. 
 
 
Figure 4: There are greater differences in TFBS in cis affected genes than trans affected genes. 
A) We identified TFBS for 4 immune responsive transcription factors Dl, Rel, Srp and CrebA in 1kb region 
upstream of 219 cis-affected genes and 199 trans-affected genes. Differences in total TFBS numbers 
between genotypes were calculated for each gene and plotted. We find that variance in the distribution of 
these differences is significantly greater in genes showing cis effects (F-test to compare distribution 
variances, Bonferoni corrected). B) For Dl TFBS, there was not a a significant difference in the width of 
the TFBS distribution between genes showing cis effects and trans effects. C-E) For Rel, Srp and CrebA 
TFBS, there was a broader distribution of TFBS differences in genes with cis effects than genes with 
trans effects. F) A larger proportion of genes showing cis effects had a differences in total TFBS than 
genes showing trans effects, though the differences in these proportions were not significant.  
 
 
Table 1: Transcription factors and immune genes identified as potential sources of trans effects in 
infection.  
List of genes potentially driving the trans effects for Efae and Smar infection.  Candidate genes were 
identified by finding genes that had genotype-specific expression differences in the uninfected control 
conditions and that were classified as either a transcription factor, immune signaling gene, or immune 
detection gene. 
 
 
Table 2: Logic for cis and trans effect gene categories. 
Genes were designated into categories based on the results of three statistical tests. Here, 'True' 
indicates a significant test result at FDR < 0.05 and 'False' indicates an insignificant test result. 
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Supplemental Methods 
 
Survival and Bacterial load tracking of A4 and B6 lines. 
 
To more effectively ascertain differences in survival, we used lower doses of bacteria for the survival 

analysis than for the RNA-seq analysis  (5,000 CFUs of E. faecalis or 1,000 CFUs of S. marcescens). Once 

per day following infection, the survival status of the flies was recorded and the bacterial load was 

measured via dilution plating of a live flies as in (Khalil et al., 2015;  Supplemental Figure S1). Kaplan-Meier 

estimates of survival were calculated using the survival 3.2-3 package in R (Therneau et al., 2000;  

Therneau et al.,2020), and log-rank tests and plotting were performed using the survminer 0.4.4 

package (Kassambara and Kosinski 2019). 

 
 
Filtering low confidence annotations from A4 and B6 transcriptome annotations. 
 
To assess the quality of our annotations and remove genes with poor annotations, genomic sequencing 

reads for A4 and B6 from the DSPR website were downloaded and aligned to our transcriptome files using 

Salmon 0.12.0 aligner (Thurmond et al., 2019). We hypothesized that well-annotated genes would show 

similar coverage of genomic reads in both the A4 and B6 transcriptomes. We then filtered genes using two 

methods for outlier calling: a Poisson distribution-based method and a negative binomial generalized linear 

model (GLM) method, similar to that used for differential gene expression in RNA-seq experiments. For the 

Poisson method, we fitted a Poisson distribution to gene count data for the A4 and B6 transcriptomes 

separately, using the fitdistributionplus 1.0-14 package in R and called outlier genes using three 

thresholds of increasing stringency p = 0.001, 0.01 and 0.025 (Delignette-Muller & Dutang 2015). For the 

GLM-based approach, we looked for gene counts that were significantly different between the A4 and B6 

transcriptomes and filtered genes using FDR thresholds of 0.01, 0.05 and 0.09. As our threshold for 

significance became more stringent, we filtered out an increasing number of genes but the differences 

between the final filtered sets show about a 3% difference in terms of total genes and less than 1% 

difference in genes shown to be differentially expressed (Supplemental Figure S2). Genes found not to be 
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outliers in either the Poisson or GLM method were then combined into gene sets based on the stringency of 

filtering. These gene sets were then used to quantify cis and trans effects for all three conditions. We found 

that the stringency of filtering did not significantly impact the total number or proportions of cis and trans 

effects between conditions. For the allele-specific expression analysis presented in Figure 3, we used a set 

of genes filtered using a combination of both methods at medium stringency. 

 

Assessing accuracy of ASAP allele calling using X Chromosome reads. 

To verify the accuracy of our quantification allelic expression in F1 hybrids, we used the RNA-seq data from 

the A4 and B6 parental lines and data from the F1 hybrids (A4♂x B6☿) and reciprocal crosses (B6♂x A4☿), 

in the control, Efae-infected, and Smar-infected conditions. Since we are using males, if our allele-specific 

expression analysis is correct, none of the X Chromosome reads should map to the paternal genotype. 

Using the published A4 and B6 genomes and the Allele-Specific Alignment Pipeline (ASAP) (Krueger, 

https://www.bioinformatics.babraham.ac.uk/projects/ASAP/), we quantified the fraction of X Chromosome 

reads that incorrectly map to the paternal genotype. On average, samples had 0.5% mis-assigned reads 

(standard deviation = 3%), with the highest fraction being 1.2% (Supplemental Table S1). The consistent, 

low level of mis-assigned reads verifies our ability to accurately quantify allelic expression.  

Given that all the flies are male, any reads aligning to the paternal X Chromosome can definitively be 

classified as mis-assigned. 
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Supplemental Figure S1: A4 and B6 lines show differences in survival in response to Gram-positive 
but not Gram-negative infection.  
A) Survival curves and confidence intervals for flies infected with an average 1000 CFUs of S. marcescens, 
observed once per day.  P-value was calculated using a log-rank test. B6 flies survive Efae infection for 
longer than the A4 flies. B) Survival curves and confidence intervals for flies infected with approximately 
5000 CFUs of E. faecalis, observed once per day. P-value was calculated using a log-rank test. There is no 
significant difference in infection survival between the two genotypes. C) Bacterial load of A4 and B6 lines in 
response to S. marcescens infection, assessed by dilution plating of homogenized infected flies. Points 
represent a single animal’s bacterial load measurement (an average of three technical replicates per animal), 
and solid lines indicate the median values of bacterial load for each day. Though the flies do not show a 
significant difference in survival, it appears that A4 shows greater resistance to Smar, while B6 shows 
greater tolerance of the infection. D) Table showing sample sizes for the results depicted in this figure. 
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Supplemental Figure S2: Differences in assembly quality minimally affect cis and trans effects in 
downstream analysis. 
To quantify the effects of assembly quality of on cis and trans effects, we filtered out genes with poor 
annotations at increasingly restrictive thresholds and quantified differences in cis and trans effects 
(Supplemental Table S2). We identified potentially problematic genes by aligning A4 and B6 genomic reads 
to their respective transcriptomes. We posited that each gene of the lifted over transcriptome should 
receive roughly the same amount of coverage once normalized for gene length and that genes deviating 
from this coverage were poorly annotated. We used two methods for calling outlier genes: a Poisson 
distribution-based method and a GLM based method (see Methods for details). A) Here we report the non-
outlier (retained) gene numbers for different methods and degrees of stringency. The gene numbers do not 
decrease rapidly with increasing stringency. B-D) These graphs plot the gene counts in transcripts per 
million (TPM) using the A4 and B6 genomic reads mapped to their respective transcriptomes. Outlier genes 
are shown in teal and retained genes are shown in pink. The quantification of cis and trans effects for these 
different gene sets are shown in Supplemental Table S2. 
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Supplemental Figure S3: Most nonsynonymous mutations have non-negative BLOSUM62 scores. 
As a coarse-grained approximation of the effects of non-synonymous changes on protein function, we 
analyzed the distribution of BLOSUM62 scores for the four gene sets described. The BLOSUM62 score is a 
homology-based metric that describes the likelihood of a particular residue change, positive numbers 
indicate frequently observed changes, while negative numbers indicate rare amino acid substitution 
(Pearson 2013). For all gene sets, non-negative scores dominate, with 67% for fat body detected, 67% for 
DE infected, and 71% for DE immune, 55% Non-DE immune. This suggests that there are some 
nonsynonymous mutations that may alter protein function, but the fraction of these disruptive mutations 
does not significantly differ between gene sets.   
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Supplemental Figure S4: There are greater differences in TFBS score in cis affected genes than trans 
affected genes. 
A) We quantified TFBS score for four immune responsive transcription factors: Dl, Rel, Srp and CrebA in 
1kb region upstream of 219 cis affected genes and 199 trans affected genes. The differences in total TFBS 
score in the B6 and A4 upstream regions were calculated for each gene. We find that variance in the 
distribution of these differences is greater in genes showing cis effects (F-test to compare distribution 
variances, Bonferoni corrected). We then looked at the distribution of these differences for each of the four 
transcription factors separately. B-C) The variances in the score difference distributions for Dl and Rel were 
not significantly different between genes showing cis effects and trans effects. D-E) The variances of the 
score differnt distributions for Srp and CrebA are significantly differet between genes showing cis effects 
and trans effects. F) A higher fraction of genes showing cis effects had differences in total TFBS score than 
genes showing trans effects, though these fractions were not significantly different.  
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Supplemental Figure S5: Average CPM for genes across different identified gene groups. 
A) To determine if absolute expression between immune stimulated and control samples may be biasing our 
ability to detect genotype-specific effects, we looked at average CPM values for differentially expressed 
genes in both infection conditions. Specifically, we wanted to ensure that we were not finding more 
expression divergence effects in the infected samples because genes have higher expression in response 
to infection than in the control condition. The expression levels of differentially expressed genes in Efae 
(1165 genes) and Smar (1203 genes) conditions were compared to the corresponding genes in the control 
samples, E_CO2 and S_CO2 respectively (Supplemental Code, Script1_fig1). We performed two-sided 
Wilcoxon rank-sum tests to compare average CPM values from immune stimulated samples to average 
cpm values of the corresponding genes in the control conditions. Using a p-value threshold of p=0.05 we 
found no significant differences in average CPM of infection-responsive genes between treated samples 
and untreated controls (two-sample Wilcoxon rank sum test, Bonferroni corrected).  B) Here we show 
average CPM values for each of the four gene groups showing different genotype effects in response to 
Efae infection (as shown in Figure 1). We do not observe a significantly different average CPM between 
treated and control conditions (two-sample Wilcoxon rank sum test, Bonferroni corrected). C) Here we show 
average CPM values for the four gene groups showing different genotype effects in response to Smar 
infections (as shown in Figure 1). No group shows significance in average CPM value between the treated 
and control samples (two sample Wilcoxon rank sum test, Bonferroni corrected). 
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Supplemental Table S1: Sample read numbers and alignment statistic. 
Sample treatment categories are uninfected (control), E. faecalis-infected (Efae) and S. marcescens-infected 
(Smar). Genotype of samples are listed to indicate hybrid cross order: male genotype is listed first and 
female genotype second. We also show counts of 43bp paired end reads for each sample before and after 
alignment, percentages for A4 and B6 uniquely mapping reads, and percentages of mis-assigned X 
Chromosome reads (total mis-assigned X Chromosome reads over total X Chromosome genotype-specific 
reads).  

Sample Treatment Genotype 
♂/♀ 

Total 
Reads 

Mapped 
Reads 

% 
Uniquely 

Aligned to 
A4  

% 
Uniquely 

Aligned to 
B6 

% Mis-assigned to X 
Chromosome 

1 control A4 26369673 24364366 9.4 0.1 0.3 

2 control A4 14870917 13878016 9.5 0.1 0.3 

3 control A4 18732323 17558251 9.4 0.1 0.3 

4 control A4 34580046 32442180 10.3 0.1 0.4 

5 control A4B6 41318671 19649962 5.4 6.4 0.6 

6 control A4B6 41205951 19378946 5.6 6.6 0.6 

7 control A4B6 53666239 50178799 4.6 5.5 0.8 

8 control A4B6 82417525 65605513 5.7 6.4 0.6 

9 control B6 17980721 16879587 0.4 10.2 0.6 

10 control B6 19997738 18798790 0.4 8.7 0.8 

11 control B6 19129651 17946593 0.4 10.4 0.8 

12 control B6 24984658 23547941 0.3 9.1 1.0 

13 control B6A4 53543764 10893030 6.0 4.5 0.3 

14 control B6A4 47079732 24895491 6.7 5.0 0.3 

15 control B6A4 47509119 21329979 6.3 4.7 0.3 

16 control B6A4 49562943 46726476 6.0 4.6 0.3 

17 Efae A4 11521847 10597039 10.9 0.0 0.4 

18 Efae A4 26211400 24598530 12.2 0.1 0.4 

19 Efae A4 16272150 15204121 12.0 0.0 0.3 

20 Efae A4 24759445 23361494 11.0 0.1 0.3 

21 Efae A4B6 36234287 33302637 5.4 6.0 0.9 

22 Efae A4B6 54770680 51649242 6.0 6.7 0.5 
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23 Efae A4B6 37724992 35152256 5.5 6.0 0.7 

24 Efae A4B6 52373459 49185996 7.4 8.0 0.4 

25 Efae B6 20269632 18651459 0.2 10.4 1.1 

26 Efae B6 22075327 20668129 0.3 11.9 0.5 

27 Efae B6 28118298 26565158 0.3 9.2 1.2 

28 Efae B6 28488360 26831112 0.3 12.7 0.6 

29 Efae B6A4 43346696 39878989 5.9 4.8 0.4 

30 Efae B6A4 50841666 47062579 6.6 5.2 0.3 

31 Efae B6A4 45437286 42562754 6.2 4.9 0.3 

32 Efae B6A4 62113778 57926378 6.6 5.2 0.3 

33 Smar A4 20932070 19569646 10.7 0.1 0.3 

34 Smar A4 22220731 20314035 7.7 0.1 0.3 

35 Smar A4 13096294 12215786 11.5 0.1 0.3 

36 Smar A4 19474264 17939316 10.8 0.0 0.3 

37 Smar A4B6 46702136 13363924 5.2 6.3 0.6 

38 Smar A4B6 42722535 19500222 6.1 6.7 0.5 

39 Smar A4B6 70196188 17932361 6.0 6.8 0.5 

40 Smar A4B6 49839957 22491147 5.7 6.5 0.5 

41 Smar A4B6 48904532 45834532 6.3 6.7 0.5 

42 Smar B6 9730094 9132793 0.4 10.4 0.5 

43 Smar B6 11254219 10569215 0.4 11.7 0.4 

44 Smar B6 16858117 15638969 0.2 10.3 0.8 

45 Smar B6A4 45215266 8235284 6.4 4.8 0.2 

46 Smar B6A4 70994061 11427623 6.0 4.7 0.3 

47 Smar B6A4 54223062 50351817 6.8 5.4 0.4 
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Supplemental Table S2: Increased stringency of problematic gene filtering minimally impacts overall 
number of cis and trans effects.  
For each treatment, using sets of genes filtered at various levels of stringency, we quantified the number of 
genes falling into each of the cis and trans categories. We found that within treatment conditions the 
number and proportions of genes did not greatly differ as we increased the stringency of filtering. 
Stringency Treatment Cis-

only 
genes 

Trans-
only 

genes 

Cis + 
Trans 
genes 

Compensatory 
genes 

Conserved 
genes 

Undetermined 
genes 

Poisson 
Med 

Control 86 16 11 38 3808 1001 

Combined 
Low 

Control 89 16 10 46 3989 1046 

Combined 
Med 

Control 86 16 11 38 3808 1001 

Combined 
High 

Control 86 15 13 35 3688 962 

Poisson 
Med 

Efae 169 73 8 6 2586 1993 

Combined 
Low 

Efae 177 75 8 5 2734 2064 

Combined 
Med 

Efae 169 73 8 6 2586 1993 

Combined 
High 

Efae 165 77 8 8 2488 1929 

Poisson 
Med 

Smar 72 144 6 18 4107 496 

Combined 
Low 

Smar 77 153 6 15 4319 500 

Combined 
Med 

Smar 72 144 6 18 4107 496 

Combined 
High 

Smar 69 139 7 19 3965 485 
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Supplemental Table S3: Sequence changes in the list of candidate genes identified as being potential 
sources of trans effects. 
Of the 46 SNPs falling into the coding regions of 22 genes identified as potential trans sources, 37 SNPs 
resulted in amino acid substitutions in 12 genes. Roughly 20% (8 SNPs) of these SNPs fell into the 
phagocytic gene NimC1 alone. In all cases, the majority of affected protein domains were in unnamed 
domains. Of the 5 PGRPs, only 2 (SC2 and SD) were found to carry mutations that resulted in coding region 
substitutions. These mutations fell into a transmembrane helix domain for PGRP-SC2 but in an unknown 
domain for PGRP-SD. Additionally we found 5 missense mutations in Spaetzle processing enzyme and a 
single mutation in Spaetzle, though in both cases these mutations fell on unnamed protein domains. This 
underscores the large gap in our understanding of many of the domains important in the function of innate 
immunity genes and may serve as potential points of interest for future investigation.   
 

Location Allele Gene 
Symbol 

Gene Feature CDS 
position 

Protein 
position 

Amino 
acids 

Codons BLOSUM62 

2L:4122
351 

T Sr-CI FBgn00
14033 

FBtr034
6582 

526 176 H/Y Cac/Tac 2 

2L:4122
897 

C Sr-CI FBgn00
14033 

FBtr007
7467 

947 316 S/T aGc/aC
c 

1 

2L:4123
356 

T Sr-CI FBgn00
14033 

FBtr034
6582 

1406 469 K/M aAg/aTg -1 

2L:8005
499 

A Spn28Dc FBgn00
31973 

FBtr007
9549 

763 255 A/S Gcg/Tc
g 

1 

2L:8005
523 

G Spn28Dc FBgn00
31973 

FBtr007
9549 

739 247 I/L Att/Ctt 2 

2L:8005
549 

G Spn28Dc FBgn00
31973 

FBtr007
9549 

713 238 V/A gTc/gCc 0 

2L:8006
451 

A Spn28Dc FBgn00
31973 

FBtr007
9549 

682 228 T/S Aca/Tca 1 

2L:8006
864 

C Spn28Dc FBgn00
31973 

FBtr007
9549 

269 90 N/S aAc/aG
c 

1 

2L:1396
8919 

C NimB4 FBgn00
28542 

FBtr008
0617 

832 278 T/A Acc/Gc
c 

0 

2L:1397
4306 

G NimC1 FBgn02
59896 

FBtr008
0615 

1787 596 I/T aTa/aCa -1 

2L:1397
4690 

T NimC1 FBgn02
59896 

FBtr034
3644 

1409 470 P/H cCt/cAt -2 
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2L:1397
4703 

G NimC1 FBgn02
59896 

FBtr008
0615 

1390 464 S/P Tca/Cca -1 

2L:1397
5363 

T NimC1 FBgn02
59896 

FBtr008
0615 

730 244 V/M Gtg/Atg 1 

2L:1397
5380 

T NimC1 FBgn02
59896 

FBtr008
0615 

713 238 G/D gGc/gA
c 

-1 

2L:1397
5515 

G NimC1 FBgn02
59896 

FBtr008
0615 

578 193 V/A gTc/gCc 0 

2L:1397
5735 

T NimC1 FBgn02
59896 

FBtr008
0615 

358 120 G/S Ggc/Ag
c 

0 

2L:1397
6157 

C NimC1 FBgn02
59896 

FBtr034
3644 

40 14 S/A Tca/Gca 1 

2R:8717
036 

G PGRP-
SC2 

FBgn00
43575 

FBtr008
8709 

70 24 I/V Atc/Gtc 3 

2R:1020
7902 

C Hr3 FBgn00
00448 

FBtr033
0609 

1570 524 P/A Cca/Gc
a 

-1 

2R:1023
2873 

T Hr3 FBgn00
00448 

FBtr045
2140 

439 147 S/T Tcg/Acg 1 

2R:1023
7018 

G Hr3 FBgn00
00448 

FBtr011
2799 

23 8 N/T aAc/aCc 0 

3L:7651
752 

T PGRP-SD FBgn00
35806 

FBtr007
6807 

548 183 S/F tCc/tTc -2 

3L:9441
876 

A Nf-YA FBgn00
35993 

FBtr007
6504 

17 6 S/I aGc/aTc -2 

3R:7148
618 

C gfzf FBgn02
50732 

FBtr033
4671 

1480 494 H/D Cac/Ga
c 

-1 

3R:7150
621 

A gfzf FBgn02
50732 

FBtr009
1512 

10 4 P/S Ccc/Tcc -1 

3R:2337
8558 

T CG4393 FBgn00
39075 

FBtr033
9617 

3322 1108 L/I Tta/Ata 2 

3R:2337 C CG4393 FBgn00 FBtr030 3313 1105 P/A Cca/Gc -1 
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8567 39075 1085 a 

3R:2337
8571 

A CG4393 FBgn00
39075 

FBtr033
9616 

3309 1103 E/D gaG/ga
T 

2 

3R:2337
9640 

G CG4393 FBgn00
39075 

FBtr033
9617 

2375 792 Q/P cAa/cCa -1 

3R:2337
9641 

T CG4393 FBgn00
39075 

FBtr030
1085 

2374 792 Q/K Caa/Aaa 1 

3R:2338
1986 

T CG4393 FBgn00
39075 

FBtr030
1085 

548 183 T/N aCc/aAc 0 

3R:2706
6830 

G spz FBgn00
03495 

FBtr008
5137 

199 67 T/P Acc/Ccc -1 

3R:3077
3707 

A zfh1 FBgn00
04606 

FBtr033
1180 

232 78 Q/K Cag/Aa
g 

1 

3R:3077
4111 

T zfh1 FBgn00
04606 

FBtr008
5701 

386 129 K/M aAg/aTg -1 

3R:3077
4123 

T zfh1 FBgn00
04606 

FBtr033
1180 

398 133 A/V gCc/gTc 0 

3R:3077
4165 

C zfh1 FBgn00
04606 

FBtr008
5701 

440 147 S/T aGc/aC
c 

1 

3R:3078
5831 

T zfh1 FBgn00
04606 

FBtr008
5701 

2861 954 A/V gCg/gT
g 

0 
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Supplemental Table S4: Domains associated with sequence changes in the list of candidate genes 
identified as being potential sources of trans effects. 
List of protein domains affected by sequence changes in exonic regions from Supplemental Table S3. 
Location Allele Gene 

Symbol 
Domains 

2L:4122351 T Sr-CI Gene3D:2.60.120.200,Pfam:PF00629,PROSITE_profiles:PS50060,PANTHER:PTHR2
3282,SMART:SM00137,Superfamily:SSF49899,CDD:cd06263 

2L:4122897 C Sr-CI Gene3D:2.60.120.200,PANTHER:PTHR23282 

2L:4123356 T Sr-CI PANTHER:PTHR23282,MobiDB_lite:mobidb-lite,Low_complexity_(Seg):seg 

2L:8005499 A Spn28Dc Gene3D:3.30.497.10,Pfam:PF00079,PANTHER:PTHR11461,PANTHER:PTHR11461:
SF281,SMART:SM00093,Superfamily:SSF56574,CDD:cd00172 

2L:8005523 G Spn28Dc Gene3D:3.30.497.10,Pfam:PF00079,PANTHER:PTHR11461,PANTHER:PTHR11461:
SF281,SMART:SM00093,Superfamily:SSF56574,CDD:cd00172 

2L:8005549 G Spn28Dc Gene3D:3.30.497.10,Pfam:PF00079,PANTHER:PTHR11461,PANTHER:PTHR11461:
SF281,SMART:SM00093,Superfamily:SSF56574,CDD:cd00172 

2L:8006451 A Spn28Dc Gene3D:3.30.497.10,Pfam:PF00079,PANTHER:PTHR11461,PANTHER:PTHR11461:
SF281,SMART:SM00093,Superfamily:SSF56574,CDD:cd00172 

2L:8006864 C Spn28Dc PANTHER:PTHR11461,PANTHER:PTHR11461:SF281,Superfamily:SSF56574 

2L:1396891
9 

C NimB4 PANTHER:PTHR24047,Gene3D:2.10.25.10,SMART:SM00181 

2L:1397430
6 

G NimC1 PANTHER:PTHR24047,PANTHER:PTHR24047:SF29,Transmembrane_helices:TMhel
ix 

2L:1397469
0 

T NimC1 PANTHER:PTHR24047,PANTHER:PTHR24047:SF29 

2L:1397470
3 

G NimC1 PANTHER:PTHR24047,PANTHER:PTHR24047:SF29 

2L:1397536
3 

T NimC1 Gene3D:2.10.25.10,PANTHER:PTHR24047,PANTHER:PTHR24047:SF29,SMART:S
M00181,Superfamily:SSF57184 

2L:1397538
0 

T NimC1 Gene3D:2.10.25.10,PANTHER:PTHR24047,PANTHER:PTHR24047:SF29,SMART:S
M00181,Superfamily:SSF57184 

2L:1397551
5 

G NimC1 Gene3D:2.10.25.10,PANTHER:PTHR24047,PANTHER:PTHR24047:SF29,SMART:S
M00181 
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2L:1397573
5 

T NimC1 Gene3D:2.10.25.10,PROSITE_patterns:PS00022,PANTHER:PTHR24047,PANTHER:
PTHR24047:SF29,SMART:SM00181 

2L:1397615
7 

C NimC1 Cleavage_site_(Signalp):SignalP-noTM 

2R:871703
6 

G PGRP-
SC2 

Gene3D:3.40.80.10,PIRSF:PIRSF037945,PANTHER:PTHR11022,SMART:SM00701,
Superfamily:SSF55846,Transmembrane_helices:TMhelix 

2R:102079
02 

C Hr3 Low_complexity_(Seg):seg 

2R:102328
73 

T Hr3 - 

2R:102370
18 

G Hr3 PANTHER:PTHR45805,PANTHER:PTHR45805:SF2 

3L:7651752 T PGRP-
SD 

Gene3D:3.40.80.10,PIRSF:PIRSF037945,PANTHER:PTHR11022,PANTHER:PTHR11
022:SF67,Superfamily:SSF55846 

3L:9441876 A Nf-YA - 

3R:714861
8 

C gfzf PANTHER:PTHR43969,PANTHER:PTHR43969:SF7 

3R:715062
1 

A gfzf PANTHER:PTHR43969,PANTHER:PTHR43969:SF7 

3R:233785
58 

T CG4393 PANTHER:PTHR24174,PANTHER:PTHR24174:SF1,MobiDB_lite:mobidb-lite 

3R:233785
67 

C CG4393 PANTHER:PTHR24174,PANTHER:PTHR24174:SF1,MobiDB_lite:mobidb-lite 

3R:233785
71 

A CG4393 PANTHER:PTHR24174,PANTHER:PTHR24174:SF1,MobiDB_lite:mobidb-lite 

3R:233796
40 

G CG4393 PANTHER:PTHR24174,PANTHER:PTHR24174:SF1,MobiDB_lite:mobidb-lite 

3R:233796
41 

T CG4393 PANTHER:PTHR24174,PANTHER:PTHR24174:SF1,MobiDB_lite:mobidb-lite 

3R:233819
86 

T CG4393 Gene3D:1.25.40.20,PROSITE_profiles:PS50297,PANTHER:PTHR24174,PANTHER:P
THR24174:SF1,Superfamily:SSF48403 

3R:270668
30 

G spz PANTHER:PTHR23199,PANTHER:PTHR23199:SF4 
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3R:307737
07 

A zfh1 Pfam:PF13912,PROSITE_patterns:PS00028,PROSITE_profiles:PS50157,PANTHER:
PTHR24391,PANTHER:PTHR24391:SF27,SMART:SM00355 

3R:307741
11 

T zfh1 PANTHER:PTHR24391,PANTHER:PTHR24391:SF27,MobiDB_lite:mobidb-
lite,MobiDB_lite:mobidb-lite 

3R:307741
23 

T zfh1 PANTHER:PTHR24391,PANTHER:PTHR24391:SF27,MobiDB_lite:mobidb-
lite,MobiDB_lite:mobidb-lite,Low_complexity_(Seg):seg 

3R:307741
65 

C zfh1 PANTHER:PTHR24391,PANTHER:PTHR24391:SF27,MobiDB_lite:mobidb-
lite,MobiDB_lite:mobidb-lite,Low_complexity_(Seg):seg 

3R:307858
31 

T zfh1 PANTHER:PTHR24391,PANTHER:PTHR24391:SF27 
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Supplemental Table S5: Determination of ap-value threshold for transcription factor binding site 
analysis 
To determine an appropriate p-value threshold for identifying transcription factor binding sites (TFBS), we 
tested FIMO’s ability to detect previously identified Rel and Srp binding sites in the upstream regions of four 
immune responsive genes.  The Identified Rel sites and Identified Srp sites columns give the total identified 
binding sites for the selected TF by the FIMO utility. The Matched Rel sites and Matched Srp sites columns 
give the number of identified sites that match the previously described binding sites (Senger et al., 2004). 
The Missing Rel sites and Missing Srp sites columns give the number of previously identified sites that were 
not able to be detected by a given threshold. Based on this analysis, we used a p-value threshold of 0.001 
for our TFBS analysis. 
 
Genotype  P-value 

threshold 
Identified 
Rel sites 

Matched 
Rel sites 

Missing 
Rel sites 

Identified  
Srp sites 

Matched 
Srp sites 

Missing 
Srp sites 

A4 .001 26 10 1 13 7 0 

A4 .0001 12 4 7 7 0 7 

B6 .001 29 11 0 13 7 0 

B6 .0001 12 4 7 7 0 7 
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