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Scalar fields coupled to the Gauss-Bonnet invariant can undergo a tachyonic instability, leading to

spontaneous scalarization of black holes. Studies of this effect have so far been restricted to single black

hole spacetimes. We present the first results on dynamical scalarization in head-on collisions and

quasicircular inspirals of black hole binaries with numerical relativity simulations. We show that black hole

binaries can either form a scalarized remnant or dynamically descalarize by shedding off its initial scalar

hair. The observational implications of these findings are discussed.
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Introduction.—Despite the elegance of Einstein’s theory,

it presents several shortcomings: explaining the late-time

acceleration of the Universe and providing a consistent

theory of quantum gravity or the presence of spacetime

singularities [e.g., in black holes (BHs)]. Candidate theories

(of quantum gravity) that remedy these shortcomings

typically predict the coupling to additional fields or higher

curvature corrections [1]. Binary BHs, their gravitational

wave (GW) emission, and the first GW detections by the

LIGO-Virgo Collaboration [2,3] offer unique insights into

the nonlinear regime of gravity that unfolds during the

BHs’ inspiral and merger and enable new precision tests of

gravity [4,5]. So far, these tests have been parametrized null

tests against general relativity (GR) [6,7] or used a mapping

between these parameters and those of specific theories

[8–10]. To do the latter, however, requires GW predictions

in specific theories.

One of the most compelling beyond-GR theories, scalar

Gauss-Bonnet (SGB) gravity introduces a dynamical scalar

field coupled to the Gauss-Bonnet invariant. SGB gravity

emerges in the low-energy limit of quantum gravity

paradigms such as string theory [11], through a dimen-

sional reduction of Lovelock gravity [12] and is the

simplest model that contains higher curvature operators.

The most studied class of SGB gravity with a dilatonic or

linear coupling to the scalar field gives rise to hairy BHs

[13–19]. This theory, however, has been strongly con-

strained with GW observations from binary BHs [9].

We turn our attention to another interesting class of SGB

gravity that is both unconstrained by GW observations and

gives rise to (spontaneously) scalarized BHs [20,21].

Spontaneous scalarization is a familiar concept in

beyond-GR theories; e.g., it is well established for neutron

stars in scalar-tensor theories [22,23]. In such theories, the

neutron star matter itself can induce a tachyonic instability

that spontaneously scalarizes the star. When placed in a

binary system, initially unscalarized neutron stars can

scalarize dynamically near their merger or a scalarized

neutron star can induce a scalar field in their unscalarized

companion [24–27]. In SGB gravity, it is the spacetime

curvature itself that induces scalarization of BHs [20,21],

although this has only been shown for isolated BHs so far.

In this Letter, we investigate, for the first time, dynamical

scalarization in binary BHs. We concentrate on head-on

collisions of BHs, but also present the first binary BH

inspiral study. Before doing so, it is convenient to first

review the basics of SGB gravity and spontaneous BH

scalarization.

Scalar Gauss-Bonnet gravity and scalarization.—SGB

gravity is described by the action

S ¼ 1

16π

Z

d4x
ffiffiffiffiffiffi

−g
p �

R −
1

2
ð∇ΦÞ2 þ αGB

4
fðΦÞG

�

; ð1Þ

where a real scalar field Φ is coupled to the Gauss-Bonnet

invariant G ¼ R2 − 4RμνR
μν þ RμνρσR

μνρσ, through the

function fðΦÞ and a dimensionful coupling constant

αGB. We use geometrical units c ¼ 1 ¼ G, in which αGB
has units of ½length�2. The action (1) gives rise to the scalar

field equation of motion

□Φ ¼ −ðαGB=4Þf0ðΦÞG; ð2Þ

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW LETTERS 127, 031101 (2021)

0031-9007=21=127(3)=031101(7) 031101-1 Published by the American Physical Society



where we defined ð·Þ0 ¼ dð·Þ=dΦ. The function fðΦÞ
selects different “flavors” of SGB gravity [28,29]. One

subset of these theories has f0 ≠ 0 everywhere. It includes

variants of SGB gravity with dilatonic fðΦÞ ∝ expðΦÞ
[13–15] or shift-symmetric fðΦÞ ∝ Φ [17,18,30] cou-

plings, in which BHs always have scalar hair [19,31].

Another interesting class of SGB theories admits an

extremum f0ðΦ0Þ ¼ 0 for a constant Φ0. They give

rise to an effective space-dependent mass term m2

eff ¼
−f00ðΦ0ÞG. This class includes quadratic fðΦÞ ∝ Φ

2

[21,32] and Gaussian fðΦÞ ∝ expðΦ2Þ [20] models.

The latter class still admits all vacuum (BH) solutions of

GR together with Φ ¼ Φ0 ¼ const. In fact, if f00ðΦ0ÞG < 0

these solutions are unique due to a no-hair theorem [21]. A

linear stability study of these Φ0 ¼ const solutions around

a Schwarzschild BH reveals that this condition is a require-

ment for the absence of a tachyonic instability (m2

eff > 0)

for the scalar field perturbations [21]. If the effective mass

m2

eff < 0, a tachyonic instability is triggered and the SGB

scalar field is excited and spontaneously scalarizes the BHs.

This linear instability [33] is quenched at the nonlinear

level, resulting in a scalarized BH as end state [34]. The

simplest theory that admits scalarized BHs is described by

the quadratic coupling fðΦÞ ¼ β̄2Φ
2, where β̄2 ¼ const

[35]. The relevant parameter in this theory is the dimen-

sionless constant β2 ¼ ðαGB=m2Þβ̄2, where m is the char-

acteristic mass of the system.

The onset of scalarization is fully determined by the

scalar’s linear dynamics on a given GR background. For a

Schwarzschild BH of massm, for which G ≥ 0 everywhere,

scalarization first occurs for a spherically symmetric scalar

field if β2 ¼ βc ∼ 1.45123, a result in agreement with

nonlinear calculations [20,21]. For values below βc, the

scalar perturbation decays monotonically at late times (we

call them “subcritical”), precisely at βc the scalar field

forms a bound state around the BH (“critical”), and above it

the scalar field growths exponentially with time (“super-

critical”). This result was recently generalized to Kerr BHs,

where spin-induced scalarization can take place for β2 < 0,

for dimensionless spin parameters χ ≥ 0.5 [36–39].

Nonlinear rotating scalarized BH solutions in SGB gravity

were found for both positive [40,41] and negative [42,43]

values of β2. So far studies of scalarization in SGB gravity

focused on single BHs. We advance these studies to BH

binaries and expand upon [44], focusing on the quadratic

theory fðΦ̄Þ ¼ β̄2Φ
2, as discussed next.

Numerical methods and simulations.—We investigate

BH scalarization in the decoupling limit, i.e., we numeri-

cally evolve the scalar field on a time-dependent back-

ground in vacuum GR that represents binary BH

spacetimes. Unless stated otherwise, we follow the

approach of [44] and refer to it for details. We foliate

the spacetime into spatial hypersurfaces with 3-metric γij
and extrinsic curvature Kij ¼ −ð2αÞ−1dtγij, where

dt ¼ ∂t − Lβ, with Lβ being the Lie derivative along the

shift vector βi, and α is the lapse function. We

write Einstein’s equations as a Cauchy problem and adopt

the Baumgarte-Shapiro-Shibata-Nakamura formulation

[45,46] of the time evolution equations complemented

with the moving-puncture gauge conditions [47,48]. We

prepare Brill-Lindquist initial data [49,50] for head-on

collisions or Bowen-York initial data [51,52] for a quasi-

circular BH binary.

To evolve the scalar field, we introduce its momentum

KΦ ¼ −α−1dtΦ and write its field equation (2) as

dtΦ ¼ −αKΦ;

dtKΦ ¼ −DiαDiΦ − α

�

DiDiΦ − KKΦ þ αGB

4
f0G

�

; ð3Þ

where Di is the covariant derivative associated with γij,

K ¼ γijKij, f
0 ¼ 2β̄2Φ, and G is the Gauss-Bonnet invari-

ant of the background spacetime. We set the system’s total

mass to unity, i.e., M ¼ m1 þm2 ¼ 1, where m ¼ m1;2 is

the component’s mass. The scalar field is initialized either

as a spherically symmetric Gaussian shell (G), located at

r0 ¼ 12M and with width σ ¼ 1M as in [44], or as a bound

state (B) around each binary component

Φjt¼0 ¼
mr

ϱ2

�

c1 þ
c2mr

ϱ2
þ c3ðmrÞ2

ϱ4

�

; KΦjt¼0 ¼ 0:

ð4Þ

Here, ϱ ¼ mþ 2r, and c1 ¼ 3.683 75, c2 ¼ 4.972 416, and

c3 ¼ 4.972 416 × 102 are fitting constants to reproduce the

numerical results in [21].

We perform our numerical simulations with Canuda

[44,53–55], coupled to the open-source Einstein Toolkit

[56,57]. We extended the implementation of [44] to general

coupling functions f, including the quadratic coupling. We

employ the method of lines with fourth-order finite differ-

ence stencils to realize spatial derivatives and a fourth-

order Runge-Kutta time integrator. We use box-in-box

mesh refinement provided by Carpet [58]. The numerical

grid contains seven refinement levels, with the outer

boundary located at 256M and a grid spacing of dx ¼
1.0M on the outer mesh. To assess the numerical accuracy

of our simulations, we evolved Fig. 1(b) with additional

resolutions dx ¼ 0.9M and dx ¼ 0.8M. We find second-

order convergence and a relative discretization error of

ΔΦ00=Φ00 ≲ 0.5%, where Φ00 is the l ¼ m ¼ 0 multipole

of the scalar field. We present the corresponding conver-

gence plot for the scalar monopole and for the gravitational

wave l ¼ 2, m ¼ 0 mode in Fig. 1 of the Supplemental

Material [59].

Results.—We performed a large set of BH head-on

collisions with varying mass ratio q ¼ m1=m2 ≤ 1, total

mass M ¼ 1, and initial separation d ¼ 25M. The BHs

merge at tM ∼ 179.5M, as estimated from the peak of the
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l ¼ 2, m ¼ 0 multipole of the gravitational waveform. To

guide our choices of β2, we recall that the critical coupling

for the fundamental mode is β2;c ¼ βcðm=MÞ2 with

βc ∼ 1.45123, and m denotes either the individual BH’s

mass m1;2 or the total mass M. For example, for an equal-

mass binary withm1 ¼ m2 ¼ M=2, the critical coupling for

the individual holes is β
ð1Þ
2;c ¼ β

ð2Þ
2;c ¼ βc=4 ¼ 0.362 75 and

that of the final hole is approximately β
f
2;c ¼ βc, where we

neglected the small mass loss in the form of GWs during

the collision [60,61].

Here we present a selection of our results, illustrated in

Fig. 1, to highlight our most important findings. An

expanded discussion will be presented in a companion

paper [62]. We vary the initial state by setting the coupling

parameter β2 such that [Fig. 1(a)] none of the BHs are

initially scalarized, [Fig. 1(b)] the smaller-mass BH initially

carries a bound-state scalar field, and both BHs carry

initially a bound-state scalar that leads either to a non-

scalarized final BH [Fig. 1(c)] or a scalarized final BH

[Fig. 1(d)].

In Fig. 2 we show the l ¼ m ¼ 0 scalar field multipole

extracted on a sphere of fixed radius rex ¼ 50M, as a

function of time, and we present snapshots of the scalar’s

profile in the Supplemental Material [59]. In Fig. 1(a), the

scalar perturbation is not supported at all (since meff ¼ 0)

and, indeed, after a brief interaction at early times it decays

already before the BHs collide. In Figs. 1(b) and 1(c), we

find a constant scalar field before the BHs collide that is

consistent with a bound state around the individual (q ¼ 1)

or smaller-mass BH (q ¼ 1=2). After the merger, the scalar

field decays since the curvature (and thus meff) decreases

and the system no longer supports a bound state—the final

BH dynamically descalarizes. In Fig. 1(d), the scalar field

grows exponentially before the merger because it is

supercritical for the individual BHs and settles to a constant

in time that is consistent with a bound state around the

final BH.

In Fig. 3, we show two-dimensional snapshots of the

scalar field and spacetime curvature for Fig. 1(b), which

illustrates the dynamical descalarization phenomenon [63].

The color map is shared among all panels and shows the

amplitude of log10jΦj, while the curves are isocurvature

levels of GM4 ¼ f1; 10−1; 10−2; 10−3g. Initially, at t ¼ 1M,

each BH (whose locations are revealed by the isocurvature

levels) are surrounded by nontrivial scalar field initial data

given by Eq. (4). At t ¼ 50M, the smaller BH hosts a

bound state scalar that is dragged along the hole’s motion,

inducing scalar dipole radiation that would impact the GWs

emitted. In contrast, the scalar field around the larger BH

disperses because its curvature is too small to sustain a

bound state for a coupling of β2 ¼ 0.362 81. The system

thus evolves as an sþ s̄ process in the notation of Fig. 1. At
t ¼ 160M, the BHs are about to merge, as indicated by the

two lobes in the isocurvature contours, the curvature of the

combined system decreases, and the scalar field starts

dissipating. At t ¼ 182M, which is shortly after the

collision, the system has descalarized since for the final

BH β
f
2;c > β2.

We also simulated the inspiral of an equal-mass, non-

spinning BH binary with initial separation of d ¼ 10M,

β2 ¼ 0.36281, and bound state scalar field initial data. This

FIG. 2. Time evolution of the scalar field l ¼ m ¼ 0 multipole

in the background of a BH head-on collision with initial

separation d ¼ 25M. It is rescaled by the extraction radius rex ¼
50M and shifted in time such that ðt − rex − tMÞ=M ¼ 0 corre-

sponds to the BHs’ merger. The labels refer to the four cases

summarized in Fig. 1.
FIG. 1. Summary of simulations of BH head-on collisions,

where s̄ and s stand for initial or final states that are either

nonscalarized or scalarized, respectively. Each diagram is labeled

by the initial data (Gaussian shell “G” or bound state “B”), the
mass ratio q ¼ m1=m2 (1 or 1=2), and the coupling parameter β2.

In case (a) (top left panel) two nonscalarized BHs produce a

nonscalarized remnant. In case (b) (top right panel) a scalarized

and a nonscalarized BH produce a nonscalarized remnant.

This initial configuration is possible when q is different from

one. In case (c) (bottom left panel) two scalarized BHs

produce a nonscalarized remnant. Finally, in case (d) (bottom

right panel) two scalarized BHs produce a scalarized

remnant.
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corresponds to an initial configuration in which both BHs

are scalarized, and then, after merger, the remnant is not

scalarized, which is analogous to Fig. 1(c) in the head-on

case. In Fig. 4, we show the gravitational quadrupole

waveform (bottom panel), as characterized by the l ¼
m ¼ 2 mode of the Newman-Penrose scalar Ψ4, together

with the scalar field’s monopole (top) and quadrupole

(middle). The scalar’s monopole Φ00 exhibits the distinc-

tive signature of descalarization: the increase in the field’s

amplitude during the inspiral of scalarized BHs is followed

by a complete dissipation of the scalar field after the merger

(tM ∼ 917M) as the curvature of the remnant BH no longer

supports a bound state. In addition, the dynamics of the BH

binary sources scalar quadrupole radiation. The field’s

amplitude grows exponentially during the inspiral and

decays after the BHs have merged. The origin of this

excitation is not direct scalarization of the l ¼ 2 scalar

bound state, but due to the inspiral of two scalarized (or

“hairy”) BHs. This interpretation is further supported by

the observation that the phase of the l ¼ m ¼ 2 scalar

mode is driven by the binary’s orbital frequency. We also

observed this for the l ¼ m ¼ 4 mode and expect it to

happen for all even l ¼ m modes. For q ¼ 1, the odd

l ¼ m modes are suppressed due to symmetry, whereas

they would be excited in the general case q ≠ 1. The

descalarization during the merger is reminiscent of the

decrease in scalar charge observed in the shift-symmetric

theory [44], however, with the striking difference that here

the remnant BH is a rotating GR solution.

Discussions.—We presented the first numerical relativity

simulations of the scalar field dynamics in binary BH

spacetimes in quadratic SGB gravity [21]. We found that

the interplay between mass ratio q and β2 can result in

different scenarios for the scalar field dynamics. Most

notably, it can lead to a dynamical descalarization of the

binary, which we observed in both head-on and quasicir-

cular inspiral simulations. Here we focused on β2 ≥ 0, but

the case β2 < 0would be particularly interesting to study in

inspiral simulations. More specifically, the spinning

remnant of a binary BH merger typically has a dimension-

less spin χ ∼ 0.7 [64], sufficient to trigger a spin-induced

tachyonic instability of the scalar field [36]. This is

currently under study [62]. It would be interesting to frame

this effect within the effective field theory (EFT) of [65] or

in a post-Newtonian framework [66–68].

The scalar excitations we have discovered during the

binary BH coalescence in this class of SGB theories have

important implications to GWobservations and tests of GR.

In particular, the scalar excitations will drain the binary of

energy as they propagate away from the system, the

monopole scalar piece inducing dipole losses, and the

quadrupole piece correcting the quadrupole GW losses of

GR, which, based on [69], are expected to only have the

same “plus” and “cross” polarizations. This enhanced

dissipation of energy and angular momentum, in turn, will

force the binary to inspiral faster than in GR and, therefore,

leave an imprint in the GWs emitted through corrections to

the rate at which the GW frequency increases during the

FIG. 3. Scalar field and Gauss-Bonnet dynamics on the xy plane for Fig. 1(b). We show the amplitude of log10 jΦj (color map) together

with the Gauss-Bonnet invariant (isocurvature levels) at the beginning of the evolution (top left), during the BHs’ approach (top right),

shortly before the collision (bottom left), and shortly after the merger (bottom right). The isocurvature levels correspond to 1M−4 (solid

line), 10−1M−4 (dashed line), 10−2M−4 (dot-dashed line), and 10−3M−4 (dotted line).

FIG. 4. Scalar and gravitational waveforms, rescaled by the

extraction radius rex ¼ 50M, sourced by an equal-mass BH

binary with bound state initial data on each BH. This system

is the inspiral counterpart of Fig. 1(c) and shows dynamical

descalarization in action.
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inspiral. This GW phase shift will enable us to project

bounds on SGB gravity that are similar in spirit but

complementary to the analysis of [44]. In fact, because

the merger leaves behind a “bald” Kerr black hole due to

dynamical descalarization, the (scalar) energy flux is, in

general, larger as compared to shift-symmetric SGB, where

the remnant black hole always retains some of its hair. This

suggests that strong observational bounds might be placed

on this theory. A detailed numerical analysis of this

expected GW phase shift during of the late inspiral, merger,

and ringdown will be presented in upcoming work [62].

Having worked in the decoupling limit, a question

naturally arises: what would we expect in the fully non-

linear regime of SGB gravity? It is known that nonlinear

effects set an upper bound on the scalar field magnitude at

the BH horizon [28], so that the domain of existence of

scalarized BHs exhibits a very narrow bandlike structure in

the phase space spanned by BH mass and coupling β2; see

Fig. 2 of [21]. This means that Fig. 1(d) would only occur

for sufficiently small mass ratios such that both the initial

binary and its final state remain in band. In general,

however, comparable mass BH binaries could undergo

an s̄þ s̄ → s process, in which two unscalarized BHs

would merge, forming a BH within the scalarization band.

The descalarization of the BH remnant would also impact

the GW emission during the ringdown. Specifically, the

waveforms in Fig. 4 show that the ringdown timescales of

scalar and tensorial modes are comparable. This suggests

that one should expect to see the imprint of the descala-

rization onto the quasinormal mode spectra of the Kerr

black hole in the nonlinear case. Performing these studies in

practice would require a general, well-posed formulation of

the time evolution equations outside the EFT approach

[44,70], small values of the coupling parameter [71,72], or

spherical symmetry [34,73–75]. Finding such a formu-

lation has proven challenging [76–79], although first results

in this direction were presented [80]. Our work motivates

and paves the way for future studies of nonperturbative,

beyond-GR effects in BH binaries, with potential impli-

cations to tests of GR with GW astronomy.
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