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The metric of a spacetime can be greatly simplified if the spacetime is circular. We prove that in generic

effective theories of gravity, the spacetime of a stationary, axisymmetric, and asymptotically flat solution

must be circular if the solution can be obtained perturbatively from a solution in the general relativity limit.

This result applies to a broad class of gravitational theories that include arbitrary scalars and vectors in their

light sector, so long as their nonstandard kinetic terms and nonmininal couplings to gravity are treated

perturbatively.
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Introduction.—Despite the complexity and nonlinearity

of the Einstein equations, rotating black holes in general

relativity (GR) are described by a remarkably simple

analytical solution obtained by Kerr [1,2]. A crucial step

in finding the Kerr solution is that the ten unknown

functions of four coordinate variables in the metric can

be reduced to four unknown functions of only two

variables. This simplification is only possible because

stationary and axisymmetric vacuum solutions in GR

belong to a specific class called “circular spacetimes”

[3]. However, this is not necessarily the case in generic

gravitational theories [4], and one should not expect a priori

that black hole solutions in such theories will be circular. In

particular, one should expect the validity of the circularity

assumption to play a role as important as it did in GR to

obtain rotating black hole solutions (either numerically or

analytically) in such theories. In turn, knowledge of these

solutions constitutes the stepping stone on which many

tests of strong-field gravity rely [5]. The use of an over-

simplified ansatz based on the circularity condition can lead

to spacetimes that are inconsistent with a given theory’s

field equations. This was recently observed, for instance, in

the case of rotating black hole solutions with linearly time-

dependent hair in cubic Galileon theories in which the

circularity condition is not satisfied [6].

In this Letter, we investigate the circularity of stationary

and axisymmetric solutions in generic gravitational theories,

paving the way for finding rotating black hole solutions in

GR and beyond. In order to remain generic on the gravi-

tational theory, we work within the effective field theory

(EFT) framework in which UV modifications of GR

manifest as higher dimensional operators in the low-energy

EFT and can be treated perturbatively. The EFT framework

works well for isolated astrophysical black holes, which

have masses in the ∼5–1010 M⊙ range thanks to their low

energy scale (≲10−11 eV). The framework is also supported

by the agreement of GR predictions with gravitational wave

detections [7] and other electromagnetic observations [8]. In

particular, we focus on gravitational theories whose low-

energy EFT represents extensions of GR involving addi-

tional (scalar) fields and other operators. These EFTs include

fðRÞ gravity or more general scalar-tensor theories [9,10]

and quadratic gravity [11] such as dynamical Chern-Simons

gravity [12,13] and Einstein-dilaton-Gauss-Bonnet gravity

[14,15], as well as gravitational EFTs without light scalar

fields like those studied in [16–18].

As the modifications of GR are small, black hole

solutions in the EFTs can be obtained through a perturba-

tive expansion around one (or more) coupling constants of

such theories (see [19–33] for examples). We show here

that the spacetime of stationary, axisymmetric, and asymp-

totically flat solutions is circular in these EFTs, hence also

in the corresponding high-energy gravitational theories. In

principle, there could be other branches of solutions that are

not connected perturbatively to their GR counterparts (see

[34,35] for example), but these are not the focus of this

Letter. We use geometric units (c ¼ 8πG ¼ 1) and employ

the ð−;þ;þ;þÞ metric signature.

Circular spacetimes in GR.—Consider a stationary and

axisymmetric spacetime associated with two Killing vec-

tors ξμ and χμ that correspond to the two isometries,

respectively. Figure 1 gives a schematic illustration of this

geometry. Carter [36] showed that the two Killing vectors

commute, which means one can choose adapted coordi-

nates ðt; r; θ;ϕÞ on the spacetime such that ξ ¼ ∂t and

χ ¼ ∂ϕ. The isometries imply
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∂tgμν ¼ 0 ¼ ∂ϕgμν: ð1Þ

Moreover, there exist privileged 2-dimensional surfaces,

called “surfaces of transitivity,” to which the Killing vectors

are everywhere tangent except on the rotation axis where χμ

vanishes. In adapted coordinates, the surfaces of transitivity

can be labeled by the values of ðr; θÞ.
A circular spacetime is a subclass of stationary and

axisymmetric spacetimes for which, in addition to Eq. (1),

there exists a family of 2-surfaces known as meridional

surfaces that are everywhere orthogonal to the surfaces of

transitivity. In this case, one can further choose the

coordinates r and θ such that

gtr ¼ gtθ ¼ gϕr ¼ gϕθ ¼ 0: ð2Þ

Without loss of generality, the metric can then take the

following ansatz

gμνdx
μdxν ¼ −N2dt2 þ A2ðdr2 þ r2dθ2Þ

þ B2r2sin2θðdϕ − ωdtÞ2; ð3Þ

in “quasi-isotropic coordinates,” where N, A, B, and ω are

functions of r and θ.

Papapetrou [3] (see also [37]) showed that a spacetime is

circular if (i) ξ½μχν∇ρξσ� and ξ½μχν∇ρχσ� each vanish at least
at one point of the spacetime, and (ii)

ξμR
½ν
μ ξ

ρχσ� ¼ 0; χμR
½ν
μ ξ

ρχσ� ¼ 0 ð4Þ

everywhere in spacetime, where the square brackets denote

full antisymmetrization. For asymptotically flat spacetimes,

which we focus on, Carter further showed a rotation axis at

which χμ ¼ 0 exists [36]; thus, the first condition is

satisfied.

The Eq. (4) condition is trivially satisfied if the Ricci

tensor vanishes, which means that any stationary, axisym-

metric, and asymptotically flat vacuum solution in GR is

circular, as well as those Ricci-flat solutions in modified

gravity theories (e.g., [24,38]). The Eq. (4) condition can

also be recast as a requirement of the Ricci tensor being

“invertible” [39–41]. Let ðiÞζ
μ (i ¼ 1, 2) be the two Killing

vectors ξμ and χμ and ðjÞην (j ¼ 3, 4) be two independent

vectors everywhere orthogonal to ξμ and χμ. A tensor is said

to be invertible in the isometry group if the scalars obtained

by contracting any combinations of the tensor’s indices

with any choice of ðiÞζ
μ and ðjÞην vanish whenever the

number of contracted ðiÞζ
μ is odd. In particular, the Ricci

tensor is invertible if

Rν
μðiÞζ

μðjÞην ¼ 0; i ¼ 1; 2; j ¼ 3; 4: ð5Þ

Heuristically, the Eq. (5) condition is equivalent to the

Eq. (4) condition because the latter is equivalent to

requiring that ðiÞζ
μRν

μ be tangent to the surface of tran-

sitivity (i.e., proportional to any linear combination of ðiÞζ
μ)

and thus, that any part tangent to the meridional surface

[i.e., proportional to any linear combination of ðjÞη
ν] vanish.

In the following, we shall omit the presub and superscript

of ζμ and ην and bear in mind that each of them represents a

vector in a two vector set.

Circularity in generic gravitational theories.—Let us

consider a generic gravitational theory potentially contain-

ing fields of arbitrary spin and coupling to gravity with the

Lagrangian

L ¼ 1

2
Rþ Lφ þ Lψ þ Lintð∇ρ; Rρσαβ;φ;ψÞ; ð6Þ

where the fields are classified as heavy fields ψ or light

fields φ depending on whether their masses are above or

below the curvature scale of the solution that we are

interested in. Here, Lφ and Lψ are the Lagrangians of φ

and ψ , while Lint captures all the interactions between the

fields as well as any nonminimal couplings to gravity. In

particular, we assume that nonstandard kinetic terms of φ, if

there is any in Lφ, can be treated perturbatively. At the

energy scale of the solution, we can integrate out the heavy

fields with masses larger than the curvature of the solution

we are interested in,

e
i
R

d4x
ffiffiffiffi

−g
p

LEFT ¼
Z

Dψe
i
R

d4x
ffiffiffiffi

−g
p

L
; ð7Þ

and obtain a low-energy EFT with the following

Lagrangian (see Refs. [42–44] for explicit examples):

LEFT ¼ 1

2
Rþ L0ðφ; gμνÞ þ αLMð∇ρ; Rρσαβ;φÞ; ð8Þ

Rotation axis

Surface of 
transitivity

FIG. 1. Geometry of a stationary and axisymmetric spacetime.

The Killing vector ξμ is associated with time translation and χμ is

associated with rotations about the symmetry axis. Note that ξμ

and χμ are not necessarily orthogonal. The surface of transitivity

is generated by ξμ and χμ and is degenerate on the rotation axis

where χμ vanishes. The independent vectors ðjÞην (j ¼ 3, 4) are

chosen to be orthogonal to the surface of transitivity. Here we

only show one of the orthogonal vectors.
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where operators are sorted according to their dimensions.

In particular,L0 are operators constructed by the light fields

φ and their covariant derivatives with dimensions equal to

or less than 4, while LM are higher dimension operators

constructed by the Riemann tensor, the light fields, and

derivatives of both, which therefore are suppressed by a

small parameter α. The heavy fields ψ in Eq. (6) have been

integrated out and manifest themselves solely as higher

curvatures and derivative corrections in LM. The curvature

scale of isolated astrophysical black holes is expected to be

smaller than 10−11 eV. Hence, in realistic situations, the

heavy fields ψ include all massive particles of the standard

model and beyond.

For now, we focus on the case in which the light fields, if

any, are all scalar fields. We emphasize that φ denotes all

light fields in the EFT, which we shall not distinguish with

additional labels, and thus, inner products require an

internal space metric, which we will also suppress [45].

This EFT reduces identically and smoothly to GR

as α → 0, i.e., in this limit Eq. (8) reduces to the

Einstein-Hilbert action minimally coupled to light scalar

fields.

The modified Einstein equations in this theory are

Rμν −
1

2
Rgμν ¼ Tμν þ αMμν; ð9Þ

where Tμν≡−2δð ffiffiffiffiffiffi

−g
p

L0Þ=δgμν and Mμν≡−2δð ffiffiffiffiffiffi

−g
p

LMÞ=
δgμν are the energy-momentum tensors associated with L0

and LM, respectively. In particular, terms in Tμν are either

proportional to gμν or proportional to ∂μφ∂νφ due to the

dimension of the operators in L0. Given the smallness of α,

a solution to Eq. (9) fgμν;φg can be obtained order by order
in α. For concreteness, we use fgðnÞμν ;φ

ðnÞg to denote the

solution to the nth order in α, i.e., gμν ¼ g
ðnÞ
μν þOðαnþ1Þ,

with Oðαnþ1Þ accounting for all higher-order corrections.

We also label a quantity with subscript or superscript (n),

e.g., T
ðnÞ
μν or g

μν

ðnÞ, if it is calculated up to the nth order in α.

The full solution is given by fgðnÞμν ;φ
ðnÞg with n approach-

ing infinity for a sufficiently small α.

In the following, we prove that the spacetime of a

stationary, axisymmetric, and asymptotically flat solution

is necessarily circular if the solution can be obtained order

by order in α. Here we only consider solutions with

stationary and axisymmetric scalar fields, which are not

necessarily required for the spacetime also be stationary

and axisymmetric as we discuss later. The proof can be

done in three steps.

First, we prove that the solution is circular at zeroth order

in α, i.e., g
ð0Þ
μν is circular. At zeroth order, we get back to GR,

and g
ð0Þ
μν is circular if T

ð0Þ
μν is invertible [39]. In order to show

the invertibility, let us consider Tν
μζ

μην, where ζμ are the

two Killing vectors and ην are the two independent vectors

orthogonal to ζμ. Since the scalar fields are stationary and

axisymmetric, the vanishing of their Lie derivatives along

ζμ implies

£ζφ≡ ζμ∂μφ ¼ 0: ð10Þ

Thus, terms in Tμν that are proportional to ∂μφ∂νφ vanish

after contracting with ζμ. The rest of Tμν is proportional to

gμν and do not contribute to T
ν
μζ

μην given the orthogonality

between ζμ and ην. Therefore,

Tν
μζ

μην ¼ 0; ð11Þ

i.e., Tμν is invertible. At zeroth order in α, Eq. (11) means

T
ð0Þ
μν is invertible, and hence g

ð0Þ
μν is circular.

Next, we prove that if g
ð0Þ
μν is circular, then g

ð1Þ
μν is also

circular. This can be proved if the Ricci tensor associated

with g
ð1Þ
μν is invertible, or equivalently [46],

Rν
μζ

μην ¼ 0þOðα2Þ: ð12Þ

Contracting Eq. (9) with ζμ and ην, we find

Rν
μζ

μην ¼ αMν
μζ

μην; ð13Þ

where the second term on the left hand side of Eq. (9) does

not contribute due to the orthogonality between ζμ and ην,

and the first term on the right hand side of Eq. (9) also

vanishes because of the invertibility of Tμν.

On the other hand, since g
ð0Þ
μν is circular, the Riemann

tensor associated with g
ð0Þ
μν is invertible (see the

Supplemental Material [47] for a proof). Moreover, we

show in the Supplemental Material [47] that any tensor

constructed from stationary, axisymmetric, and invertible

tensors and their covariant derivatives associated with g
ð0Þ
μν

is also itself invertible. Together with the assumption that

the scalar fields φ are stationary and axisymmetric, we

conclude that Mμν evaluated at zeroth order in α is

invertible, and hence

Mν
μζ

μην ¼ 0þOðαÞ: ð14Þ

Substituting Eq. (14) into Eq. (13), we findRν
μζ

μην vanishes

to first order in α, and therefore, g
ð1Þ
μν is circular.

Finally, we assume the solution is circular to the nth
order in α and show that the solution to the (nþ 1)th order

is circular. The proof is similar to that in the second step.

In this case, Mν
μζ

μην can be evaluated to the nth order in α

with g
ðnÞ
μν and φðnÞ. The circularity of the nth order solution

implies that

Mν
μζ

μην ¼ 0þOðαnþ1Þ: ð15Þ

Substituting this into Eq. (13), we find Rν
μζ

μην vanishes to

(nþ 1)th order in α, and hence the solution to the (nþ 1)th
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order is circular. By induction, we conclude that the

solution is circular to all orders in α.

Extension to generalized light fields.—Our proof can be

further extended to theories with more general light fields,

as long as the light fields and their leading-order stress-

energy tensor Tμν are invertible.

For light scalar fields, L0 may also include higher

dimension operators that are arbitrary functions of φ,

∇μφ∇
μφ, and □φ. In this case, the resulting leading order

stress-energy tensor is

Tμν ¼ −
∂L0

∂ð∇λφ∇
λφÞ∇μφ∇νφþ∇ðμ

�

∂L0

∂ð□φÞ

�

∇νÞφ

þ 1

2
gμν

�

L0 −∇λ

�

∂L0

∂ð□φÞ∇
λφ

��

; ð16Þ

where terms proportional to ∇μφ∇νφ or gμν are invertible

for the same reasons discussed above. Moreover,

∂L0=∂ð□φÞ inherits the symmetries of φ, so its Lie

derivatives along ζμ vanish. Thus, the second term on

the right hand side of Eq. (16), and hence the aggregated

Tμν, is invertible, indicating stationary, axisymmetric, and

asymptotically flat vacuum solutions in such more general

scalar-tensor theories are also circular.

In addition to the light scalars as described above, our

proof can also be generalized to gravitational theories that

include light vectors, as long as the nonstandard kinetic

terms and nonminimal couplings to gravity may be treated

perturbatively. In particular, our proof can be extended to

include light vectors with the following restrictions: (i) L0

is totally constructed from the vector fields Vμ and their

exterior derivatives Fμν ¼ 2∇½μVν�, and (ii) the vector fields
Vμ, apart from being stationary and axisymmetric, are

invertible. In this case, since the exterior derivative does not

depend on the metric, the energy-momentum tensor asso-

ciated with L0 is completely constructed from Vμ and Fμν.

We show in the Supplemental Material [47] that Fμν

inherits the vector field’s invertibility without assuming

circularity. Therefore, Tμν is invertible, and any such

vector-tensor theory admits a circular ansatz for stationary

and axisymmetric vacuum solutions. In addition, any

generalized Proca theory, as introduced in [48–52], would

inherit the same properties so long as the higher-order

Lagrangians introduced in these theories are treated

perturbatively.

Discussions.—Our main result is a proof that the

spacetime of stationary, axisymmetric, and asymptotically

flat rotating black holes in a broad class of gravitational

EFTs is circular. We emphasize that in addition to the light

fields we have considered, the theory may also include any

heavy field of arbitrary spin and coupling to gravity, as long

as the mass of these fields is larger than the curvature scale

of the black holes. Our result is of immediate importance to

the ongoing effort of testing the strong-field regime of

gravity through gravitational waves [53–57] and electro-

magnetic observations [58,59] in which black holes play a

central role [5]. These tests generally require knowledge of

a rotating black hole solution (within a certain EFT) from

which observable consequences are then deduced and then

ultimately compared to observations. Here, we proved that

circularity is shared among a broad class of solutions,

justifying the use of this ansatz when searching for

analytical and numerical solutions.

What are the implications of our result for some specific

theories? Consider, for instance, dynamical Chern-Simons

gravity in which a scalar field couples to the Pontryagin

density [12,13]. This theory must be treated as an EFT to

admit a well-posed initial value problem [60], and, in fact,

this theory is captured within the assumption of our proof.

Rotating black hole solutions in this theory are known

numerically [61,62] and analytically [20,27,63–65] in a

perturbative expansion in the coupling strength α and black

hole spin a ≪ 1 to Oðα2a5Þ [26,30,63] and in the extremal

limit [66]. Our results indicate that the spacetime of rotating

black holes in this theory is circular, justifying the use of

the ansatz [Eq. (3)] in numerical calculations. The same

applies to scalar Gauss-Bonnet gravity with shift-symmet-

ric and dilatonic couplings where rotating black hole

spacetimes are known analytically [24,25,27–29] and

numerically [67–70], including the final state of black

holes that results at late times after highly dynamical black

hole formation [71–73]. In fact, it applies to any EFT

extension of GR, including any low-energy EFT of gravity

that includes massive fields of arbitrary spins.

Our results agree with those of [74], which suggested the

nonexistence of rotating noncircular black holes in dynami-

cal Chern-Simons gravity and shift-symmetric scalar-

Gauss-Bonnet gravity, by working perturbatively to

Oðα2a2Þ. Our conclusions extend to all orders in these

two parameters. Moreover, our results also apply to non-

vacuum solutions in generic gravitational theories of the

type discussed in this Letter, as long as the matter fields in

the GR solution are stationary, axisymmetric, and possess

an invertible stress-energy tensor. That is, our conclusion

holds for a gravitational theory minimally coupled to an

ordinary matter source, such as a perfect fluid that satisfies

the same symmetries as the metric (i.e., stationarity and

axisymmetry).

We stress that our results only apply to solutions that

reduce to a GR solution in the limit when the perturbative

parameter α goes to zero. In general, this does not have to

be the case, as other branches of solutions may be entropi-

cally favored, as is the case with theories that exhibit

spontaneous black hole scalarization [34,35].

The requirement that the fields are stationary and

axisymmetric (and invertible if of spin-1) is a sufficient

but not a necessary condition for the solution to be circular,

and it is not necessarily required by the isometries of the

spacetime. There are cases in which the extra fields can be
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time- and angle-dependent, yet this dependence does not

manifest itself in the gravitational equations. For example,

there are hairy, nonlinear black hole solutions and solitonic

solutions that arise in GR coupled to complex and massive

(scalar) fields [75–78], where the metric is circular while

the fields have time- or angle-dependent phases. Other

examples are the stealth black holes of [79] in which the

scalar field has a linear time dependence, although such

black hole solutions usually suffer from a strong coupling

problem [80–82].

Our results do imply that if a theory satisfies the

conditions of our theorem, then all black hole solutions

must have a circular spacetime, but the converse is not

necessarily true. Imagine one were to find a black hole

solution in a modified theory (in which our theorem does

not apply) by requiring a priori that the spacetime be

circular. The existence of this solution does not then mean

that other noncircular solutions do not exist. For example,

black hole solutions have been found in Einstein-Yang-

Mills theories with [83] and without [84] a dilaton field,

and in Einstein-æther theory in the slow-rotation approxi-

mation [85,86] assuming a priori that the spacetime must

be circular. In both cases, however, our theorem does not

apply because either the Yang-Mills vector gauge field is

noninvertible after gauge fixing or the æther field is

noninvertible because of its timelike constraint. Thus,

the existence of those solutions does not imply that other

noncircular black hole solutions do not exist in these

theories, which could be explored further.
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Lehébel, Hamiltonian unboundedness vs stability with an

application to Horndeski theory, Phys. Rev. D 98, 104050

(2018).

[81] C. de Rham and J. Zhang, Perturbations of stealth black

holes in degenerate higher-order scalar-tensor theories,

Phys. Rev. D 100, 124023 (2019).

[82] H. Ogawa, T. Kobayashi, and T. Suyama, Instability of hairy

black holes in shift-symmetric Horndeski theories, Phys.

Rev. D 93, 064078 (2016).

[83] B. Kleihaus, J. Kunz, and F. Navarro-Lerida, Rotating

dilaton black holes with hair, Phys. Rev. D 69, 064028

(2004).

[84] B. Kleihaus and J. Kunz, Rotating Hairy Black Holes, Phys.

Rev. Lett. 86, 3704 (2001).

[85] E. Barausse and T. P. Sotiriou, Black holes in Lorentz-

violating gravity theories, Classical Quantum Gravity 30,

244010 (2013).

[86] E. Barausse, T. P. Sotiriou, and I. Vega, Slowly rotating

black holes in Einstein-æther theory, Phys. Rev. D 93,

044044 (2016).

PHYSICAL REVIEW LETTERS 126, 241104 (2021)

241104-7


