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The metric of a spacetime can be greatly simplified if the spacetime is circular. We prove that in generic
effective theories of gravity, the spacetime of a stationary, axisymmetric, and asymptotically flat solution
must be circular if the solution can be obtained perturbatively from a solution in the general relativity limit.
This result applies to a broad class of gravitational theories that include arbitrary scalars and vectors in their
light sector, so long as their nonstandard kinetic terms and nonmininal couplings to gravity are treated

perturbatively.
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Introduction.—Despite the complexity and nonlinearity
of the Einstein equations, rotating black holes in general
relativity (GR) are described by a remarkably simple
analytical solution obtained by Kerr [1,2]. A crucial step
in finding the Kerr solution is that the ten unknown
functions of four coordinate variables in the metric can
be reduced to four unknown functions of only two
variables. This simplification is only possible because
stationary and axisymmetric vacuum solutions in GR
belong to a specific class called ‘“circular spacetimes”
[3]. However, this is not necessarily the case in generic
gravitational theories [4], and one should not expect a priori
that black hole solutions in such theories will be circular. In
particular, one should expect the validity of the circularity
assumption to play a role as important as it did in GR to
obtain rotating black hole solutions (either numerically or
analytically) in such theories. In turn, knowledge of these
solutions constitutes the stepping stone on which many
tests of strong-field gravity rely [5]. The use of an over-
simplified ansatz based on the circularity condition can lead
to spacetimes that are inconsistent with a given theory’s
field equations. This was recently observed, for instance, in
the case of rotating black hole solutions with linearly time-
dependent hair in cubic Galileon theories in which the
circularity condition is not satisfied [6].

In this Letter, we investigate the circularity of stationary
and axisymmetric solutions in generic gravitational theories,
paving the way for finding rotating black hole solutions in
GR and beyond. In order to remain generic on the gravi-
tational theory, we work within the effective field theory
(EFT) framework in which UV modifications of GR
manifest as higher dimensional operators in the low-energy
EFT and can be treated perturbatively. The EFT framework
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works well for isolated astrophysical black holes, which
have masses in the ~5-10' M range thanks to their low
energy scale (<107!!' eV). The framework is also supported
by the agreement of GR predictions with gravitational wave
detections [7] and other electromagnetic observations [8]. In
particular, we focus on gravitational theories whose low-
energy EFT represents extensions of GR involving addi-
tional (scalar) fields and other operators. These EFTs include
f(R) gravity or more general scalar-tensor theories [9,10]
and quadratic gravity [11] such as dynamical Chern-Simons
gravity [12,13] and Einstein-dilaton-Gauss-Bonnet gravity
[14,15], as well as gravitational EFTs without light scalar
fields like those studied in [16—18].

As the modifications of GR are small, black hole
solutions in the EFTs can be obtained through a perturba-
tive expansion around one (or more) coupling constants of
such theories (see [19-33] for examples). We show here
that the spacetime of stationary, axisymmetric, and asymp-
totically flat solutions is circular in these EFTs, hence also
in the corresponding high-energy gravitational theories. In
principle, there could be other branches of solutions that are
not connected perturbatively to their GR counterparts (see
[34,35] for example), but these are not the focus of this
Letter. We use geometric units (¢ = 8xzG = 1) and employ
the (-, +, +, +) metric signature.

Circular spacetimes in GR.—Consider a stationary and
axisymmetric spacetime associated with two Killing vec-
tors & and y* that correspond to the two isometries,
respectively. Figure 1 gives a schematic illustration of this
geometry. Carter [36] showed that the two Killing vectors
commute, which means one can choose adapted coordi-
nates (¢,r,0,¢) on the spacetime such that £ = 9, and
x = Oy. The isometries imply

© 2021 American Physical Society



PHYSICAL REVIEW LETTERS 126, 241104 (2021)

Rotation axis
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FIG. 1. Geometry of a stationary and axisymmetric spacetime.
The Killing vector £ is associated with time translation and y* is
associated with rotations about the symmetry axis. Note that &
and y* are not necessarily orthogonal. The surface of transitivity
is generated by & and y* and is degenerate on the rotation axis
where y* vanishes. The independent vectors Uy, (j = 3, 4) are
chosen to be orthogonal to the surface of transitivity. Here we
only show one of the orthogonal vectors.

atg/w =0= a(/)g;w' (1)

Moreover, there exist privileged 2-dimensional surfaces,
called “surfaces of transitivity,” to which the Killing vectors
are everywhere tangent except on the rotation axis where y*
vanishes. In adapted coordinates, the surfaces of transitivity
can be labeled by the values of (r,0).

A circular spacetime is a subclass of stationary and
axisymmetric spacetimes for which, in addition to Eq. (1),
there exists a family of 2-surfaces known as meridional
surfaces that are everywhere orthogonal to the surfaces of
transitivity. In this case, one can further choose the
coordinates r and @ such that

9ir = 910 = Gpr = Gpo = 0. (2)

Without loss of generality, the metric can then take the
following ansatz

Gudxtdx’ = —N?di* + A*(dr* + r*d6?)
+ B*r?sin®0(d¢ — wdt)?, (3)

in “quasi-isotropic coordinates,” where N, A, B, and @ are
functions of r and 6.

Papapetrou [3] (see also [37]) showed that a spacetime is
circular if (i) §,x, V&, and &1,V 1) each vanish at least
at one point of the spacetime, and (ii)

SRIEYT =0, pRIEYI=0 (4
everywhere in spacetime, where the square brackets denote
full antisymmetrization. For asymptotically flat spacetimes,
which we focus on, Carter further showed a rotation axis at
which y# =0 exists [36]; thus, the first condition is
satisfied.

The Eq. (4) condition is trivially satisfied if the Ricci
tensor vanishes, which means that any stationary, axisym-
metric, and asymptotically flat vacuum solution in GR is
circular, as well as those Ricci-flat solutions in modified
gravity theories (e.g., [24,38]). The Eq. (4) condition can
also be recast as a requirement of the Ricci tensor being
“invertible” [39—41]. Let (l.)C” (i =1, 2) be the two Killing
vectors & and y* and Uy, (j = 3, 4) be two independent
vectors everywhere orthogonal to & and y*. A tensor is said
to be invertible in the isometry group if the scalars obtained
by contracting any combinations of the tensor’s indices
with any choice of (i)é’/‘ and Uy, vanish whenever the

number of contracted (l.>C” is odd. In particular, the Ricci
tensor is invertible if

Ry &y, =0, i=12, j=34 (5)
Heuristically, the Eq. (5) condition is equivalent to the
Eq. (4) condition because the latter is equivalent to

requiring that (l.)C”R,'; be tangent to the surface of tran-
sitivity (i.e., proportional to any linear combination of (l.)C”)

and thus, that any part tangent to the meridional surface
[i.e., proportional to any linear combination of ,#*] vanish.
In the following, we shall omit the presub and superscript
of {* and 77, and bear in mind that each of them represents a
vector in a two vector set.

Circularity in generic gravitational theories.—Let us
consider a generic gravitational theory potentially contain-
ing fields of arbitrary spin and coupling to gravity with the
Lagrangian

1

L= ER + ‘Cga + ‘Cy/ + ‘Cint(vp’ Rpaaﬂv P, l//)’ (6)
where the fields are classified as heavy fields y or light
fields ¢ depending on whether their masses are above or
below the curvature scale of the solution that we are
interested in. Here, £, and £,, are the Lagrangians of ¢
and y, while £;,,, captures all the interactions between the
fields as well as any nonminimal couplings to gravity. In
particular, we assume that nonstandard kinetic terms of ¢, if
there is any in £,, can be treated perturbatively. At the
energy scale of the solution, we can integrate out the heavy
fields with masses larger than the curvature of the solution
we are interested in,

eifd4x\/—_Q£EFT _ /Dwgifd4x\/__g£, (7)

and obtain a low-energy EFT with the following
Lagrangian (see Refs. [42-44] for explicit examples):

1
[’EFT = ER + ‘CO ((0’ g;w) + aﬁM(v/)a R/)o‘a//’v §0)7 (8)
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where operators are sorted according to their dimensions.
In particular, £, are operators constructed by the light fields
@ and their covariant derivatives with dimensions equal to
or less than 4, while £y, are higher dimension operators
constructed by the Riemann tensor, the light fields, and
derivatives of both, which therefore are suppressed by a
small parameter . The heavy fields y in Eq. (6) have been
integrated out and manifest themselves solely as higher
curvatures and derivative corrections in Ly;. The curvature
scale of isolated astrophysical black holes is expected to be
smaller than 10~'! eV. Hence, in realistic situations, the
heavy fields y include all massive particles of the standard
model and beyond.

For now, we focus on the case in which the light fields, if
any, are all scalar fields. We emphasize that ¢ denotes all
light fields in the EFT, which we shall not distinguish with
additional labels, and thus, inner products require an
internal space metric, which we will also suppress [45].
This EFT reduces identically and smoothly to GR
as a— 0, ie. in this limit Eq. (8) reduces to the
Einstein-Hilbert action minimally coupled to light scalar
fields.

The modified Einstein equations in this theory are

1
R;w - ERg/w = T/w + (ZMW/, (9)

where T, =-26(,/=9L)/6¢" and M, =—=26(\/=gLw)/
dg" are the energy-momentum tensors associated with £,
and Ly, respectively. In particular, terms in 7, are either
proportional to g,, or proportional to d,¢0,¢ due to the
dimension of the operators in L. Given the smallness of a,

a solution to Eq. (9) {g,,. ¢} can be obtained order by order
M1 to denote the
solution to the nth order in a, i.e., g,, = g,(,rf) + O(a™th),

with O(a"!) accounting for all higher-order corrections.
We also label a quantity with subscript or superscript (n),

e.g. T,([y or gf("’l’)

The full solution is given by { gﬁ,?, @™} with n approach-
ing infinity for a sufficiently small a.

In the following, we prove that the spacetime of a
stationary, axisymmetric, and asymptotically flat solution
is necessarily circular if the solution can be obtained order
by order in a. Here we only consider solutions with
stationary and axisymmetric scalar fields, which are not
necessarily required for the spacetime also be stationary
and axisymmetric as we discuss later. The proof can be
done in three steps.

First, we prove that the solution is circular at zeroth order
ina,i.e., gfw is circular. At zeroth order, we get back to GR,
and g},?) is circular if T,(,(,),) is invertible [39]. In order to show
the invertibility, let us consider 77,1, where (¥ are the
two Killing vectors and 7, are the two independent vectors
orthogonal to . Since the scalar fields are stationary and

in a. For concreteness, we use {g,w ,Q

if it is calculated up to the nth order in a.

axisymmetric, the vanishing of their Lie derivatives along
¢* implies

£op =0, = 0. (10)

Thus, terms in 7', that are proportional to 9,90, ¢ vanish
after contracting with ¢¥*. The rest of T, is proportional to
g and do not contribute to 77,¢*n, given the orthogonality
between {* and #,. Therefore,

TZC”’?D =0, (11)

ie., T,

T,(l(,),) is invertible, and hence )g ,, is circular.
Next, we prove that if g,,,, is circular, then g,(,,,> is also
circular. This can be proved if the Ricci tensor associated

with g,gi,) is invertible, or equivalently [46],

, 1s invertible. At Zeroth order in a, Eq. (11) means

Rytn, =0+ O(a?). (12)
Contracting Eq. (9) with ¢# and ¥, we find
RiC'm, = aMydi,, (13)

where the second term on the left hand side of Eq. (9) does
not contribute due to the orthogonality between # and 7,,
and the first term on the right hand side of Eq. (9) also
vanishes because of the invertibility of 7',

On the other hand, since g,(,,,) is 01rcular the Riemann

tensor associated with gf,,,) is invertible (see the

Supplemental Material [47] for a proof). Moreover, we
show in the Supplemental Material [47] that any tensor
constructed from stationary, axisymmetric, and invertible
tensors and their covariant derivatives associated with g,(g)
is also itself invertible. Together with the assumption that
the scalar fields ¢ are stationary and axisymmetric, we
conclude that M, evaluated at zeroth order in a is

invertible, and hence
M, =0+ O(a). (14)

Substituting Eq. (14) into Eq. (13), we find R;,{#7, vanishes
(0 .

to first order in a, and therefore, g, is circular.

Finally, we assume the solution is circular to the nth
order in a and show that the solution to the (n + 1)th order
is circular. The proof is similar to that in the second step.
In this case, M}, {¥n, can be evaluated to the nth order in

(n)

with g,/ and @ The circularity of the nth order solution
implies that

Migi, =0+ O(a). (15)

Substituting this into Eq. (13), we find R} {*n, vanishes to
(n 4 1)th order in a, and hence the solution to the (n + 1)th
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order is circular. By induction, we conclude that the
solution is circular to all orders in a.

Extension to generalized light fields.—Our proof can be
further extended to theories with more general light fields,
as long as the light fields and their leading-order stress-
energy tensor T, are invertible.

For light scalar fields, £, may also include higher
dimension operators that are arbitrary functions of ¢,
V,.oV¥ @, and Og. In this case, the resulting leading order

stress-energy tensor is

aﬁo 6‘C0
T, =————V, oV V,|—— |V
W T oV Vig) T “‘(a(qu)) s
1 oLy o,

where terms proportional to V,pV,¢ or g,, are invertible
for the same reasons discussed above. Moreover,
0Ly/0(0e) inherits the symmetries of ¢, so its Lie
derivatives along {* vanish. Thus, the second term on
the right hand side of Eq. (16), and hence the aggregated
T,,, is invertible, indicating stationary, axisymmetric, and
asymptotically flat vacuum solutions in such more general
scalar-tensor theories are also circular.

In addition to the light scalars as described above, our
proof can also be generalized to gravitational theories that
include light vectors, as long as the nonstandard kinetic
terms and nonminimal couplings to gravity may be treated
perturbatively. In particular, our proof can be extended to
include light vectors with the following restrictions: (i) L,
is totally constructed from the vector fields V, and their
exterior derivatives F,, = 2V |,V ;, and (ii) the vector fields
V. apart from being stationary and axisymmetric, are
invertible. In this case, since the exterior derivative does not
depend on the metric, the energy-momentum tensor asso-
ciated with £ is completely constructed from V,, and F,, .
We show in the Supplemental Material [47] that F,,
inherits the vector field’s invertibility without assuming
circularity. Therefore, T,, is invertible, and any such
vector-tensor theory admits a circular ansatz for stationary
and axisymmetric vacuum solutions. In addition, any
generalized Proca theory, as introduced in [48-52], would
inherit the same properties so long as the higher-order
Lagrangians introduced in these theories are treated
perturbatively.

Discussions.—Our main result is a proof that the
spacetime of stationary, axisymmetric, and asymptotically
flat rotating black holes in a broad class of gravitational
EFTs is circular. We emphasize that in addition to the light
fields we have considered, the theory may also include any
heavy field of arbitrary spin and coupling to gravity, as long
as the mass of these fields is larger than the curvature scale
of the black holes. Our result is of immediate importance to
the ongoing effort of testing the strong-field regime of

gravity through gravitational waves [53-57] and electro-
magnetic observations [58,59] in which black holes play a
central role [5]. These tests generally require knowledge of
a rotating black hole solution (within a certain EFT) from
which observable consequences are then deduced and then
ultimately compared to observations. Here, we proved that
circularity is shared among a broad class of solutions,
justifying the use of this ansatz when searching for
analytical and numerical solutions.

What are the implications of our result for some specific
theories? Consider, for instance, dynamical Chern-Simons
gravity in which a scalar field couples to the Pontryagin
density [12,13]. This theory must be treated as an EFT to
admit a well-posed initial value problem [60], and, in fact,
this theory is captured within the assumption of our proof.
Rotating black hole solutions in this theory are known
numerically [61,62] and analytically [20,27,63-65] in a
perturbative expansion in the coupling strength a and black
hole spin a < 1 to O(a*a’) [26,30,63] and in the extremal
limit [66]. Our results indicate that the spacetime of rotating
black holes in this theory is circular, justifying the use of
the ansatz [Eq. (3)] in numerical calculations. The same
applies to scalar Gauss-Bonnet gravity with shift-symmet-
ric and dilatonic couplings where rotating black hole
spacetimes are known analytically [24,25,27-29] and
numerically [67-70], including the final state of black
holes that results at late times after highly dynamical black
hole formation [71-73]. In fact, it applies to any EFT
extension of GR, including any low-energy EFT of gravity
that includes massive fields of arbitrary spins.

Our results agree with those of [74], which suggested the
nonexistence of rotating noncircular black holes in dynami-
cal Chern-Simons gravity and shift-symmetric scalar-
Gauss-Bonnet gravity, by working perturbatively to
O(a*a?). Our conclusions extend to all orders in these
two parameters. Moreover, our results also apply to non-
vacuum solutions in generic gravitational theories of the
type discussed in this Letter, as long as the matter fields in
the GR solution are stationary, axisymmetric, and possess
an invertible stress-energy tensor. That is, our conclusion
holds for a gravitational theory minimally coupled to an
ordinary matter source, such as a perfect fluid that satisfies
the same symmetries as the metric (i.e., stationarity and
axisymmetry).

We stress that our results only apply to solutions that
reduce to a GR solution in the limit when the perturbative
parameter a goes to zero. In general, this does not have to
be the case, as other branches of solutions may be entropi-
cally favored, as is the case with theories that exhibit
spontaneous black hole scalarization [34,35].

The requirement that the fields are stationary and
axisymmetric (and invertible if of spin-1) is a sufficient
but not a necessary condition for the solution to be circular,
and it is not necessarily required by the isometries of the
spacetime. There are cases in which the extra fields can be
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time- and angle-dependent, yet this dependence does not
manifest itself in the gravitational equations. For example,
there are hairy, nonlinear black hole solutions and solitonic
solutions that arise in GR coupled to complex and massive
(scalar) fields [75-78], where the metric is circular while
the fields have time- or angle-dependent phases. Other
examples are the stealth black holes of [79] in which the
scalar field has a linear time dependence, although such
black hole solutions usually suffer from a strong coupling
problem [80-82].

Our results do imply that if a theory satisfies the
conditions of our theorem, then all black hole solutions
must have a circular spacetime, but the converse is not
necessarily true. Imagine one were to find a black hole
solution in a modified theory (in which our theorem does
not apply) by requiring a priori that the spacetime be
circular. The existence of this solution does not then mean
that other noncircular solutions do not exist. For example,
black hole solutions have been found in Einstein-Yang-
Mills theories with [83] and without [84] a dilaton field,
and in Einstein-zther theory in the slow-rotation approxi-
mation [85,86] assuming a priori that the spacetime must
be circular. In both cases, however, our theorem does not
apply because either the Yang-Mills vector gauge field is
noninvertible after gauge fixing or the @ther field is
noninvertible because of its timelike constraint. Thus,
the existence of those solutions does not imply that other
noncircular black hole solutions do not exist in these
theories, which could be explored further.
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