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The ability to test general relativity in extreme gravity regimes using gravitational wave observations

from current ground-based or future space-based detectors motivates the mathematical study of the

symmetries of black holes in modified theories of gravity. In this paper we focus on spinning black hole

solutions in two quadratic gravity theories: dynamical Chern-Simons and scalar Gauss-Bonnet gravity. We

compute the principal null directions, Weyl scalars, and complex null tetrad in the small-coupling, slow

rotation approximation for both theories, confirming that both spacetimes are Petrov type I. Additionally,

we solve the Killing equation through rank 6 in dynamical Chern-Simons gravity and rank 2 in scalar

Gauss-Bonnet gravity, showing that there is no nontrivial Killing tensor through those ranks for each

theory. We therefore conjecture that the still-unknown, exact, quadratic-gravity, black-hole solutions do not

possess a fourth constant of motion.
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I. INTRODUCTION

Gravitational wave physics offers a novel way of study-

ing cataclysmic astronomical events light years away,

potentially elucidating the birth of our universe, or testing

and refining our theory of gravity itself. It is this last option

that interests us here. General relativity (GR) is our current

best theory of gravity because it has passed a multitude of

tests in weak gravity regimes, such as the solar system [1]

and with binary pulsars [2]. However, there are many

anomalies, such as observations of galaxy rotation curves

or the late-time acceleration of the universe, that GR cannot

explain without the inclusion of certain “dark” components.

Considering GR’s successful track record in weak gravi-

tational systems, it stands to reason that, if new physics is to

be discovered to address these or other anomalies, it may be

found through observations of extreme gravity systems,

where the curvature is both large and dynamical [3–5].

A quintessential observation of this type is the gravita-

tional waves emitted in compact binary coalescence [3].

Such observations require a waveform model for the

gravitational waves emitted in the inspiral, merger, and

ringdown. The models rely on an understanding of the

binary dynamics, which, in turn, first necessitates an

understanding of isolated black hole (BH) solutions. In

GR, this understanding was developed during the 1960s

golden age, when exact solutions representing spinning and

charged black holes were discovered [6,7], their symmetry

properties analyzed [8,9], no hair theorems proven [10–12],

and stability properties understood through the evolution of

their perturbations [13]. Such an analysis is lacking in most,

if not all, BH solutions found in modified theories of

gravity. This gap is in part due to a lack of closed-form

exact solutions for most modified theories, with only

approximate solutions known when BHs spin slowly.

Therefore, tests of GR that involve such modified gravity

BHs may soon necessitate a more thorough understanding

of their mathematical structure.

BHs in modified gravity may be drastically different

from those in GR, even while recovering GR predictions

when expanded in the far field and to leading order. One

area where this is very clear is in their Petrov classification

[14], i.e., the BHs of GR are Petrov type D [15], while

those of modified gravity need not be [16]. A classifica-

tion of type D comes with many benefits that simplify

calculations and make difficult problems more tractable,

such as when studying extreme mass-ratio inspirals [17].

One such benefit is the ability to choose a tetrad frame in

the Newman-Penrose formalism in which all but one of

the Weyl scalars vanish and two vectors of the tetrad are

aligned with the principal null directions (PNDs) of the

spacetime. The ability to choose such a frame was an

essential assumption in the derivation of Teukolsky’s

equations, which describe the evolution of BH perturba-

tions and characterize their stability [18].

Another remarkable property of Petrov type D vacuum

solutions is the guaranteed existence of a rank-2 Killing

tensor. Killing tensors relate to symmetries of the spacetime
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and, when contracted completely with copies of a geo-

desic four-velocity, generate scalar quantities that are

conserved along said geodesic. For the Kerr metric of

GR, this rank-2 Killing tensor generates the Carter

constant, which, along with energy, a component of

angular momentum, and rest mass, brings the number

of conserved quantities to 4 for a test particle moving

along a geodesic [19,20]. When the number of conserved

quantities equals the number of degrees of freedom in a

system, the equations of motion can be cast in quadrature

form, and when this is not possible, geodesic motion is

said to be Liouville chaotic [21].

Modified gravity BHs, on the other hand, are not

guaranteed to be of Petrov type D, and as a result, all of

the nice results described above do not extend naturally

beyond GR. We are therefore motivated to study BHs with

a generic mathematical framework that does not rely on a

type D classification. In this paper, we take steps toward

that goal. We focus on the spinning BH solutions of two

modified theories: dynamical Chern-Simons gravity [22]

and scalar Gauss-Bonnet gravity [23], both of which are

classified as quadratic gravity theories [24]. We present the

PNDs, complex null tetrad, and Weyl scalars in the small-

coupling, slow-rotating limit for the BH solutions in both

theories. In each case, we find that the leading order

corrections to the PNDs cause each of the GR PNDs to

split in two, confirming that both solutions are indeed not

Petrov type D but instead Petrov type I. We begin by

constructing an orthonormal tetrad from each metric and

use it to compute a complex null tetrad, following the

conventions of the Newman-Penrose formalism. We use

this tetrad to determine the Petrov type and to construct the

PNDs. We then transform the tetrad and Weyl scalars into a

frame where one vector is a PND, the Weyl scalars Ψ0 and

Ψ4 vanish, and the GR parts match what is standard in the

literature.

We also explore the existence of a fourth constant of

motion in each theory by solving the Killing equation

perturbatively in spin and coupling. Previous work has

shown that while the spinning BH of dynamical Chern-

Simons (dCS) gravity does possess a rank-2 Killing tensor

that leads to a Carter-like constant at linear order in spin

[25], there is no extension of this Killing tensor at quadratic

order in spin [26]. Here, we expand those results signifi-

cantly to show that dCS BHs do not possess a nontrivial

Killing tensor through rank 6. We therefore conjecture that

the yet unknown exact BH solution of dCS gravity does not

possess a fourth constant of motion. We also compute a

rank-2 Killing tensor for scalar Gauss-Bonnet (sGB)

gravity through linear order in spin and show, just as in

dCS gravity, that this Killing tensor cannot be extended to

quadratic order in spin.

The remainder of this paper presents the details of the

results summarized above. Section II gives an overview of

quadratic gravity as well as details about dCS and sGB

gravity and their spinning BH solutions. Section III

presents a method to determine the Petrov type and

compute the PNDs, complex null tetrad, and Weyl scalars

in a broad class of stationary, axially symmetric black

holes, and applies the method to the spinning BHs of dCS

and sGB gravity. Section IV investigates the existence of a

fourth constant of motion in both theories. Finally, Sec. V

summarizes and details future avenues of research that

could build on our results. In the following, we use

geometric units G ¼ 1 ¼ c and the ð−;þ;þ;þÞ metric

signature. Complex conjugation is indicated with an

overbar; i.e., the complex conjugate of A is Ā.
Symmetrization over indices is denoted with parentheses,

such that AðαβÞ ¼ 1
2
ðAαβ þ AβαÞ.

II. BLACK HOLES IN QUADRATIC GRAVITY

Quadratic gravity is a class of modified theories of

gravity that introduce a scalar field ϑ coupled to the

gravitational field through quadratic curvature invariants.

Such theories have been studied intensely in recent years

(see e.g., [24] for a recent review). We here present the

basics again to establish notation, following mostly the

presentation in [27]. In these theories, the action takes

the form

S ¼ SEH þ Smat þ Sϑ þ Sq; ð1Þ

which contains the Einstein-Hilbert term of GR,

SEH ¼ κ

Z

V

d4x
ffiffiffiffiffiffi

−g
p

R; ð2Þ

where κ ¼ ð16πGÞ−1 and g is the determinant of the metric

gμν, a matter term Smat that depends only on the metric and

matter fields, but not the scalar field, and the canonical

scalar field action

Sϑ ¼ −
β

2

Z

V

d4x
ffiffiffiffiffiffi

−g
p ½∇μϑ∇

μϑþ 2VðϑÞ�; ð3Þ

where both the scalar field ϑ and the parameter β are taken

to be dimensionless. In the following we set VðϑÞ ¼ 0

because we are interested in massless fields. The quadratic

term Sq prescribes the coupling of ϑ to the independent

quadratic curvature invariants R2, RαβR
αβ, the Kretschmann

scalar RαβγδR
αβγδ, and the Pontryagin density Rαβγδ

�Rαβγδ.

These invariants are constructed from the Ricci scalar

R ¼ gαβgγδRγαδβ, the Ricci tensor Rαβ ¼ gγδRγαδβ, the

Riemann tensor Rγαδβ, and its dual �Rαβδγ ¼ 1
2
ϵαβ

μνRμνγδ.

Quadratic gravity theories find motivation in several

places. One way such theories can be motivated is by

thinking of GR as an effective field theory valid for

small curvatures [24]. In this context, the Einstein-Hilbert

action can be seen as the first term in an expansion in
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powers of the Riemann curvature tensor. The quadratic

action Sq would then constitute the next term in the

expansion, necessary for more accurately describing

phenomena in extreme gravity systems. Quadratic gravity

also finds motivation in theories of quantum gravity that

introduce higher curvature corrections and scalar fields to

GR [22,23,28–31].

Black holes in quadratic gravity typically carry scalar or

axion “hair” [23,32–34] that yields scalar dipole radiation

when the BH is placed in a compact binary [27]. This

phenomenon is interesting because such radiation would

accelerate the rate at which compact binaries inspiral [35–

40]. The acceleration would, in turn, imprint in the

gravitational wave phase [41] to which interferometers

such as LIGO [42], Virgo [43], and KAGRA [44] are most

sensitive. The presence of such an enhanced rate of inspiral

would be smoking-gun evidence for a deviation of GR,

while the absence could help stringently constrain quad-

ratic gravity theories [45,46]. These tests, however, may

require more accurate waveform models, especially when

considering extreme mass-ratio inspirals, and this, in turn,

necessitates a deep understanding of the mathematical

structure of quadratic gravity BHs.

In this paper we consider two quadratic gravity theories:

dynamical Chern-Simons gravity and scalar Gauss-Bonnet

gravity. We go into further detail on both theories in the

following subsections.

A. Dynamical Chern-Simons gravity

The dCS gravity modifies GR through [22]

Sq;CS ¼
αCS

4

Z

V

d4x
ffiffiffiffiffiffi

−g
p

ϑRμνρσ
�Rμνρσ; ð4Þ

which couples a pseudoscalar ϑ field to the parity odd

Pontryagin density. This correction to GR serves as a

means to parametrize gravitational parity violation and

finds motivation in string theory [28], loop quantum

gravity [29], and inflation [30]. The coupling parameter

αCS has dimensions of length squared and has been

constrained to α
1=2
CS ≤ 8.5 km with 90% confidence using

mass and equatorial plane measurements of an isolated

neutron star [47].

The Pontryagin density vanishes for spherically sym-

metric spacetimes, so the Schwarzschild metric of GR is

also a solution in dCS gravity. The Kerr metric of GR, on

the other hand, is not a solution because the Pontryagin

density sources a nontrivial scalar field yielding “hairy”

black hole solutions. Currently, there is not an exact

closed-form solution describing spinning BHs in dCS

gravity, although numerical solutions [48] and small-

coupling approximate solutions in both the slow-rotation

[26,33,49,50] and extremal [51] regimes do exist.

In the small coupling approximation, deformations from

the Kerr metric in Boyer-Lindquist coordinates ðt; r; θ;ϕÞ

ds2GR ¼ −

�

1 −
2Mr

ρ2

�

dt2 −
4Mar sin2 θ

ρ2
dtdϕ

þ Σ

ρ2
sin2 θdϕ2 þ ρ2

Δ
dr2 þ ρ2dθ2; ð5Þ

with metric functions

ρ2 ¼ r2 þ a2 cos θ2; Δ ¼ r2 − 2Mrþ a2;

Σ ¼ ðr2 þ a2Þ2 − a2Δsin2θ; ð6Þ

are proportional to the dimensionless coupling parameter

ζ≡
α2CS
κβM4

; ð7Þ

which is taken to be much less than unity ζ ≪ 1. In this

paper, we focus on slowly rotating and small-coupling

approximate solutions, in which both the GR part of the

metric and the dCS correction are additionally expanded in

the dimensionless spin parameter χ ¼ a=M ≪ 1. Since the

Schwarzschild metric is a solution in dCS gravity, there is

no Oðχ0ζÞ term in the metric and the leading-order-in-spin

dCS correction is of OðχζÞ. The metric in the small-

coupling, slow-rotation regime, known to Oðχ5ζÞ, is

included in Appendix A for completeness [26,33,50].

B. Scalar Gauss-Bonnet gravity

The sGB gravity is derived from the quadradic

action [23]

Sq;GB ¼ αGB

Z

V

d4x
ffiffiffiffiffiffi

−g
p

fðϑÞG; ð8Þ

where

G ¼ R2 − 4RαβR
αβ þ RαβγδR

αβγδ ð9Þ

is the parity even Gauss-Bonnet invariant. We consider

coupling functions fðϑÞ that admit a Taylor expansion

fðϑÞ¼fð0Þþf0ð0ÞϑþOðϑ2Þ about small ϑ with f0ð0Þ ≠ 0.

Because G is a topological invariant, the first term in the

expansion leads to a theory identical to GR and can be

disregarded. We therefore focus on linear coupling func-

tions fðϑÞ ¼ f0ð0Þϑ and absorb the coefficient f0ð0Þ into
the coupling parameter so αGBfðϑÞ → αGBϑ. Scalar

Gauss-Bonnet gravity finds motivation in low-energy

expansions of string theory [23,31] and has been studied

extensively [24,34,52,53]. The sGB coupling parameter

αGB has dimensions of length squared and has been

constrained to α
1=2
GB ≤ 5.6 km with 90% confidence using

observations of coalescing binary black holes by the

LIGO/Virgo Collaboration [46].

As with dCS gravity, we work in the small-coupling,

slow rotation approximation of sGB gravity [24,49,54,55].
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In the small-coupling regime, deformations from GR are

proportional to the dimensionless coupling parameter

ζ≡
α2GB

κβM4
: ð10Þ

The dimensionless coupling parameter of sGB gravity is

not the same as the dimensionless coupling parameter of

dCS gravity, but to keep notation simple, we have called

them both ζ. As we never consider both theories simulta-

neously, it should always be clear to which we are referring.

Unlike the Pontryagin density, the Gauss-Bonnet invari-

ant does not vanish for spherically symmetric spacetimes

and, so long as f0ðϑÞ ≠ 0, the Schwarzschild metric is not a

solution of sGB gravity. Therefore, in contrast to dCS

gravity, there is an Oðχ0ζÞ term in the metric of sGB

gravity. The small-coupling, slow-rotation sGB metric is

known to Oðχ5ζ7Þ, but to parallel our calculation in dCS

gravity we will be working with the sGB BH metric to

Oðχ5ζÞ. The metric is included in Appendix A for

completeness [24,49,54,55].

III. PETROV TYPE, PRINCIPAL NULL

DIRECTIONS, AND NEWMAN-PENROSE

FORMALISM

In this section, we present a method for constructing the

complex null tetrad of the Newman-Penrose formalism in a

particular frame for a broad class of stationary, axially

symmetric spacetimes. We then demonstrate how to use the

tetrad to determine the Petrov type of such a spacetime and

construct its principal null directions. Additionally, we

outline how to rotate the complex null tetrad and Weyl

scalars into the conventional choice of frame for BHs in GR.

The relevant quantities are presented in the small coupling

limit for the slowly rotating BHs of dCS and sGB gravity.

A. Basics in GR

The BH solutions we are interested in are stationary,

axially symmetric, asymptotically flat vacuum solutions. A

broad class of spacetimes with these properties can be

described with a metric of the form [56]

ds2 ¼ gttðr; θÞdt2 þ grrðr; θÞdr2 þ gθθðr; θÞdθ2

þ gϕϕðr; θÞdϕ2 þ 2gtϕðr; θÞdtdϕ: ð11Þ

In turn, this metric can be expressed in terms of an

orthonormal tetrad ftα, rα, θα, ϕαg in the following way:

gαβ ¼ −tαtβ þ rαrβ þ θαθβ þ ϕαϕβ; ð12Þ

where each of the vectors is spacelike except for tα, which
is timelike. While there is no unique choice of such an

orthonormal tetrad, a convenient one for a metric of this

form is

tα∂
α ¼ ffiffiffiffiffiffiffiffi

−gtt
p

∂t −
gtϕ
ffiffiffiffiffiffiffiffi

−gtt
p ∂ϕ;

rα∂
α ¼ ffiffiffiffiffiffi

grr
p

∂r;

θα∂
α ¼ ffiffiffiffiffiffi

gθθ
p

∂θ;

ϕα∂α ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2tϕ − gttgϕϕ

q

ffiffiffiffiffiffiffiffi

−gtt
p ∂ϕ: ð13Þ

A complex null tetrad flα, nα, mα, m̄αg of the Newman-

Penrose formalism can then be constructed from the

orthonormal one via [57]

lα ¼ 1
ffiffiffi

2
p ðtα þ ϕαÞ;

nα ¼ 1
ffiffiffi

2
p ðtα − ϕαÞ;

mα ¼ 1
ffiffiffi

2
p ðrα þ iθαÞ;

m̄α ¼ 1
ffiffiffi

2
p ðrα − iθαÞ: ð14Þ

Here, lα and nα are real and mα and m̄α are a complex

conjugate pair. All of the scalar products vanish except

lαnα ¼ −1 and mαm̄α ¼ 1.
1
This complex tetrad can be

used to construct the metric via

gαβ ¼ 2mðαm̄βÞ − 2lðαnβÞ ð15Þ

and contracted with the Weyl tensor Cαβγδ to compute the

Weyl scalars

Ψ0 ¼ Cαβγδl
αmβlγmδ;

Ψ1 ¼ Cαβγδl
αnβlγmδ;

Ψ2 ¼ Cαβγδl
αmβm̄γnδ;

Ψ3 ¼ Cαβγδl
αnβm̄γnδ;

Ψ4 ¼ Cαβγδn
αm̄βnγm̄δ: ð16Þ

The complex null tetrad and the Weyl scalars are frame

dependent quantities: there is not a unique choice of tetrad

nor subsequently Weyl scalars for a given metric. An

overview of Lorentz transformations in the Newman-

Penrose formalism can be found in Appendix B.

Generally, Ψ0 and Ψ4 are associated with ingoing and

outgoing transverse gravitational radiation, Ψ1 and Ψ3 are

associated with ingoing and outgoing longitudinal radia-

tion, and Ψ2 is associated with a Coulomb field [58].

With the Weyl scalar in hand, the Petrov type of a

spacetime can be determined by the number of distinct

roots B of

1
This holds for the ð−;þ;þ;þÞ metric signature used in this

paper, but the signs flip for the ðþ;−;−;−Þ signature.
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Ψ0 þ 4BΨ1 þ 6B2Ψ2 þ 4B3Ψ3 þ B4Ψ4 ¼ 0; ð17Þ

computed in a Lorentz frame where Ψ4 ≠ 0, which, as it

turns out, amounts to finding the reference frames in which

Ψ0 ¼ 0. Such a frame can also be found by preforming a

Lorentz transformation to rotate the vector lα to a new

vector

kα ¼ lα þ B̄mα þ Bm̄α þ BB̄nα ð18Þ

that satisfies

kαkβk½μCν�αβ½ρkσ� ¼ 0: ð19Þ

We call this new vector kα a PND.

In general, a spacetime has four PNDs corresponding to

four distinct roots B of the quartic Eq. (17) or alternatively,

four roots of Eq. (19). When the four roots are distinct, the

spacetime is said to be Petrov type I. However, it is possible

that two or more of the roots coincide for a given spacetime.

Such spacetimes are called algebraically special. In par-

ticular, a Petrov type D spacetime is an algebraically special

spacetime with two doubly degenerate PNDs, i.e., there are

only two distinct roots B of Eq. (17). With the choice of

frame given by Eqs. (13) and (14), Ψ1 and Ψ3 vanish in

general, so the quartic Eq. (17) becomes a quadratic

equation for B2. When the discriminant 9Ψ2
2 −Ψ0Ψ4

vanishes, the spacetime is Petrov type D. Otherwise, there

are four distinct roots and the spacetime is Petrov type I.

This statement applies to any metric that can be written in

the circular form of Eq. (11).

While the tetrad and the Weyl scalars are frame depen-

dent quantities, the PNDs are not and the Petrov type is an

invariant way to classify spacetimes. The BHs of GR are

Petrov type D, and the Kerr metric possesses the two

doubly degenerate PNDs

kα1;GR∂α ¼
r2 þ a2

Δ
∂t þ ∂r þ

a

Δ
∂ϕ;

kα2;GR∂α ¼
r2 þ a2

Δ
∂t − ∂r þ

a

Δ
∂ϕ: ð20Þ

The choice of frame given by Eqs. (13) and (14) is

convenient for determining the Petrov type and PNDs of a

spacetime because onlyΨ1 andΨ3 vanish, and because it is

simple to read off from a metric of the form given in

Eq. (11). However, for a Petrov type D spacetime, it is

possible to choose a frame such that Ψ0, Ψ1, Ψ3, and Ψ4 all

vanish. When working with BHs in GR, it is conventional

to pick this frame because many equations simplify greatly.

Let us then review how to transform the tetrad and Weyl

scalars presented above to the preferred one, i.e., that in

which Ψ0 ¼ Ψ1 ¼ Ψ3 ¼ Ψ4 ¼ 0, if the spacetime happens

to be Petrov type D. Recall that such a spacetime has two

doubly degenerate roots B1 and B2 of Eq. (17). A class II

transformation with parameter B1, as specified in

Appendix B, will set Ψ0 ¼ Ψ1 ¼ 0. A subsequent trans-

formation of class I with parameter Ā ¼ ðB2 − B1Þ−1 will

then setΨ3 ¼ Ψ4 ¼ 0 [15]. When, additionally, the remain-

ing degrees of freedom, corresponding to a transformation

of class III, are fixed so that the spin coefficient ϵ vanishes,

the tetrad is now said to be the Kinnersley tetrad. Such a

transformation rescales lα and nα and rotates mα and m̄α

without affecting any of the Weyl scalars. The Kinnersley

tetrad for the Kerr BH is

lαGR∂α ¼
r2þa2

Δ
∂tþ∂rþ

a

Δ
∂ϕ;

nαGR∂α ¼
r2þa2

2ρ2
∂t−

Δ

2ρ2
∂rþ

a

2ρ2
∂ϕ;

mα
GR∂α ¼

1
ffiffiffi

2
p

ðrþ iacosθÞ
ðiasinθ∂tþ∂θþ icscθ∂ϕÞ;

ð21Þ

and the corresponding, nonvanishing Weyl scalar is

Ψ2;GR ¼ −
M

ðr − ia cos θÞ3 : ð22Þ

It is the case that lα and nα are aligned with the PNDs in the
Kinnersley frame, as shown above.

For a type I spacetime, which produces four roots B1, B2,

B3, and B4 of Eq. (17), it is not possible to pick a

Kinnersley tetrad for which Ψ0, Ψ1, Ψ3, and Ψ4 vanish

simultaneously and both lα and nα are aligned with PNDs.

The best we can do is set Ψ0 ¼ 0 with a class II trans-

formation with parameter B1 and then set Ψ4 ¼ 0 with a

class I transformation with parameter Ā ¼ ðB2 − B1Þ−1,
Ā ¼ ðB3 − B1Þ−1, or Ā ¼ ðB4 − B1Þ−1. In such a frame lα is
aligned with a PND but nα is not. A class III rotation will

now alter both the tetrad and the Weyl scalars. We will call

the tetrad in such a frame “Kinnersley-like.”

B. Dynamical Chern-Simons gravity

Let us now apply the above framework to spinning BHs

in dCS gravity. The leading-order-in-ζ, leading-order-in-χ

dCS corrections to the PNDs are

kα1;CS∂α ¼ kα1;GR∂α þ δCS∂ϕ þOðζχ;
ffiffiffi

ζ
p

χ2Þ;
kα2;CS∂α ¼ kα1;GR∂α − δCS∂ϕ þOðζχ;

ffiffiffi

ζ
p

χ2Þ;
kα3;CS∂α ¼ kα2;GR∂α þ δCS∂ϕ þOðζχ;

ffiffiffi

ζ
p

χ2Þ;
kα4;CS∂α ¼ kα2;GR∂α − δCS∂ϕ þOðζχ;

ffiffiffi

ζ
p

χ2Þ; ð23Þ

where
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δCS ¼
ffiffiffiffiffiffiffiffiffiffi

1407
p

112

χ

M

ffiffiffi

ζ
p M2

r2

�

1þ 2840

603

M

r
þ 64660

4221

M2

r2

þ 1740

67

M3

r3
þ 1980

67

M4

r4

�1
2

: ð24Þ

We have checked that these Oðχ
ffiffiffi

ζ
p

Þ corrections arise from
contributions atOðχ2ζÞ in the metric. The leading-order-in-

coupling, first-order-in-spin metric therefore does not

produce a dCS correction to the PNDs of GR and the

spacetime remains Petrov type D at that order, as reported

by [25]. At second order in spin in the dCS metric, the two

PNDs of GR split into four, as shown above, making the

spacetime Petrov type I and confirming the results of [26].

The spacetime will remain Petrov type I as higher orders in

spin are added to the metric. A symbolic depiction of the

PNDs of dCS gravity at each order of spin in the metric is

included in Fig. 1.

The PNDs, and the roots B we calculated to derive them,

allow us to construct a Kinnersley-like complex tetrad. As

in the PND case, the metric at Oðχ2ζÞ sources Oðχ
ffiffiffi

ζ
p

Þ
corrections to this tetrad, namely

lαCS∂α¼ lαGR∂αþδCS∂ϕþOðζχ;
ffiffiffi

ζ
p

χ2Þ;

nαCS∂α¼ nαGR∂αþ
1

2
fδCS∂ϕþOðζχ;

ffiffiffi

ζ
p

χ2Þ;

mα
CS∂α¼mα

GR∂αþ i

ffiffiffi

2
p

2
rsinθδCS∂tþOðζχ;

ffiffiffi

ζ
p

χ2Þ; ð25Þ

and the corresponding nonvanishing Weyl scalars are

ΨCS
2 ¼ΨGR

2 þOðχζÞ;

ΨCS
1 ¼−

2

f
ΨCS

3 ¼−
i3

ffiffiffi

2
p

2

M2

r2
sinθ

M
δCSþOðχ2

ffiffiffi

ζ
p

Þ; ð26Þ

where f ¼ 1–2M=r. In general, the Oðχn
ffiffiffi

ζ
p

Þ corrections
to the PNDs, the tetrad, and the Weyl scalars in this frame

are sourced by terms of Oðχnþ1ζÞ in the metric. Of course,

the PNDs, the tetrad, and the Weyl scalars do not just

contain terms proportional to
ffiffiffi

ζ
p

but also terms linear

in ζ that must also be calculated. Therefore, because the

metric is known to Oðχ5ζÞ, we are able to compute

corrections to the PNDs, the tetrad, and the Weyl scalars

to Oðχ4ζÞ. The corrections to Oðχ2ζÞ are presented in

Appendix C and the complete corrections are collected

in a Mathematica notebook that is provided in the

Supplemental Material [59].

The above results allow for several conclusions. First,

recall that the spacetime is not Petrov type D, so nαCS is not

aligned with a PND, and ΨCS
0 ;ΨCS

1 ;ΨCS
3 ;ΨCS

4 cannot all

vanish simultaneously. While Ψ
CS
1 and Ψ

CS
3 , which are

associated with longitudinal gravitational waves, are non-

zero, they are suppressed at future null infinity relative

to the monopole term ΨCS
2 . This is why the only two

gravitational wave polarization modes that survive at future

null infinity are the two transverse-traceless ones, as in GR,

consistent with the calculation of [60].

Second, note that there is not a unique choice of

Kinnersley-like frame where Ψ0 ¼ Ψ4 ¼ 0 and lαCS is a

PND of dCS gravity. Instead, what is shown above is one

of 12 such frames, corresponding to four choices of class II

transformation and subsequently three choices of class I

transformation, where this is the case. The remaining

degrees of freedom, corresponding to a transformation of

class III, were specified so that the GR part of the tetrad and

the Weyl scalars are identical to those given in Eqs. (22)

and (21).

Third, note that the leading order correction to the

quantities presented in this section are proportional to
ffiffiffi

ζ
p

while the leading order corrections to the metric are

proportional to ζ. This is to be expected because, for a

perturbed type D spacetime, the leading order correction

to the PNDs will be proportional to the square root

of the perturbation parameter, which in our case is ζ

[16]. It is not possible to perform a transformation that

will remove the
ffiffiffi

ζ
p

proportional term of the Weyl

scalars while preserving the GR parts and keeping

Ψ0 ¼ Ψ4 ¼ 0.

Finally, because both the spin parameter χ and cou-

pling parameter ζ must be much smaller than unity (i.e.,

we are here carrying out perturbative expansions in small

spin and small coupling), it is not possible for a special

case to occur in which terms of different orders in the

expansion cancel each other. In particular, it is not

possible for higher order terms not considered here to

change the results presented in this section or the

following ones.

C. Scalar Gauss-Bonnet gravity

In the same way, we can compute the PNDs, tetrad, and

Weyl scalars of sGB gravity. The leading-order-in-ζ,

leading-order-in-χ sGB corrections to the PNDs are

FIG. 1. Symbolic depictions of the PNDs of dCS gravity at

different orders of spin in the metric. The dCS solution for a

slowly rotating BH is Petrov type D at OðχζÞ and therefore

possesses two doubly degenerate PNDs. AtOðχζ2Þ the spacetime

becomes Petrov type I and the two PNDs split into four. The

spacetime will remain type I as higher orders in spin are included

in the metric.

OWEN, YUNES, and WITEK PHYS. REV. D 103, 124057 (2021)

124057-6



kα1;GB∂α ¼ kα1;GR∂α þ δGB∂θ þOðζ;
ffiffiffi

ζ
p

χ2Þ;
kα2;GB∂α ¼ kα1;GR∂α − δGB∂θ þOðζ;

ffiffiffi

ζ
p

χ2Þ;
kα3;GB∂α ¼ kα2;GR∂α þ δGB∂θ þOðζ;

ffiffiffi

ζ
p

χ2Þ;
kα4;GB∂α ¼ kα2;GR∂α − δGB∂θ þOðζ;

ffiffiffi

ζ
p

χ2Þ; ð27Þ

where

δGB¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

468615
p

525

χ

M

ffiffiffi

ζ
p M2

r2
sinθ

�

1þ21440

4463

M

r

þ508960

31241

M2

r2
þ135300

4463

M3

r3
þ167600

4463

M4

r4

�1
2

: ð28Þ

As was the case for dCS gravity, these Oðχ
ffiffiffi

ζ
p

Þ corrections
contain contributions from the Oðχ2ζÞ term of the metric.

Neither the nonspinning metric nor the first-order-in-spin

metric in the small coupling regime of sGB gravity

produces corrections to the PNDs of GR, and the spacetime

remains Petrov type D at these orders. At second order in

spin in the sGB metric, the two PNDs of GR split into four

as shown above, making the spacetime Petrov type I. This

Petrov classification agrees with what is given in [54]. The

spacetime will remain Petrov type I as higher orders in spin

are added to the metric. A symbolic depiction of the PNDs

of sGB gravity at each order of spin in the metric is

included in Fig. 2.

Once again, with the PNDs in hand, we can compute

the complex tetrad in a Kinnersley-like frame. The

metric at Oðχ2ζÞ sources Oðχ
ffiffiffi

ζ
p

Þ corrections to the tetrad,

leading to

lαGB∂α ¼ lαGR∂α þ δGB∂θ þOðζ;
ffiffiffi

ζ
p

χ2Þ;

nαGB∂α ¼ nαGR∂α −
1

2
fδGB∂θ þOðζ;

ffiffiffi

ζ
p

χ2Þ;

mα
GB∂α ¼ mα

GR∂α −

ffiffiffi

2
p

2
δGB

�

rf∂r − i
ffiffiffi

f
p

∂θ

þ 1

sin θ

ffiffiffi

f
p

∂ϕ

�

þOðζ;
ffiffiffi

ζ
p

χ2Þ; ð29Þ

and the nonvanishing Weyl scalars

ΨGB
2 ¼ ΨGR

2 þOðζÞ;

ΨGB
1 ¼ −

2

f
ΨCS

3 ¼ −
3

ffiffiffi

2
p

2

M2

r2
1

M
δGB þOðχ2

ffiffiffi

ζ
p

Þ: ð30Þ

As before, theOðχn
ffiffiffi

ζ
p

Þ corrections to the PNDs, the tetrad,
and the Weyl scalars in this frame are sourced by terms of

Oðχnþ1ζÞ in the metric. With a metric to Oðχ5ζÞ, we are

able to compute corrections to the PNDs, the tetrad, and the

Weyl scalars to Oðχ4ζÞ. Again, the corrections to Oðχ2ζÞ
are presented in Appendix C, and the complete corrections

are collected in aMathematica notebook that is provided in

the Supplemental Material [59].

As in the dCS case, we can extract similar conclusions

about the mathematical properties of the sGB solutions.

We see that nGBα is no longer aligned with a PND and Ψ2

can no longer be the only nonvanishing Weyl scalar. As

before, the Weyl scalars associated with radiation are

suppressed at infinity relative to the monopole term, once

more yielding results consistent with [60]. Finally, what is

shown above is just one choice of frame where the GR part

of the tetrad and Weyl scalars matches what is given in

Eqs. (22) and (21).

IV. CONSERVED QUANTITIES

Let us now turn our attention to Killing tensors. A

Killing tensor Kμ1::μN
of rank N is a completely symmetric

tensor that obeys the Killing equation

∇ðνKμ1…μNÞ ¼ 0: ð31Þ

Killing tensors are of particular interest because the scalar

quantity Kμ1���μNu
μ1 � � � uμN is conserved along the geodesic

uμ, which by definition satisfies uβ∇βu
μ ¼ 0.

For a test particle moving along a geodesic in a

stationary, axially symmetric spacetime, energy Ẽ, the

component of angular momentum along the axis of

symmetry L̃, and rest mass are conserved. These

conserved quantities are associated with the Killing

vectors tα∂α ¼ ∂t and ϕα∂α ¼ ∂ϕ and the metric gμν,

which is a Killing tensor by virtue of metric compat-

ibility. The Kerr metric of GR also possesses a fourth

conserved quantity known as the Carter constant. The

Carter constant

Q ¼ ξGRαβ u
αuβ − ðL̃ − aẼÞ2 ð32Þ

is generated by the rank-2 Killing tensor

ξGRαβ ¼ Δk1;GRðα k2;GR
βÞ þ r2gGRαβ ; ð33Þ

FIG. 2. Symbolic depictions of the PNDs of sGB gravity at

different orders of spin in the metric. The sGB solution for a

slowly rotating BH is Petrov type D at Oðχ0ζÞ, and OðχζÞ
therefore possesses two doubly degenerate PNDs at these orders.

At Oðχζ2Þ the spacetime becomes Petrov type I and the two

PNDs split into four. The spacetime will remain type I as higher

orders in spin are included in the metric.
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where kα1;2;GR were already given in Eq. (20) and Δ is

the metric function given in Eq. (6).

The existence of such a rank-2 Killing tensor is

guaranteed for Petrov type D spacetimes such as the

Kerr metric of GR, but both modified theories we are

considering here are type I beginning at second order in

spin. The existence of a Killing tensor, and thus of a

fourth conserved quantity, is neither guaranteed nor ruled

out for such spacetimes.

Without an additional Killing tensor to generate a

fourth symmetry, the equations of motion cannot be put

into quadrature form and the geodesic motion is con-

sidered to be Liouville chaotic [21]. Chaotic features of

geodesics on BH backgrounds may be encoded in

gravitational wave signals from extreme mass-ratio

inspirals observable by future space-based detectors,

such as the Laser Interferometer Space Antenna

(LISA) [61]. Such observations could allow us to place

constraints on deviations from GR or to perform null

tests. This motivates the following investigation into the

existence of a Killing tensor that would generate a

fourth constant of the motion for each modified theory

considered here.

A. Dynamical Chern-Simons gravity

As the Kerr metric of GR is, the BH of dCS gravity is

stationary and axially symmetric, and therefore admits the

Killing vectors tα and ϕα in addition to the metric which is

always a Killing tensor. The spacetime is also Petrov type D

through OðχζÞ so we expect it to possess an extension of

the rank-2 Killing tensor of GR through that order as well.

That Killing tensor is [25]

ξCSαβ ¼ Δk̄1;CSðα k̄2;CS
βÞ þ r2gCSαβ ; ð34Þ

where

k̄1;CSα ¼ k1;GRα þ δk̄CSα ;

k̄2;CSα ¼ k2;GRα þ δk̄CSα ; ð35Þ

and

δk̄αCS∂α ¼ −
5

8
χζ

M6

r6
1

Mf

�

1þ 12

7

M

r
þ 27

12

M2

r2

�

: ð36Þ

The k̄α1;2;CS in Eq. (35) are not the same as the kα1;2;CS
given Eq. (23), and in fact are not PNDs of the

spacetime. One may then wonder whether it is possible

to write the rank-2 Killing tensor given in Eq. (34) in

terms of the dCS PNDs presented in Eq. (23) via an

ansatz such as

ξCSαβ ¼ þF1k
1;CS
ðα k1;CS

βÞ þ F2k
1;CS
ðα k2;CS

βÞ þ F3k
1;CS
ðα k3;CS

βÞ

þ F4k
1;CS
ðα k4;CS

βÞ þ F5k
2;CS
ðα k2;CS

βÞ þ F6k
2;CS
ðα k3;CS

βÞ

þ F7k
2;CS
ðα k4;CS

βÞ þ F8k
3;CS
ðα k3;CS

βÞ þ F9k
3;CS
ðα k4;CS

βÞ

þ F10k
4;CS
ðα k4;CS

βÞ þ F11g
CS
αβ ; ð37Þ

where Fi ¼ Fiðr; θÞ. However, there is no choice

of functions Fiðr; θÞ that will produce Eq. (34).

Moreover, Ref. [26] showed that there is no analogous

extension to Eq. (35) at Oðχ2ζÞ, precluding the exist-

ence of a rank-2 Killing tensor and a Carter-like

constant at this order, and therefore, at any other higher

order in spin as well.

With the knowledge that the dCS BH does not possess

a rank-2 Killing tensor nor a Carter-like constant,

Cárdenas-Avendaño et al. [62] explored the existence

of a fourth symmetry numerically. They did so by

searching for chaos in geodesic motion outside such

BHs in the slow-rotation approximation. While chaos was

found, it was shown to diminish as higher orders in spin

were added to the BH background used in the simu-

lations. A similar phenomenon was observed in the slow

rotation approximation of GR, where it is known that the

full solution is nonchaotic. The authors therefore con-

jectured that the exact solution in dCS gravity would also

be nonchaotic, indicating the existence of a fourth

constant of motion.

Such a constant must be generated by a Killing tensor

but, with the existence of a rank-2 Killing tensor already

ruled out [26], we must look for higher-rank Killing

tensors. The logical place to start the search is with

rank-3 Killing tensors. We take the most general ansatz,

written in the form

Kαβγ ¼K
ð0;0Þ
αβγ þχ0Kð1;0Þ

αβγ þχ02Kð2;0Þ
αβγ

þ ζ0ðχ0Kð1;1Þ
αβγ þχ02Kð2;1Þ

αβγ Þ; ð38Þ

where χ0 and ζ0 are bookkeeping parameters that label the

orders of the slow-rotation and small-coupling approxima-

tions, respectively, and theK
ðm;nÞ
αβγ are completely symmetric

tensor fields that depend on only r and θ and are propor-

tional to χmζn. In this way, the tensors K
ð0;0Þ
αβγ , K

ð1;0Þ
αβγ , and

K
ð2;0Þ
αβγ are GR contributions, while K

ð1;1Þ
αβγ and K

ð2;1Þ
αβγ would

be dCS corrections.

We substitute the above ansatz into the Killing

equation and solve order by order to determine the most

general rank-3 Killing tensor of the spacetime. A linear

combination of symmetrized exterior products of Killing

tensors is always a Killing tensor itself. Indeed, after

solving the Killing equation order by order, we find that

the solution through OðχζÞ, but not including the Oðχ2ζÞ
terms, is
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K
ð0;0Þ
αβγ þK

ð1;0Þ
αβγ þK

ð2;0Þ
αβγ þK

ð1;1Þ
αβγ

¼C1tαtβtγþC2tðαtβϕγÞþC3tðαϕβϕγÞþC4ϕðαϕβϕγÞ

þC5tðαgαβÞþC6ϕðαgαβÞþC7tðαξ
CS
αβÞþC8ϕðαξ

CS
αβÞ;

ð39Þ

where the Ci are arbitrary constants and each term is

understood to be expanded about small spin and

coupling to OðχζÞ. We see that this Killing tensor is

nothing but a linear combination of symmetrized

exterior products of the OðχζÞ Killing vectors tα and

ϕα, and the OðχζÞ Killing tensors ξCSαβ and gαβ. These

four quantities already generate four constants of the

motion at OðχζÞ, and therefore, Eq. (39) does not

generate a new independent constant at this order, but

rather generates a constant that is a function of the other

constants.

Can we now solve the Killing equation at Oðχ2ζÞ and
extend the fourth constant of motion to that order? What

this means is that we must use Eq. (39) through OðχζÞ
and K

ð2;1Þ
αβγ to compose Kαβγ and require that Kðαβγ;δÞ ¼ 0.

The terms through OðχζÞ generate Oðχ2ζÞ terms in the

Killing equation, and these must be canceled by deriv-

atives of K
ð2;1Þ
αβγ . Since the latter is a symmetric rank-3

tensor, we have 20 functions of ðr; θÞ to determine from

35 components of the Killing equations, which implies

the system may then be overdetermined. In practice, we

find that this is the case because, even though some of

the 35 components of the equation are trivially satisfied,

some of the 20 components of K
ð2;1Þ
αβγ must be set to zero

due to symmetry.
2
In fact, we find that the system of

Killing equations is inconsistent; i.e., a subset of the

components of the Killing equations require a certain

functional form for certain components of K
ð2;1Þ
αβγ , which

is then not allowed by another subset of components of

the Killing equations. We will not show this explicitly

here because it is un-illuminating, but we have verified

it by hand, in Maple and in Mathematica.

We have generalized the above results to Killing

tensors of higher rank. To do so, we began by general-

izing the ansatz in Eq. (38) to tensors of rank 4, 5, and

6. Through OðχζÞ we again find that the most general

solution is given by symmetrized exterior products of the

two Killing vectors and the two Killing tensors at OðχζÞ.
When we then attempt to solve the Killing equations at

Oðχ2ζÞ, we again find that the system is inconsistent in the

sense described above. With this, we have established that

noKilling tensor of rank 2, 3, 4, 5, or 6 exists in dCS gravity

at Oðχ2ζÞ, precluding the existence of one at higher orders
in spin as well. We therefore conjecture, though we cannot

prove, that no Killing tensor of any rank exists in dCS

gravity, and thus, that there does not exist a fourth constant

of the motion and the geodesic motion should be Liouville

chaotic.

B. Scalar Gauss-Bonnet gravity

The BH of sGB gravity is also Petrov type D through

OðχζÞ, and therefore we expect it to have an extension to

the rank-2 Killing tensor of GR through this order. We

search for that Killing tensor by taking an ansatz analogous

to Eq. (38),

Kαβ ¼ K
ð0;0Þ
αβ þ χ0Kð1;0Þ

αβ þ χ02Kð2;0Þ
αβ þ ζ0Kð0;1Þ

αβ þ ζ0χ0Kð1;1Þ
αβ ;

ð40Þ

where again K
ðm;nÞ
αβ are completely symmetric tensor

fields that depend on only r and θ and are proportional

to χmζn. We substitute this ansatz into the Killing

equation and find that the most general rank-2 Killing

tensor of sGB gravity is

Kαβ ¼ C1tαtβ þ C2tðαϕβÞ þ C3ϕαϕβ þ C4gαβ þ C5ξ
GB
αβ ;

ð41Þ

where the Ci are arbitrary constants and each term is

understood to be expanded about small spin and coupling

to OðχζÞ. The last term of Eq. (41) constitutes an

extension of ξGRαβ and generates a correction to the

Carter constant at OðχζÞ. It is given by

ξGBαβ ¼ Δk̄1;GBðα k̄2;GB
βÞ þ r2gGBαβ ; ð42Þ

where

k̄1;GBα ¼ k1;GRα þ δk̄1;GBα ;

k̄2;GBα ¼ k2;GRα þ δk̄2;GBα : ð43Þ

The nonzero components of δk̄1;2GBα are

2
The even and odd parts (under simultaneous time and

azimuthal angle reflection) of a given conserved quantity must
be conserved independently. This implies that the even and
odd Killing tensors that generate these conserved quantities
must also satisfy the Killing equations independently. Since at
lower spin order the most general rank-3 Killing tensor of
dCS gravity is entirely odd, it must remain so at higher
spin order. In practice, this means that certain components of
the correction to the Killing tensor, such as K

ð2;1Þ
ttr , must be set

to zero.
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δk̄1;GBt ¼ δk̄2;GBt ¼ −
1

6
ζ
1

f2
M3

r3

�

1þ 26
M

r
þ 66

5

M2

r2

þ 96

5

M3

r3
− 80

M2

r2

�

;

δk̄1;GBr ¼ −δk̄2;GBr ¼ −
1

2
ζ
1

f

M2

r2

�

1þM

r
þ 52

3

M2

r2
þ 2

M3

r3

þ 16

5

M2

r2
−
368

3

M2

r2

�

;

δk̄1;GBϕ ¼ δk̄2;GBϕ ¼ −
13

30
χζ

1

Mf2
M5

r5

�

1þ 134

13

M

r
þ 74

13

M2

r2

þ 96

13

M3

r3
−
592

13

M4

r4

�

: ð44Þ

Again, note that the k̄1;2GBα are not PNDs of sGB gravity,

and it is not possible to write the Killing tensor given in

Eq. (42) in terms of the sGB PNDs via an ansatz analogous

to Eq. (37).

The question now is whether a Killing tensor exists at

Oðχ2ζÞ. To investigate this question, we follow the same

approach as in dCS gravity and consider a generic K
ð2;1Þ
αβ

correction to Eq. (40). This correction must be deter-

mined by solving the Killing equation Kðαβ;γÞ ¼ 0 to

Oðχ2ζÞ. As in the dCS case, however, we find that the

system of partial differential equations produced by

the Killing equation is inconsistent; i.e., a subset of

the equations requires a certain functional form for

K
ð2;1Þ
αβ , which is incompatible with a different subset of

the equations. This implies that a Killing tensor of rank

2 does not exist in sGB gravity, and therefore, there is

no Carter-like constant associated with one. This does

not necessarily imply that a higher-rank Killing tensor

does not exist in sGB gravity. However, as we saw in

dCS gravity, higher-rank tensors do not necessarily

enable the system of Killing equations to be consistent,

and thus, it is likely that a fourth conserved quantity

does not exist at all in either dCS gravity or sGB

gravity.

V. CONCLUSION

In this paper, we have computed the PNDs of dCS

and sGB gravity to Oðχ5ζÞ, confirming that both space-

times are Petrov type I. We have also computed the

Weyl scalars and complex null tetrad for both theories to

the same order in a frame where lα is a PND and

Ψ0 ¼ Ψ4 ¼ 0, showing that not only is Ψ2 ≠ 0 but also

Ψ1 ≠ 0 ≠ Ψ3. As a bonus while carrying out these

calculations, we also described a method that can be

used to compute the PNDs, complex null tetrad, and

Weyl scalars in a large class of BH spacetimes.

These results have important implications to the study of

vacuum perturbations of dCS and sGB BHs. In contrast to

the BHs of dCS and sGB gravity, BHs in GR are Petrov

type D, and it is therefore possible to choose a Kinnersley

tetrad such that both lα and nα are aligned with the PNDs of
the spacetime and the only nonvanishing Weyl scalar is Ψ2.

These were important assumptions in the derivation of the

Teukolsky equations for BH perturbations. Because spin-

ning BHs in both dCS and sGB gravity are Petrov type I,

these assumptions are not valid in these theories. The

quantities presented in this paper, however, can be used to

extend the framework to these non-Petrov type D

spacetimes.

The Weyl scalars encode information about gravitational

radiation. Specifically, Ψ0 and Ψ4 are associated with

ingoing and outgoing transverse gravitational radiation,

Ψ1 and Ψ3 are associated with ingoing and outgoing

longitudinal radiation and Ψ2 is associated with a

Coulomb field. Although the Weyl scalars Ψ1 and Ψ3 do

not vanish in the quadratic gravity theories considered here,

they fall off faster than r−1. That is, the only relevant

radiative degrees of freedom at future null infinity (where

gravitational waves are measured) are the gravitational

wave polarizations encoded in Ψ4. This is consistent with

the analysis developed in [60].

Quadratic gravity theories such as dCS and sGB often

find motivation in the low-energy limit of string theory.

It would therefore be interesting to consider the Petrov

type of the corresponding higher-dimensional theories;

see e.g., Ref. [63] for a classification of the Weyl tensor.
Most analyses have focused on black hole solutions to
GR in higher dimensions [64–68] or a subclass of
solutions in quadratic gravity complementary to our
study [69,70]. We expect that the Petrov type may be
conserved under dimensional reduction or a Kaluza-
Klein compactification under certain conditions.
However, a proof of this would require an analysis of
the phase space of solutions, including rotating solu-
tions, in quadratic gravity in D dimensions. This is a
possible avenue for future research.

We have also explored the existence of a fourth

constant of the motion in both dCS and sGB gravity

by searching for new independent Killing tensors. While

the spinning BHs of dCS gravity do possess an

independent rank-2 Killing tensor to OðχζÞ [25], it

had been previously shown that one does not exist at

Oðχ2ζÞ [26]. We have extended this result to show that

there is no independent Killing tensor up to and

including rank-6 to Oðχ2ζÞ. Even though we cannot

prove that this result continues to hold for Killing

tensors of rank higher than 6, we deem this possibility

likely. We therefore conjecture, excluding the unlikely

possibility of the existence of a conserved quantity not

generated by a Killing tensor, that the spinning BHs of

dCS gravity do not possess a fourth constant of motion

and geodesic motion on such backgrounds should be

chaotic.
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This prediction is in contrast to the conjecture in [62].

That study searched numerically for chaos in geodesic

motion on a spinning BH background in dCS gravity.

The authors showed that, while such geodesic motion is

chaotic, as more terms are included in an expansion

about small spin, the chaos shrinks. Because a similar

phenomenon was observed for the small spin expansion

of the Kerr metric, which does possess a fourth constant

of the motion, it was argued that the dCS metric likely

possesses such a constant as well. Our results suggest

that, while chaos in geodesic motion in dCS gravity

might reduce as higher order spin terms are included, it

will not converge to zero as is the case for GR.

Therefore, there may have been a remnant of chaos

in the geodesics studied in [62] but of perhaps too small

a size to be resolved numerically.

For sGB gravity, we have computed an independent,

rank-2 Killing tensor to OðχζÞ but have found that there

is no independent rank-2 Killing tensor at Oðχ2ζÞ. As in
the dCS case, this implies, though it does not prove, that

an exact BH solution in sGB gravity may not posses

fourth constant of motion either. It would therefore be

interesting to repeat the search for chaos carried out for

dCS gravity for either theory using an exact numerical

metric. If chaos was found in such a study, it would

definitively rule out the existence of a fourth constant of

motion in the given theory. This, in turn, would prove

that no Killing tensor of any rank exists for such

metrics.
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APPENDIX A: SLOW-ROTATION,

SMALL-COUPLING BH SOLUTIONS IN

BOYER-LINDQUIST COORDINATES

1. Dynamical Chern-Simons gravity

Here we include the slow-rotation, small-coupling BH

solution of dCS gravity in Boyer Lindquist coordinate

gCSαβ ¼ gGRαβ þ δgCSαβ ; ðA1Þ

where gGRαβ refers to the Kerr metric of GR, Eq. (5),

expanded for χ ≪ 1.

The first-order-in-spin term of the dCS correction δgCSαβ ,
presented below, was derived by [33] and the second-order-

in-spin term by [26]. The remaining terms were computed

by [50] in Hartle-Thorne coordinates and transformed to

Boyer-Lindquist coordinates by [62].

δgCStt ¼ −ζχ2
M3

r3

�

5

384

M2

r2

�

1þ 100
M

r
þ 194

M2

r2
2220

7

M3

r3
−
1512

5

M4

r4

�

−
201

1792

�

1þM

r
þ 4474

4221

M2

r2
−
2060

469

M3

r3
þ 1500

469

M4

r4
−
2140

201

M5

r5
þ 9256

201

M6

r6
−
5376

67

M7

r7

�

ð3cos2θ − 1Þ
�

þ ζχ4
M3

r3

�

1

384

M2

r2

�

1þ 2624

35

M

r
þ 492831

3920

M2

r2
þ 1771487

1680

M3

r3
þ 330775

168

M4

r4
þ 4430511

980

M5

r5
−
6957813

980

M6

r6

þ 6488861

980

M7

r7
þ 667071

70

M8

r8
þ 15984

5

M9

r9

�

−
1819

56448

�

1þM

r
þ 51806

12733

M2

r2
þ 135383

63665

M3

r3
þ 309664

38199

M4

r4
−
36264049

381990

M5

r5
−
7873793

38199

M6

r6

−
32533551

63665

M7

r7
þ 73025558

63665

M8

r8
−
8708988

12733

M9

r9
−
433800

1819

M10

r10
−
3483648

1819

M11

r11

�

ð3cos2ðθÞ − 1Þ

−
701429

23708160

M2

r2

�

1þ 1013451

701429

M

r
þ 1154835

701429

M2

r2
−
3346744

701429

M3

r3
þ 3992148

701429

M4

r4
−
9591516

701429

M5

r5

þ 94091244

701429

M6

r6
−
103967604

701429

M7

r7
−
41345640

701429

M8

r8
þ 109734912

701429

M9

r9

�

ð35cos4ðθÞ − 30cos2ðθÞ þ 3Þ
�

; ðA2Þ

PETROV TYPE, PRINCIPAL NULL DIRECTIONS, AND … PHYS. REV. D 103, 124057 (2021)

124057-11



δgCSrr ¼ −ζχ2
1

f2
M3

r3

�

25

384

M

r

�

1þ 3
M

r
þ 322

5

M2

r2
þ 198

5

M3

r3
þ 6276

175

M4

r4
−
17496

25

M5

r5

�

−
201

1792
f

�

1þ 1459

603

M

r
þ 20000

4221

M2

r2
þ 51580

1407

M3

r3
−
7580

201

M4

r4
−
22492

201

M5

r5
−
40320

67

M6

r6

�

ð3cos2θ − 1Þ
�

þ ζχ4
1

f

M3

r3

�

5

384

M

r

1

f2

�

1þ 577

175

M

r
þ 8113

1200

M2

r2
−
109309

11760

M3

r3
þ 2125311

3920

M4

r4
þ 267403

1470

M5

r5
þ 2001821

420

M6

r6

−
19927289

980

M7

r7
þ 22161021

980

M8

r8
−
12553726

245

M9

r9
þ 249993

5

M10

r10
þ 735264

25

M11

r11

�

−
1819

56448

1

f

�

1þ 1084

1819

M

r
þ 62621

12733

M2

r2
þ 56726

1819

M3

r3
−
2116475

38199

M4

r4
−
112168723

381990

M5

r5
−
36858343

190995

M6

r6

þ 3546621

9095

M7

r7
−
47131846

63665

M8

r8
−
5777844

12733

M9

r9
−
32693976

1819

M10

r10
þ 80123904

1819

M11

r11

�

ð3cos2ðθÞ − 1Þ

−
94699

4741632

M2

r2

�

1 −
916004

473495

M

r
þ 2411573

473495

M2

r2
þ 16109646

473495

M3

r3
þ 2585472

43045

M4

r4
−
23898480

94699

M5

r5

−
314374068

473495

M6

r6
−
41960268

43045

M7

r7
−
1261951488

473495

M8

r8

�

ð35cos4ðθÞ − 30cos2ðθÞ þ 3Þ
�

; ðA3Þ

δgCSθθ ¼ ζχ2
201

1792
M2

M

r

�

1þ 1420

603

M

r
þ 18908

4221

M2

r2
þ 1480

603

M3

r3
þ 22460

1407

M4

r4
þ 3848

201

M5

r5
þ 5376

67

M6

r6

�

ð3cos2θ − 1Þ

þ ζχ4M2
M

r

�

67

2240

M2

r2

�

1þ 104533

19296

M

r
þ 583357

45024

M2

r2
þ 311763

7504

M3

r3
þ 3112171

33768

M4

r4
þ 24899

1608

M5

r5

−
2538845

11256

M6

r6
−
190101

268

M7

r7
−
18648

67

M8

r8

�

−
1819

56448

�

1þ 17455

7276

M

r
þ 148755

25466

M2

r2
þ 52999

3638

M3

r3
þ 3438929

76398

M4

r4
þ 5163387

63665

M5

r5

þ 14491811

190995

M6

r6
−
5632

85

M7

r7
þ 6094488

12733

M8

r8
þ 1232136

1819

M9

r9
3483648

1819

M10

r10

�

ð3cos2ðθÞ − 1Þ

−
94699

4741632

M2

r2

�

1þ 2984191

1420485

M

r
þ 2339824

473495

M2

r2
þ 94116

8609

M3

r3
þ 45539276

1420485

M4

r4
þ 16610916

473495

M5

r5

þ 7853220

94699

M6

r6
−
31810968

473495

M7

r7
−
109734912

473495

M8

r8

�

ð35cos4ðθÞ − 30cos2ðθÞ þ 3Þ
�

; ðA4Þ

δgCSϕϕ ¼ ζχ2
201

1792
M2

M

r

�

1þ1420

603

M

r
þ18908

4221

M2

r2
þ1480

603

M3

r3
þ22460

1407

M4

r4
þ3848

201

M5

r5
þ5376

67

M6

r6

�

ð3cos2θ−1Þsin2θ

þζχ4M2
M

r

�

1819

211680

�

1þ17455

7276

M

r
þ106545

25466

M2

r2
þ571331

58208

M3

r3
þ47090579

1222368

M4

r4
þ134570577

1018640

M5

r5
þ315848443

1527960

M6

r6

−
118918819

509320

M7

r7
−
52589025

101864

M8

r8
−
11692683

7276

M9

r9
þ2308824

1819

M10

r10

�

−
9095

592704

�

1þ17455

7276

M

r
þ740737

272850

M2

r2
þ50790941

13096800

M3

r3
þ100159603

4365600

M4

r4
þ47638909

727600

M5

r5

þ30022409

654840

M6

r6
−
84837063

363800

M7

r7
−
5835501

72760

M8

r8
−
29787597

181900

M9

r9
þ89318376

45475

M10

r10

�

ð3cos2ðθÞ−1Þ

OWEN, YUNES, and WITEK PHYS. REV. D 103, 124057 (2021)

124057-12



þ 1819

658560

�

1þ 17455

7276

M

r
−
198514

180081

M2

r2
−
4120646

540243

M3

r3
−
1309801

360162

M4

r4
þ 10009

2805

M5

r5
−
294356903

2701215

M6

r6

−
109195222

300135

M7

r7
−
4348890

20009

M8

r8
þ 7512372

20009

M9

r9
þ 54867456

20009

M10

r10

�

ð35cos4ðθÞ − 30cos2ðθÞ þ 3Þ

þ 701429

156473856

M2

r2

�

1þ 5962075

2104287

M

r
þ 4434376

701429

M2

r2
þ 7777884

701429

M3

r3
þ 59811476

2104287

M4

r4
þ 28251588

701429

M5

r5

þ 66282516

701429

M6

r6
þ 4767336

701429

M7

r7
−
109734912

701429

M8

r8

�

ð231cos6ðθÞ − 315cos4ðθÞ þ 105cos2ðθÞ − 5Þ
�

; ðA5Þ

gCStϕ ¼ ζχ
5

8
M

M4

r4

�

1þ 12

7

M

r
þ 27

10

M2

r2

�

sin2ðθÞ

þ ζχ3M
M3

r3

�

−
8819

141120

�

1þ 60155

35276

M

r
þ 8545

8819

M2

r2
−
19828

26457

M3

r3
þ 563669

26457

M4

r4
þ 549630

8819

M5

r5
þ 873180

8819

M6

r6

�

−
8819

56448

�

1þ 24875

35276

M

r
þ 95

17638

M2

r2
þ 90188

26457

M3

r3
þ 684818

26457

M4

r4
þ 385542

8819

M5

r5

þ 418572

8819

M6

r6
−
508032

8819

M7

r7

�

ð3cos2ðθÞ − 1Þ
�

sin2ðθÞ

þ ζχ5M
M3

r3

�

3840911

142248960

�

1þ 3368875

7681822

M

r
þ 539981961

211250105

M2

r2
þ 63963088

211250105

M3

r3
−
28203665

84500042

M4

r4

−
218979789

84500042

M5

r5
þ 6554146711

42250021

M6

r6
þ 1870270010

3840911

M7

r7
þ 3798260802

3840911

M8

r8

−
1514962386

3840911

M9

r9
−
2505947220

3840911

M10

r10
−
1184222592

3840911

M11

r11

�

þ 3840911

56899584

�

1þ 10036795

7681822

M

r
þ 949643961

211250105

M2

r2
þ 1196741284

211250105

M3

r3
þ 304195064

42250021

M4

r4

þ 646950168

211250105

M5

r5
þ 19300145456

211250105

M6

r6
þ 1091987984

3840911

M7

r7
þ 13626382752

19204555

M8

r8

−
914366016

3840911

M9

r9
−
290957184

3840911

M10

r10
−
3511517184

3840911

M11

r11

�

ð3cos2ðθÞ − 1Þ

þ 65029949

1738598400

M2

r2

�

1þ 247489546

195089847

M

r
−
192857740

585269541

M2

r2
þ 201416960

195089847

M3

r3
þ 6952033840

195089847

M4

r4

þ 49673623120

585269541

M5

r5
þ 8477276720

65029949

M6

r6
−
7984872720

65029949

M7

r7

−
5714422560

65029949

M8

r8
þ 8047226880

65029949

M9

r9

�

ð35cos4ðθÞ − 30cos2ðθÞ þ 3Þ
�

sin2ðθÞ: ðA6Þ

2. Scalar Gauss-Bonnet gravity

Presented below is the slow-rotation, small-coupling BH

solution of sGB gravity in Boyer-Lindquist coordinates,

gGBαβ ¼ gGRαβ þ δgGBαβ : ðA7Þ

The spherically symmetric term of the sGB correction δgGBαβ
given below was computed by [24] and is valid for any

quadratic gravity theory with a scalar coupled with the

Kretschmann scalar RαβγδR
αβγδ through a linear coupling

function, as is the linear-in-spin term derived by [49]. The

quadratic-in-spin [54] and higher order terms [55] were

derived in the context of Einstein-dilaton-Gauss-Bonnet

gravity under the approximation that only the linear term in

a small-ϑ expansion of the dilatonic coupling function need

be considered.
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APPENDIX B: LORENTZ TRANSFORMATIONS

IN THE NEWMAN-PENROSE FORMALISM

Included for completeness is an overview of Lorentz

transformations in Newman-Penrose formalism following

the presentation in [15]. The three classes of trans-

formations that can be performed on the complex null

tetrad are detailed below. The transformation parameters

A and B are complex and X and Y are real. The 6 real

degrees of freedom correspond to the 6 degrees of

freedom of the Lorentz group. Each of the transforma-

tions preserves the normalization and orthogonality

requirements of the tetrad.

1. Class I

A transformation of class I leaves lα and Ψ0 unchanged.

Under this class of transformation, the tetrad becomes

l → l;

n → nþ Āmþ Am̄þ AĀl;

m → mþ Al;

m̄ → m̄þ Āl: ðB1Þ

The corresponding transformations of the Weyl

scalars are

Ψ0 → Ψ0;

Ψ1 → Ψ1 þ ĀΨ0;

Ψ2 → Ψ2 þ 2ĀΨ1 þ Ā2Ψ0;

Ψ3 → Ψ3 þ 3ĀΨ2 þ 3Ā2Ψ1 þ Ā3Ψ0;

Ψ4 → Ψ4 þ 4ĀΨ3 þ 6Ā2Ψ2;þ4Ā3Ψ1 þ Ā4Ψ0: ðB2Þ
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2. Class II

A class II transformation leaves nα and Ψ4 unchanged.

Under this class of transformation, the tetrad becomes

l → lþ B̄mþ Bm̄þ BB̄n;

n → n;

m → mþ Bl;

m̄ → m̄þ B̄l; ðB3Þ

and the Weyl scalars become

Ψ0 → Ψ0 þ 4BΨ1 þ 6B2Ψ2 þ 4B3Ψ3 þ B4Ψ4;

Ψ1 → Ψ1 þ 3BΨ2 þ 3B2Ψ3 þ B3Ψ4;

Ψ2 → Ψ2 þ 2BΨ3 þ B2Ψ4;

Ψ3 → Ψ3 þ BΨ4;

Ψ4 → Ψ4: ðB4Þ

The Petrov type of a spacetime is determined by counting

the number of ways Ψ0 can be made to vanish under a class

II transformation. Principal null directions of the spacetime

are the vectors lα in the frames where Ψ0 ¼ 0.

3. Class III

A class III transformation preserves the directions of lα

and nα and rotates mα and m̄α in their plane. The trans-

formed tetrad is

l → l=Y;

n → Yn;

m → eiXm;

m̄ → e−iXm̄; ðB5Þ

and the transformed Weyl scalars are

Ψ0 → Y−2e2iXΨ0;

Ψ1 → Y−1eiXΨ1;

Ψ2 → Ψ2;

Ψ3 → Ye−iXΨ3;

Ψ4 → Y2e−2iXΨ4: ðB6Þ

APPENDIX C: RESULTS

1. Dynamical Chern-Simons gravity

In this appendix we extend the results presented in

Sec. III B, including dCS corrections through Oðχ2ζÞ to

the PND, tetrad, and Weyl scalars. The full results, which

include corrections toOðχ4ζÞ, are collected in aMathematica

notebook that is provided in the Supplemental Material [59].

The PNDs of dCS are given by

kα1;CS ¼ kα1;GR þ δkα1;CS þOðχ3
ffiffiffi

ζ
p

Þ;
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where the kα1;2;GR are given in Sec. III A and
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Þ
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with k
αðm;nÞ
i;CS ∝ χmζn. The terms that make up the non-

vanishing components of δkα1CS are

k
tð2;1

2
Þ

1;CS ¼
ffiffiffi

ζ
p

χ2

ffiffiffiffiffiffiffiffiffiffi

1407
p

112
Φ
M2

r2
sin2ðθÞ; ðC3Þ

k
tð2;1Þ
1;CS ¼ ζχ2

M2

r2

�

67

1792

1

f2

�

1þ 428

603

M

r
−
1651

4221

M2

r2
−
198860

4221

M3

r3
−
177110

4221

M4

r4
−
8984

201

M5

r5
þ 24400

67

M6

r6
þ 10752

67

M7

r7

�

−
67

3584

�

1 −
778

603

M

r
−
54620

4221

M2

r2
−
131980

1407

M3

r3
−
24140

67

M4

r4
−
48168

67

M5

r5
−
56448

67

M6

r6

��

ð3cos2ðθÞ − 1Þ; ðC4Þ

k
θð2;1

2
Þ

1;CS ¼
ffiffiffi

ζ
p

χ2
28793

ffiffiffi

3
p ffiffiffiffiffiffiffiffi

469
p

945504

1

MΦ

M3

r3

�

1þ1774370

86379

M2

r2
þ159962

28793

M

r
þ3490396

86379

M3

r3
1497720

28793

M4

r4

�

cosðθÞsinðθÞ; ðC5Þ

k
θð2;1Þ
1;CS ¼ ζχ2

201

448

1

M

M3

r3

�

1þ 7489

2412

M

r
þ 63395

8442

M2

r2
−
4955

1407

M3

r3
−
4505

201

M4

r4
−
5273

67

M5

r5
þ 2016

67

M6

r6

�

cosðθÞ sinðθÞ; ðC6Þ

k
ϕð1;1

2
Þ

1;CS ¼
ffiffiffi

ζ
p

χ

ffiffiffiffiffiffiffiffiffiffi

1407
p

112M

Φ

M

M2

r2
; ðC7Þ

k
ϕð2;1Þ
1;CS ¼ − ζχ

25

16

1

Mf

M5

r5

�

1þ 4

5

M

r
þ 162

175

M2

r2
− 9

M3

r3

�

; ðC8Þ

PETROV TYPE, PRINCIPAL NULL DIRECTIONS, AND … PHYS. REV. D 103, 124057 (2021)

124057-17



where

Φ¼
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ðC9Þ

The nonvanishing components of δkα2;3;4;CS can then be

constructed using the terms above in the following way:
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tð2;1

2
Þ

1;CS þ k
tð2;1Þ
1;CS ;

δkθ2;CS ¼ −k
θð2;1

2
Þ

1;CS þ k
θð2;1Þ
1;CS ;

δk
ϕ
2;CS ¼ −k

ϕð1;1
2
Þ

1;CS þ k
ϕð1;1Þ
1;CS ;

δkt3;CS ¼ δkt1;CS;

δkθ3;CS ¼ −δkθ1;CS;

δk
ϕ
3;CS ¼ δk

ϕ
1;CS;

δkt4;CS ¼ δkt2;CS;

δkθ4;CS ¼ −δkθ2;CS;

δk
ϕ
4;CS ¼ δk
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The complex null tetrad and Weyl scalars of dCS

gravity in a frame where lα is aligned with a PND and

Ψ0 ¼ Ψ4 ¼ 0 are
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where the GR parts are given in Sec. III A and
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2. Scalar Gauss-Bonnet gravity

Here we extend the results presented in Sec. III C,

including sGB corrections through Oðχ2ζÞ to the PND,

tetrad, and Weyl scalars. The full results, which include

corrections to Oðχ4ζÞ, are collected in a Mathematica

notebook that is provided in the SupplementalMaterial [59].
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The PNDs of sGB are
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where the kα1;2;GR are given in Sec. III A and
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with k
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i;GB ∝ χmζn. The terms that make up the non-
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The nonvanishing components of δkα2;3;4;GB can then be

constructed using the terms above in the following way:
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The complex null tetrad and Weyl scalars of sGB gravity

in a frame where lα is aligned with a PND and Ψ0¼Ψ4 ¼ 0

are
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where the GR parts are given in Sec. III A and
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