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ABSTRACT

In this work, we estimate how much bulk viscosity driven by Urca processes is likely to affect the gravitational wave signal of

a neutron star coalescence. In the late inspiral, we show that bulk viscosity affects the binding energy at fourth post-Newtonian

order. Even though this effect is enhanced by the square of the gravitational compactness, the coefficient of bulk viscosity is likely

too small to lead to observable effects in the waveform during the late inspiral, when only considering the orbital motion itself.

In the post-merger, however, the characteristic time-scales and spatial scales are different, potentially leading to the opposite

conclusion. We post-process data from a state-of-the-art equal-mass binary neutron star merger simulation to estimate the effects

of bulk viscosity (which was not included in the simulation itself). In that scenario, we find that bulk viscosity can reach high

values in regions of the merger. We compute several estimates of how much it might directly affect the global dynamics of the

considered merger scenario, and find that it could become significant. Even larger effects could arise in different merger scenarios

or in simulations that include non-linear effects. This assessment is reinforced by a quantitative comparison with relativistic

heavy-ion collisions where such effects have been explored extensively.

Key words: gravitational waves – hydrodynamics – neutrinos – relativistic processes – methods: numerical – neutron star merg-

ers.

1 IN T RO D U C T I O N

Collider experiments (Adamczewski-Musch et al. 2019) and compact

astrophysical objects, such as neutron stars (Page & Reddy 2006),

probe the most extreme states of matter in the universe. With densities

ρ > 1014 g cm−3 and temperatures ranging from eV (cold neutron

stars; Guillot et al. 2019) to tens to hundreds of MeV (mergers

and heavy-ion collisions; Dexheimer et al. 2021; Motornenko,

Steinheimer & Stoecker 2021). Since the equilibrium properties of

baryon dense matter cannot yet be determined by first-principle cal-

culations (Philipsen 2013), relating them to macroscopic properties

of neutron stars offers a unique opportunity for constraining them

with astrophysical observations (see Lattimer & Prakash 2016; Özel

& Freire 2016 for recent reviews). Indeed, X-ray observations have

been suggested as a promising way to directly infer the radius of

neutron stars and, hence, probe the underlying equation of state

(EoS) of dense matter at very low temperatures ∼ O(keV) (see

e.g. Özel & Psaltis 2009; Özel, Baym & Guver 2010; Steiner,

Lattimer & Brown 2010; Nättilä et al. 2017; Miller et al. 2019,

⋆ E-mail: emost@princeton.edu (EM); harrissp@uw.edu (SH);

jn0508@illinois.edu (JN)

2021; Riley et al. 2019, 2021). On the other hand, the gravitational

wave detections of merging binary neutron stars (Abbott et al. 2017a,

2020) and their electromagnetic counterparts (Abbott et al. 2017b)

have also been used recently to infer constraints on the dense matter

EoS (e.g. Bauswein et al. 2017; Margalit & Metzger 2017; Abbott

et al. 2018; Annala et al. 2018; Most et al. 2018; Raithel, Özel

& Psaltis 2018; Rezzolla, Most & Weih 2018; Ruiz, Shapiro &

Tsokaros 2018; Shibata et al. 2019; Most et al. 2020b; Nathanail,

Most & Rezzolla 2021). This is based on inferring the deformability

under gravitational tides from the detected gravitational wave signal

(Flanagan & Hinderer 2008; Read et al. 2009; see also the review

of Baiotti 2019). Crucially, this inference is done assuming that the

neutron stars in the inspiral are inviscid and cold.

Different from the inspiral, the collision of two neutron stars can

give rise to temperatures of 80 MeV or more. Hence, the post-merger

evolution does not only probe the cold EoS of nuclear matter but

is fundamentally impacted by finite-temperature effects (Kastaun,

Ciolfi & Giacomazzo 2016; Hanauske et al. 2017; Perego, Bernuzzi

& Radice 2019; Endrizzi et al. 2020). It has been shown that the

gravitational wave frequency spectrum is largely dominated by the

cold part of the EoS (Bauswein & Janka 2012; Bernuzzi et al. 2012;

Takami, Rezzolla & Baiotti 2014). In fact, it has been suggested

that these frequencies are not only characteristic for a given EoS,
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Bulk viscosity in neutron star mergers 1097

but that it might be possible to use them to determine the cold EoS

with a sufficiently large number of post-merger gravitational wave

detections (Bose et al. 2018).

Neglecting finite-temperature effects in this inference of the EoS

might then lead to systematic errors, by only taking cold physics into

account. Some of these errors can be associated with the modification

of degrees of freedom present at finite temperatures, such as increases

in or appearances of the hyperon (Sekiguchi et al. 2011; Radice

et al. 2017) or quark fractions (Bauswein et al. 2019; Most et al.

2019a, 2020a; Blacker et al. 2020), and have been shown to modify

the gravitational wave signal. It has further been suggested that

Urca processes lead to weak-interaction-driven bulk viscosity in the

early post-merger phase (Alford et al. 2018; Alford & Harris 2019),

potentially being able to damp the gravitational emission on time-

scales of < 10 ms. Additionally, small-scale turbulence produced in

the merger and large magnetic fields might be able to affect the

gravitational wave emission by providing a rapid form of angular

momentum transport in the newly formed neutron star merger

remnant, which has been investigated by effective shear viscous

prescriptions (Radice 2017; Shibata & Kiuchi 2017; Duez et al.

2020; see also Chabanov, Rezzolla & Rischke 2021).

Alford et al. (2018) argued that neutrino-driven thermal trans-

port and shear dissipation are unlikely to affect the post-merger

gravitational wave signal in the millisecond range (unless small-

scale turbulent motion occurs). However, bulk viscosity appears

to have greater potential importance. In neutrino-transparent npe

matter bulk viscous damping of density oscillations arises from

Urca re-equilibration of flavour; the resultant damping time has been

estimated (Alford & Harris 2019) and found to be in the millisecond

time range for matter in certain density and temperature ranges.1 This

is fast enough to affect the evolution of the merger and potentially

leave an imprint in the corresponding gravitational waves. If so, bulk

viscosity may provide a unique opportunity to extract, for the first

time, information about out-of-equilibrium2 properties of the hot and

ultradense matter formed in binary neutron mergers.

In this work, we go beyond the initial analysis done in Alford

et al. (2018) and Alford & Harris (2019). In Section 2, we start with

a calculation of bulk viscosity for a range of phenomenologically

plausible EoSs, and use it to estimate the relative importance of bulk

viscosity in the evolution of a neutron star merger. Specifically, in

Section 3 we provide an estimate for the importance of bulk viscosity

in the inspiral, finding negligible imprints on the gravitational

waveform. Different from this, in Section 4, we provide a realistic

estimate of the bulk viscous contribution to the pressure in the

background of a state-of-the-art (though non-dissipative) neutron

star merger simulation, thereby establishing that bulk viscosity is

non-negligible in the post-merger evolution phase. This allows us to

gauge in which stages and regions of the merger bulk viscosity can be

expected to be dynamically important and whether bulk viscosity will

have a significant influence on gravitational waves emitted during

binary coalescence. The bulk viscosity is obtained from a different

EoS from the one used in the merger simulation. To address this

1In the neutrino-trapped regime, T � 5 MeV (Roberts & Reddy 2017; Alford

& Harris 2018), flavour equilibration is faster and bulk viscosity seems to be

a small effect (Alford, Harutyunyan & Sedrakian 2019, 2020).
2The npe− matter in a neutron star merger is locally in thermal equilibrium,

but can be driven out of chemical equilibrium – see the discussion in Section 2.

Neutrinos, depending on their mean free path in a given location in the merger,

may or may not be thermally equilibrated (Endrizzi et al. 2020).

inconsistency, we consider viscosities computed for three different

EoSs that reasonably cover the allowed parameter space.

To test if the magnitude of the bulk viscosity will be potentially

influential on neutron star merger dynamics, in Section 4.3 we make

direct comparisons to state-of-the-art relativistic viscous hydrody-

namic calculations from heavy-ion collisions. Viscous effects have

been incorporated (with full back-reactions and with coupling terms

between shear and bulk viscosity) for over a decade in the field of

heavy-ion collisions (Romatschke & Romatschke 2019) and have

been well-constrained by hundreds of experimental data (Bernhard,

Moreland & Bass 2019). Even a small bulk viscosity can influence

the final experimental observables in heavy-ion collisions (Monnai

& Hirano 2009; Bozek 2010; Song & Heinz 2010; Dusling & Schäfer

2012; Noronha-Hostler et al. 2013; Ryu et al. 2015, 2018).

Throughout the rest of this paper, we use the following conven-

tions. For the most part, we employ geometric units in which G = 1

= c, although we re-instate units in some cases to make contact with

experiment. We also employ the Einstein summation convention and

label components of space–time vectors with Greek indices. Other

conventions are consistent with those of Misner, Thorne & Wheeler

(1973).

2 BULK V I SCOSI TY I N NUCLEAR MATT ER

Bulk viscosity models the resistance experienced by matter to com-

pression/expansion, which leads to an out-of-equilibrium correction

to the pressure of the fluid and, consequently, to an increase in entropy

(Rezzolla & Zanotti 2013). In the context of neutron star mergers, the

minimal set of equations that describe the evolution of a relativistic

bulk viscous fluid is defined by the conservation of baryon number,

∇μJμ = 0, where the baryon current is Jμ = ρuμ with ρ = mbn being

the rest mass density for baryon mass mb and baryon number density

n, and uμ is the fluid’s 4-velocity (normalized such that uμuμ = −1).

The energy–momentum tensor

Tμν = (e + P + �) uμuν + (P + �)gμν (1)

is conserved ∇μTμν = 0, where e is the comoving energy density, P

is the equilibrium pressure defined by the EoS P = P(e, ρ), gμν is

the space–time metric, and � is the bulk scalar, which describes the

out-of-equilibrium correction to the pressure due to bulk viscosity

(� vanishes in equilibrium). The conservation laws have to be solved

together with Einstein’s equations, so the dynamical variables of the

system are (schematically) e, ρ, uμ, �, and gμν . In order to close

the system of equations, one has to specify how � is dynamically

obtained.

Near equilibrium, � can be expanded in powers of the derivatives

of the hydrodynamic variables. To first order in derivatives, a proper

account of the dynamics can be done using the generalized first-

order theory proposed in Bemfica, Disconzi & Noronha (2018,

2019a, 2020a), Kovtun (2019), and Hoult & Kovtun (2020) (BDNK),

which leads to a strongly hyperbolic set of equations of motion for

the fluid coupled to Einstein’s equations (Bemfica et al. 2020a).

Alternatively, when deviations from equilibrium are not small one

may employ a second-order approach, such as Israel–Stewart theory

(Israel & Stewart 1979), which was proven to be strongly hyperbolic

in Bemfica, Disconzi & Noronha (2019b) when only bulk viscous

effects are taken into account. In this paper, we only consider the

leading order corrections coming from � in the relativistic Navier–

Stokes limit (Rezzolla & Zanotti 2013) where

� ≃ −ζ∇μuμ, (2)

and ζ = ζ (e, ρ) is the (dynamic) bulk viscosity transport coefficient.

MNRAS 509, 1096–1108 (2022)
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1098 E. R. Most et al.

It is useful to introduce a dimensionless quantity to characterize

the properties of a viscous flow. This is typically done by means of

the inverse Reynolds number, which is generally defined as

Re−1 =
μ̄/ρ̄

v̄L
, (3)

where v̄, ρ̄, and L are the characteristic velocity, density, and length-

scale of the underlying flow, and μ̄ is the associated dynamical

viscosity, which is ζ for bulk viscous flows.

We also introduce the (bulk) viscous ratio,

χ =
�

e + P
, (4)

which in the non-relativistic limit reduces to χ → �/ρ. This

quantity measures the local direct impact of bulk viscosity on the

fluid variables, and it can be considered as a proxy for the inverse

Reynolds number of the flow in the relativistic regime (Denicol et al.

2012; Denicol & Noronha 2020). Taking the non-relativistic Navier–

Stokes limit of equation (4), and assuming that ∇i v̄
i → 3v̄/L, we

can approximate the bulk viscous ratio as

χ ≈ 3 v̄2 Re−1 , (5)

where above Re−1 was defined using the microphysical viscosity ζ .

2.1 Weak-interaction-driven bulk viscosity

On the millisecond time-scales that are relevant to mergers, the bulk

viscosity ζ of nuclear matter arises from the re-equilibration of the

proton fraction (‘beta equilibration’) via Urca (weak) interactions.

On the millisecond time-scale, strong interactions ensure that the

neutrons, protons, and electrons are always in thermal equilibrium,

described by Fermi–Dirac momentum distributions.3 The departure

from beta equilibrium is therefore captured in a single number, the

isospin chemical potential μ� that relaxes to zero on a time-scale τ .

In Fourier space, the bulk viscosity experienced by a low-amplitude

density oscillation of angular frequency ω is

ζ (ω) = A
τ

1 + ω2τ 2
, τ−1 = B

∂Ŵn→p

∂μ�

∣

∣

∣

∣beta

equil

. (6)

The prefactors A and B contain combinations of nuclear susceptibili-

ties, which are determined by the EoS (Alford & Harris 2019; Alford

et al. 2018; Alford, Mahmoodifar & Schwenzer 2010; Sawyer 1989),

and the net rate per unit volume of neutron to proton conversion

Ŵn → p is obtained from a weak interaction rate calculation, which

depends on the dispersion relations of the in-medium neutron and

proton excitations (Yakovlev et al. 2001; Alford & Harris 2018,

2019). The bulk viscosity can be completely characterized by

specifying the zero-frequency bulk viscosity ζ (0) = Aτ and the beta

equilibration time-scale τ as functions of density and temperature

for matter in beta equilibrium. From this, the frequency-dependent

bulk viscosity is uniquely determined ζ (ω) = ζ (ω = 0)/(1 + ω2τ 2)

(Gavassino, Antonelli & Haskell 2021).

Calculations of the bulk viscosity and the energy dissipation it

leads to are typically performed either for cold neutron stars, where

3There is an additional contribution to the bulk viscosity arising from nucleon

scattering via the strong interaction to restore a thermal (Fermi–Dirac)

distribution (Sykes & Brooker 1970; Kolomeitsev & Voskresensky 2015).

This contribution to the bulk viscosity is relevant on strong interaction time-

scales ∼10−23 s, but is negligible on the millisecond (and longer) time-scale

of neutron stars and mergers.

beta equilibration is slow (τ−1 ≪ ω) (Finzi & Wolf 1968; Sawyer

1989; Cutler, Lindblom & Splinter 1990; Haensel & Schaeffer 1992;

Gupta et al. 1997; Haensel, Levenfish & Yakovlev 2000, 2001;

Kolomeitsev & Voskresensky 2015), or for hot protoneutron stars,

where beta equilibration is fast (τ−1 ≫ ω) (Sawyer 1980; see also the

review article of Schmitt & Shternin 2018). It was only fairly recently

that the thermodynamic conditions where bulk viscosity reaches its

resonant maximum were sketched (Lai 2001; Alford et al. 2010,

2019), and mapped out in great detail (Alford & Harris 2019; Alford

et al. 2020). One of the goals of this work is to establish whether

neutron star mergers probe these thermodynamic conditions.

In the limit of low temperature where nuclear matter becomes

strongly degenerate, the direct Urca processes become kinematically

forbidden unless pFn < pFp + pFe. This condition on the Fermi

momenta becomes satisfied above the direct Urca threshold density.

Below the threshold density, beta equilibration occurs via the

modified Urca processes N + n → N + p + e− + ν̄e and N + e− +
p → N + n + νe (N is either a neutron or a proton), which are much

slower than direct Urca. In strongly degenerate nuclear matter, the

beta equilibration rate rises sharply when the density rises above the

direct Urca threshold density. The Urca rates in strongly degenerate

nuclear matter are calculated in the ‘Fermi surface approximation’

in Yakovlev et al. (2001; see also Alford & Harris 2018). In Alford

& Harris (2019), the beta equilibration rate τ−1 was calculated by

doing the full integration over phase space for the direct Urca process,

which properly accounts for the gradual opening up of phase space at

densities just below the direct Urca threshold (Alford & Harris 2018).

For simplicity, in this work we use the Urca rates calculated in

the Fermi surface approximation. To mimic the blurring of the direct

Urca threshold that occurs at finite temperature (Alford & Harris

2018), we interpolate between the modified and direct Urca rates

over a fixed density range around the direct Urca threshold density.

We have chosen this blurring of the threshold to be temperature-

independent, but in reality the blurring increases with temperature

(Alford & Harris 2018). Additionally, although much of the matter

in the merger remnant is at sufficiently high temperatures to trap

neutrinos, for simplicity we continue to use the neutrino-transparent

Urca rates. At high temperatures (T > 10MeV) where neutrinos

are fully trapped, using the neutrino-transparent bulk viscosity

expression will overestimate the bulk viscosity (Alford et al. 2019,

2020). However, at these temperatures, the bulk viscosity predicted

by both expressions is negligible. In the range of temperatures where

the nuclear matter transitions from neutrino-transparent to neutrino-

trapped (5–10 MeV), the bulk viscosity is unknown (Alford et al.

2019, 2020 use an interpolating procedure to estimate it), so our use

of the neutrino-transparent expression in this range of temperatures

serves as an estimate.

Due to current uncertainties in the nuclear EoS, the weak in-

teraction rate (most importantly, the direct Urca threshold density;

Beznogov & Yakovlev 2015; Brown et al. 2018; Beloin et al. 2019;

Reed et al. 2021) and the nuclear susceptibilities are not well

constrained. To account for this, we choose three nuclear EoSs:

IUF (Fattoyev et al. 2010), BSR12 (Dhiman, Kumar & Agrawal

2007), and NLρ (Liu et al. 2002) with which to calculate the bulk

viscosity. All three EoSs are based on relativistic mean field theories

(Glendenning 1997; Dutra et al. 2014), where the nucleons interact

by exchanging mesons, whose fields are frozen to their vacuum

expectation values. The three models differ in the types of meson

self-interactions included, as well as the values of the couplings,

which are obtained by fitting to properties of bulk nuclear matter or

finite nuclei. The direct Urca threshold densities for IUF, BSR12,

and NLρ are 4.1nsat, 1.5nsat, and 2.2nsat respectively.

MNRAS 509, 1096–1108 (2022)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
9
/1

/1
0
9
6
/6

3
7
8
9
0
3
 b

y
 M

a
th

e
m

a
tic

s
 L

ib
ra

ry
, U

n
iv

e
rs

ity
 o

f Illin
o
is

 a
t U

rb
a
n
a
-C

h
a
m

p
a
ig

n
 u

s
e
r o

n
 0

5
 A

p
ril 2

0
2
2



Bulk viscosity in neutron star mergers 1099

Figure 1. Bulk viscosity ζ for three different nuclear EoSs, for a small

amplitude density oscillation n(t) = n + �ncos (ωt) where ω = 2π × 1kHz.

The individual panels show slices for different temperatures T and number

densities n in units of nuclear saturation density nsat ≡ 0.16fm−3. Two of

the EoSs have a direct Urca threshold in the displayed density range, causing

dramatic changes in the bulk viscosity as a function of density. We use the

neutrino-transparent expression for the bulk viscosity at all temperatures.

Further explanation is given in the main text.

In Fig. 1, we plot the bulk viscosity as a function of density for

these three EoSs. Each panel shows a different temperature. The

step-like features in the temperature dependence can be understood

in terms of the resonant nature of bulk viscosity. At low temperatures,

like T = 0.1 or 1MeV, the beta equilibration rate is slower than the

1 kHz density oscillation (τ−1 ≪ ω), and in this regime, increases

in the beta equilibration rate push the system closer to resonance

(τ−1 ∼ ω), increasing the bulk viscosity. At high temperatures,

like T = 10 or 15 MeV, the beta equilibration rate is much faster

than the 1 kHz density oscillation (τ−1 ≫ ω), and in this regime,

increases in the beta equilibration rate push the system farther from

resonance, leading to a decrease in the bulk viscosity. At T ≈
1 MeV, as the density increases and the direct Urca threshold is

crossed, the beta equilibration rate switches from being dominated

by the modified Urca process to the (much faster) direct Urca

process. Since this temperature is in the regime where τ−1 ≪
ω, the bulk viscosity calculated with the BSR12 and NLρ EoSs

sharply increases at the direct Urca threshold. IUF does not have

a direct Urca threshold in the density range displayed in Fig. 1,

so it has no sharp changes with density. At, for example, T =
10 MeV, τ−1 ≫ ω and thus the bulk viscosity in nuclear matter

described by the BSR12 and NLρ EoSs sharply decreases as the

density increases past the direct Urca threshold. Again, the bulk

viscosity of nuclear matter with the IUF EoS is a smooth function of

density.

3 BULK V I SCOSI TY I N THE INSPI RAL

Let us now estimate the impact of viscosity on the gravitational

wave signal from the inspiral phase of a neutron star merger. For an

equal-mass binary with neutron stars of mass 1.4 M⊙, the inspiral

becomes observable to current detectors at orbital separations of

about 700 km, corresponding to a gravitational wave frequency

of about 10 Hz, as one can easily calculate from post-Newtonian

(PN) theory (Blanchet 2014). The inspiral phase ends just before

the stars touch, which then corresponds to orbital separations of

about 22 km for stars with radii of 11 km. During this phase,

which lasts about 20 min, tidally induced fluid motions will heat up

the stars. Large-amplitude ‘suprathermal’ bulk viscous tidal heating

originating from nucleonic Urca processes is expected to heat the

stars up to, at most, tens of keV (Arras & Weinberg 2019). This

is one order of magnitude higher than a previous estimate which

included only shear viscosity (Lai 1994), and is averaged over the

star, so locally the temperature could be higher. Hyperonic bulk

viscosity is expected to be large at these temperatures, and could

cause further dissipation (Alford & Haber 2021) that could also

lead to a continued increase in the average temperature of the star.

Finally, neutron star merger simulations see significant heating of

the neutron star interiors during the last few orbits before merger,

when the tidal deformation becomes large, finding the temperature

to reach up to a few MeV (see Perego et al. 2019 and Fig. 2). At these

MeV temperatures encountered in late inspiral, the bulk viscosity in

nuclear matter is expected to reach ζ ≃ (1027–1029) g / (cm s), as can

be seen in Fig. 1.

We now provide a first estimate of the impact of bulk viscosity

on the dynamics of the inspiral. In doing so, we only consider the

direct impact of the orbital motion on the star, but neglect secondary

effects, such as oscillations of the neutron star (Kokkotas & Schmidt

1999) and the back-reaction of viscosity that leads to tidal heating

(Lai 1994; Arras & Weinberg 2019). The inspiralling orbital motion

induces compressional fluid motions, with fluid velocity |vi| = vφ ∼
r�, where r is the distance of the fluid element from the origin, � =
(m/r3)1/2 ∼ (vφ)3 is its orbital angular velocity, and m is the total mass

of the binary. This directly implies that vφ ∼ r−1/2. In the following,

we will drop the superscript and refer to vφ as v. Additionally, the

inspiralling motion of the star induces a radial velocity vr ∼ r−3

∼ v6 (Peters 1964). Hence, the fluid velocity is therefore not the

same everywhere inside the star, and one can approximate its spatial

gradient via |∇νu
μ| ∼ vi/R, whereR is the scale of spatial variation.

Using equation (2), we can then estimate the impact of the bulk scalar

MNRAS 509, 1096–1108 (2022)
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1100 E. R. Most et al.

Figure 2. Thermodynamic conditions probed during the merger. (Top row) Three representative times during merger showing the temperature T probed in the

equatorial plane of the collision. The time t is defined with respect to the time of merger. The green lines are contours of baryon number density n in units

of nuclear saturation density nsat. (Centre row) Same as above but showing the spatial distribution of bulk viscosities ζ NLρ for the NLρ model probed in the

equatorial plane of the merger. (Bottom row) Distribution of bulk viscosities ζNLρ for the NLρ model probed by the fluid elements during the merger in terms

of baryon number density n (left) and temperature T (right) at t = 0.4 ms, corresponding to the middle panels in the top and centre rows.

in the inspiral via

|�| = ζ
∣

∣∇μuμ
∣

∣ ≈ ζ∂rv
r ∼ ζ

(

vr

R

)

∼ ζv5� ∼ ζv8, (7)

where we have used that vi = ui/u0 ≃ ui in the PN approximation

when |v| ≪ 1. We have here also used that the scale of the derivatives

is the orbital scale, so we can approximate R ∼ r12, where r12 ∼ r is

the orbital separation; clearly, here we have used Kepler’s third law

and the virial theorem to write vφ/R ∼ v/r12 ∼ �.

The impact of this bulk scalar on the inspiral phase can be estimated

by comparing its contribution to the energy–momentum tensor. Just

as one can compare the pressure to the energy density, P/e, to

determine that pressure is a 1PN relative order modification to the

inspiral, one can similarly compute the ratios defined by χ in equation

(5) to estimate the impact of ζ in the inspiral. Using Kepler’s third

law, we can relate the orbital separation and the velocity. With this in

hand, and approximating the mean density of a neutron star of mass

M and radius R with ρ ∼ M/R3, we then find

χ ≃
(

G

c3
ζR

)(

G M

c2R

)−2
(v

c

)8

,

= 6 × 10−4

(

ζ

1028 g cm−1 s−1

)(

R

13 km

)(

0.19

C

)2
(v

c

)8

,

(8)

where we have restored the factors of G and c here for clarity. Hence,

we conclude that bulk viscous effects driven by the orbital motion

should constitute a correction at 4PN order, which is suppressed by

the dimensionless number GζR/c3 and GηR/c3, while enhanced by

two powers of the neutron star compactness C = GM/(c2R).

In this estimate we have assumed that ζ remains constant. As

discussed above, tidal heating can increase the temperature of the

stars during the inspiral, even leading to different mechanisms

providing bulk viscosity at different times before merger. This might

introduce an effective dependence of the bulk viscous stress on

orbital velocity that will complicate the above order-of-magnitude

PN analysis, and should be explored in more detail in future works.

Similarly, oscillations of the star induced by the orbital motion might

introduce higher order velocity corrections (v/R)n in equation (7),

which would add additional higher order PN terms to our estimate

in equation (8).

What impact will such an effect have on the gravitational waves

emitted? The rate of change of the gravitational wave frequency is

controlled by the binary’s total energy E and the rate of change of this

energy via df/dt = (dE/df)−1(dE/dt). The rate of change of the energy

is usually obtained from a balance law, dE/dt = −LGW − Ldiss,

where LGW is the gravitational wave luminosity and Ldiss is the

additional viscous energy dissipation. The effects discussed above

would also impact the total energy, since the stress-energy tensor

of the neutron stars would be modified by terms that depend on
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Bulk viscosity in neutron star mergers 1101

the bulk viscosity. It is not possible to know precisely what this

modification will be without a detailed calculation, but we can

again do a Fermi estimate. Let us then focus on how bulk viscosity

affects the total energy to estimate its impact on the gravitational

wave phase. Using the fact that the energy–momentum tensor is

corrected at 4PN order, we would expect a modification of the

same PN order in the rate of change of the gravitational wave

frequency and, thus, on the gravitational wave phase. Assuming

then that the gravitational wave phase acquires a term proportional

to χ and i.e. � → �[1 + O(1/c2) + χ ], we can then estimate the

signal-to-noise ratio (SNR) that would be required to measure ζ .

Ignoring covariances for this Fermi estimate, we have that 1/SNR

= �Newt(�ζ )∂ζ χ , where �Newt = (3/128)(πMf )−5/3 is the New-

tonian part of the Fourier phase, with M the chirp mass, which then

means that we could measure ζ to roughly

�ζ

ζ
∼

(

1

SNR

)(

1

�Newt

)

χ−1

=
(

1

SNR

)(

128

3(πMf )−5/3

)

[

(ζR)

(

M

R

)−2
(v

c

)8

]−1

.

(9)

Unfortunately, this shows the effect is incredibly small and essentially

unmeasurable in the inspiral unless the viscosity coefficients are

significantly large. Let us evaluate the above estimate at a chirp mass

corresponding to two equal mass neutron stars of 1.4 M⊙ and radius

of 13 km, at a gravitational wave frequency of 400 Hz (corresponding

to a separation of about 60 km). Then, if the bulk viscosity was only

as large as ζ = 1030 g cm−1 s−1, then one would require an SNR of

105 to get a 10 per cent measurement. We see then even though there

is an enhancement of the effect by two powers of the compactness,

bulk viscosities of about 1030 g cm−1 s−1 would not be measurable

because their effect enters at too high a PN order. We can, however,

flip the argument around. Given an SNR of 102, one should be

able to measure or place an upper limit on ζ � 1033 g cm−1 s−1.

These values of the bulk viscosity coefficient may be too large for

what we expect today with realistic nuclear and particle physics

models. However, they would still constitute the first upper limits

on viscosity coefficients at these temperatures and densities obtained

from astrophysical observations.

4 BULK V ISCOSITY IN THE POST-MERG ER

SYSTEM

Having discussed that bulk viscosity might be challenging to extract

from the inspiral, we now turn to the post-merger evolution, where

bulk viscous effects can be strongly enhanced. In contrast, the

estimated shear viscosity in the neutrino free-streaming regime is

much smaller (Alford et al. 2018) so we do not consider effects of

microphysical shear viscosity.

To obtain some indication of the likely importance of bulk

viscous effects, we calculate some rough diagnostic indicators of

the relevance of bulk viscosity in the background of a representative

simulation of an equal-mass binary neutron star merger with total

mass 2.8 M⊙ (Most et al. 2019a). This is the first time such an

estimate of the likely relevance of bulk viscosity has been computed,

and to obtain it we make certain simplifications. First, the simulation

itself does not include any bulk viscous effects; the purpose is to find

out whether bulk viscous effects are significant enough to motivate

such a fully self-consistent computation. Secondly, the EoS used to

calculate the bulk viscosity is not the same as the EoS (Dexheimer

& Schramm 2008; Dexheimer 2017) used in the simulation of the

fluid dynamics of the merger. This is because the EoSs for which

bulk viscosity calculations are currently available and those that

have been used for simulations are different (see also Section 2).

However, we estimate the bulk viscous effects using three different

EoSs, giving us an indication of the uncertainty associated with

this mismatch. The Chiral Mean-Field (CMF) EoS (Dexheimer &

Schramm 2008; Dexheimer 2017) used in the merger simulation has

a direct Urca threshold at 1.9n0, which is between the thresholds

predicted by the BSR12 and NLρ EoSs. However, the presence

of many hyperonic degrees of freedom in the CMF EoS severely

complicates a calculation of the bulk viscosity that is consistent with

the EoS. The simulation presented here is modelled after the one

presented in Most et al. (2019a, 2020a). We refer the reader to these

works for details of the simulation parameters and to Most, Papenfort

& Rezzolla (2019b) for details on the numerical method.

We begin by describing the thermodynamic conditions present

during the merger. On first impact, depending on the EoS, tempera-

tures up to about 80 MeV can be reached in parts of the newly formed

neutron star (Kastaun et al. 2016; Perego et al. 2019). Bulk viscosity

is a resonant phenomenon peaking at temperatures ≃ 3 MeV (Alford

& Harris 2019), so we expect that its effects will be strongest in

regions with temperatures in the MeV range, and suppressed as

ζ ∝ T−2 in regions where T ≫ 5 MeV, which is also the regime

where neutrinos become trapped in the star (Roberts & Reddy 2017;

Alford et al. 2019). The thermodynamic evolution of the simulation

presented here is illustrated in Fig. 2, which shows the temperatures,

T, and number densities n probed during the merger when using the

CMF EoS. We find that right at the moment of the initial collision,

temperatures up to T ≃ 40 MeV are reached at the merger interface

(middle panel, top row) with about T ≃ 30 MeV present during post-

merger oscillations (right-hand panel, top row). However, large parts

of the star at densities n � 2nsat, remain cooler with T < 10 MeV.

In these regions, the bulk viscosity for kHz oscillations reaches its

resonant maximum and our calculations will investigate whether it

becomes strong enough to damp the density oscillations at merger.

4.1 Magnitude of bulk viscosity

The 1 kHz density oscillations are caused by the two neutron star

cores repeatedly bouncing off each other before they eventually

coalesce (Takami, Rezzolla & Baiotti 2015). The damping process

of these oscillations can be understood in terms of an effective bulk

viscosity ζ̄ intrinsic to the merger, associated with gravitational

wave emission. We can gain some insight into this behaviour by

considering the radial displacement <r > of the two merging cores

from their centre of mass. Because we consider an equal-mass

merger, the two displacements are the same.

In the inviscid simulation that we are considering, these oscilla-

tions are dampened over a dynamical time-scale τ damp that we can

associate with an effective bulk viscosity ζ̄ operating at a frequency

ω (Cerda-Duran 2010),

τ−1
damp =

ω2ζ̄

2ρ̄c̄s
2
, (10)

where we have introduced an average rest-mass density

ρ̄ = (1.5 ± 0.5) ρsat and corresponding sound speed c̄2
s ≃

(0.1 ± 0.05) c2. Although this expression has been formally derived

for radial perturbations of a spherical fluid body, we can use it as a first

approximation to associate the observed damping time-scale τ damp

with an average bulk viscosity ζ̄ . The dynamics of the post-merger

oscillations is shown in Fig. 3. We can see that the merging cores
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1102 E. R. Most et al.

Figure 3. Radial position <r > of the centre of mass of one of the merging stellar cores. Due to the equal-mass nature of the binary <r > is the same for both

cores. The time t is stated relative to the time of merger. Continued emission of gravitational waves will eventually dampen the oscillations which happen at a

frequency of ω ≃ 1 kHz. This damping occurs on a characteristic time-scale τdamp.

bounce at a frequency f = ω/ (2π ) ≃ 1 kHz, with a damping time-

scale (due to gravitational radiation) of τdamp ≃ (30.4 ± 0.3) ms,

although the oscillations will stop earlier when the two former stellar

cores have merged into a single star. Using equation (10), we can

associate this with an effective bulk viscosity of

ζ̄ ≈ (6 ± 4) ×1028 g/ (cm s) . (11)

For any microphysical bulk viscosity to affect the dynamics of

the star and, hence, the gravitational wave emission, it should

be comparable to the effective bulk viscosity ζ̄ estimated above.

With equations (11) and (12) as reference scales, we now evaluate

the bulk viscosity on the background of an ideal hydrodynamical

merger simulation. The centre row of Fig. 2 shows the values of the

bulk viscosity for the NLρ model. To provide a more quantitative

assessment, we analyse the distribution of fluid elements in terms of

the bulk viscosities they probe (see bottom row of Fig. 2). We can see

that during the collision large parts of the star probe bulk viscosities

between 1028 and 1030 g/ (cm s). This tells us that for this particular

merger scenario, using the NLρ EoS to compute bulk viscosity, the

weak-interaction-driven bulk viscosity easily reaches values where

it could outweigh other damping mechanisms.

We may quantify this more explicitly by computing the effective

inverse Reynolds number (3) associated with the damping of grav-

itational waves described above in terms of ζ̄ and ρ̄. This can be

done by assuming that the local fluid oscillations with frequency ω

propagate with the sound speed v̄ ≃ c̄s , which in turn fixes the length-

scale L ≃ c̄s/ω. For the flows observed in the inviscid simulation

(τdamp = 30 ms, ω = 2π × (1 kHz)), we find

Re−1
inviscid =

2

τdamp ω
≈ 0.01 . (12)

It is important to highlight how our estimate of the post-merger Re−1

differs from equation (8) that quantifies the Reynolds number in the

inspiral via equation (5). Since the compression in the post-merger

oscillation is driven by the collisions of the two stars, and not by

orbital decay, the (v/c)8 scaling from the inspiral (8) is not applicable

((v/c)8 → 1 in the post-merger). Hence, the bulk viscous ratio χ can

be significantly enhanced in the post-merger.

4.2 Bulk viscous ratio

As a further test of the relevance of bulk viscosity, following our

analysis of the inspiral (8), we now compute the bulk viscous ratio

(4) coming from microphysical processes.

The simulation neglects bulk viscous back-reaction, so we estimate

the bulk viscous pressure contribution by taking the Navier–Stokes

limit (2). If the bulk viscous ratio (resulting from microphysical

viscosity) approaches the magnitude of the intrinsic inverse Reynolds

number associated with gravitational wave damping (12), then direct

bulk viscous effects are considerable, which would invalidate our

neglect of back-reaction. If the ratio is much less than equation (12)

then the direct impact of bulk viscosity is small. During the post-

merger oscillations motion in the compressional regime will reach

v̄2 ≃ c̄2
s ≃ (0.1 ± 0.05) c2, where the uncertainty range is taken to

be representative for the velocities attained at this stage. Using (12)

in (5) and the above velocity estimate, we can define a reference

scale for the bulk viscous ratio as

χinviscid ≃ (3.0 ± 1.5) × 10−3. (13)

The estimate (13) of the intrinsic bulk viscous ratio χ inviscid represents

a natural reference scale for global compressional motion, as it is

derived from the global damping time of post-merger oscillations.

Although we find it useful to compare it to local compressional

motion inside the stars, we caution that local oscillations at frequen-

cies very different from ω might have other reference scales. A full

determination of the relevant bulk viscous ratio necessary to affect

the dynamics of the merger will ultimately require self-consistent

viscous neutron star merger simulations.

In Fig. 4, we show snapshots of the bulk viscous ratio χ at three

times during the first few milliseconds of the merger, which is when

the compression −∇μuμ is largest. In each snapshot, we evaluate χ

on the ideal fluid background of the simulation, using the NLρ EoS.

Note that the EoS that we use to compute the bulk viscosity is not the

same as the one used in the simulations. Our procedure is therefore

not fully self-consistent, but it can give us an indication of the likely

magnitude of direct bulk viscous effects.

MNRAS 509, 1096–1108 (2022)
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Bulk viscosity in neutron star mergers 1103

Figure 4. Relative importance of bulk viscosity in the late inspiral and early post-merger. (Top) Three representative times during the late inspiral and merger

showing the relative fraction of the bulk scalar � to energy density e and pressure P. The green lines are contours of baryon number density n in units of nuclear

saturation nsat. The bulk viscosity is computed using the NLρ model.

Figure 5. Bulk viscous ratio evaluated using three different nuclear matter

models to compute the bulk viscosity. Shown are density-weighted averages

(solid lines) and maximum values (dashed lines). The time t is defined relative

to the time of merger.

We can see that right before the merger large parts of the star

reach χ ≃ 10−3. This is perfectly consistent with the upper bound of

the estimate performed in equation (8). During merger (middle and

right-hand panels of Fig. 4), large parts of the star are compressed

and the relative bulk viscous pressure contribution locally reaches

its maximum. At this time, a large fraction of the star has values

of χ between 0.01 and 0.1, locally exceeding the bound for the

intrinsic inverse Reynolds number (13), indicating that microscopic

bulk viscosity may play a significant role.

4.2.1 Density-weighted bulk viscous ratio

A rough way to characterize the direct effect of bulk viscosity on the

entire merger system is via a density-weighted average

〈χ〉 =
〈

�

(e + P )

〉

:=
∫

dV
√

γ e�/ (e + P )
∫

dV
√

γ e
. (14)

Here,
√

γ is the three-dimensional spatial volume element. Since

high-density regions affect the gravitational wave emission more

strongly, <χ > provides an indication of the direct impact of bulk

viscosity on gravitational wave emission at each instant during the

merger.

We show the evolution of <χ > in Fig. 5 for the three different

models for weak-interaction-driven bulk viscosity discussed in Sec-

tion 2. The overall scale of 〈χ〉 is around (0.3–3) × 10−4, not much

smaller than the intrinsic inviscid value (5), indicating that the direct

bulk viscous effect on gravitational wave emission may be noticeable.

Moreover, there are various non-linear amplification mechanisms

that could make bulk viscous effects even more important. For

example, bulk viscous heating could bring cooler regions closer to

the resonant maximum of bulk viscosity at T ∼ 4 MeV. Non-linear

fluid mechanical effects could lead to effects on the amount of disc

mass formation, dynamical mass ejection during the collision, and

the temperature distribution inside the remnant. We note that bulk

viscosity is also effective in shocks propagating from the merger

remnant (right-hand panel of Fig. 4). This opens up the tantalizing

possibility of bulk viscosity to also affect dynamical mass ejection

(see e.g. Abbott et al. 2017c). While likely affecting only a small

part of the material that will eventually become unbound and partake

in the r-process nucleosynthesis that gives rise to an electromagnetic

afterglow (see e.g. Metzger 2020 for a review), we cannot rule out the

possibility of bulk viscous imprints on electromagnetic afterglows.

We also note that the variability across the different models shows

how uncertainties in the nuclear physics can translate in to large

differences in impact on the merger. Focusing on the NLρ model (red

solid line), we can see that <χ > attains values of 5 × 10−4 at merger

and remains roughly constant on over a time-scale < 10 ms after

merger. In contrast, model BSR12 (solid green line) reaches those

maximum values in the inspiral but continuously declines in the post-

merger. These dramatic differences are related to the EoS dependence

of some of the non-linearities discussed in the previous subsection:

the bulk viscosity has a non-monotonic resonant dependence on

temperature, with the resonant maximum depending on density and

the EoS, as we saw in Fig. 1.

4.2.2 Maximum bulk viscous ratio

The maximum value of χ is of interest because it can be compared

with other relativistic systems (see Section 4.3). Its evolution is

shown by the dashed lines in Fig. 5. Starting out at 10−3 in the inspiral,

we can see that the maximum value of the bulk viscous ratio χ peaks

around 5 per cent at the initial collision, and then drops to around

1 per cent. This behaviour is independent of the EoS used to compute

the bulk viscosity, with all of them leading to similar evolutions. A

comparison with heavy-ion collisions in Section 4.3 suggests that

such bulk viscous ratios are sufficient to affect dynamical evolution

of a neutron star merger.

While our findings are indicative of the potential impact that bulk

viscosity could have on the post-merger evolution of the remnant, it

is important to stress that the correct back-reaction of the effective

MNRAS 509, 1096–1108 (2022)
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1104 E. R. Most et al.

bulk viscosity on to the fluid might affect the subsequent evolution.

Especially shortly after merger when the highest bulk viscosities are

reached (see Fig. 5), the consistent inclusion of viscosity might alter

the subsequent evolution, likely further damping the oscillations.

Disregarding potential non-linear effects, this would lead to a reduc-

tion of the dynamic pressure �, at the same time as viscous heating

changes the temperature and, in turn, the bulk viscosity probed during

the post-merger oscillations. Although very promising, our results

should therefore only be taken as strong indications of the likely

importance of bulk viscosity.

4.2.3 Bulk viscous frequency shift

It is interesting to note that one can estimate a global frequency

associated with the appearance of bulk viscosity. While previous

analyses (e.g. Alford et al. 2018; Alford & Harris 2019) have studied

local oscillations of the fluid, we can use our post-processing of a

full merger simulation to investigate the gravitational wave emission

associated with the bulk component of the stress-energy tensor. More

specifically, we use the quadrupole formula (see e.g. Baumgarte &

Shapiro 2010; Mueller, Janka & Marek 2013) based on the energy

component of the stress-energy tensor, i.e. T 00
bulk = �

(

g00 + u0u0
)

,

to estimate a gravitational wave strain hbulk associated with the

appearance of bulk viscosity. Without proper back-reaction, i.e. bulk

viscous damping, on to the fluid flow such an estimate cannot be

used to directly assess the impact of bulk viscosity on the post-

merger spectrum of the gravitational wave signal (Bauswein & Janka

2012; Bernuzzi et al. 2012; Takami et al. 2014). However, since the

resonant behaviour of the bulk viscosity, see Section 2, might cause

a shift between the frequency associated with compressional motion

of the two stellar cores, it is interesting to look for deviations from

the f2 peak frequency (Takami et al. 2014). We have calculated

the gravitational wave emission and we find that the frequency

associated with the bulk viscous pressure contribution is shifted

up by � 500Hz compared to the f2 frequency. We caution that

since this result was obtained using only equatorial plane dynamics

the error budget remains uncertain. Furthermore, fully back-reacted

simulations using fully causal and strongly hyperbolic formulations

of first-order dissipative effects (Bemfica et al. 2020a) will be needed

to determine the actual impact of bulk viscosity on the post-merger

evolution and gravitational wave emission.

4.3 Comparison to heavy-ion collision dynamics

To get a sense of the full impact of bulk viscosity in the evolution of

mergers, including back-reaction and non-linear effects, we can make

a comparison with heavy-ion collisions where such calculations and

measurements have already become the standard in the field for over

a decade. We will argue that (i) the values of the bulk viscous ratio

χ that arise in heavy-ion collisions are similar to those we estimated

in mergers and (ii) bulk viscous effects in heavy-ion collisions are

strong enough to observably affect the fluid-dynamical evolution.

Relativistic viscous hydrodynamic calculations have been em-

ployed in the field of heavy-ion collisions for well over a decade

to describe the evolution of the quark-gluon plasma (Romatschke &

Romatschke 2019). The current state-of-the-art incorporates effects

from shear and bulk viscosities in the equations of motion following

different prescriptions such as DNMR (Denicol et al. 2012), BRSSS

(Baier et al. 2008), and anisotropic hydrodynamics (Martinez &

Strickland 2010; Florkowski & Ryblewski 2011; Bazow, Heinz

& Strickland 2014; Alqahtani et al. 2017; Alqahtani, Nopoush

& Strickland 2018). Also, the first numerical analyses of BDNK

(Bemfica et al. 2018, 2019a, 2020a; Kovtun 2019; Hoult & Kovtun

2020) have been performed in Pandya & Pretorius (2021). In fact, a

significant effort is being expended in heavy-ion collisions towards

understanding far-from-equilibrium hydrodynamics, as it pushes the

very limits of causal fluid evolution (Bemfica et al. 2021; Cheng &

Shen 2021; Plumberg et al. 2021) and creates the smallest droplet of

fluid known to humanity (Schenke 2021).

There are obvious differences in physical system size (heavy-ion

collisions have radii of 10−14 to 10−15 m) and in time-scale: bulk

viscosity in heavy-ion collisions arises from thermal equilibration via

strong interactions, operating on a time-scale of 10−22 s. Despite these

differences, neutron star mergers and heavy-ion collisions should

be connected as they rely on the same phase diagram of quantum

chromodynamics (Aryal et al. 2020; Dexheimer et al. 2021) and, at

very low beam energies, there is overlap between the temperatures

and densities achieved in heavy-ion collisions and the hot and dense

matter formed in neutron star mergers (Adamczewski-Musch et al.

2019). This motivates us to compare the order of magnitude of bulk

viscous effects in both systems, since this has been studied already in

great detail in the context of heavy-ion collisions (Monnai & Hirano

2009; Bozek 2010; Song & Heinz 2010; Dusling & Schäfer 2012;

Noronha-Hostler et al. 2013; Ryu et al. 2015, 2018).

Heavy-ion collisions measured at Relativistic Heavy Ion Collider

(RHIC) and the Large Hadron Collider (LHC) produce copious

amounts of data leading to hundreds of experimental observables

that can be used to constrain parameters in simulations. This leads

to tight constraints on transport coefficients (like bulk viscosity) and

provides precise predictive power for new experiments (Niemi et al.

2016a; Noronha-Hostler et al. 2016; Adam et al. 2016; Acharya et al.

2018; Giacalone et al. 2018; Sirunyan et al. 2019; Aad et al. 2020;

Shen & Yan 2020). More concretely, here we use the TRENTO +
Free-stream + VISHNU + URQMD hydrodynamic setup (Petersen

et al. 2008; Moreland, Bernhard & Bass 2015; Shen et al. 2016),

which has been used extensively in the field (Bernhard et al. 2019;

Shen & Yan 2020). The functional form of bulk viscosity in heavy-

ion collisions employed here is extracted from a recent Bayesian

analysis (Bernhard et al. 2019) constrained by over 100 experimental

observables – for further details see Summerfield et al. (2021).

Because the overall magnitude and temperature dependence of the

bulk viscosity relevant to heavy-ion collisions is still not yet precisely

known, we have included an uncertainty band motivated by other

model calculations such as (Weller & Romatschke 2017; Schenke,

Shen & Tribedy 2020) where the value of the bulk viscosity was

not found using a Bayesian analysis. Additionally, we point out that

in heavy-ion collisions there is also shear viscosity, which couples

to bulk viscosity in the equations of motion (Denicol et al. 2012).

These coupling terms influence the order of magnitude of the values

of �/(e + P); see Noronha-Hostler, Noronha & Grassi (2014) for a

detailed discussion in numerical simulations. In fact, some groups

are even able to reproduce experimental data with no bulk viscosity

and just shear viscosity (Niemi, Eskola & Paatelainen 2016b; Alba

et al. 2018). However, every Bayesian analysis performed in the field

has shown a preference for a small bulk viscosity so we only consider

simulations that implemented finite values of ζ in the following.

In Fig. 6, the average contribution from the bulk viscosity, χ ,

is shown over time in heavy-ion collisions compared to our order

of magnitude estimates for neutron stars. We find that the values

are comparable, albeit slightly smaller in the neutron star merger

case. This indicates that bulk viscosity could play a role in the

simulations of neutron star mergers as well. In fact, in heavy-ion

collisions even small values of the bulk viscosity affect the evolution

MNRAS 509, 1096–1108 (2022)
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Bulk viscosity in neutron star mergers 1105

Figure 6. Comparison of the relative importance of bulk viscosity in heavy-

ion collisions and neutron star mergers. Shown is the maximum value of

the bulk viscous ratio χ = �/(e + P). The evolution of the neutron star

merger (blue band) includes the uncertainties of the bulk viscosity as shown

in Fig. 4. The times have been normalized to a dynamical time-scale tdyn to

ease a direct comparison. For the neutron star merger, we choose tdyn ≃ 5 ms

corresponding to a characteristic damping time-scale of early post-merger

oscillations. In the case of the heavy-ion collision, tdyn ≃ 3 × 10−20 ms is the

approximate lifetime of the system.

due to coupling terms to other transport coefficients (Noronha-

Hostler et al. 2014) and entropy production (Dore, Noronha-Hostler

& McLaughlin 2020). If the bulk viscosity in heavy-ion collisions

is large, then other observable effects may occur such as cavitation.

(Torrieri & Mishustin 2008; Rajagopal & Tripuraneni 2010; Denicol,

Gale & Jeon 2015; Byres et al. 2020) may occur. Similar effects may

appear in neutron star mergers as well, although the effects of gravity

may also lead to new and surprising consequences. Fully general

relativistic viscous fluid dynamics simulations will be required to

further investigate this point (Shibata & Kiuchi 2017).

5 C O N C L U S I O N S

In this paper, we have assessed the possible impact of weak-

interaction-driven bulk viscosity on neutron star mergers. Starting

from calculated values of bulk viscosity from Urca processes,

computed for a representative range of EoSs, we have estimated

its impact on the inspiral gravitational wave signal and post-merger

dynamics.

Inspiral: Initial calculations suggest that bulk viscosity will not

have a measureable impact on gravitational waves emitted in the late

stage inspiral of binary neutron stars. We estimate that bulk viscosity

enters at 4PN order. These viscous modifications will be enhanced by

two powers of the compactness. However, since from microphysical

consideration the coefficient of bulk viscosity ζ is expected to be

too small to be dynamically important, and because of the PN

suppression of these effects, their contribution to the gravitational

wave signal is negligible unless the SNRs are absurdly large (SNR

> 105) or the microscopic estimate for ζ is too small by three orders

of magnitude.

Since bulk viscosity has a strong non-linear dependence on

temperature, the impact on the gravitational wave signal will crucially

depend on effects such as tidal heating and Urca processes in the

inspiralling star. Given that these might critically affect the time

before merger and hence the PN order at which they will become

relevant, a more careful investigation will have to be performed to

verify the qualitative inspiral conclusions discussed above.

Post-merger: Based on an inviscid neutron star merger simulation,

we estimated the direct impact of bulk viscosity on the merger

dynamics in two ways, summarized below.

First, we computed the bulk viscosity at each point in the merger

region, and found that the temperatures and densities probed during

the merger are sufficient to produce bulk viscosities of 1028–

1030 g/ (cm s) across large parts of the merger remnant. This is

comparable to the effective bulk viscosity estimated for inviscid

damping mechanisms (1028–1029 g/(cm s)) making bulk viscosity

potentially comparable to those mechanisms.

Next, we computed a figure of merit, the bulk viscous ratio (4),

which is a proxy for the inverse Reynolds number of the flow. It

tells us that the bulk viscous contribution can be up to 5 per cent of

the pressure shortly after the merger. Its density-weighted average

across the merger region is around (0.3–3) × 10−4, with significant

variability depending on the assumed EoS. This is not much smaller

than the effective inverse Reynolds number of inviscid damping

mechanisms, (3.0 ± 1.5) × 10−3, indicating again that the bulk

viscosity could be a non-negligible contribution to the damping.

These measurements of the direct impact of bulk viscosity should

be understood as a conservative estimate, since there are additional

factors that could lead to a greater impact. We only studied one

particular merger scenario (equal mass merger with one EoS), and

it is reasonable to expect that other configurations or EoSs will

lead to different results, some of which will show greater impact.

The presence of sizeable bulk viscous ratios in outward-moving

lower density regions during the merger indicates that early mass

ejection might be affected by the presence of bulk viscosity as well.

Additionally, there could be amplification of bulk viscous effects

via non-linear dynamics. For example, bulk viscous heating that

would locally increase the temperature combined with the non-

monotonic dependence of bulk viscosity on temperature or non-

linear fluid dynamics. To illustrate this possibility, we compared our

results with the conditions found in relativistic heavy-ion collisions,

which have been studied in great detail, including back-reaction and

non-linear effects. We find that the bulk viscous ratios are not very

different, giving a further indication that bulk viscosity could affect

the flow structure and, hence, non-linearly affect the ejection of mass,

the lifetime of the hypermassive neutron star, and the post-merger

gravitational wave signal.

Overall, some of these effects might be comparable to those

resulting from the inclusion of shear viscosity. In fact, simulations

modelling the effects of underresolved magnetoturbulence in the

merger have found (Radice 2017; Shibata & Kiuchi 2017) potentially

rapid suppression of the gravitational wave emission. We anticipate

that bulk viscosity could affect the post-merger gravitational wave

emission in a similar way, as the oscillation of the two stellar cores

after merger could be rapidly damped, leading to a faster decay of

the signal.

In performing these estimates, we have relied on several assump-

tions. We used an inviscid simulation, neglecting the back-reaction

of bulk viscosity on the fluid flow. This means that we are likely

overestimating the amount of compression −∇μuμ > 0. At the

same time, the lack of back-reaction also neglects the change in

temperature and flow structure due to bulk viscosity, although it is

difficult to predict whether this would drive the fluid into or out of

the resonant bulk viscous regime. As briefly noted above, we have

MNRAS 509, 1096–1108 (2022)
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1106 E. R. Most et al.

considered only a single neutron star merger simulation for a given

EoS. It seems likely that some other systems with different EoS, total

mass, or mass ratio will provide conditions where bulk viscosity has

different effects.

Our overall conclusion is that there is good reason to pursue more

careful investigations of the impact of bulk viscosity, exploring

a range of merger scenarios and using simulations that, unlike

the one used here, fully incorporate bulk viscosity, including its

back-reaction on the fluid flow. In addition, it will be crucial to

explore the combination of finite-temperature effects in the EoS

(Raithel, Paschalidis & Özel 2021) and temperature dependence of

bulk viscosity, as the thermodynamic conditions are crucial to the

understanding of bulk viscous effects. Ultimately, only such self-

consistent numerical relativity simulations of neutron star mergers

with bulk viscosity using strongly hyperbolic, causal dissipative

hydrodynamics (Bemfica et al. 2019b, 2020a) will be able to fully

clarify the role of bulk viscosity in the post-merger evolution.

Looking further ahead, one could investigate possible signatures of

exotic degrees of freedom such as hyperons (Alford & Haber 2021),

quarks (Alford & Schmitt 2007; Alford, Braby & Schmitt 2008;

Bierkandt & Manuel 2011; Harutyunyan & Sedrakian 2017), nuclear

pasta (Yakovlev, Gusakov & Haensel 2018; Lin et al. 2020), and

quark-hadron mixed phases (Drago, Lavagno & Pagliara 2005) and

to take into account neutrino trapping which is expected to become

important once the temperatures in the merger remnant increase

beyond a few MeV. Finally, we have assumed the ‘subthermal’ limit

of linear response, but large amplitude oscillations may experience

‘suprathermal’ bulk viscosity (Madsen 1992; Reisenegger 1995;

Alford et al. 2010), the impact of which has not yet been estimated

outside of the inspiral phase (Arras & Weinberg 2019).
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Dusling K., Schäfer T., 2012, Phys. Rev. C, 85, 044909

Dutra M. et al., 2014, Phys. Rev. C, 90, 055203

Endrizzi A. et al., 2020, Eur. Phys. J. A, 56, 15

Fattoyev F. J., Horowitz C. J., Piekarewicz J., Shen G., 2010, Phys. Rev. C,

82, 055803

Finzi A., Wolf R. A., 1968, ApJ, 153, 835

Flanagan E. E., Hinderer T., 2008, Phys. Rev. D, 77, 021502

Florkowski W., Ryblewski R., 2011, Phys. Rev. C, 83, 034907

Gavassino L., Antonelli M., Haskell B., 2021, Class. Quantum Gravity, 38,

075001

Giacalone G., Noronha-Hostler J., Luzum M., Ollitrault J.-Y., 2018, Phys.

Rev. C, 97, 034904

Glendenning N. K., 1997, Compact Stars: Nuclear Physics, Particle Physics,

and General Relativity, Springer-Verlag, New York

Guillot S., Pavlov G. G., Reyes C., Reisenegger A., Rodriguez L. E., Rangelov

B., Kargaltsev O., 2019, ApJ, 874, 175

Gupta V. K., Wadhwa A., Singh S., Anand J. D., 1997, Pramana, 49, 443

Haensel P., Schaeffer R., 1992, Phys. Rev. D, 45, 4708

Haensel P., Levenfish K. P., Yakovlev D. G., 2000, A&A, 357, 1157

Haensel P., Levenfish K. P., Yakovlev D. G., 2001, A&A, 327, 130

Hanauske M., Takami K., Bovard L., Rezzolla L., Font J. A., Galeazzi F.,
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Nättilä J., Miller M. C., Steiner A. W., Kajava J. J. E., Suleimanov V. F.,

Poutanen J., 2017, A&A, 608, A31

Niemi H., Eskola K. J., Paatelainen R., Tuominen K., 2016a, Phys. Rev. C,

93, 014912

Niemi H., Eskola K. J., Paatelainen R., 2016b, Phys. Rev. C, 93, 024907

Noronha-Hostler J., Denicol G. S., Noronha J., Andrade R. P. G., Grassi F.,

2013, Phys. Rev. C, 88, 044916

Noronha-Hostler J., Noronha J., Grassi F., 2014, Phys. Rev. C, 90, 034907

Noronha-Hostler J., Yan L., Gardim F. G., Ollitrault J.-Y., 2016, Phys. Rev.

C, 93, 014909
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