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Abstract. Let a planar residual set be a set obtained by removing countably

many disjoint topological disks from an open set in the plane. We prove that
the residual set of a planar packing by curves that satisfy a certain lower cur-

vature bound has Hausdorff dimension bounded away from 1, quantitatively,

depending only on the curvature bound. As a corollary, the residual set of any
circle packing has Hausdorff dimension uniformly bounded away from 1. This

result generalizes the result of Larman, who obtained the same conclusion for

circle packings inside a square. We also show that our theorem is optimal and
does not hold in general without lower curvature bounds. In particular, we

construct packings by strictly convex, smooth curves whose residual sets have

dimension 1. On the other hand, we prove that any packing by strictly convex
curves cannot have σ-finite Hausdorff 1-measure.

1. Introduction

Let Ω ⊂ R2 be an open set. A collection PΩ = {Di}i∈N of open Jordan regions
in R2 is called a packing inside Ω if Di ⊂ Ω for all i ∈ N and Di ∩Dj = ∅ for all
i, j ∈ N with i ̸= j. Note that the closures of two Jordan regions Di, Dj , i, j ∈ N,
might intersect. The residual set of a packing PΩ = {Di}i∈N is defined to be the
locally compact set

S = Ω \
⋃︂
i∈N

Di.

We refer to PΩ as a packing by the regions Di or equivalently by the curves ∂Di.
Moreover, we refer to packings by disks as circle packings or disk packings.

We first give some background on the estimation of the Hausdorff dimension
of the residual sets of various types of packings. Eggleston in [Egg53] studied
the Hausdorff dimension of packings inside an equilateral triangle Ω by equilateral
oppositely oriented triangles. He proved that the minimal Hausdorff dimension is
log2 3, which is attained by the Sierpiński gasket; see Figure 1. Then Hirst in [Hir67]
proved that the Hausdorff dimension of the Apollonian gasket (Figure 2) is strictly
between 1 and 2. Later, using the techniqies of Eggleston, Larman [Lar67] proved
that any disk packing inside a square has Hausdorff dimension bounded below by
1.03. Furthermore, in [Lar66a] he used the 2-dimensional result to prove inductively
that a packing inside an n-dimensional cube by n-balls has always dimension strictly
larger than n− 1.
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Figure 1. The Sierpiński gasket. Figure 2. The Apollonian
gasket.

As far as upper dimension bounds are concerned, Doyle [Doy88] proved the
striking result that limit sets of classical Schottky groups in dimension 2 admit a
universal upper bound for the Hausdorff dimension that is strictly less than 2. The
higher dimensional version of this result had earlier been established by Phillips
and Sarnak [PS85]. We direct the reader the these two papers for more background
and references on the topic.

A closely related topic is the study of the exponent of disk packings, which
is another relevant notion of dimension that is at least as large as the Hausdorff
dimension by a result of Larman [Lar66b]. We direct the reader to [Mel66,Wil67,
Fos71,Boy70,Wil73] for a sequence of results in the subject. Many of these results
aim at estimating the Hausdorff dimension of the Apollonian gasket. Boyd [Boy73]
proved that the the dimension of the Apollonian gasket is between 1.300 and 1.315,
a result slightly tightened by Lautzenheiser [Lau19] by advancing Boyd’s method.
In addition, Thomas–Dhar [TD94], McMullen [McM98], and Bai–Finch [BF18] gave
an accurate numerical estimate of 1.30568. It still remains an open problem, posed
by Melzak [Mel66], whether the Apollonian gasket attains the minimum Hausdorff
dimension among all disk packings.

In this work we study lower bounds for the Hausdorff dimension of the residual
sets of packings by arbitrary smooth, convex curves, rather than circles. Our main
result is the following theorem.

Theorem 1.1. For each k > 0, there exists a constant K = K(k) > 1 such that
the following holds. Let Ω ⊂ R2 be an open set and let PΩ = {Di}i∈N be a packing
such that for each i ∈ N the curve ∂Di is smooth and has curvature bounded below
by k/ length(∂Di). Then, the residual set S of PΩ satisfies

dimH (S ∩ U) > K > 1

for every open set U with S ∩ U ̸= ∅. In particular,

dimH (S) > K > 1.

As already mentioned, Larman in [Lar67] proves that the residual set of any circle
packing inside a square has Hausdorff dimension bounded away from 1. We remark
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that our result is also new for arbitrary circle packings, not necessarily contained in
a square. It turns out that this does not follow immediately from Larman’s result
and one needs to refine carefully his argument to achieve this. Hence, we obtain
the following corollary.

Corollary 1.2. There exists a constant K > 1 such that for every open set Ω ⊂ R2

and for every circle packing P inside Ω, the residual set S of P satisfies

dimH (S) > K > 1.

The locality of our result and the fact that we are not working with packings in a
square or rectangle, but with packings in an arbitrary set Ω, pose some considerable
complication to the proof. On the other hand, our proof provides a simplification of
Larman’s argument; he deals with three cases, two of which are lengthy. Instead, we
manage to combine two of Larman’s cases into a single case with a short proof. We
have attempted to refine the techniques of Eggleston [Egg53] and Larman [Lar67] in
order to give a transparent proof of the main theorem, based on general properties
of convex, smooth curves, as opposed to the work of Larman, which relies on some
special trigonometric identities and relations between chords and tangents of the
circle.

One of the innovations in our proof is that we use some modern tools from
analysis in metric spaces, such as chord-arc curves and Ahlfors 2-regular regions.
Roughly speaking, chord-arc curves behave like circles in terms of length, in the
sense that the length of arcs connecting two points is not much longer than the
length of the chord that connects the same points. Analogously, Ahlfors 2-regular
regions behave like round disks in terms of area. The first step of our proof, which
is carried out in Section 2, is to show that curves C satisfying the curvature bound
κ ≥ k/ length(C) are chord-arc curves and the regions that they bound are Ahlfors
2-regular, with uniform constants, depending only on k. Achieving the uniformity
of the constants throughout the paper turns out to be a challenging task.

In Section 3 we prove the main theorem. After some reductions, we reduce the
statement to an iterative estimate for finite packings; see Section 3.2. Then the rest
of Section 3 is devoted to the establishment of this estimate.

In Theorem 1.1 the curves ∂Di are assumed to be smooth. In fact, we only need
C2-smoothness, so that the curvature is defined. Moreover, one can relax even
further this assumption to curves that can be approximated by smooth curves.
This allows the curves ∂Di to have corners.

Theorem 1.3. Let k > 0. The conclusion of Theorem 1.1 is true for packings PΩ =
{Di}i∈N for which every curve ∂Di, i ∈ N, can be approximated in the Hausdorff
metric by smooth curves C whose curvature is bounded below by k/ length(C).

We discuss the definition of Hausdorff convergence and the proof of this general-
ization in Section 4. Essentially it follows from a small modification of the auxiliary
results that were used in the proof of Theorem 1.1. It would be interesting to ex-
press the assumption of Theorem 1.3 in terms of the Jones beta numbers [Jon90]
of the curves ∂Di, or using other notions of curvature for non-smooth curves.

If we do not impose bounds on the curvature, then the conclusions of the main
theorem do not hold.

Theorem 1.4. Let Ω ⊂ R2 be an open set.
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Figure 3. The Julia set of z2 − 1
16z2 .

(i) There exists a packing PΩ by convex, smooth curves whose residual set has
σ-finite Hausdorff 1-measure and, in particular, Hausdorff dimension equal
to 1.

(ii) There exists a packing PΩ by strictly convex, smooth curves whose residual
set has Hausdorff dimension equal to 1.

This theorem is proved in Section 5. We remark that in the second example the
residual set S cannot have σ-finite Hausdorff 1-measure and one can only guarantee
that dimH (S) = 1. This follows from the next theorem and the observation that
any two strictly convex Jordan curves that bound disjoint regions can intersect in
at most one point.

Theorem 1.5. Let Ω ⊂ R2 be an open set and PΩ = {Di}i∈N be a packing such
that ∂Di ∩ ∂Dj is at most countable for each i, j ∈ N with i ̸= j. Then the residual
set of PΩ cannot have σ-finite Hausdorff 1-measure.

The proof of this theorem is elementary and is given in Section 5.
We finish the Introduction with some discussion on the dimension of packings by

non-smooth or fractal curves. Theorem 1.4 already shows that one cannot expect
any dimension bounds without further assumptions. For example, squares can
always be packed perfectly with no gaps, and any such packing has dimension 1.
Instead, we consider a separation condition that prevents the regions in a packing
from touching. For M > 0, we say that two bounded regions D1, D2 are M -
relatively separated if

∆(D1, D2) :=
dist(D1, D2)

min{diam(D1),diam(D2)}
≥ M.

Moreover, we say that a Jordan curve C is an M -quasicircle if for any two points
z, w ∈ C there exists an arc A of C connecting z and w such that diam(A) ≤
M |z −w|. It is proved in [Nta18, Proposition 4.1] that the residual set of a planar
packing P by Jordan regions {Di}i∈N that are pairwise M -relatively separated
and whose boundaries are M -quasicircles has Hausdorff dimension bigger than a
constant K > 1, where K depends only on M . The latter dependence follows from
a result of Mackay [Mac10, Theorem 1.1]. Such packings appear naturally in the
setting of Complex Dynamics (Figure 3); for example, see [BLM16, Theorem 1.10].

We pose some questions for further study.
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Question 1.6. Suppose that there exists a convex, smooth Jordan curve C (with
possibly vanishing curvature) such that all of the curves ∂Di in the packing PΩ =
{Di}i∈N are images of C under Euclidean similarities. Is the Hausdorff dimension
of the residual set of PΩ larger than 1?

If the curvature of C is non-vanishing then this follows immediately from Theo-
rem 1.1. However, if the curvature of C vanishes, then we cannot expect that the
local Hausdorff dimension is larger than 1. For example, suppose that two regions
of a packing are smoothened squares with disjoint interiors that meet at a segment
in their boundary. Then the local Hausdorff dimension of the residual set at points
of that segment is equal to 1. Hence, we can only ask whether the global Hausdorff
dimension of the residual set is larger than 1.

Question 1.7. Can the conclusion of Theorems 1.1 and 1.3 be generalized to pack-
ings in higher dimensions by convex, smooth bodies under some curvature bounds?
What notion of curvature should one consider?

Acknowledgments. We would like to thank the anonymous referee for many help-
ful comments.

2. Preliminaries on curves of bounded curvature

In this section we include some definitions and some preliminaries on curves of
bounded curvature. We first discuss some notation. Throughout the paper, we
will use symbols c, c′, c′′, . . . and c0, c1, . . . for positive constants. We will mention
the dependence of constants on various parameters when necessary, or say that the
constants are uniform if there is no dependence. We will freely use the same symbols
to denote possibly different constants even within the same proof, whenever this
does not lead to a confusion.

The Euclidean plane R2 is identified with the complex plane C and we use
interchangeably the notations (x, y) and x+ iy for the same point in the plane. We
use the notation |E| for the Lebesgue measure of a measurable set E ⊂ R.

For s > 0 the s-dimensional Hausdorff measure H s(E) of a set E ⊂ C is defined
by

H s(E) = lim
δ→0

H s
δ (E) = sup

δ>0
H s

δ (E),

where

H s
δ (E) := inf

⎧⎨⎩
∞∑︂
j=1

diam(Uj)
s : E ⊂

⋃︂
j

Uj , diam(Uj) < δ

⎫⎬⎭ .

The quantity H s
δ (E) is called the s-dimensional Hausdorff δ-content of E. The

Hausdorff dimension of E is defined by

dimH (E) = inf{s ≥ 0 : H s(E) = 0} = sup{s ≥ 0 : H s(E) = ∞}.
The Hausdorff dimension of a set does not change if in the definition of H s

δ (E) we
use only covers by closed squares with sides parallel to the coordinate axes, instead
of using covers by arbitrary sets Uj .

A Jordan curve C is a compact subset of C that is the homeomorphic image
of T = R/Z. The latter is identified with the interval [0, 1] after identifying its
endpoints. A Jordan curve C is convex if the line segment between any two points
of C is contained in the closed region that the curve C bounds. We say that C is
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strictly convex if it is convex and does not contain any line segments. A Jordan
curve C is C2-smooth if there exists a parametrization γ : T → C that is two times
continuously differentiable such that γ̇(t) ̸= 0 for all t ∈ T. If C is a C2-smooth
Jordan curve, then we can parametrize it by arc-length. In particular, there exists
a constant speed parametrization γ : T → C such that |γ̇(t)| = length(C) for all
t ∈ T. Using this specific parametrization, the (unsigned) curvature of the curve C
is defined by

κ(t) = length(C)−2 · |γ̈(t)|

for t ∈ T. In particular, if length(C) = 1, we have κ = |γ̈|. We note that if we scale
a curve by a constant λ > 0, then the curvature scales by λ−1. If κ ̸= 0 in T, then
it follows that C is strictly convex. In what follows, a smooth Jordan curve refers
always to a C2-smooth Jordan curve.

Lemma 2.1. Let D1 and D2 be disjoint Jordan regions such that ∂D1 and ∂D2

are strictly convex curves. Then ∂D1 ∩ ∂D2 contains at most one point.

Proof. The convexity of ∂D1 and ∂D2 implies that the intersection ∂D1 ∩ ∂D2 is
connected. The strict convexity implies that ∂D1 ∩ ∂D2 cannot contain more than
one point. □

2.1. Chord-arc curves. A Jordan curve C is a chord-arc curve if there exists a
constant L ≥ 1 such that for any pair of points a, b ∈ C, the shortest arc of C that
connects them, denoted by C|[a, b], satisfies

length(C|[a, b]) ≤ L|a− b|.

In this case we say that C is an L-chord-arc curve. This is a scale invariant property.
That is, if C is an L-chord-arc curve, then for any r > 0 the curve rC = {rz : z ∈ C}
is also L-chord-arc.

We will show that if C is a smooth curve whose curvature is bounded below by
k/ length(C), as in the assumptions of Theorem 1.1, then C is a chord-arc curve,
quantitatively, i.e., with constant depending only on k. We first establish some
auxiliary results.

Lemma 2.2. Let k > 0 and C be a smooth Jordan curve with curvature κ ≥
k/ length(C). Then the following statements are true.

(i) For each z1, z2 ∈ C, if L(z2) is the line tangent to C at z2, we have

dist(z1, L(z2)) ≥
k

2π
· length(C|[z1, z2])2

length(C)
.

(ii) The length of the projection of C to any line is at least k
8π length(C).

Proof. We may scale the curve C so that it has unit length and curvature bounded
below by k.

First we prove (i). Consider a rectangle R that circumscribes C so that one of
its sides is contained in the tangent line L(z2). The boundary of the rectangle R
intersects C in four points and splits C into four components. We first assume that
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z1 ̸= z2 and z1, z2 lie in the closure of the same component of C \ ∂R, which we
denote by C1. Then we claim that

dist(z1, L(z2)) ≥
k

π
length(C1|[z1, z2])2.(2.1)

By rotating the curve C, we may assume that L(z2) is a horizontal tangent line
and C lies below L(z2). Hence, the rectangle R has sides parallel to the coordinate
axes and the top side of R is contained in L(z2). Moreover, without loss of generality
we may assume that z1 lies in the closure of the top right component of C \ ∂R.

We consider a unit speed orientation-preserving parametrization γ : T → C. The
component C1 is parametrized by γ|[a, b] so that γ̇(a) = eiπ/2 and γ̇(b) = eiπ, where
a, b ∈ [0, 1] and a < b (after possibly reparametrizing by a translation). Note that
γ(b) = z2. We write γ̇(t) = eiθ(t), t ∈ [a, b], where θ is a strictly increasing function,
by the strict convexity of C, with

π/2 = θ(a) ≤ θ(t) ≤ θ(b) = π.

Moreover, γ̈(t) = eiθ(t)iθ̇(t), where θ̇(t) ≥ 0 and by assumption we have θ̇(t) ≥ k.
We set t2 = b and consider t1 ∈ [a, b) such that γ(t1) = z1. We have

dist(z1, L(z2)) = Im(z2 − z1) =

∫︂ t2

t1

sin θ(t)dt =

∫︂ t2

t1

sin(θ(t2)− θ(t))dt,

since θ(t2) = π. Note that 0 ≤ θ(t2)− θ(t) ≤ π/2 for t ∈ [t1, t2], so

sin(θ(t2)− θ(t)) ≥ 2

π
(θ(t2)− θ(t)) =

2

π

∫︂ t2

t

θ̇ ≥ 2k

π
(t2 − t).

Therefore,

dist(z1, L(z2)) ≥
2k

π

∫︂ t2

t1

(t2 − t)dt =
k

π
(t2 − t1)

2.

Since C1 is parametrized by arc-length we have t2 − t1 = length(C1|[z1, z2]) and
this completes the proof of (2.1).

Next, we treat the general case. Again, we consider a rectangle R that circum-
scribes C so that one of its sides, say the top side, is contained in L(z2). Now,
suppose that z1 lies in one of the bottom components, say the bottom right one.
We denote by z3 the rightmost point of C, which is a point of intersection with ∂R.
Then

dist(z1, L(z2)) = dist(z3, L(z2)) + Im(z3 − z1).

By (2.1), we have dist(z3, L(z2)) ≥ k
π length(C|[z3, z2])2. Note that the Im(z3 − z1)

is not the distance of z1 or z3 to a tangent at z3 or z1, respectively, so we cannot
apply (2.1) directly here.

Consider the tangent line L(z1) at z1. Then

Im(z3 − z1) ≥ dist(z3, L(z1)).

See Figure 4. This follows from the general fact that if ζ3 is any point in the first
quadrant of the plane, then its distance to the line y = λx, 0 ≤ λ ≤ arg(ζ3), is
maximized when λ = 0, in which case, the maximum distance is Im(ζ3). Now
consider a rectangle R1 circumscribing C so that one of the sides of R1 is contained



8 STEVEN MAIO AND DIMITRIOS NTALAMPEKOS

z2

z1

z3

L(z2)

L(z1)

Figure 4. The distances Im(z3 − z1), dist(z3, L(z1)), and
dist(z3, L(z2)), when z1, z2 do not lie in the closure of the same
component of C \ ∂R.

in L(z1). Then z1 and z3 lie in the closure of the same component of C \ ∂R1.
Hence, by applying (2.1), we have

dist(z3, L(z1)) ≥
k

π
length(C|[z1, z3])2.

Summarizing, we have

dist(z1, L(z2)) ≥
k

π
(length(C|[z3, z2])2 + length(C|[z1, z3])2)

≥ k

2π
(length(C|[z3, z2]) + length(C|[z1, z3]))2

≥ k

2π
(length(C|[z1, z2])2.

This completes the proof of (i).
For (ii), consider a rectangle R that circumscribes C and without loss of gener-

ality we suppose that its sides are parallel to the coordinate axes. Let the length
of the horizontal sides be a and of the vertical sides be b. It suffices to show that
min{a, b} ≥ k

8π . If we remove from R the closed region bounded by C, then we
obtain four components Ri, i ∈ {1, . . . , 4}, such that the boundary of Ri consists
of a horizontal segment Ai, a vertical segment Bi and an arc Ci ⊂ C to which Ai

and Bi are tangent. By applying (2.1) twice, we have

length(Ai) ≥
k

π
length(Ci)

2 and length(Bi) ≥
k

π
length(Ci)

2.

Combining these, we have

2a =

4∑︂
i=1

length(Ai) ≥
k

π

4∑︂
i=1

length(Ci)
2 ≥ k

4π

(︄
4∑︂

i=1

length(Ci)

)︄2

=
k

4π
,

since length(C) = 1. Therefore, a ≥ k
8π . The same estimate holds for b. □

Theorem 2.3. For each k > 0 there exists L > 0 such that if C is a smooth Jordan
curve with curvature κ ≥ k/ length(C), then C is an L-chord-arc curve.
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(0, 0) (c, 0)
pq

Figure 5. Two circles C1, C2 of radius 1 and the lune C that
results from their intersection. We have p = (1, 0), q = (c − 1, 0),
and |p − q| = 2 − c. The arc-length between the two points is
2 arccos(c/2). Since 2 arccos(c/2)/(2− c) → ∞ as c → 2−, there is
no uniform chord-arc constant for this family of curves, although
the curvature is bounded below.

Remark 2.4. The conclusion of the theorem does not hold if we merely assume that
κ ≥ k, without including the length term. As an example, consider two circles
C1, C2 of length 2π and curvature 1 that intersect. Let C be the curve bounding
the convex lune formed by the intersection of C1 and C2. One can smoothen C so
that it has no corners and curvature bounded below by 1. However, if C1 and C2

tend to be (externally) tangent to each other, forcing C to have small length, then
C cannot be a chord-arc curve with a uniform constant; see Figure 5.

Proof. It suffices to prove the statement under the assumption that C has unit
length and curvature bounded below by k.

Suppose that γ is a unit speed orientation-preserving parametrization of C. Let
z1, z2 ∈ C, z1 ̸= z2, and t1, t2 ∈ T be such that γ(t1) = z1 and γ(t2) = z2.
By reversing the roles of t1 and t2 if necessary, we may write γ̇(t1) = eiθ1 and
γ̇(t2) = eiθ2 , where 0 < θ2 − θ1 ≤ π. We reparametrize γ by composing it with a
translation of T so that t1 = 0 and t2 ∈ [0, 1] with t1 < t2. By the strict convexity of
C, there exists a strictly increasing function θ(t), 0 ≤ t ≤ 1, such that γ̇(t) = eiθ(t)

for 0 ≤ t ≤ 1 and θ(ti) = θi, i = 1, 2. Note that θ̇ ≥ k, since |γ̈| ≥ k. Finally, by
rotating the curve γ with a rigid motion of the plane, we may have that θ(t1) = −α
and θ(t2) = α, where 0 < α ≤ π/2.

We have⃓⃓⃓⃓∫︂ t2

t1

eiθ(s) ds

⃓⃓⃓⃓
≥
∫︂ t2

t1

cos θ(s) ds ≥ (t2 − t1) cosα ≥ length(C|[z1, z2]) cosα.

Hence, if π/2− α ≥ δ, where δ ∈ (0, π/4] is to be chosen, then

|z1 − z2| ≥ length(C|[z1, z2]) cos(π/2− δ).
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Now, suppose π/2 − α < δ. We consider the point z3 = γ(t3) ∈ C, where
t3 ∈ (0, 1) and θ(t3) = θ(t1) + π = π − α. We have

|z1 − z2| ≥ |z3 − z1| − |z3 − z2|.

The tangent lines at z1 and z3 are parallel to each other. We consider the projection
of the curve C to a line that is perpendicular to these lines. By Lemma 2.2 (ii),
this projection has length at least k

8π . Hence, |z3 − z1| ≥ k
8π . On the other hand,

|z3 − z2| ≤ t3 − t2 ≤ 1

k

∫︂ t3

t2

θ̇ =
2

k
(π/2− α) <

2

k
δ.

Therefore, if we choose δ ≤ k2

32π , we have

|z1 − z2| ≥
k

8π
− 2

k

k2

32π
=

k

16π
≥ k

16π
length(C|[z1, z2]),

since length(C) = 1.

Summarizing, if we choose δ = min{ k2

32π ,
π
4 }, then C is an L-chord-arc curve with

L = min{cos(π/2− δ), k
16π}. □

2.2. Ahlfors 2-regular regions. A Jordan region D ⊂ C is M -Ahlfors 2-regular
if for each p ∈ D and for each r ≤ diam(D) we have

Area(B(p, r) ∩D) ≥ Mr2.

This property is scale invariant, i.e., if D is M -Ahlfors 2-regular, then any scaled
copy ofD is alsoM -Ahlfors 2-regular. Examples of Ahlfors 2-regular regions include
disks and squares. On the other hand, regions with outward pointing cusps are not
Ahlfors 2-regular, and the lunes in Figure 5 are not Ahlfors 2-regular with uniform
constants as diam(C) → 0. Ahlfors 2-regular regions are very useful for counting
arguments, such as in Lemma 2.6 below.

Lemma 2.5. Let C be an L-chord-arc curve and D be the region enclosed by C.
Then there exists a constant M > 0 depending only on L such that D is M -Ahlfors
2-regular.

An L-chord-arc curve C is a L-quasicircle. That is, for any two points a, b ∈ C
we have diam(C|[a, b]) ≤ L|a− b|. The region D enclosed by a quasicircle is called
a quasidisk, by definition. It was proved in [Sch95, Corollary 2.3] that quasidisks
are Ahlfors 2-regular, quantitatively. This proves Lemma 2.5.

Lemma 2.6. Let {Di}i∈N be a collection of disjoint, M -Ahlfors 2-regular Jordan
regions. Then, the following statements are true.

(i) Consider concentric balls B(x, r) and B(x,R), where r < R. For each
i ∈ N, if Di intersects ∂B(x, r) and ∂B(x,R), then

Area(Di ∩B(x,R) \B(x, r)) ≥ c(R− r)2,

where c > 0 is a constant depending only on M .
(ii) Let E be a compact set. Then for each ε > 0, the set

{i : Di ∩ E ̸= ∅ and diam(Di) > ε}

is finite.
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(iii) Let E be a compact set. There exists a constant K > 0 depending only on
M , such that for each c > 0 the set

{i : Di ∩ E ̸= ∅ and diam(Di) ≥ cdiam(E)}

has at most K(c−2 + 1) elements.

A proof of the first two parts of this lemma can be found in [Nta20b]. In par-
ticular, part (i) is proved in [Nta20b, Remark 2.3.5] and part (ii) is proved in
[Nta20b, Lemma 2.3.4].

Proof of (iii). First, we bound the cardinality of the set

I4 = {i : Di ∩ E ̸= ∅ and diam(Di) ≥ 4 diam(E)}.

Let x ∈ E, r = diam(E), and consider the ball B(x, r), which contains E. If
Di ∩E ̸= ∅ and diam(Di) ≥ 4 diam(E), then Di intersects ∂B(x, r) and ∂B(x, 2r).
By part (i) we have

Area(Di ∩ (B(x, 2r) \B(x, r))) ≥ c′r2,

where c′ depends only on M . We have

4πr2 = Area(B(x, 2r)) ≥
∑︂
i∈I4

Area(Di ∩ (B(x, 2r) \B(x, r))) ≥ c′r2 ·#I4,

where #I4 denotes the cardinality of I4. This proves that #I4 ≤ 4π/c′, which
depends only on M . If c ≥ 4, then the desired statement is proved, provided that
we choose K ≥ 4π/c′.

Next, if c < 4, it suffices to find a bound for the cardinality of the set

Ic = {i : Di ∩ E ̸= ∅ and cdiam(E) ≤ diam(Di) < 4 diam(E)}.

Let x ∈ E and R = 5diam(E). Then B(x,R) contains Di whenever i ∈ Ic. Since
each Di is M -Ahlfors 2-regular, we have

πR2 = Area(B(x,R)) ≥
∑︂
i∈Ic

Area(Di) ≥ M diam(Di)
2#Ic ≥ Mc2 diam(E)2 ·#Ic.

This proves that #Ic ≤ 25πM−1c−2. Thus, if we chooseK = max{4π/c′, 25πM−1},
which depends only on M , then we have #Ic ≤ Kc−2 and

#{i : Di ∩ E ̸= ∅ and diam(Di) ≥ cdiam(E)} ≤ Kc−2 +K.

This completes the proof. □

Lemma 2.7. Let {Di}i∈N be a collection of disjoint, M -Ahlfors 2-regular Jordan
regions and let E denote the line segment [0, l] × {0}, where l > 0. Suppose that
there exists a constant c > 0 such that for each i ∈ N we have

diam(Di) ≤ cl and dist(Di, E) ≤ cdiam(Di).

Then there exists a constant K > 0 that depends only on c and M such that for
each s ∈ (1, 2] we have

∞∑︂
i=1

diam(Di)
s ≤ K · ls

s− 1
.

See Figure 6 for an illustration of the assumptions of the lemma.
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E

Figure 6. The diameter of each Di is not much larger than the
length of E and the relative distance of Di to E is bounded.

Proof. By scaling the segment E and the regions Di, we may assume that l = 1.
Note that scaling does not affect the Ahlfors regularity constant M .

The assumption that dist(Di, E) ≤ cdiam(Di) implies that the region Di is
contained in the open (1 + c) diam(Di)-neighborhood of E. For each r > 0 we
consider the family

I(r) = {i ∈ N : cr < diam(Di) ≤ 2cr}.

We observe that
⋃︁

r∈(0,1/2] I(r) = N. Note that if i ∈ I(r), then Di is contained

in the open (1 + c)2cr-neighborhood of E. Hence, there exists a constant c1 > 0
depending only on c such that for r ∈ (0, 1/2] we have

c1r ≥ Area

⎛⎝ ⋃︂
i∈I(r)

Di

⎞⎠ =
∑︂

i∈I(r)

Area(Di) ≥ #I(r) ·M · (cr)2.

It follows that for r ∈ (0, 1/2] we have #I(r) ≤ c2/r for a constant c2 > 0 depending
only on c and M . Now for s ∈ (1, 2] we have

∞∑︂
i=1

diam(Di)
s =

∞∑︂
k=1

∑︂
i∈I(2−k)

diam(Di)
s ≤ c2

∞∑︂
k=1

2−(k−1)s · cs2k ≤ c3
1− 2−(s−1)

.

where c3 is a positive constant depending only on c and M . Note that 1−2−(s−1) ≥
(s− 1)/2 for all s ∈ [1, 2] by concavity. The proof is complete. □
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3. Proof of main theorem

Our proof follows the main steps of [Lar67], but we have to adapt these steps
to our generalized setting. In fact our first few considerations are very similar to
the referenced result, but we have to deal with some extra complications related
to the locality and generality of our result. We suppose that PΩ = {Di}i∈N is a
packing such that for each i ∈ N the curve ∂Di has curvature bounded below by
k/ length(∂Di). By Theorem 2.3 all curves ∂Di are L-chord-arc curves, where L
depends only on k. Moreover, Lemma 2.5 implies that all regions Di are M -Ahlfors
2-regular, where M depends only on k. We split the proof in several subsections
for the convenience of the reader. In Section 3.1 we first make some reductions.

3.1. Initial setup and definition of the function gm. We first note that the
residual set S is non-empty. To see this, we note that if ∂D1 = ∂Ω, then D1 = Ω,
so the region D2, which is contained in Ω, intersects D1, a contradiction. Hence,
∂D1 ∩ Ω ̸= ∅ and S ≠ ∅.

Consider an open set U ⊂ Ω such that U ∩ S ̸= ∅. Our goal is to show that

dimH (U ∩ S) > K,

for a suitable constant K > 1, depending only on k.

Claim 1. If U is an open subset of Ω, U ∩S ≠ ∅, and U intersects at most finitely
many regions Di, i ∈ N, then U ∩ S has non-empty interior.

In this case dimH (U ∩ S) = 2 and there is nothing to prove. To prove the
claim, note first that if U does not intersect any region Di then U ⊂ S and the
claim is true. Suppose now that at least one and at most finitely many regions
Di, i ∈ I, intersect U , but U ∩ S has empty interior. By Lemma 2.1 it follows
that any two of the curves ∂Di can have at most one point in common. Since
∂(
⋃︁

i∈I Di) =
⋃︁

i∈I ∂Di, it follows that U ∩S = U \
⋃︁

i∈I Di =
⋃︁

i∈I(U ∩ ∂Di). Let
j ∈ I and note that U ∩∂Dj ̸= ∅. Since U is open, there exists an arc J of ∂Dj that
is contained in U . By the above, at most finitely many points of J can intersect
some curve ∂Di, i ∈ I, i ̸= j. Hence, there exists a point z ∈ J and a sufficiently
small neighborhood V ⊂ U of z that does not intersect Di, i ∈ I, i ̸= j. Therefore,
V \Dj ⊂ U \

⋃︁
i∈I Di. Moreover, V \Dj has non-empty interior because ∂Dj is a

Jordan curve. We already have a contradiction and our claim is proved.

Claim 2. If U is an open subset of Ω, U ∩S ≠ ∅, and at most finitely many regions
Di are contained in U , then U ∩ S has non-empty interior.

Indeed, suppose that finitely many regions Di are contained in U (but there
could be infinitely many regions intersecting U). We restrict to a sufficiently small
open set U ′ ⊂ U with U ′ ∩ S ̸= ∅ so that no region Di is contained in U ′. Thus, if
a region Di intersects U

′, then it also intersects ∂U ′ by connectivity. Let V be an
open set compactly contained in U ′ such that V ∩S ≠ ∅. If Di intersects V , then it
must also intersect ∂U ′, so diam(Di) > dist(∂U ′, V ) > 0. By Lemma 2.6 (ii) there
can be at most finitely many regions Di intersecting V . Claim 1 now implies that
V ∩ S has non-empty interior, which proves Claim 2.

From now on, we let U be an open subset of Ω with U ∩ S ̸= ∅. We consider
an open square V ⊂ V ⊂ U such that V ∩ S ≠ ∅. By Claim 2, we may assume V
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Bi0

Figure 7. The region Bi0 = Dj contained inside the square A.

contains infinitely many regions Di. We fix a region Dj ⊂ V . Then we consider a

closed square A ⊂ V containing Dj such that

diam(Dj) ≤ diam(A) =
√
2ℓ(A) ≤

√
2 diam(Dj),

where ℓ(A) denotes the side length of the square A; see Figure 7. Note that A ⊂
V ⊂ U . Therefore, it suffices to show that

dimH (A ∩ S) > K,

for a suitable constant K > 1, depending only on k.
After scaling and translating all involved sets, we may assume that A is the unit

square [0, 1]2. Moreover, by Claim 2 we may assume that there are infinitely many
regions Di contained in int(A). We denote these by Bi, i ∈ N. We remark that in
Larman’s setting in [Lar67] no regions Di are allowed to intersect the boundary of
the unit square. We will see later in Section 3.4.1 that in our case this possibility
causes some complication that we have to overcome. By Lemma 2.6 (ii), we have

lim
i→∞

diam(Bi) = 0.

Therefore, we may reorder the regions Bi so that their diameters decrease, i.e.,
diam(Bi) ≥ diam(Bi+1) for i ∈ N. Note that by the choice of the square A in the
previous paragraph, one of the regions Bi, say Bi0 , is distinguished and has the
property that √

2 diam(Bi0) ≥ diam(A) =
√
2.

Since diam(B1) ≥ diam(Bi0), it follows that diam(B1) ≥ 1. The region B1 is
M -Ahlfors 2-regular, so

Area(B1) ≥ M diam(B1)
2 ≥ M.(3.1)

We now begin to estimate the Hausdorff dimension of S∞ := A ∩ S. Consider
a finite cover of the compact set S∞ by open squares Kj , j ∈ {1, . . . , p}. We may
assume that none of the squares is contained in any region Di. In order to prove
the theorem, it suffices to show that there exist s ∈ (1, 2), depending only on k,
and a constant c > 0, depending only on k and s, such that

p∑︂
j=1

diam(Kj)
s ≥ c.(3.2)
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Recall the remarks after the definition of Hausdorff dimension in Section 2. In what
follows we fix s ∈ (1, 2). Later we will impose more restrictions on s.

We define Sn = S∞∪
⋃︁∞

i=n+1 Bi for n ∈ N∪{0}. By the compactness of S∞, note

that there exists a δ > 0 such that
⋃︁p

j=1 Kj covers the open δ-neighborhood of S∞.

Hence, if diam(Bi) < δ, then the fact that ∂Bi ⊂ S∞ implies that Bi ⊂
⋃︁p

j=1 Kj .
Since the diameters of Bi tend to 0 as i → ∞, it follows that for all sufficiently
large n ∈ N we have

Sn ⊂
p⋃︂

j=1

Kj .

Throughout the proof n ≥ 1 is fixed, so that the above inclusion holds.
For x ∈ [0, 1] we denote by Lx the vertical line passing through the point (x, 0).

For each x ∈ [0, 1], the intersection of the line Lx with
⋃︁p

j=1 Kj , if non-empty, is

a union of finitely many open segments I(x, r) of length ℓ(x, r), r ∈ {1, . . . , v(x)}.
We define

gn(x) =

v(x)∑︂
r=1

ℓ(x, r)s−1

for x ∈ [0, 1]. Since s− 1 < 1, we have

ℓ(x, r)s−1 ≤
∑︂

j:Kj∩I(x,r)̸=∅

length(Lx ∩Kj)
s−1.

For fixed x ∈ [0, 1], each square Kj is intersected by at most one segment I(x, r).
Hence, upon summing over r, we have

gn(x) ≤
p∑︂

j=1

length(Lx ∩Kj)
s−1.

By integrating, we obtain ∫︂ 1

0

gn(x) dx ≤
p∑︂

j=1

ℓ(Kj)
s,(3.3)

where ℓ(Kj) denotes the side length of Kj .
We also define a function gm(x) for m ∈ {0, . . . , n− 1} as follows. We append to

the cover
⋃︁p

j=1 Kj of Sn the regions Bm+1, . . . , Bn so that we obtain an open cover
of Sm. The intersection of Lx with that open cover is a union of finitely many line
segments I(x, r,m) of length ℓ(x, r,m), r ∈ {1, . . . , v(x,m)}. We define

gm(x) =

v(x,m)∑︂
r=1

ℓ(x, r,m)s−1.

Note that the function gm depends implicitly on s. A crude estimate for gm is
obtained as follows. We observe that for m < n we have gm(x) ≥ length(Lx ∩
Bm+1)

s−1, so∫︂ 1

0

gm(x) dx ≥
∫︂ 1

0

length(Lx ∩Bm+1)
s−1 dx ≥

∫︂ 1

0

length(Lx ∩Bm+1) dx

= Area(Bm+1)

since s − 1 < 1 and the integrand is bounded above by 1. In particular,
∫︁ 1

0
g0 ≥

Area(B1) ≥ M by (3.1).
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3.2. Main estimate. If we could show that there exists s > 1, depending only

on k such that
∫︁ 1

0
gm ≥

∫︁ 1

0
gm−1 for m ∈ {1, . . . , n}, then we would have that∫︁ 1

0
gn ≥

∫︁ 1

0
g0 ≥ M , so

∑︁p
j=1 ℓ(Kj)

s ≥ M by (3.3). This would imply the desired

(3.2). In fact, we will show that
∫︁ 1

0
gm is essentially larger than

∫︁ 1

0
gm−1 in the

following sense. We will prove that there exists some constant c0 > 0, depending
only on s and k, such that if s is sufficiently close to 1, depending only on k, then
for all m ∈ {1, . . . , n} we have∫︂ 1

0

gm ≥
∫︂ 1

0

gm−1 − c0 diam(Bm)s ·#Jm,(3.4)

where Jm is the (possibly empty) set of indices j ∈ {1, . . . , p} such that Bm ∩
∂Kj ̸= ∅ and diam(Kj) ≥ c1 length(∂Bm) for a constant c1 > 0, depending on
s, k. Here #Jm denotes the cardinality of Jm. In other words, Jm contains the
indices j such that ∂Kj intersects Bm and Kj is relatively large. We remark that
our main iterative estimate already departs from the corresponding estimate of
Larman [Lar67, (35), p. 301].

We note that by Tonelli’s theorem we have

∞∑︂
m=1

diam(Bm)s ·#Jm =

∞∑︂
m=1

∑︂
j∈Jm

diam(Bm)s =

p∑︂
j=1

∑︂
m:j∈Jm

diam(Bm)s.

Since dist(Bm, ∂Kj) = 0 and diam(Bm) ≤ c−1
1 diam(Kj) = c−1

1

√
2ℓ(Kj) for j ∈ Jm,

we can apply Lemma 2.7 to each of the four edges of ∂Kj and conclude that∑︂
m:j∈Jm

diam(Bm)s ≤ c2ℓ(Kj)
s.

for some constant c2 > 0 depending only on s, k. It follows that

∞∑︂
m=1

diam(Bm)s ·#Jm ≤ c2

p∑︂
j=1

ℓ(Kj)
s.

Assuming the estimates in (3.4), by (3.3) we have

p∑︂
j=1

ℓ(Kj)
s ≥

∫︂ 1

0

gn ≥
∫︂ 1

0

g0 − c0

∞∑︂
m=1

diam(Bm)s ·#Jm

≥ M − c0c2

p∑︂
j=1

ℓ(Kj)
s.

Therefore,

p∑︂
j=1

ℓ(Kj)
s ≥ M(1 + c0c2)

−1

and the latter is a positive constant depending only on s and k. This completes the
proof of (3.2) and thus of the main theorem. It remains to show the main estimate
(3.4).

From now on, we fix m ∈ {1, . . . , n} and our goal is to establish (3.4).
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Bm

ℓout(1)

ℓin(1)

ℓ(2)

ℓin(3)
ℓout(3)

Figure 8. The intersection of two vertical lines with
⋃︁p

j=1 Kj ∪⋃︁n
i=m+1 Bi. For the line on the left we have w = 1 and I(1) = I(w).

For the line on the right we have w = 3 and I(1) ̸= I(w).

3.3. Basic estimate of the difference gm − gm−1. We write∫︂ 1

0

gm =

∫︂ 1

0

gm−1 +

∫︂ 1

0

(gm − gm−1).

Our goal is to estimate the difference gm − gm−1 from below. Let x ∈ [0, 1] and
consider the vertical line Lx. If Lx does not intersect the region Bm, then we have
gm(x) = gm−1(x). Suppose, now, that Lx intersects Bm. By convexity, Lx ∩ Bm

is a line segment J . Observe that both of the endpoints of J lie in S∞ ⊂ Sm and
in particular they lie on ∂Bm. The line segment J intersects some of the segments
I(x, r,m), r ∈ {1, . . . , v(x,m)}. Recall that these line segments are the components
of the intersection of Lx with

⋃︁p
j=1 Kj∪

⋃︁n
i=m+1 Bi. After renumbering, we assume

that J intersects the components I(r) := I(x, r,m), r ∈ {1, . . . , w}, and that these
are ordered in an increasing fashion. This implies that I(1) and I(w) contain the
endpoints of J ; see Figure 8. Note that I(1) and I(w) could coincide, in which case
we have gm(x) = gm−1(x). We have the following estimate.

Lemma 3.1. Let L = Lx be a vertical line with L ∩ Bm ̸= ∅ and consider the
segments I(1) and I(w) as above, which are the components of the intersection of
L with

⋃︁p
j=1 Kj ∪

⋃︁n
i=m+1 Bi that contain the endpoints of the segment L ∩Bm.

(i) If I(1) = I(w), then gm(x) = gm−1(x).
(ii) In general,

gm(x)− gm−1(x) ≥ − length(Lx ∩Bm)s−1.
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(iii) If I(1) ̸= I(w), then

gm(x)− gm−1(x) ≥ length(I1)
s−1 + length(I2)

s−1

− length(I1 ∪ I2 ∪ (Lx ∩Bm))s−1,

where I1 and I2 are any subsegments of I(1) \ Bm and I(w) \ Bm, respec-
tively.

Proof. As already pointed out, if I(1) = I(w), then gm(x) = gm−1(x), i.e., (i)
holds. Moreover, the estimate in (ii) holds trivially in this case. Henceforth, we
assume that I(1) ̸= I(w). We denote by ℓ(r) the length of I(r). We have ℓ(1) =
ℓin(1) + ℓout(1), where ℓin(1) is the length of I(1) ∩Bm and ℓout(1) is the length of
I(1) \Bm; see Figure 8. Similarly, we have ℓ(w) = ℓin(w) + ℓout(w). We have

gm(x)− gm−1(x) = (ℓin(1) + ℓout(1))
s−1 + ℓ(2)s−1 + · · ·+ ℓ(w − 1)s−1

+ (ℓin(w) + ℓout(w))
s−1

− (ℓout(1) + length(Lx ∩Bm) + ℓout(w))
s−1.

(3.5)

Consider the auxiliary function

h(a, b) = (c1 + a)s−1 + c2 + (c3 + b)s−1 − (a+ ℓ+ b)s−1,

where c1 = ℓin(1), c2 = ℓ(2)s−1+ · · ·+ℓ(w−1)s−1, c3 = ℓin(w), and ℓ = length(Lx∩
Bm). We note that for a, b ≥ 0 we have

∂h

∂a
≥ 0 and

∂h

∂b
≥ 0,

since c1, c3 ≤ ℓ. Therefore, the right-hand side of (3.5) becomes smaller if we
replace ℓout(1) and ℓout(w) with smaller quantities. Note that if I1 and I2 are
subsegments of I(1) \ Bm and I(w) \ Bm, respectively, then length(I1) ≤ ℓout(1)
and length(I2) ≤ ℓout(w). Therefore,

gm(x)− gm−1(x) ≥ (ℓin(1) + length(I1))
s−1 + ℓ(2)s−1 + · · ·+ ℓ(w − 1)s−1

+ (ℓin(w) + length(I2))
s−1

− (length(I1) + length(Lx ∩Bx) + length(I2))
s−1

≥ length(I1)
s−1 + length(I2)

s−1

− length(I1 ∪ I2 ∪ (Lx ∩Bm))s−1.

This completes the proof of (iii). Note that part (ii) also follows immediately by
taking length(I1) = length(I2) = 0. □

3.4. Restriction to a polygon around Bm. In this subsection we will construct
an open polygonal region P that circumscribes B := Bm such that P \ B does
not intersect any regions Dl with diameter larger than or equal to the diameter
of B. Note that the polygonal region P might intersect only regions Bl, which
are contained in the unit square, or it might also intersect some of the regions
Dl that intersect the boundary of the unit square and thus are not contained in
the collection Bl, l ∈ N. Then, in Section 3.4.1, we will refine the polygon P

and construct another polygon ˜︁P ⊂ P that also circumscribes B such that the

intersection of ˜︁P with regions Dl that intersect ∂([0, 1]2) is negligible in a sense.
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B BI2

I1

z2 .
w1.

z1
.

Figure 9. Construction of a polygon P ⊂ R that circumscribes
B. First, B is separated from some regions Di by lines tangent to
∂B. Then P is formed by these lines and the sides of R.

Therefore, ˜︁P essentially intersects only regions Bl, l ∈ N. This will be crucial for
the application of the estimates of Lemma 3.2 below.

For a set E ⊂ C we denote the projection of E to the x-axis by proj(E). More-
over, for µ > 0 we define the µ-strip of E to be the open set of points in the plane
whose projection to the x-axis has distance less than µ from proj(E).

Consider the open rectangle R that circumscribes B and has sides parallel to
the coordinate axes. Note that each side of the rectangle intersects ∂B in precisely
one point, by the strict convexity of ∂B. Let P be an open polygonal region
that circumscribes B with B ⊂ P ⊂ R; see Figure 9. By definition, each edge
of ∂P is tangent to ∂B. The convexity of B implies that P is also convex. We
denote by Z(P ) the finite set of the points of tangency between ∂P and ∂B. Note
that Z(P ) ⊃ Z(R) and in general if P ′ ⊂ P is another polygonal region that
circumscribes B, then Z(P ′) ⊃ Z(P ).

Lemma 3.2. Consider a polygonal region P ⊂ R that circumscribes B. Let L = Lx

be a vertical line with L ∩ B ̸= ∅ and denote by Ii, i = 1, 2, the components
of L ∩ (P \ B). Finally, let λ > 0 and suppose that L does not intersect the
λ · length(∂B)-strip of the set Z(P ). Then the following statements are true.

(i) For i = 1, 2 we have

length(Ii)

length(∂B)
≥ k

2π
λ2.

(ii) For each p > 0 there exists a constant s0 > 1 depending only on k and p
such that if s ∈ (1, s0) and λ = (s− 1)p, then

length(I1)
s−1 + length(I2)

s−1 − length(L ∩ P )s−1 ≥ 1

2
length(∂B)s−1.

(iii) Suppose that s and λ are as in (ii) and that
(iii-1) Ii, i = 1, 2, does not intersect any region Dl with diam(Dl) ≥ diam(B),

and
(iii-2) Ii, i = 1, 2, does not intersect any region Dl with Dl ∩ ∂([0, 1]2) ̸= ∅.
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If I1 and I2 lie in different components of Lx ∩ (
⋃︁p

j=1 Kj ∪
⋃︁n

i=m+1 Bi),
then

gm(x)− gm−1(x) ≥
1

2
length(∂B)s−1 > 0,

otherwise,
gm(x) = gm−1(x).

See Figure 9 for an illustration of the intersection L ∩ (P \ B) and Figure 8 for
the intersection Lx ∩ (

⋃︁p
j=1 Kj ∪

⋃︁n
i=m+1 Bi) that appears in part (iii).

Proof. By assumption, the curvature of ∂B is bounded below by k/ length(∂B).
Note that the conclusion of part (i) is scale invariant. Hence, by scaling, we may
assume that length(∂B) = 1 and that the curvature of ∂B is bounded below by
k > 0. Since the vertical line segment Ii does not intersect the set Z(P ), it follows
that Ii intersects an edge E of the polygon P at a point w1 that is not a point of
tangency of E with ∂B. The edge E is tangent to ∂B at a point z1 = γ(t1) ∈ Z(P ).
Hence, E is contained in the tangent line L(z1) of ∂B at z1 and w1 ∈ L(z1). We
let z2 ∈ ∂B be the point of intersection of Ii with ∂B; see Figure 9. By Lemma 2.2
(i) we have

diam(Ii) = |z2 − w1| ≥ dist(z2, L(z1)) ≥
k

2π
length(∂B|[z1, z2])2 ≥ k

2π
|z1 − z2|2.

By assumption, Re(z2 − z1) ≥ λ, so the desired conclusion follows.
Next we prove the second part of the lemma. Again, since the statement is

scale invariant, we may assume that length(∂B) = 1. Note that length(L ∩ P ) ≤
diam(B) ≤ length(∂B) = 1, since P is contained in the circumscribing rectangle
R. By the first part of the lemma we have

length(I1)
s−1 + length(I2)

s−1 − length(L ∩ P )s−1 ≥ 2(k/2π)s−1λ2s−2 − 1.

If we set λ = (s − 1)p, then 2(k/2π)s−1λ2s−2 − 1 → 1 as s → 1+. The conclusion
follows.

For (iii), we note first that the segments Ii, i = 1, 2, are contained in
⋃︁p

j=1 Kj ∪⋃︁n
i=m+1 Bi. Indeed, by assumption (iii-2) we have Ii ⊂

⋃︁p
j=1 Kj ∪

⋃︁n
l=1 Bl since Ii

does not intersect any region Dl that intersects the boundary of the unit square.
Moreover, by (iii-1), Ii does not intersect any region Dl with diameter larger than
or equal to the diameter of B. This implies that Ii ∩ Bl = ∅ for l ≤ m; recall the
enumeration of the regions Bl, l ∈ N, by decreasing diameters.

If I1 and I2 lie in the same component of Lx ∩ (
⋃︁p

j=1 Kj ∪
⋃︁n

i=m+1 Bi), then we

have I(1) = I(w), using the notation of Lemma 3.1, and gm(x) = gm−1(x) by part
(i) of the aforementioned lemma. Otherwise, by Lemma 3.1 (iii), and using part
(ii) of the current lemma, we conclude that

gm(x)− gm−1(x) ≥
1

2
length(∂B)s−1.

The proof is complete. □

Now, we construct a polygonal region P that circumscribes B such that P \ B
does not intersect any regions Di with diameter larger than or equal to the diameter
of B; in this case the assumption (iii-1) of the previous lemma is always satisfied.
By Lemma 2.6 (iii) there exists a positive integer N0, depending only on k, such
that if Di, i ∈ IR, is the family of regions intersecting the rectangle R and having
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diameter larger than or equal to diam(B), then #IR ≤ N0. Since all regions Di

are convex, for each i ∈ IR there exist a line Li tangent to ∂B that separates Di

from B; this follows from Minkowski’s hyperplane separation theorem. The lines
Li, i ∈ IR, together with the sides of the rectangle R define a polygon P with at
most N0 + 4 sides that circumscribes B; see Figure 9. Note that the cardinality of
the set Z(P ) is bounded by N0 + 4 =: N .

3.4.1. Refinement of the polygon P . Note that the estimate from part (iii) of Lemma
3.2, if it were true for all x ∈ [0, 1], would imply the desired main estimate (3.4)—in
fact, a stronger version of it without the subtracted term.

In order to apply the favorable estimate from part (iii) of Lemma 3.2, we will

construct a smaller polygon ˜︁P ⊂ P ⊂ R that circumscribes B so that I1 and

I2 (i.e., the components of L ∩ ( ˜︁P \ B)) do not intersect any regions Dl with
Dl∩∂([0, 1]2) ̸= ∅, whenever the vertical line L does not intersect the λ length(∂B)-
strip of Z(R); recall that Z(R) is the set of points of tangency between ∂R and
∂B. We remark that the assumptions of Lemma 3.2 require that the vertical line

L avoid a strip of Z( ˜︁P ), while here we are working with a strip of Z(R), which is

a subset of Z( ˜︁P ). In the next subsection, we will restrict to vertical lines avoiding

a strip of Z( ˜︁P ) as well.

We fix λ ∈ (0, 1). We consider the rectangle ˜︁R ⊂ R whose top and bottom sides
are at distance (k/2π)λ2 length(∂B) from the top and bottom sides of R and whose
left and right sides are at distance λ length(∂B) from the left and right sides of R,
respectively; see Figure 10. Note that by Lemma 2.2 (ii) the length of the horizontal
and vertical sides of R is at least c length(∂B) for some c > 0 depending only on k.

Hence, if λ is sufficiently small, depending only on k, then the construction of ˜︁R is
possible.

By Lemma 3.2 (i), applied to the polygon R, we know that R \ ˜︁R does not
intersect B, except at the λ length(∂B)-strip of Z(R), which we denote by S. The
strip S has at most 4 components. Therefore,

(R \ ˜︁R) \ S
consists of a uniformly bounded number of rectangles (in fact, at most 6), none
of which intersects B; see the striped rectangles in Figure 10. We separate each
of these rectangles from B with a line tangent to ∂B, thus creating a new convex
polygon P ′ ⊂ P that circumscribes B and has a uniformly bounded, say by N ′ ∈ N,
number of edges. We note that P ′ ⊂ ˜︁R ∪ S. See Figure 11.

If Dl is a region intersecting ∂([0, 1]2) and P ′, then it has to intersect ∂R, since
P ′ ⊂ R ⊂ [0, 1]2. Moreover, if Dl ∩R is not entirely contained in the strip S, then

it must intersect ˜︁R and ∂ ˜︁R, since P ′ ⊂ ˜︁R ∪ S. Therefore,

diam(Dl ∩ (R \ ˜︁R)) ≥ min{(k/2π)λ2, λ} length(∂B).

If λ is sufficiently small, depending on k, then (k/2π)λ2 ≤ λ and

diam(Dl ∩ ( ˜︁R \R)) ≥ (k/2π)λ2 length(∂B).

Consider a ball B(z, r) centered at some point z ∈ ∂ ˜︁R ∩ Dl and with radius r =
(k/2π)λ2 length(∂B). By the Ahlfors regularity of Dl, we have

Area(Dl ∩B(z, r)) ≥ Mλ4 length(∂B)2
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∂([0, 1]2)

B

˜︁R
R

∂([0, 1]2)

B

Figure 10. The polygon P is assumed in this figure, for simplicity,
to be the circumscribing rectangle R. Thus, all regions Dl ̸= B
that intersect R already have diameter smaller than diam(B). The

strip S has four components in this case. The rectangle ˜︁R ⊂ R

is illustrated and the set (R \ ˜︁R) \ S consists of the six striped
rectangles. In the right figure, these rectangles are separated from
B by tangent lines.

∂([0, 1]2)

P ′

∂([0, 1]2)

P ′

Dl

∂([0, 1]2)

˜︁P
Dl′

Figure 11. Left figure: The polygon P ′ ⊂ P . Middle figure: The
region Dl intersects both ∂([0, 1]2) and R, and the intersection
Dl ∩R is not contained in the strip S. Thus, we separate Dl from

B by a tangent line. Right figure: The polygon ˜︁P . Note that

there exists a region Dl′ intersecting ∂([0, 1]2) and ˜︁P . However,

the intersection Dl′ ∩ ˜︁P is contained in the strip S and we can
neglect it.

where M > 0 and depends only on k. Note that the intersection Dl ∩ B(z, r) is

contained in the r-neighborhood of ˜︁R, whose area is bounded above by

length(∂ ˜︁R)cr ≤ length(∂R)cr ≤ c′ diam(B)r ≤ c′′λ2 length(∂B)2,

where c′′ > 0 and depends only on k. We conclude that the number of regions
Dl that intersect ∂([0, 1]

2) and P ′ and are not contained in the strip S is bounded
above by c′′′λ−2, where c′′′ > 0 and depends only on k.

We now construct a polygon ˜︁P ⊂ P ′ that circumscribes B by separating each of
these regions Dl from B with a line tangent to ∂B; see Figure 11. By construction,
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we have

#Z( ˜︁P ) ≤ #Z(P ′) + c′′′λ−2 ≤ ˜︁cλ−2(3.6)

where ˜︁c > 0 is a constant depending only on k. This completes the construction of

the polygon ˜︁P .
Summarizing, by construction, if L is a vertical line with L∩B ̸= ∅ and L∩S = ∅,

where S is the λ length(∂B)-strip of Z(R), then L∩ ˜︁P does not intersect any region
Dl with Dl ∩ ∂([0, 1]2) ̸= ∅.

3.5. Relative position between B and the squares Kj. In this final subsection
we complete the proof of Theorem 1.1. We will study two main cases for the relative
position and size of the region B and of the squares Kj . We first establish an
auxiliary lemma.

Lemma 3.3. Let L = Lx be a vertical line with L ∩ B ̸= ∅ such that L does not
intersect the λ length(∂B)-strip of Z(R), where λ ∈ (0, 1). Then there exists a
constant c1 > 0 depending only on k and a point z1 ∈ L ∩B such that

dist(z1, ∂B) ≥ c1λ
2 length(∂B).

In fact, the conclusion holds with λ in the place of λ2, but for our purposes this
statement is enough.

Proof. Without loss of generality, we suppose that length(∂B) = 1. Let L be a
vertical line as in the statement. Consider the line L′ joining the leftmost and
rightmost points wl and wr of ∂B, respectively. Note that wl and wr are points of
tangency between ∂B and ∂R and hence they are contained in Z(R). We claim that
the point z1 lying in the intersection of the lines L and L′ satisfies the conclusion.
By the strict convexity of B, the point z1 lies necessarily in B.

Let z2 be a point in ∂B such that dist(z1, ∂B) = |z1−z2| and consider the tangent
line L(z2) of ∂B at z2. We note that |z1 − z2| = dist(z1, L(z2)). Since z1, wl, wr

lie on the same line, it follows that the distance dist(z1, L(z2)) is bounded below
by either dist(wl, L(z2)) or dist(wr, L(z2)). Without loss of generality, we assume
that |z1 − z2| ≥ dist(wl, L(z2)). By Lemma 2.2 (i), there exists a constant c > 0
depending only on k such that dist(wl, L(z2)) ≥ c length(∂B|[wl, z2])

2.
If z2 does not lie in the (λ/2)-strip of wl, then length(∂B|[wl, z2]) ≥ λ/2. There-

fore, dist(z1, ∂B) ≥ cλ2/4. If z2 lies in the (λ/2)-strip of wl, then |z1−z2| ≥ |Re(z1−
z2)| ≥ λ/2, since z1 does not lie in the λ-strip of wl. Moreover, λ ≥ λ2 since λ < 1.
Summarizing, if we set c1 = min{c/4, 1/2}, then we have dist(z1, ∂B) ≥ c1λ

2, as
desired. □

Let L = Lx be a line with L∩B ̸= ∅ such that L does not intersect the set Z( ˜︁P )

or the λ length(∂B)-strip of the set Z(R). Then L∩( ˜︁P \B) has two components, I1
and I2. By the construction of the polygon ˜︁P , I1 and I2 do not intersect any region
Dl that intersects ∂([0, 1]

2), so the assumption (iii-2) of Lemma 3.2 holds. Moreover,

the assumption (iii-1) also holds since ˜︁P ⊂ P and P was constructed so that (iii-1)
holds. In order to be able to apply the estimate of part (iii) from Lemma 3.2 we need
to ensure that I1 and I2 lie in distinct components of Lx ∩ (

⋃︁p
j=1 Kj ∪

⋃︁n
i=m+1 Bi).

If I1 and I2 lie in the same component of Lx∩ (
⋃︁p

j=1 Kj ∪
⋃︁n

i=m+1 Bi), then this

component contains L∩B, so L∩B ⊂
⋃︁p

j=1 Kj . By Lemma 3.3 there exists a point
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B B

Kj

Figure 12. Illustration of Case 1 on the left and Case 2 on
the right. In Case 1 all squares intersecting B are relatively
small, while in Case 2 there exists a square Kj with diam(Kj) ≥
c1λ

2 length(∂B).

z1 ∈ L ∩ B such that dist(z1, ∂B) ≥ c1λ
2 length(∂B). In particular, there exists a

square Kj such that z1 ∈ Kj . Recall that, by assumption, no square is contained
in any region Di, since these squares do not contribute to the estimation of the
Hausdorff dimension; see the comments before (3.2) in Section 3.1. Therefore, Kj

intersects ∂B. It follows that

diam(Kj) ≥ c1λ
2 length(∂B).

We set λ = s− 1 ∈ (0, 1) and choose s sufficiently close to 1, depending only on

k, so that all previous claims in the construction of ˜︁P hold for that value of λ. We
now consider two cases; see Figure 12.

Case 1. For each j ∈ {1, . . . , p}, if Kj ∩B ̸= ∅, then diam(Kj) < c1λ
2 length(∂B).

By the previous comments, it follows that I1 = I1(x) and I2 = I2(x) lie in distinct
components of Lx∩ (

⋃︁p
j=1 Kj ∪

⋃︁n
i=m+1 Bi), whenever Lx is a line with Lx∩B ̸= ∅

and Lx does not intersect Z( ˜︁P ) or the λ length(∂B)-strip of Z(R). Suppose, in

addition, that Lx does not intersect the λ3 length(∂B)-strip of Z( ˜︁P ). We denote
by G the set of values of x ∈ proj(B) satisfying all these restrictions. If x ∈ G, we
can apply Lemma 3.2 (iii) to the polygon ˜︁P with λ3 = (s − 1)3 in the place of λ,
and we obtain

gm(x)− gm−1(x) ≥
1

2
length(∂B)s−1

for s ∈ (1, s0), where s0 depends only on k. The set B = proj(B) \ G, where the
above estimate might fail, has measure at most

|B| ≤ 2λ length(∂B) ·#Z(R) + 2λ3 length(∂B) ·#Z( ˜︁P ) ≤ (8 + 2˜︁c)λ length(∂B),

since #Z(R) = 4 and #Z( ˜︁P ) ≤ ˜︁cλ−2 by (3.6). Thus,

|B| ≤ cλ length(∂B),
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where c > 0 is a constant depending only on k. When x ∈ B, we use the crude
estimate from Lemma 3.1 (ii):

gm(x)− gm−1(x) ≥ − length(Lx ∩B)s−1 ≥ − length(∂B)s−1.

By Lemma 2.2 (ii) we have |proj(B)| ≥ c′ length(∂B), where c′ depends only on k,
thus

|G| ≥ (c′ − cλ) length(∂B).

Note that c′ − cλ > 0, as soon as λ is sufficiently small, depending only on k.
Therefore, ∫︂ 1

0

(gm − gm−1) =

∫︂
G
(gm − gm−1) +

∫︂
B
(gm − gm−1)

≥ 1

2
(c′ − cλ) length(∂B)s − cλ length(∂B)s

=
1

2
(c′ − 3cλ) length(∂B)s.

Finally, since the constants c′ and c are positive and depend only on k, we have
c′−3cλ > 0, provided λ = s−1 is sufficiently small, depending on k. This completes
the proof of (3.4) in this case.

Case 2. There exists j ∈ {1, . . . , p} (depending on B) such that Kj ∩ B ̸= ∅ and
diam(Kj) ≥ c1λ

2 length(∂B).

In this case a rough estimate is sufficient. We note that if B ∩ ∂Kj = ∅, then B is
entirely contained in Kj . In this case for each vertical line L = Lx intersecting B
the segments I(1) and I(w), with the notation of Lemma 3.1, coincide and we have
gm(x)− gm−1(x) = 0 for all x ∈ proj(B). Therefore,∫︂ 1

0

(gm − gm−1) = 0.

This proves the desired main estimate (3.4).
We now suppose that B ∩ ∂Kj ̸= ∅. We define J to be the set of indices

l ∈ {1, . . . , p} such that B ∩ ∂Kl ̸= ∅ and diam(Kl) ≥ c1λ
2 length(∂B). Thus,

j ∈ J and #J ≥ 1 in this case. Note that if the vertical line Lx does not intersect
B, then gm(x) = gm−1(x). If Lx ∩B ̸= ∅, then by the crude estimate from Lemma
3.1 (ii) we have

gm(x)− gm−1(x) ≥ − length(∂B)s−1.

Therefore, ∫︂ 1

0

(gm − gm−1) ≥ − length(∂B)s−1|proj(B)|

≥ − length(∂B)s ≥ − length(∂B)s ·#J

≥ −c−s
2 diam(B)s ·#J,

where the last inequality follows from the chord-arc property of ∂B and c2 > 0 is a
constant depending only on k. This proves the desired main estimate (3.4) in this
case too (with Jm = J). The proof of the main theorem has been completed. □
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4. Proof of Theorem 1.3

We only need to verify that all auxiliary lemmas from Section 2 that were used in
the proof of Theorem 1.1 also hold under the less restrictive assumption of Theorem
1.3. Moreover, throughout the entire proof of Theorem 1.1, instead of using tangent
lines of a smooth and convex curve C, one has to use supporting lines, i.e., lines
intersecting C and separating it from a half-plane.

For two compact sets A,B ⊂ C we define the Hausdorff metric dH(A,B) to
be the infimum of all ε > 0 such that A is contained in the open ε-neighborhood
of B and B is contained in the open ε-neighborhood of A. We say that a se-
quence of compact sets Cn converges to a compact set C in the Hausdorff metric if
dH(C,Cn) → 0 as n → ∞.

First we prove an auxiliary lemma.

Lemma 4.1. Let Cn, n ∈ N, be a sequence of planar convex Jordan curves converg-
ing in the Hausdorff metric to a Jordan curve C. Then C is convex and the length
of Cn converges to the length of C. Moreover, for each arc A ⊂ C with endpoints
z, w there exists a sequence of arcs An ⊂ Cn with endpoints zn, wn, n ∈ N, such that
zn → z, wn → w, An → A in the Hausdorff metric, and length(An) → length(A)
as n → ∞.

Proof. Convergence in the Hausdorff metric implies that for each z ∈ C there exists
a sequence zn ∈ Cn converging to C. A consequence of this observation is that C
has to be convex. We denote by D the Jordan region bounded by C and by Dn the
region bounded by Cn.

Let z0 ∈ D. For ε > 0 consider the convex Jordan curve C(ε) = {z0+(1+ε)(z−
z0) : z ∈ C}, which is a scaled and translated copy of C. Note that length(C(ε)) =
(1 + ε) length(C). By the convexity of C, every ray emanating from z0 hits C at
precisely one point, say the point z. The corresponding point z0+(1+ ε)(z− z0) ∈
C(ε), which is distinct from z, cannot lie on C. It follows that the curve C(ε) is
disjoint from C and C is contained in one of the complementary components of
C(ε) (by the Jordan curve theorem). In fact, C is contained in the interior region
of C(ε), denoted by D(ε). By compactness, for each ε > 0 there exists δ > 0 such
that D(ε) contains the δ-neighborhood of C. In particular,

Cn ⊂ D(ε)(4.1)

for all sufficiently large n.
Let B(z0, r0) be a ball such that B(z0, 2r0) is contained in D. We claim that

the ball B(z0, r0) is contained in Dn for all sufficiently large n. Suppose that this
is not the case. Since Cn converge to C, it has to be disjoint from B(z0, r0) for
all sufficiently large n. If B(z0, r0) is not contained Dn, then there exists a line
separating Dn from a half-plane containing B(z0, r0). In this case, no point of
Cn can approach points of C that lie on that half-plane. Hence, B(z0, r0) is not
contained in Dn for at most finitely many n. The convergence of Cn to C also
implies that there exists a large ball B(z0, R0) that contains D and Dn for all
n ∈ N. Summarizing, we have

B(z0, r0) ⊂ D,Dn ⊂ B(z0, R0)

for all sufficiently large n ∈ N. According to [BDN21, Lemma 4.1, Claim 1], this
implies that there exists a constantM = M(r0, R0) > 0 such that if a ray emanating
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from z0 hits C and Cn at points z and w, respectively, then

|z − w| ≤ MdH(C,Cn).(4.2)

For ε > 0 we consider the curve Cn(ε) = {z0+(1+ε)(z−z0) : z ∈ Cn} and denote
by Dn(ε) the Jordan region bounded by Cn(ε). By (4.2), if MdH(C,Cn) < ε, then
any ray emanating from z0 hits first C and then Cn(ε). Hence, we conclude that

C ⊂ Dn(ε)(4.3)

for all sufficiently large n.
Summarizing, by (4.1) and (4.3), for each ε > 0 and for all sufficiently large

n we have Cn ⊂ D(ε) and C ⊂ Dn(ε). An application of Crofton’s formula (see
[Tab05, p. 38]) shows that

length(Cn) ≤ length(C(ε)) and length(C) ≤ length(Cn(ε))

for all sufficiently large n. Letting first n → ∞ and then ε → 0 shows that
length(Cn) converges to length(C), as desired. This proves the first part of the
lemma.

We now parametrize C and Cn using rays emanating from z0. That is, for
each a ∈ ∂B(z0, r0) we let γ(a) (resp. γn(a)) be the unique point of intersection
of C (resp. Cn) with the ray z0 + λ(a − z0), λ > 0. By (4.2), it follows that γn
converges to γ uniformly. Let A ⊂ C be an arc with endpoints z = γ(a) and
w = γ(b). We consider the arcs An = γn(γ

−1(A)) with endpoints zn = γn(γ
−1(z))

and wn = γn(γ
−1(w)), n ∈ N. By the uniform convergence, it follows that An → A

in the Hausdorff metric.
Finally, we show that length(An) → length(A). We note that we have

length(A) ≤ lim inf
n→∞

length(An) and

length(C \A) ≤ lim inf
n→∞

length(Cn \An).

Since limn→∞ length(Cn) = length(C), it follows that length(An) → length(A), as
desired. □

Next, we start verifying the auxiliary results of Section 2. We first prove the
strict convexity of C. Suppose, for the sake of contradiction, that C contains a line
segment A in its boundary. Then, by Lemma 4.1, there exists a sequence of arcs
An ⊂ Cn converging to A. The “thickness” of the arc An can be measured by

inf
w∈An

sup
z∈An

dist(z, L(w)),

where L(w) is a line tangent to An at the point w. By Lemma 2.2 (i), the thickness
of An is at least c length(An)

2/ length(Cn), where c is a constant depending only
on k. Since length(An) → length(A) and length(Cn) → length(C), it follows that
the thickness of An is uniformly bounded below as n → ∞. However, since An

converges to a straight line segment, the thickness converges to 0, a contradiction.
This establishes the strict convexity of C. Therefore, Lemma 2.1 holds for curves
∂D1 and ∂D2 that can be approximated by such curves Cn.

Next, we discuss the validity of Lemma 2.2. Note that part (ii) holds imme-
diately from the convergence in the Hausdorff metric and from Lemma 4.1. Part
(i) holds if L(z2) is a supporting line, rather than a tangent line. Indeed, we let
z1, z2 ∈ C and L(z2) be a line that intersects C only at z2. There exists another
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z1

z2 L(z2)

L′(z2)

Figure 13. The curve C with two supporting lines L(z2), L
′(z2)

passing through z2.

supporting line L′(z2) (we could have L(z2) = L′(z2)) with extremal slope such
that dist(z1, L(z2)) ≥ dist(z1, L

′(z2)); see Figure 13. It suffices to show that

dist(z1, L
′(z2)) ≥

k

2π

length(C|[z1, z2])2

length(C)
.

We can find points z1,n, z2,n ∈ Cn converging to z1, z2, respectively, such that
the tangent lines of Cn at z2,n converge to the line L′(z2); this is not necessarily
true for the original line L(z2). The convergence of tangents, by working locally
(if one uses as local coordinates the projections from C and Cn to L′(z2)), follows
from the following lemma about convex functions, which we will prove later.

Lemma 4.2. Let fn : (a, b) → R, n ∈ N, be a sequence of convex, smooth functions
and suppose that fn converges pointwise to a function f : (a, b) → R. Then for each
c ∈ (a, b) and for each ε > 0 there exist δ > 0 and N ∈ N such that for n ≥ N we
have

|f ′
n(c± δ)− f ′

±(c)| < ε,

where f ′
±(c) denote the one-sided derivatives of f .

Lemma 2.2 (i) applies now to the curve Cn and to the tangent L(z2,n) at z2,n.
Since the length of Cn|[z1,n, z2,n] converges to the length of C|[z1, z2] and the length
of Cn converges to the length of C, the conclusion follows.

Theorem 2.3 holds immediately for C by Lemma 4.1. Therefore, C is a chord-arc
curve. Lemma 2.5 implies that the region bounded by C is Ahlfors 2-regular, so all
of Section 2.2 is valid. This completes the proof of Theorem 1.3. □

Proof of Lemma 4.2. Pointwise convergence implies that f is convex on (a, b). The
convexity of f implies that f is continuous, and for all c ∈ (a, b) the one-sided
derivatives f ′

±(c) exist and they are monotonically increasing. Hence, f ′(c) exists
for all but countably many c ∈ (a, b). Moreover, we have

lim
x→c±

f ′
±(x) = f ′

±(c)

for all c ∈ (a, b); see [Roc70, Theorem 24.1, p. 227]. It follows that that for each c ∈
(a, b) and ε > 0 there exists δ > 0 such that f ′(c±δ) exists and |f ′(c±δ)−f ′

±(c)| < ε.
By [Roc70, Theorem 24.5, p. 233], if f ′(x) exists, then limn→∞ f ′

n(x) = f ′(x).
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QDα,Q

Figure 14. The convex region
Dα,Q in the proof of Theorem 1.4
(i).

Q
Dα,Q

Figure 15. The strictly convex
region Dα,Q in the proof of The-
orem 1.4 (ii).

Therefore, for all sufficiently large n ∈ N we have |f ′
n(c ± δ) − f ′

±(c)| < ε, as
desired. □

5. Proof of Theorems 1.4 and 1.5

The proofs of parts (i) and (ii) of Theorem 1.4 are similar. We first provide
the proof of part (i) and then we will explain the modifications needed in order to
obtain (ii).

Proof of Theorem 1.4 (i). We first construct a family of convex, smooth Jordan
curves with certain properties that will be used in the construction of the packing
PΩ. For each square Q = [a, b]× [c, d] and for each α > 0 consider a convex, smooth
Jordan curve Cα,Q that agrees with ∂Q, except at four balls of radius α, centered
at the vertices of the square Q. We denote by Dα,Q the Jordan region bounded by

Cα,Q; see Figure 14. By construction, Q \Dα,Q is contained in four balls of radius
α.

Consider a sequence εn, n ∈ N, with εn → 0 as n → ∞. Let Ω ⊂ R2 be an
open set and consider a cover of Ω by closed squares Qi ⊂ Ω, i ∈ N, with disjoint
interiors such that each compact subset of Ω intersects only finitely many squares;
see [SS05, Theorem 1.4]. For each square Qi we consider a region D1,i = Dαi,Qi

, for

αi = ε1/2
i, such that Qi \D1,i is contained in four balls of radius ε1/2

i, centered

at the four corners of Qi. Then Ω \
⋃︁∞

i=1 D1,i is covered by balls B1,j of radius
r1,j < ε1, j ∈ N, with

∞∑︂
j=1

r1,j = 4ε1.

We note that
⋃︁∞

i=1 D1,i is a closed subset of Ω. Indeed, if zi ∈ D1,i, i ∈ N, then
zi ∈ Qi. Since each compact subset of Ω intersects only finitely many squares



30 STEVEN MAIO AND DIMITRIOS NTALAMPEKOS

Qi, it follows that the sequence {zi}i∈N accumulates only at ∂Ω. We define Ω1 =
Ω\
⋃︁∞

i=1 D1,i and it follows that this is an open set. Hence, we can repeat the above
procedure with Ω1 in the place of Ω.

Inductively, once Ωn has been defined, we obtain regions Dn+1,i ⊂ Ωn, i ∈ N,
such that the open set Ωn+1 := Ωn\

⋃︁∞
i=1 Dn+1,i is covered by balls Bn+1,j of radius

rn+1,j < εn+1, j ∈ N, with

∞∑︂
j=1

rn+1,j = 4εn+1.

We consider the packing P = {Dn,i}i,n∈N in Ω. Its residual set S can be written
as

S =

⎛⎝ ⋃︂
n,i∈N

∂Dn,i

⎞⎠ ∪

⎛⎝Ω \
⋃︂

n,i∈N
Dn,i

⎞⎠ .

Note that each curve ∂Dn,i has finite length and thus finite Hausdorff 1-measure.
Moreover, by construction, for each ε > 0 there exists a cover of the set E =
Ω \

⋃︁
n,i∈N Dn,i by balls Bj , j ∈ N, of radius rj < ε so that

∞∑︂
j=1

diam(Bj) =

∞∑︂
j=1

2rj ≤ 8ε.

This implies that H 1
ε (E) ≤ 8ε. Letting ε → 0 gives H 1(E) = 0. Summarizing, S is

the countable union of sets of finite Hausdorff 1-measure. In particular dimH (S) =
1. □

Proof of Theorem 1.4 (ii). The main modification we need to make in the proof of
part (i) is in the family of curves Cα,Q. For each square Q = [a, b] × [c, d] and
for each 0 < α < ℓ(Q) consider a strictly convex, smooth Jordan curve Cα,Q that

bounds a Jordan region Dα,Q ⊂ Q such that Q \Dα,Q is covered by N = 4ℓ(Q)/α
balls of radius α; recall that ℓ(Q) denotes the side length of Q. See Figure 15 for
an illustration. The curve Cα,Q can be taken, for example, to be the image of the
circle |z| = r, where r < 1 is close to 1, under a conformal map from the unit disk
onto the interior of Q; since Q is convex, such curves are strictly convex by Study’s
theorem [Stu11].

We fix a sequence sn > 1 with sn → 1 and a sequence εn > 0 with εn → 0
as n → ∞. As in the proof of (i), we write Ω =

⋃︁
i∈N Qi, where Qi are closed

squares with disjoint interiors that accumulate only at ∂Ω. For each square Qi we
consider a region D1,i = Dαi,Qi , where αi is chosen so that 4ℓ(Q)αs1−1

i < ε1/2
i

and αi < ε1. Note that Qi \D1,i is covered by 4ℓ(Qi)α
−1
i balls of radius αi. The

set Ω1 = Ω \
⋃︁∞

i=1 D1,i is open and is covered by balls B1,j of radius r1,j , j ∈ N,
with

∞∑︂
j=1

rs11,j =

∞∑︂
i=1

4ℓ(Qi)α
s1−1
i <

∞∑︂
i=1

ε12
−i = ε1.
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Inductively, one can define the open set Ωn+1 = Ωn \
⋃︁∞

i=1 Dn+1,i ⊂ Ωn that is
covered by balls Bn+1,j of radius rn+1,j < εn+1, j ∈ N, with

∞∑︂
j=1

r
sn+1

n+1,j < εn+1.

We consider the packing P = {Dn,i}n,i∈N. Its residual set can be decomposed

into the union of the curves ∂Dn,i, n, i ∈ N, with the set E = Ω \
⋃︁

n,i∈N Dn,i. It
suffices to show that the set E has Hausdorff dimension equal to 1. Let s > 1. By
construction, for each n ∈ N there exists a cover of E by balls Bn,j , j ∈ N, of radius
rn,j < εn so that

∞∑︂
j=1

rsnn,j < εn.

If n is sufficiently large, then sn < s and rn,j < εn < 1, so rsn,j ≤ rsnn,j . Therefore,

∞∑︂
j=1

diam(Bn,j)
s =

∞∑︂
j=1

2srsn,j < 2sεn

for sufficiently large n. This implies that H s
εn(E) < 2sεn. As εn → 0, we obtain

H s(E) = 0. This holds for all s > 1, hence, dimH (E) = 1. □

Proof of Theorem 1.5. The proof is based on the fact that if a set E has σ-finite
Hausdorff 1-measure, then for almost every horizontal line L (with respect to
Lebesgue measure) the intersection L∩E is at most countable; see [Väi71, Theorem
30.16, p. 104].

Consider a packing PΩ = {Di}i∈N such that ∂Di ∩ ∂Dj is at most countable for
all i ̸= j. Hence, the set

F =
⋃︂

i,j∈N
i ̸=j

(∂Di ∩ ∂Dj)

is at most countable.
For each i ∈ N we consider a parametrization γi : T → ∂Di and we let Gi be the

set of local maximum and local minimum values of the function Im(γi) : T → R.
Note that y ∈ Gi, if and only if there exists an open segment Iy of the horizontal line

Ly = {(x, y) : x ∈ R} such that Iy ∩ ∂Di ̸= ∅ and either Iy ⊂ Di or Iy ⊂ R2 \Di;
see Figure 16. The set of local extremal values of a real-valued function on a
separable metric space is always at most countable; see [Nta20a, Lemma 2.10] for
an argument. Therefore, the set Gi is at most countable.

We will show that if a horizontal line L does not intersect the countable set
F ∪

⋃︁
i∈N Gi, then the intersection of L with the residual set S is uncountable. This

will complete the proof. In fact, we will show that the locally compact set L∩ S is
perfect (in its relative topology). This will imply that L ∩ S is uncountable.

Let z ∈ L ∩ S = L ∩ (Ω \
⋃︁∞

i=1 Di). Our goal is to show that z is not isolated in
L ∩ S, i.e., any open segment I ⊂ L containing z intersects S \ {z}. Suppose first
that z /∈ ∂Di for any i ∈ N. Then any open segment I ⊂ L that contains z is either
contained in S or it intersects Di for some i ∈ N. In the second case, since z /∈ Di,
there exists a point w ∈ I ∩ ∂Di ⊂ L ∩ S. In any case (I \ {z}) ∩ S ≠ ∅.

Now, suppose that z ∈ ∂Di0 for some i0 ∈ N and let I ⊂ L be an open segment
that contains z. Since I does not intersect the set Gi0 , it follows that I intersects
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Di

Iy1

Iy2

Iy3

Figure 16. The values y1 and
y3 are local maximum values of
Im(γi) and y2 is a local minimum
of Im(γi). Each of the segments
Iy1

, Iy2
, Iy3

is contained either in

Di or in R2 \Di.

Di0
Dj

I z w̃ w

Figure 17. The function
Im(γi0) does not attain a local
extremal value at z, so the
horizontal segment I intersects
both the interior and exterior of
Di0 . Moreover z /∈ ∂Dj for any
j ̸= i0.

both Di0 and R2 \Di0 . We let w ∈ I ∩ (R2 \Di0). If w ∈ S, then (I \ {z})∩ S ≠ ∅
and there is nothing to prove. If w ∈ Dj for some j ∈ N, j ̸= i0, we consider the
segment [z, w] ⊂ I. Since z ∈ ∂Di0 and Dj ∩ ∂Di0 = ∅, it follows that [z, w] is not
contained in Dj . Therefore there exists a point ˜︁w ∈ [z, w] ∩ ∂Dj ; see Figure 17.
The line L does not intersect the set F , so ˜︁w ̸= z. It follows that (I \ {z}) ∩ S ≠ ∅
in this case too. The proof is complete. □
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[Väi71] J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math-

ematics, vol. 229, Springer-Verlag, Berlin-New York, 1971.
[Wil67] J. B. Wilker, Open disk packings of a disk, Canad. Math. Bull. 10 (1967), 395–415.

[Wil73] J. B. Wilker, The interval of disk packing exponents, Proc. Amer. Math. Soc. 41 (1973),

255–260.

Department of Mathematics, Technical University of Munich, Garching near Mu-
nich, 85748, Germany.

Email address: steven.maio@tum.de

Mathematics Department, Stony Brook University, Stony Brook, NY 11794, USA.
Email address, Corresponding author: dimitrios.ntalampekos@stonybrook.edu


	1. Introduction
	Acknowledgments

	2. Preliminaries on curves of bounded curvature
	2.1. Chord-arc curves
	2.2. Ahlfors 2-regular regions

	3. Proof of main theorem
	3.1. Initial setup and definition of the function gm
	3.2. Main estimate
	3.3. Basic estimate of the difference gm-gm-1
	3.4. Restriction to a polygon around Bm
	3.5. Relative position between B and the squares Kj

	4. Proof of Theorem 1.3
	5. Proof of Theorems 1.4 and 1.5
	References

