ON THE HAUSDORFF DIMENSION OF THE RESIDUAL SET
OF A PACKING BY SMOOTH CURVES

STEVEN MAIO AND DIMITRIOS NTALAMPEKOS

ABSTRACT. Let a planar residual set be a set obtained by removing countably
many disjoint topological disks from an open set in the plane. We prove that
the residual set of a planar packing by curves that satisfy a certain lower cur-
vature bound has Hausdorff dimension bounded away from 1, quantitatively,
depending only on the curvature bound. As a corollary, the residual set of any
circle packing has Hausdorff dimension uniformly bounded away from 1. This
result generalizes the result of Larman, who obtained the same conclusion for
circle packings inside a square. We also show that our theorem is optimal and
does not hold in general without lower curvature bounds. In particular, we
construct packings by strictly convex, smooth curves whose residual sets have
dimension 1. On the other hand, we prove that any packing by strictly convex
curves cannot have o-finite Hausdorff 1-measure.

1. INTRODUCTION

Let © C R? be an open set. A collection Pq = {D;};en of open Jordan regions
in R? is called a packing inside Q if D; C Q for all i € N and D; N D; = () for all
i, € N with 7 # j. Note that the closures of two Jordan regions D;, Dj, i,j € N,
might intersect. The residual set of a packing Pa = {D;}ien is defined to be the
locally compact set

S=a\ D
€N
We refer to Pq as a packing by the regions D; or equivalently by the curves 0D;.
Moreover, we refer to packings by disks as circle packings or disk packings.

We first give some background on the estimation of the Hausdorff dimension
of the residual sets of various types of packings. Eggleston in [Eggb3| studied
the Hausdorff dimension of packings inside an equilateral triangle Q by equilateral
oppositely oriented triangles. He proved that the minimal Hausdorff dimension is
log, 3, which is attained by the Sierpinski gasket; see Figure Then Hirst in [Hir67]
proved that the Hausdorff dimension of the Apollonian gasket (Figure|2)) is strictly
between 1 and 2. Later, using the techniqies of Eggleston, Larman |[Lar67] proved
that any disk packing inside a square has Hausdorff dimension bounded below by
1.03. Furthermore, in [Lar66a] he used the 2-dimensional result to prove inductively
that a packing inside an n-dimensional cube by n-balls has always dimension strictly
larger than n — 1.
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FI1GURE 1. The Sierpinski gasket. FIGURE 2. The Apollonian
gasket,.

As far as upper dimension bounds are concerned, Doyle [Doy88] proved the
striking result that limit sets of classical Schottky groups in dimension 2 admit a
universal upper bound for the Hausdorff dimension that is strictly less than 2. The
higher dimensional version of this result had earlier been established by Phillips
and Sarnak [PS85]. We direct the reader the these two papers for more background
and references on the topic.

A closely related topic is the study of the exponent of disk packings, which
is another relevant notion of dimension that is at least as large as the Hausdorff
dimension by a result of Larman |[Lar66b]. We direct the reader to [Mel66L|Wil67]
Fos71,Boy70,Wil73| for a sequence of results in the subject. Many of these results
aim at estimating the Hausdorff dimension of the Apollonian gasket. Boyd [Boy73]
proved that the the dimension of the Apollonian gasket is between 1.300 and 1.315,
a result slightly tightened by Lautzenheiser [Laul9] by advancing Boyd’s method.
In addition, Thomas—Dhar [TD94], McMullen [McM98|, and Bai-Finch [BF18§| gave
an accurate numerical estimate of 1.30568. It still remains an open problem, posed
by Melzak [Mel66], whether the Apollonian gasket attains the minimum Hausdorff
dimension among all disk packings.

In this work we study lower bounds for the Hausdorff dimension of the residual
sets of packings by arbitrary smooth, convex curves, rather than circles. Our main
result is the following theorem.

Theorem 1.1. For each k > 0, there exists a constant K = K(k) > 1 such that
the following holds. Let 2 C R? be an open set and let Po = {D;}ien be a packing
such that for each i € N the curve D; is smooth and has curvature bounded below
by k/length(0D;). Then, the residual set S of Pq satisfies

dimy(SNU) > K >1
for every open set U with SNU # 0. In particular,
dimg(S) > K > 1.

As already mentioned, Larman in |[Lar67] proves that the residual set of any circle
packing inside a square has Hausdorff dimension bounded away from 1. We remark
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that our result is also new for arbitrary circle packings, not necessarily contained in
a square. It turns out that this does not follow immediately from Larman’s result
and one needs to refine carefully his argument to achieve this. Hence, we obtain
the following corollary.

Corollary 1.2. There exists a constant K > 1 such that for every open set 2 C R?
and for every circle packing P inside Q, the residual set S of P satisfies

dimp(S) > K > 1.

The locality of our result and the fact that we are not working with packings in a
square or rectangle, but with packings in an arbitrary set €2, pose some considerable
complication to the proof. On the other hand, our proof provides a simplification of
Larman’s argument; he deals with three cases, two of which are lengthy. Instead, we
manage to combine two of Larman’s cases into a single case with a short proof. We
have attempted to refine the techniques of Eggleston [Eggb3] and Larman [Lar67] in
order to give a transparent proof of the main theorem, based on general properties
of convex, smooth curves, as opposed to the work of Larman, which relies on some
special trigonometric identities and relations between chords and tangents of the
circle.

One of the innovations in our proof is that we use some modern tools from
analysis in metric spaces, such as chord-arc curves and Ahlfors 2-regular regions.
Roughly speaking, chord-arc curves behave like circles in terms of length, in the
sense that the length of arcs connecting two points is not much longer than the
length of the chord that connects the same points. Analogously, Ahlfors 2-regular
regions behave like round disks in terms of area. The first step of our proof, which
is carried out in Section [2] is to show that curves C satisfying the curvature bound
k > k/length(C) are chord-arc curves and the regions that they bound are Ahlfors
2-regular, with uniform constants, depending only on k. Achieving the uniformity
of the constants throughout the paper turns out to be a challenging task.

In Section |3| we prove the main theorem. After some reductions, we reduce the
statement to an iterative estimate for finite packings; see Section 3.2} Then the rest
of Section [3|is devoted to the establishment of this estimate.

In Theorem [I.1] the curves dD; are assumed to be smooth. In fact, we only need
C?-smoothness, so that the curvature is defined. Moreover, one can relax even
further this assumption to curves that can be approximated by smooth curves.
This allows the curves 0D; to have corners.

Theorem 1.3. Let k > 0. The conclusion of Theorem[I.1]is true for packings Pq =
{D;}ien for which every curve 0D;, i € N, can be approximated in the Hausdorff
metric by smooth curves C whose curvature is bounded below by k/length(C).

We discuss the definition of Hausdorff convergence and the proof of this general-
ization in Section[d Essentially it follows from a small modification of the auxiliary
results that were used in the proof of Theorem It would be interesting to ex-
press the assumption of Theorem in terms of the Jones beta numbers [Jon90]
of the curves 0D;, or using other notions of curvature for non-smooth curves.

If we do not impose bounds on the curvature, then the conclusions of the main
theorem do not hold.

Theorem 1.4. Let Q C R? be an open set.
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FIGURE 3. The Julia set of 22 —

(i) There exists a packing Pq by convez, smooth curves whose residual set has
o-finite Hausdorff 1-measure and, in particular, Hausdorff dimension equal
to 1.

(ii) There exists a packing Pq by strictly convex, smooth curves whose residual
set has Hausdorff dimension equal to 1.

This theorem is proved in Section [5| We remark that in the second example the
residual set S cannot have o-finite Hausdorff 1-measure and one can only guarantee
that dim»(S) = 1. This follows from the next theorem and the observation that
any two strictly convex Jordan curves that bound disjoint regions can intersect in
at most one point.

Theorem 1.5. Let Q C R? be an open set and Po = {D;}ien be a packing such
that 0D; NOD; is at most countable for each i,j € N with i # j. Then the residual
set of Pq cannot have o-finite Hausdorff 1-measure.

The proof of this theorem is elementary and is given in Section [5]

We finish the Introduction with some discussion on the dimension of packings by
non-smooth or fractal curves. Theorem already shows that one cannot expect
any dimension bounds without further assumptions. For example, squares can
always be packed perfectly with no gaps, and any such packing has dimension 1.
Instead, we consider a separation condition that prevents the regions in a packing
from touching. For M > 0, we say that two bounded regions Dy, Dy are M-
relatively separated if

diSt(.Dl7 DQ)
> M.
min{diam(D;),diam(Dsy)} —

Moreover, we say that a Jordan curve C' is an M-quasicircle if for any two points
z,w € C there exists an arc A of C' connecting z and w such that diam(A) <
M|z — w|. Tt is proved in Proposition 4.1] that the residual set of a planar
packing P by Jordan regions {D;};en that are pairwise M-relatively separated
and whose boundaries are M-quasicircles has Hausdorfl dimension bigger than a
constant K > 1, where K depends only on M. The latter dependence follows from
a result of Mackay Theorem 1.1]. Such packings appear naturally in the
setting of Complex Dynamics (Figure; for example, see Theorem 1.10].
We pose some questions for further study.

A(Dl, DQ) =
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Question 1.6. Suppose that there exists a convex, smooth Jordan curve C' (with
possibly vanishing curvature) such that all of the curves dD; in the packing Po =
{D;}ien are images of C under Euclidean similarities. Is the Hausdorff dimension
of the residual set of Pq larger than 17

If the curvature of C is non-vanishing then this follows immediately from Theo-
rem [I.1] However, if the curvature of C' vanishes, then we cannot expect that the
local Hausdorff dimension is larger than 1. For example, suppose that two regions
of a packing are smoothened squares with disjoint interiors that meet at a segment
in their boundary. Then the local Hausdorff dimension of the residual set at points
of that segment is equal to 1. Hence, we can only ask whether the global Hausdorff
dimension of the residual set is larger than 1.

Question 1.7. Can the conclusion of Theorems [I.1] and [I.3] be generalized to pack-
ings in higher dimensions by convex, smooth bodies under some curvature bounds?
What notion of curvature should one consider?

Acknowledgments. We would like to thank the anonymous referee for many help-
ful comments.

2. PRELIMINARIES ON CURVES OF BOUNDED CURVATURE

In this section we include some definitions and some preliminaries on curves of
bounded curvature. We first discuss some notation. Throughout the paper, we
will use symbols ¢,c,¢”, ... and cg,cy,... for positive constants. We will mention
the dependence of constants on various parameters when necessary, or say that the
constants are uniform if there is no dependence. We will freely use the same symbols
to denote possibly different constants even within the same proof, whenever this
does not lead to a confusion.

The Euclidean plane R? is identified with the complex plane C and we use
interchangeably the notations (x,y) and x + iy for the same point in the plane. We
use the notation |E| for the Lebesgue measure of a measurable set E C R.

For s > 0 the s-dimensional Hausdorff measure 7¢°(E) of a set E C C is defined
by

H°(F) = lim 5 (E) = sup 74’ (E),
§—0 5>0

where

oo
A3 (E) =inf { Y " diam(U;)* : E C | JU;, diam(U;) < 6
Jj=1 J
The quantity J&°(E) is called the s-dimensional Hausdorff 6-content of E. The
Hausdorff dimension of E is defined by

dimye(FE) =inf{s > 0: #°(E) = 0} = sup{s > 0: 7#°(FE) = co}.

The Hausdorff dimension of a set does not change if in the definition of J&°(E) we
use only covers by closed squares with sides parallel to the coordinate axes, instead
of using covers by arbitrary sets U;.

A Jordan curve C is a compact subset of C that is the homeomorphic image
of T = R/Z. The latter is identified with the interval [0,1] after identifying its
endpoints. A Jordan curve C is convez if the line segment between any two points
of C' is contained in the closed region that the curve C' bounds. We say that C' is
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strictly convex if it is convex and does not contain any line segments. A Jordan
curve C' is C2-smooth if there exists a parametrization v: T — C that is two times
continuously differentiable such that §(t) # 0 for all t € T. If C is a C?-smooth
Jordan curve, then we can parametrize it by arc-length. In particular, there exists
a constant speed parametrization v: T — C such that |¥(¢)| = length(C) for all
t € T. Using this specific parametrization, the (unsigned) curvature of the curve C
is defined by

k(t) = length(C) 2 - [5(t))|

for t € T. In particular, if length(C') = 1, we have k = |§|. We note that if we scale
a curve by a constant A > 0, then the curvature scales by A~!. If x # 0 in T, then
it follows that C' is strictly convex. In what follows, a smooth Jordan curve refers
always to a C2-smooth Jordan curve.

Lemma 2.1. Let D1 and Do be disjoint Jordan regions such that D1 and 0Ds
are strictly convex curves. Then 0Dy N 0Dy contains at most one point.

Proof. The convexity of 0D, and D5 implies that the intersection 9D; N dDs is
connected. The strict convexity implies that 0D1 N @Dy cannot contain more than
one point. O

2.1. Chord-arc curves. A Jordan curve C is a chord-arc curve if there exists a
constant L > 1 such that for any pair of points a,b € C, the shortest arc of C' that
connects them, denoted by C|[a, b], satisfies

length(C|[a, b]) < L|a — b|.

In this case we say that C'is an L-chord-arc curve. This is a scale invariant property.
That is, if C' is an L-chord-arc curve, then for any r > 0 the curve rC = {rz : z € C}
is also L-chord-arc.

We will show that if C' is a smooth curve whose curvature is bounded below by
k/length(C), as in the assumptions of Theorem then C' is a chord-arc curve,
quantitatively, i.e., with constant depending only on k. We first establish some
auxiliary results.

Lemma 2.2. Let £ > 0 and C be a smooth Jordan curve with curvature kK >
k/length(C). Then the following statements are true.

(i) For each z1,z9 € C, if L(22) is the line tangent to C' at z9, we have

. k  length(C|[z1, 22])?
> _ .
dist(21, L(22)) > o length(C)

(ii) The length of the projection of C to any line is at least % length(C).

Proof. We may scale the curve C' so that it has unit length and curvature bounded
below by k.

First we prove (i). Consider a rectangle R that circumscribes C' so that one of
its sides is contained in the tangent line L(z2). The boundary of the rectangle R
intersects C' in four points and splits C' into four components. We first assume that
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21 # 29 and z1, 29 lie in the closure of the same component of C'\ OR, which we
denote by C. Then we claim that

(2.1) dist(z1, L(#2)) > glength(Clel, 2))%.

By rotating the curve C, we may assume that L(z2) is a horizontal tangent line
and C lies below L(z2). Hence, the rectangle R has sides parallel to the coordinate
axes and the top side of R is contained in L(z3). Moreover, without loss of generality
we may assume that z; lies in the closure of the top right component of C'\ OR.

We consider a unit speed orientation-preserving parametrization v: T — C. The
component C; is parametrized by 7|[a, b] so that #(a) = ¢™/2 and 4(b) = €', where
a,b € [0,1] and a < b (after possibly reparametrizing by a translation). Note that
v(b) = z9. We write 4(t) = e?®), t € [a,b], where 0 is a strictly increasing function,
by the strict convexity of C, with

7/2 = 0(a) < O(t) < O(b) = .

Moreover, 5(t) = e?®if(t), where 6(t) > 0 and by assumption we have 8(t) > k.
We set to = b and consider ¢; € [a, b) such that y(t1) = z;. We have

dist(z1, L(22)) = Im(zg — 21) = / ’ sin 0(t)dt = / ’ sin(6(t2) — 0(t))dt,

t1 ty

since 0(t2) = m. Note that 0 < (t2) — 0(t) < w/2 for t € [t1,12], so

sin(0(t2) — 0(t)) > 2(0(ts) — O(t)) = i/j b> %(tg ).

Therefore,

, 2k [ k )
dlSt(Zl,L(ZQ)) Z 7/ (tQ — t)dt = 7(152 — tl) .
T Ji 7
Since C1 is parametrized by arc-length we have to — t; = length(C1][z1, 22]) and
this completes the proof of .

Next, we treat the general case. Again, we consider a rectangle R that circum-
scribes C' so that one of its sides, say the top side, is contained in L(z2). Now,
suppose that z; lies in one of the bottom components, say the bottom right one.
We denote by z3 the rightmost point of C, which is a point of intersection with 0R.
Then

dist(z1, L(z2)) = dist(z3, L(22)) + Im(25 — 21).
By (2.1), we have dist(z3, L(22)) > £ length(C|[23, 22])?. Note that the Im(z5 — z1)

is mot the distance of z; or z3 to a tangent at z3 or z1, respectively, so we cannot

apply (2.1) directly here.
Consider the tangent line L(z1) at z;. Then

Im(z3 — z1) > dist(z3, L(21)).

See Figure [dl This follows from the general fact that if (3 is any point in the first
quadrant of the plane, then its distance to the line y = Az, 0 < X < arg((3), is
maximized when A = 0, in which case, the maximum distance is Im((3). Now
consider a rectangle Ry circumscribing C' so that one of the sides of R; is contained
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FIGURE 4. The distances Im(zz — z1), dist(z3,L(z1)), and
dist(z3, L(22)), when z1, 29 do not lie in the closure of the same
component of C'\ OR.

in L(z1). Then z; and z3 lie in the closure of the same component of C'\ OR;.
Hence, by applying (2.1)), we have
k
dist(z3, L(z1)) > = length(C|[21, 23])*.
™
Summarizing, we have

dist(z1, L(22)) > = (length(C|[23, 22])* + length(C|[21, 23])?)

3|

| =

> —(length(C|[23, 22]) + length(C|[21, 23]))?

27
k c 9

%(length( [[z1, 22])°.

This completes the proof of (i).

For (ii), consider a rectangle R that circumscribes C' and without loss of gener-
ality we suppose that its sides are parallel to the coordinate axes. Let the length
of the horizontal sides be a and of the vertical sides be b. It suffices to show that
min{a, b} > 8%. If we remove from R the closed region bounded by C, then we
obtain four components R;, i € {1,...,4}, such that the boundary of R; consists
of a horizontal segment A;, a vertical segment B; and an arc C; C C' to which A;
and B; are tangent. By applying twice, we have

>

k k
length(4;) > ~length(C;)?> and length(B;) > = length(C;)?.
™ ™
Combining these, we have

4 4 4 2
2a = E length(A;) > k g length(C;)? > 4£ ( E length(C’i)> _
T 7r
i=1 i=1

i=1
since length(C) = 1. Therefore, a > %. The same estimate holds for b. O

Theorem 2.3. For each k > 0 there exists L > 0 such that if C' is a smooth Jordan
curve with curvature k > k/length(C), then C is an L-chord-arc curve.
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FIGURE 5. Two circles C,Cy of radius 1 and the lune C' that
results from their intersection. We have p = (1,0), ¢ = (¢ — 1,0),
and |[p — q| = 2 — ¢. The arc-length between the two points is
2 arccos(c/2). Since 2arccos(c/2)/(2 —c¢) — oo as ¢ — 27, there is
no uniform chord-arc constant for this family of curves, although
the curvature is bounded below.

Remark 2.4. The conclusion of the theorem does not hold if we merely assume that
k > k, without including the length term. As an example, consider two circles
C1,Cs of length 27 and curvature 1 that intersect. Let C' be the curve bounding
the convex lune formed by the intersection of C; and Cs. One can smoothen C' so
that it has no corners and curvature bounded below by 1. However, if C7 and Cs
tend to be (externally) tangent to each other, forcing C' to have small length, then
C cannot be a chord-arc curve with a uniform constant; see Figure

Proof. Tt suffices to prove the statement under the assumption that C' has unit
length and curvature bounded below by k.

Suppose that v is a unit speed orientation-preserving parametrization of C'. Let
21,20 € C, 21 # 29, and t1,ts € T be such that y(¢t1) = 21 and v(t2) = zo.
By reversing the roles of ¢; and t, if necessary, we may write ¥(t;) = € and
4(ty) = €2, where 0 < f; — ; < 7. We reparametrize v by composing it with a
translation of T so that t; = 0 and ¢5 € [0, 1] with ¢; < 5. By the strict convexity of
C, there exists a strictly increasing function 6(t), 0 < t < 1, such that () = ¢®®
for 0 <t <1 and 0(t;) = 6;, i = 1,2. Note that 0 > k, since |§| > k. Finally, by
rotating the curve v with a rigid motion of the plane, we may have that 6(¢t1) = —«
and 0(t2) = o, where 0 < a < /2.

We have

tz .
/ 619(3) ds
t1

Hence, if 7/2 — o > §, where ¢ € (0, 7/4] is to be chosen, then

ta
> / cosf(s)ds > (ta — t1) cosa > length(C|[z1, 22]) cos a.
t1

|21 — 22| > length(C[21, 25]) cos(m/2 — §).
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Now, suppose 7/2 — a < §. We consider the point z3 = 7(t3) € C, where
ts € (0,1) and 0(t3) = 0(t1) + 7 = 7 — a. We have
|21 — 22| > |23 — 21| — |23 — 22
The tangent lines at z; and z3 are parallel to each other. We consider the projection

of the curve C to a line that is perpendicular to these lines. By Lemma (ii),
this projection has length at least %. Hence, |z3 — 21| > 8%. On the other hand,

szl <ty —ta< L [T 0= 2(mj2—a)< 25
— — - =—(n/2 — =9.
32| Sh—l s g 5 2 A
Therefore, if we choose § < %, we have
ko 2k k k
|21 — 22| 2 = — o= = —— = —— length(Cl[21, 22]),

— 8 k32m 16w — 16w
since length(C) = 1.
Summarizing, if we choose § = min{%7 7} then C'is an L-chord-arc curve with

L = min{cos(7/2 — §), % . |

2.2. Ahlfors 2-regular regions. A Jordan region D C C is M-Ahlfors 2-regular
if for each p € D and for each r < diam(D) we have

Area(B(p,7) N D) > Mr?.

This property is scale invariant, i.e., if D is M-Ahlfors 2-regular, then any scaled
copy of D is also M-Ahlfors 2-regular. Examples of Ahlfors 2-regular regions include
disks and squares. On the other hand, regions with outward pointing cusps are not
Ahlfors 2-regular, and the lunes in Figure [5| are not Ahlfors 2-regular with uniform
constants as diam(C) — 0. Ahlfors 2-regular regions are very useful for counting
arguments, such as in Lemma below.

Lemma 2.5. Let C be an L-chord-arc curve and D be the region enclosed by C.
Then there exists a constant M > 0 depending only on L such that D is M-Ahlfors
2-regular.

An L-chord-arc curve C is a L-quasicircle. That is, for any two points a,b € C
we have diam(C|[a,b]) < L|a — b|. The region D enclosed by a quasicircle is called
a quasidisk, by definition. It was proved in [Sch95, Corollary 2.3] that quasidisks
are Ahlfors 2-regular, quantitatively. This proves Lemma [2.5

Lemma 2.6. Let {D,};cn be a collection of disjoint, M -Ahlfors 2-reqular Jordan
regions. Then, the following statements are true.

(i) Consider concentric balls B(z,r) and B(z, R), where r < R. For each
1 € N, if D; intersects 0B(x,r) and 0B(x, R), then

Area(D; N B(z, R)\ B(x,7)) > ¢(R —1)?,

where ¢ > 0 is a constant depending only on M.
(ii) Let E be a compact set. Then for each € > 0, the set

{i: D;NE # 0 and diam(D;) > ¢}

is finite.
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(iii) Let E be a compact set. There exists a constant K > 0 depending only on
M, such that for each ¢ > 0 the set

{i: D;NE #( and diam(D;) > cdiam(FE)}
has at most K(c=2 + 1) elements.

A proof of the first two parts of this lemma can be found in [Nta20b|. In par-
ticular, part (i) is proved in [Nta20b, Remark 2.3.5] and part (ii) is proved in
[Nta20b, Lemma 2.3.4].

Proof of (iil). First, we bound the cardinality of the set
Iy ={i: D,NE # 0 and diam(D;) > 4diam(E)}.
Let x € E, r = diam(FE), and consider the ball B(x,r), which contains E. If

D;NE # § and diam(D;) > 4diam(E), then D; intersects dB(z,r) and dB(x,2r).
By part (i) we have

Area(D; N (B(x,2r)\ B(z,r))) > ¢'r?,
where ¢’ depends only on M. We have
4rr? = Area(B(z,2r)) > Z Area(D; N (B(x,2r)\ B(z,r))) > ¢'r? - #14,
i€ly

where #1I; denotes the cardinality of Iy. This proves that #I, < 4w /¢, which
depends only on M. If ¢ > 4, then the desired statement is proved, provided that
we choose K > 4w /c.

Next, if ¢ < 4, it suffices to find a bound for the cardinality of the set

I.={i: D;NE # 0 and cdiam(F) < diam(D;) < 4diam(FE)}.
Let € E and R = 5diam(F). Then B(z, R) contains D; whenever i € I.. Since
each D; is M-Ahlfors 2-regular, we have
mR* = Area(B(z, R)) > Y Area(D;) > M diam(D;)*#I, > Mc* diam(E)? - #1..
icl,
This proves that #1. < 257 M ~1c=2. Thus, if we choose K = max{4r/c/,25mr M1},
which depends only on M, then we have #I. < Kc¢™2 and
#{i:D;NE # () and diam(D;) > cdiam(E)} < Kc™? + K.

This completes the proof. (I

Lemma 2.7. Let {D;};en be a collection of disjoint, M-Ahlfors 2-reqular Jordan
regions and let E denote the line segment [0,1] x {0}, where | > 0. Suppose that
there exists a constant ¢ > 0 such that for each i € N we have

diam(D;) < ¢l and dist(D;, E) < cdiam(D;).

Then there exists a constant K > 0 that depends only on ¢ and M such that for
each s € (1,2] we have

K.l®

s—1°

Z diam(D;)® <
i=1

See Figure [6] for an illustration of the assumptions of the lemma.
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F1GURE 6. The diameter of each D; is not much larger than the
length of E and the relative distance of D; to E is bounded.

Proof. By scaling the segment E and the regions D;, we may assume that [ = 1.
Note that scaling does not affect the Ahlfors regularity constant M.

The assumption that dist(D;, F) < cdiam(D;) implies that the region D; is
contained in the open (1 + ¢)diam(D;)-neighborhood of E. For each r > 0 we
consider the family

I(r) = {i € N: ¢r < diam(D;) < 2cr}.

We observe that (J,¢(g 19 I(r) = N. Note that if ¢ € I(r), then D; is contained
in the open (1 + ¢)2cr-neighborhood of E. Hence, there exists a constant ¢; > 0
depending only on ¢ such that for r € (0,1/2] we have

c1r > Area U Z Area(D;) > #I(r) - M - (cr)?.

i€I(r) i€I(r)

It follows that for r € (0,1/2] we have #I(r) < ¢o/r for a constant c¢a > 0 depending
only on ¢ and M. Now for s € (1,2] we have

Zdlam kz:l Iz@:k diam(D <0222 (k=1)s . @5k < %
i€

where c3 is a positive constant depending only on ¢ and M. Note that 1—2-(=1 >
(s —1)/2 for all s € [1,2] by concavity. The proof is complete. O
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3. PROOF OF MAIN THEOREM

Our proof follows the main steps of [Lar67], but we have to adapt these steps
to our generalized setting. In fact our first few considerations are very similar to
the referenced result, but we have to deal with some extra complications related
to the locality and generality of our result. We suppose that Po = {D;}ien is a
packing such that for each i € N the curve dD; has curvature bounded below by
k/length(0D;). By Theorem all curves 0D, are L-chord-arc curves, where L
depends only on k. Moreover, Lemma [2.5]implies that all regions D; are M-Ahlfors
2-regular, where M depends only on k. We split the proof in several subsections
for the convenience of the reader. In Section [B.1] we first make some reductions.

3.1. Initial setup and definition of the function g,,. We first note that the
residual set S is non-empty. To see this, we note that if 9D = 99, then D; = Q,
so the region Dy, which is contained in 2, intersects D;, a contradiction. Hence,
OD1NQ# 0 and S # 0.

Consider an open set U C € such that U NS # (). Our goal is to show that

dim(UNS) > K,
for a suitable constant K > 1, depending only on k.

Claim 1. If U is an open subset of Q, UNS # (), and U intersects at most finitely
many regions D;, i € N, then U NS has non-empty interior.

In this case dimy (U N'S) = 2 and there is nothing to prove. To prove the
claim, note first that if U does not intersect any region D; then U C S and the
claim is true. Suppose now that at least one and at most finitely many regions
D;, i € I, intersect U, but U N'S has empty interior. By Lemma [2.1] it follows
that any two of the curves 0D; can have at most one point in common. Since
O(Uier Di) = U, 0D, it follows that UNS = U\ U,c; Di = U, (UNOD;). Let
J € I and note that UNOD; # (). Since U is open, there exists an arc J of dD; that
is contained in U. By the above, at most finitely many points of J can intersect
some curve 0D;, i € I, i # j. Hence, there exists a point z € J and a sufficiently
small neighborhood V' C U of z that does not intersect D;, i € I, i # j. Therefore,
V\Dj C U\ U,¢; Di- Moreover, V' \ D; has non-empty interior because dD; is a
Jordan curve. We already have a contradiction and our claim is proved.

Claim 2. If U is an open subset of Q, UNS # 0, and at most finitely many regions
D, are contained in U, then U NS has non-empty interior.

Indeed, suppose that finitely many regions D; are contained in U (but there
could be infinitely many regions intersecting U). We restrict to a sufficiently small
open set U’ C U with U’ NS # 0 so that no region D; is contained in U’. Thus, if
a region D; intersects U’, then it also intersects QU’ by connectivity. Let V' be an
open set compactly contained in U’ such that VNS # 0. If D; intersects V, then it
must also intersect OU’, so diam(D;) > dist(dU’, V) > 0. By Lemma (ii) there
can be at most finitely many regions D; intersecting V. Claim [I| now implies that
V' N S has non-empty interior, which proves Claim 2.

From now on, we let U be an open subset of Q with U NS # 0. We consider
an open square V C V C U such that VNS # ). By Claim [2| we may assume V
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FIGURE 7. The region B;, = D; contained inside the square A.

contains infinitely many regions D;. We fix a region D; C V. Then we consider a
closed square A C V containing D; such that

diam(D;) < diam(A) = V2¢(A) < V2 diam(D;),

where ¢(A) denotes the side length of the square A; see Figure 7] Note that A C
V C U. Therefore, it suffices to show that

dim(ANS) > K,

for a suitable constant K > 1, depending only on k.

After scaling and translating all involved sets, we may assume that A is the unit
square [0, 1]2. Moreover, by Claim [2| we may assume that there are infinitely many
regions D; contained in int(A). We denote these by B;, i € N. We remark that in
Larman’s setting in [Lar67] no regions D; are allowed to intersect the boundary of
the unit square. We will see later in Section that in our case this possibility
causes some complication that we have to overcome. By Lemma (ii), we have

lim diam(B;) = 0.

71— 00
Therefore, we may reorder the regions B; so that their diameters decrease, i.e.,
diam(B;) > diam(B;41) for i € N. Note that by the choice of the square A in the
previous paragraph, one of the regions B;, say B;,, is distinguished and has the
property that

109

V2diam(B;,) > diam(A4) = v/2.

Since diam(B;) > diam(B;,), it follows that diam(B;) > 1. The region Bj is
M-Ahlfors 2-regular, so

(3.1) Area(B;) > M diam(B;)* > M.

io

We now begin to estimate the Hausdorff dimension of S, := ANS. Consider
a finite cover of the compact set So, by open squares K, j € {1,...,p}. We may
assume that none of the squares is contained in any region D;. In order to prove
the theorem, it suffices to show that there exist s € (1,2), depending only on k,
and a constant ¢ > 0, depending only on k and s, such that

(3.2) Zp:diam(Kj)s >ec.
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Recall the remarks after the definition of Hausdorff dimension in Section[2l In what
follows we fix s € (1,2). Later we will impose more restrictions on s.

We define S,, = SOOUU;Z”H B; for n € NU{0}. By the compactness of S, note
that there exists a § > 0 such that U?:l K covers the open d-neighborhood of S.
Hence, if diam(B;) < ¢, then the fact that 0B; C S implies that B; C U§:1 K;.
Since the diameters of B; tend to 0 as ¢ — oo, it follows that for all sufficiently
large n € N we have

p
S, C U Kj.
j=1

Throughout the proof n > 1 is fixed, so that the above inclusion holds.

For z € [0,1] we denote by L, the vertical line passing through the point (z,0).
For each z € [0, 1], the intersection of the line L, with Ule K, if non-empty, is
a union of finitely many open segments I(x,r) of length £(z,r), r € {1,...,v(z)}.

We define w

gn(z) = Zﬁ(:c,r)sfl
r=1
for x € [0,1]. Since s — 1 < 1, we have
O(z,r)*71 < Z length(L, N K;)* 1.
J: KNI (z,r)#0

For fixed = € [0,1], each square K is intersected by at most one segment I(z,r).
Hence, upon summing over r, we have

P
gn(x) < Zlength(Lx NK;)S

j=1

By integrating, we obtain

(3.3) /O gula) do < 37 UEK)"

where £(K;) denotes the side length of K.

We also define a function g,,(x) for m € {0,...,n—1} as follows. We append to
the cover Ule K; of S, the regions By, 41, ..., By so that we obtain an open cover
of S,,. The intersection of L, with that open cover is a union of finitely many line
segments I(z,r,m) of length ¢(x,r,m), r € {1,...,v(x,m)}. We define

v(x,m

)
gm(x) = Z O(x,r,m)sL

Note that the function g,, depends implicitly on s. A crude estimate for g,, is
obtained as follows. We observe that for m < n we have g,,(x) > length(L, N
Bm+1)5717 S0

1 1 1
/ gm(x) dx > / length(L, N Bm+1)571 dx > / length(L, N Byy41) dz
0 0 0
= Area(B,11)

since s — 1 < 1 and the integrand is bounded above by 1. In particular, fol go >

Area(B;1) > M by (3.1)).
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3.2. Main estimate. If we could show that there exists s > 1, depending only
on k such that fol Im > fol Jm_1 for m € {1 .,n}, then we would have that

fo Gn > fo go > M, so ZJ 1U(K;)® > M by (3.3). This would imply the desired

-. In fact, we will show that fo Gm 18 essentzally larger than fol gm—1 in the
following sense. We will prove that there exists some constant ¢y > 0, depending
only on s and k, such that if s is sufficiently close to 1, depending only on k, then
for all m € {1,...,n} we have

1 1
(3.4) / Gm = / Im—1 — co diam(B,,)° - #Jpn,
0 0

where J,, is the (possibly empty) set of indices j € {1,...,p} such that B,, N
0K; # 0 and diam(K;) > ¢ length(0B,,) for a constant ¢; > 0, depending on
s, k. Here #J,, denotes the cardinality of J,,. In other words, J,, contains the
indices j such that 0K intersects B,, and Kj is relatively large. We remark that
our main iterative estimate already departs from the corresponding estimate of
Larman |Lar67, (35), p. 301].

We note that by Tonelli’s theorem we have

P

i diam(By,)* - #Jpn = i > diam(B, Z > diam(B,,)".
m=1

m=1jEJ, =1lm:j€Jm
Since dist(By,, 0K;) = 0 and diam(B,,) < ¢; ' diam(K;) = ¢; 'V20(K;) for j € J,p,
we can apply Lemma to each of the four edges of 8[( and conclude that
> diam(B,,)* < eol(K;)".
m:jEJm

for some constant co > 0 depending only on s, k. It follows that

] p
> diam(Bp)® - #Jm < 2 Y UK
m=1 j=1

Assuming the estimates in (3.4)), by (3.3) we have

p 1 1 oo
ZE(KJ')S 2 / Gn 2 / go — Co Z diam(B,,)° - #Jm
0 0 m=1

j=1
p
> M — CoC2 ZK(K
j=1

Therefore,

b
ZE >M1—|—CQCQ) !

Jj=1

and the latter is a positive constant depending only on s and k. This completes the
proof of (3.2)) and thus of the main theorem. It remains to show the main estimate

B4).

From now on, we fix m € {1,...,n} and our goal is to establish (3.4)).
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B m

FIGURE 8. The intersection of two vertical lines with U§:1 K; U
Ui—y1 Bi- For the line on the left we have w = 1 and I(1) = I(w).
For the line on the right we have w = 3 and I(1) # I(w).

3.3. Basic estimate of the difference g, — g,,_1. We write

1 1 1
/ gm:/ gm_1+/ (9m — m—1)-
0 0 0

Our goal is to estimate the difference g, — gm—1 from below. Let = € [0,1] and
consider the vertical line L,. If L, does not intersect the region B,,, then we have
gm (%) = gm_1(z). Suppose, now, that L, intersects B,,. By convexity, L, N B,,
is a line segment J. Observe that both of the endpoints of J lie in S, C S,, and
in particular they lie on B,,. The line segment J intersects some of the segments

I(z,7,m),r € {1,...,v(x,m)}. Recall that these line segments are the components
of the intersection of L, with U§:1 K;UUi,, 1 Bi. After renumbering, we assume

that J intersects the components I(r) := I(x,r,m), r € {1,...,w}, and that these
are ordered in an increasing fashion. This implies that (1) and I(w) contain the
endpoints of .J; see Figure[§] Note that I(1) and I(w) could coincide, in which case
we have g, () = gm—1(x). We have the following estimate.

Lemma 3.1. Let L = L, be a vertical line with L N B,, # 0 and consider the
segments I(1) and I(w) as above, which are the components of the intersection of

L with Uj—, Kj UU,_,,+1 Bi that contain the endpoints of the segment L N Byy,.
(i) If I(1) = I(w), then gm(x) = gm-1(x).
(ii) In general,

Im(z) — gm—1(x) > —length(L, N Bm)sfl.
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(iii) If I(1) # I(w), then
Gm () — gm—1(x) > length(I1)* "' + length(I5)* !
—length(I; U I, U (L, N By,))**
where I; and Iz are any subsegments of I(1) \ By, and I(w) \ B,,, respec-
tively.

Proof. As already pointed out, if I(1) = I(w), then g, () = gm-1(z), ie., (i)
holds. Moreover, the estimate in (ii) holds trivially in this case. Henceforth, we
assume that I(1) # I(w). We denote by £(r) the length of I(r). We have £(1) =
lin (1) 4+ Lous (1), where 45, (1) is the length of I(1) N B,, and £ou(1) is the length of

I(1) \ By; see Figure[§] Similarly, we have £(w) = i, (w ) + Kout(w). We have
g (@) = gm—1(x) = (in(1) + Loue(1))* 7 +€2)° 7" 4+ l(w = 1)* 7
(3.5) (()+%M)f1

_ (gout( ) + length(Lw N Bm) + lout (’U}))S_l,
Consider the auxiliary function
h(a,b) = (c1 +a)* " ez + (e +0)°7 = (a+C+b) 7,

where ¢ = lin(1), co = £(2)* 14+ -+ L (w—1)*"1, c3 = fin(w), and £ = length(L, N
B,,). We note that for a,b > 0 we have

Oh Oh
_— > — >
9a 0 and o = 0,

since c¢1,c3 < £. Therefore, the right-hand side of becomes smaller if we
replace Loui(1) and Loy (w) with smaller quantities. Note that if I; and I are
subsegments of I(1) \ By, and I(w) \ B,, respectively, then length(l;) < £ous(1)
and length(Iz) < lou(w). Therefore,

Im (@) = Gm-1(2) = (i (1) +length(11))* " +£(2)" " 4 oo L(w — 1)
+ (bin(w) + length(I5))*~!
— (length(I;) + length(L, N B,) + length(Iy))*~*
> length(I;)* ™" + length(I5)**
—length(I; UL U (L, N B,y,))5

This completes the proof of (iii). Note that part (ii) also follows immediately by
taking length(I;) = length(I3) = 0. O

3.4. Restriction to a polygon around B,,. In this subsection we will construct
an open polygonal region P that circumscribes B := B,, such that P \ B does
not intersect any regions D; with diameter larger than or equal to the diameter
of B. Note that the polygonal region P might intersect only regions B;, which
are contained in the unit square, or it might also intersect some of the regions
Dy that intersect the boundary of the unit square and thus are not contained in
the collection By, I € N. Then, in Section we will refine the polygon P
and construct another polygon P C P that also circumscribes B such that the
intersection of P with regions D; that intersect 9([0,1]?) is negligible in a sense.
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\(

FI1GURE 9. Construction of a polygon P C R that circumscribes
B. First, B is separated from some regions D; by lines tangent to
OB. Then P is formed by these lines and the sides of R.

Therefore, P essentially intersects only regions By, I € N. This will be crucial for
the application of the estimates of Lemma below.

For a set E C C we denote the projection of E to the z-axis by proj(E). More-
over, for p > 0 we define the p-strip of E to be the open set of points in the plane
whose projection to the z-axis has distance less than p from proj(E).

Consider the open rectangle R that circumscribes B and has sides parallel to
the coordinate axes. Note that each side of the rectangle intersects 0B in precisely
one point, by the strict convexity of dB. Let P be an open polygonal region
that circumscribes B with B C P C R; see Figure [0] By definition, each edge
of OP is tangent to dB. The convexity of B implies that P is also convex. We
denote by Z(P) the finite set of the points of tangency between P and dB. Note
that Z(P) D Z(R) and in general if P’ C P is another polygonal region that
circumscribes B, then Z(P') D Z(P).

Lemma 3.2. Consider a polygonal region P C R that circumscribes B. Let L = L,
be a wvertical line with L N B # O and denote by I;, i = 1,2, the components
of LN (P \ B). Finally, let A\ > 0 and suppose that L does not intersect the
A - length(0B)-strip of the set Z(P). Then the following statements are true.

(i) Fori=1,2 we have
length(I;) < ﬁ)\z'
length(0B) ~— 2w

(ii) For each p > 0 there exists a constant sg > 1 depending only on k and p
such that if s € (1,s9) and X\ = (s — 1)?, then

1
length(7;)*"" + length(7)* ™! — length(L N P)*~! > 3 length(9B)* .

(i) Suppose that s and A are as in (ii) and that
(iii-1) I;, i = 1,2, does not intersect any region Dy with diam(D;) > diam(B),
and
(iii-2) I;, i = 1,2, does not intersect any region D; with D; N ([0, 1]?) # 0.
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If I and Iy lie in different components of L, N (U?Zl K; U, 1 Bi)s
then

1
Im () = gm—1(x) > By length(aB)s—l >0,

otherwise,
gm(x) = gmfl(x)

See Figure [J] for an illustration of the intersection L N (P \ B) and Figure [§] for
the intersection L, N (Uj_; K; UU;,, , Bi) that appears in part (iii).

Proof. By assumption, the curvature of 9B is bounded below by k/length(0B).
Note that the conclusion of part (i) is scale invariant. Hence, by scaling, we may
assume that length(9B) = 1 and that the curvature of 9B is bounded below by
k > 0. Since the vertical line segment I; does not intersect the set Z(P), it follows
that I; intersects an edge E of the polygon P at a point w; that is not a point of
tangency of F with OB. The edge E is tangent to B at a point z; = v(t1) € Z(P).
Hence, E is contained in the tangent line L(z1) of OB at z; and wy € L(z1). We
let zo € OB be the point of intersection of I; with OB; see Figure @ By Lemma
(1) we have

diam(l;) = |z2 — wq| > dist(z2, L(z1)) > 2£ length(0B|[21, 20])* > ;\zl — 22
7r ™

By assumption, Re(zz — z1) > A, so the desired conclusion follows.

Next we prove the second part of the lemma. Again, since the statement is
scale invariant, we may assume that length(9B) = 1. Note that length(L N P) <
diam(B) < length(0B) = 1, since P is contained in the circumscribing rectangle
R. By the first part of the lemma we have

length(I1)* ™! + length(I5)* ™! — length(L N P)*~* > 2(k/2m)* 1 A%72 — 1.

If we set A = (s — 1)P, then 2(k/27)*"1A2%=2 — 1 — 1 as s — 1*. The conclusion
follows.

For (iii), we note first that the segments I, i = 1,2, are contained in U§:1 K;U
Uiz 1 Bi- Indeed, by assumption (iii-2) we have I; C U%_, K; UU,_, By since I;
does not intersect any region D; that intersects the boundary of the unit square.
Moreover, by (iii-1), I; does not intersect any region D; with diameter larger than
or equal to the diameter of B. This implies that I; N B; = () for | < m; recall the
enumeration of the regions By, | € N, by decreasing diameters.

If I; and I5 lie in the same component of L, N ( 1;7:1 K; U, 41 Bi), then we
have I(1) = I(w), using the notation of Lemma [3.1] and g,,(z) = gm—1(x) by part
(i) of the aforementioned lemma. Otherwise, by Lemma (iii), and using part
(ii) of the current lemma, we conclude that

1
Im () — gm-1(z) > 3 length(9B)*~.
The proof is complete. O

Now, we construct a polygonal region P that circumscribes B such that P\ B
does not intersect any regions D; with diameter larger than or equal to the diameter
of B; in this case the assumption (iii-1) of the previous lemma is always satisfied.
By Lemma (iii) there exists a positive integer Ny, depending only on k, such
that if D;, ¢ € IR, is the family of regions intersecting the rectangle R and having



DIMENSION OF PACKINGS BY SMOOTH CURVES 21

diameter larger than or equal to diam(B), then #Ir < Ny. Since all regions D;
are convex, for each ¢ € Ip there exist a line L; tangent to 0B that separates D;
from B; this follows from Minkowski’s hyperplane separation theorem. The lines
L;, i € Ig, together with the sides of the rectangle R define a polygon P with at
most Ny + 4 sides that circumscribes B; see Figure [0] Note that the cardinality of
the set Z(P) is bounded by Ny +4 = N.

3.4.1. Refinement of the polygon P. Note that the estimate from part (iii) of Lemma
if it were true for all z € [0, 1], would imply the desired main estimate (3.4)—in
fact, a stronger version of it without the subtracted term.

In order to apply the favorable estimate from part (iii) of Lemma we will
construct a smaller polygon P C P C R that circumscribes B so that I and
I, (i.e., the components of L N (P \ B)) do not intersect any regions D; with
D;nd([0,1]?) # 0, whenever the vertical line L does not intersect the X length(9B)-
strip of Z(R); recall that Z(R) is the set of points of tangency between OR and
OB. We remark that the assumptions of Lemma [3.2] require that the vertical line
L avoid a strip of Z(P), while here we are working with a strip of Z(R), which is
a subset of Z (]3) In the next subsection, we will restrict to vertical lines avoiding
a strip of Z(P) as well.

We fix A € (0,1). We consider the rectangle R C R whose top and bottom sides
are at distance (k/27)A? length(9B) from the top and bottom sides of R and whose
left and right sides are at distance Alength(0B) from the left and right sides of R,
respectively; see Figure[10] Note that by Lemma[2.2] (i) the length of the horizontal
and vertical sides of R is at least clength(9B) for some ¢ > 0 depending only on k.
Hence, if ) is sufficiently small, depending only on k, then the construction of Ris
possible.

By Lemma (i), applied to the polygon R, we know that R\ R does not
intersect B, except at the Alength(0B)-strip of Z(R), which we denote by S. The
strip S has at most 4 components. Therefore,

(R\R)\ S

consists of a uniformly bounded number of rectangles (in fact, at most 6), none
of which intersects B; see the striped rectangles in Figure We separate each
of these rectangles from B with a line tangent to 0B, thus creating a new convex
polygon P’ C P that circumscribes B and has a uniformly bounded, say by N’ € N,
number of edges. We note that P’ C RUS. See Figure

If D; is a region intersecting 9([0,1]?) and P’, then it has to intersect OR, since
P’ C R C [0,1)2. Moreover, if D; N R is not entirely contained in the strip S, then
it must intersect R and 81{3, since P’ ¢ RUS. Therefore,

diam(D; N (R \ R)) > min{(k/27)A>, A} length(9B).
If ) is sufficiently small, depending on k, then (k/27)\? < X and
diam(D; N (R \ R)) > (k/2m)A? length(0B).

Consider a ball B(z,r) centered at some point z € R N D; and with radius r =
(k/2m)A? length(0B). By the Ahlfors regularity of D;, we have

Area(D; N B(z,7)) > M\* length(0B)?
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a([0,1]?) 0((6,1]?)

FI1GURE 10. The polygon P is assumed in this figure, for simplicity,
to be the circumscribing rectangle R. Thus, all regions D; # B
that intersect R already have diameter smaller than diam(B). The
strip S has four components in this case. The rectangle RCR
is illustrated and the set (R \ R) \ S consists of the six striped
rectangles. In the right figure, these rectangles are separated from
B by tangent lines.

a([0,1]%) a((0,1]%) a((0,1]%)

P. ﬂ P’ f//ﬁ

FIGURE 11. Left figure: The polygon P’ C P. Middle figure: The
region D; intersects both 9(]0,1]?) and R, and the intersection
D; N R is not contained in the strip S. Thus, we separate D; from
B by a tangent line. Right figure: The polygon P. Note that
there exists a region Dy intersecting d([0,1]2) and P. However,

the intersection D; N P is contained in the strip S and we can
neglect it.

where M > 0 and depends only on k. Note that the intersection D; N B(z,r) is
contained in the r-neighborhood of R, whose area is bounded above by

length(OR)cr < length(OR)cr < ¢ diam(B)r < ¢’ A? length(83)?,

where ¢” > 0 and depends only on k. We conclude that the number of regions
D; that intersect 9([0, 1]?) and P’ and are not contained in the strip S is bounded
above by ¢”A\72, where ¢’ > 0 and depends only on k.

We now construct a polygon P C P’ that circumscribes B by separating each of
these regions D; from B with a line tangent to 0B; see Figure By construction,
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we have
(3.6) H#Z(P) < #Z(P)+ "\ 2 <en?

where ¢ > 0 is a constant depending only on k. This completes the construction of
the polygon P.

Summarizing, by construction, if L is a vertical line with LNB # @ and LNS = (),
where S is the Alength(9B)-strip of Z(R), then LN P does not intersect any region
Dy with D; N 9([0,1]?) # 0.

3.5. Relative position between B and the squares K;. In this final subsection
we complete the proof of Theorem[I.1] We will study two main cases for the relative
position and size of the region B and of the squares K;. We first establish an
auxiliary lemma.

Lemma 3.3. Let L = L, be a vertical line with L N B # (§ such that L does not
intersect the Alength(0B)-strip of Z(R), where A € (0,1). Then there exists a
constant c¢; > 0 depending only on k and a point z;y € L N B such that

dist(z1,0B) > ¢ A\? length(0B).

In fact, the conclusion holds with A in the place of A2, but for our purposes this
statement is enough.

Proof. Without loss of generality, we suppose that length(0B) = 1. Let L be a
vertical line as in the statement. Consider the line L’ joining the leftmost and
rightmost points w; and w, of 9B, respectively. Note that w; and w, are points of
tangency between OB and OR and hence they are contained in Z(R). We claim that
the point z; lying in the intersection of the lines L and L’ satisfies the conclusion.
By the strict convexity of B, the point z; lies necessarily in B.

Let z2 be a point in 0B such that dist(z1, 0B) = |21 —z2| and consider the tangent
line L(z2) of OB at z5. We note that |21 — 23| = dist(z1, L(22)). Since z1,w;, w,
lie on the same line, it follows that the distance dist(z1, L(z2)) is bounded below
by either dist(w;, L(22)) or dist(w,, L(z2)). Without loss of generality, we assume
that |21 — 22| > dist(w;, L(22)). By Lemma (i), there exists a constant ¢ > 0
depending only on k such that dist(w;, L(22)) > clength(0B|[wy, 22])?.

If z5 does not lie in the (A/2)-strip of wy, then length(9B|[wy, z2]) > A/2. There-
fore, dist(z1,0B) > cA?/4. If 25 lies in the (\/2)-strip of wy, then |21 —22| > | Re(z1—
22)| > \/2, since z; does not lie in the A-strip of w;. Moreover, A > A% since A < 1.
Summarizing, if we set ¢; = min{c/4,1/2}, then we have dist(z1,0B) > c1\?, as
desired. d

Let L = L, be a line with LN B # () such that L does not intersect the set Z(P)
or the Alength(dB)-strip of the set Z(R). Then LN (P\ B) has two components, I;
and I>. By the construction of the polygon }5, I, and I, do not intersect any region
D; that intersects 9([0, 1]?), so the assumption (iii-2) of Lemma/3.2{holds. Moreover,
the assumption (iii-1) also holds since P C P and P was constructed so that (iii-1)
holds. In order to be able to apply the estimate of part (iii) from Lemmawe need
to ensure that I; and I lie in distinct components of L, N (U)_, K; UU;L,, 41 Bi)-

If I; and I lie in the same component of L, N (UJ5—, K; UU;—,,,, Bi), then this
component contains LN B, so LNB C U§:1 K;. By Lemmathere exists a point
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FIGURE 12. Illustration of Case 1 on the left and Case 2 on
the right. In Case 1 all squares intersecting B are relatively
small, while in Case 2 there exists a square K; with diam(K;) >
c12? length(9B).

z1 € LN B such that dist(z1,0B) > ¢1A\? length(9B). In particular, there exists a
square K; such that z; € K. Recall that, by assumption, no square is contained
in any region D;, since these squares do not contribute to the estimation of the
Hausdorff dimension; see the comments before in Section Therefore, K
intersects 0B. It follows that

diam(K;) > c;A? length(9B).

We set A=s—1¢€ (0,1) and choose s sufficiently close to 1, depending only on
k, so that all previous claims in the construction of P hold for that value of A\. We
now consider two cases; see Figure

Case 1. For each j € {1,...,p}, if K; N B # (), then diam(K;) < c1A? length(0B).

By the previous comments, it follows that I; = I (z) and Iy = Is(x) lie in distinct
components of L, N (U, K;UU;_,,,, Bi), whenever L, is a line with L, N B # (

and L, does not intersect Z(P) or the Alength(0B)-strip of Z(R). Suppose, in

addition, that L, does not intersect the A length(dB)-strip of Z(P). We denote
by G the set of values of x € proj(B) satisfying all these restrictions. If z € G, we
can apply Lemma (iii) to the polygon P with A3 = (s — 1)% in the place of A,
and we obtain

1
9m(@) = gm—1(2) = 5 length(0B)*!

for s € (1,s0), where so depends only on k. The set B = proj(B) \ G, where the
above estimate might fail, has measure at most

|B| < 2\ length(dB) - #Z(R) + 2A* length(dB) - #Z(P) < (8 + 2¢)Alength(9B),
since #Z(R) = 4 and #Z(P) < ¢A~2 by (3.6). Thus,
|B] < cAlength(9B),
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where ¢ > 0 is a constant depending only on k. When =z € B, we use the crude
estimate from Lemma (ii):

Gm () = gm_1(z) > —length(L, N B)*~' > —length(9B)* .
By Lemma[2.2] (ii) we have | proj(B)| > ¢ length(9B), where ¢’ depends only on k,
thus
|G| > (" — c))length(OB).
Note that ¢ — ¢\ > 0, as soon as A is sufficiently small, depending only on k.

Therefore,
1
/ (9m — gm-1) = /(gm — Gm—1) +/(gm — Jm—1)
0 g B

1

> 5(01 — ¢)) length(9B)® — cAlength(0B)*
1

= E(c' — 3c)) length(0B)*.

Finally, since the constants ¢’ and c¢ are positive and depend only on k, we have
' —3cA > 0, provided A = s—1 is sufficiently small, depending on k. This completes
the proof of (3.4]) in this case.

Case 2. There exists j € {1,...,p} (depending on B) such that K; N B # () and
diam(K;) > c1A? length(9B).

In this case a rough estimate is sufficient. We note that if BN OK; = (), then B is
entirely contained in K;. In this case for each vertical line L = L, intersecting B
the segments /(1) and I(w), with the notation of Lemma [3.1] coincide and we have
gm () — gm—1(z) = 0 for all x € proj(B). Therefore,

1
/ (gm - gm—l) =0.
0

This proves the desired main estimate (3.4)).

We now suppose that B N 0K; # (. We define J to be the set of indices
I € {1,...,p} such that BN AK; # () and diam(K;) > ¢;A\?length(0B). Thus,
j € J and #J > 1 in this case. Note that if the vertical line L, does not intersect
B, then g, (z) = gm—1(z). If L, N B # (), then by the crude estimate from Lemma
(ii) we have

Im(z) — gm-1(x) > — length(aB)sfl.

Therefore,

1
/ (gm — gm—-1) = flength(83)571|proj(B)|
0
> —length(9B)® > —length(0B)® - #J

> —cy *diam(B)* - #J,

where the last inequality follows from the chord-arc property of 9B and ¢o > 0 is a
constant depending only on k. This proves the desired main estimate (3.4)) in this
case too (with J,, = J). The proof of the main theorem has been completed. [
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4. PROOF OF THEOREM [L.3|

We only need to verify that all auxiliary lemmas from Section [2] that were used in
the proof of Theorem [I.1] also hold under the less restrictive assumption of Theorem
Moreover, throughout the entire proof of Theorem [1.1] instead of using tangent
lines of a smooth and convex curve C, one has to use supporting lines, i.e., lines
intersecting C' and separating it from a half-plane.

For two compact sets A, B C C we define the Hausdorff metric dg(A, B) to
be the infimum of all € > 0 such that A is contained in the open e-neighborhood
of B and B is contained in the open e-neighborhood of A. We say that a se-
quence of compact sets C,, converges to a compact set C' in the Hausdorff metric if
dg(C,Cp) — 0 as n — 0.

First we prove an auxiliary lemma.

Lemma 4.1. Let C,,, n € N, be a sequence of planar convex Jordan curves converg-
ing in the Hausdorff metric to a Jordan curve C. Then C is convexr and the length
of C,, converges to the length of C. Moreover, for each arc A C C with endpoints
z,w there exists a sequence of arcs A,, C Cy, with endpoints z,,w,, n € N, such that
Zn = 2, Wy, = w, A, — A in the Hausdorff metric, and length(A,) — length(A)
as n — 0o.

Proof. Convergence in the Hausdorff metric implies that for each z € C there exists
a sequence z, € C, converging to C. A consequence of this observation is that C
has to be convex. We denote by D the Jordan region bounded by C' and by D,, the
region bounded by C,.

Let zg € D. For € > 0 consider the convex Jordan curve C(e) = {zp+ (1+¢)(z —
29) : z € C}, which is a scaled and translated copy of C. Note that length(C(e)) =
(1 + €) length(C). By the convexity of C, every ray emanating from zy hits C at
precisely one point, say the point z. The corresponding point zg + (1 +¢)(z — zg) €
C'(e), which is distinct from z, cannot lie on C. It follows that the curve C(g) is
disjoint from C' and C' is contained in one of the complementary components of
C(e) (by the Jordan curve theorem). In fact, C' is contained in the interior region
of C(g), denoted by D(e). By compactness, for each € > 0 there exists 6 > 0 such
that D(e) contains the d-neighborhood of C. In particular,

(4.1) C, C D(e)

for all sufficiently large n.

Let B(zp,70) be a ball such that B(zg,2rg) is contained in D. We claim that
the ball B(zg, 7o) is contained in D,, for all sufficiently large n. Suppose that this
is not the case. Since C, converge to C, it has to be disjoint from B(zg, 7o) for
all sufficiently large n. If B(zp,ro) is not contained D,,, then there exists a line
separating D,, from a half-plane containing B(zo, o). In this case, no point of
C,, can approach points of C that lie on that half-plane. Hence, B(zg,79) is not
contained in D,, for at most finitely many n. The convergence of C,, to C also
implies that there exists a large ball B(zg, Rg) that contains D and D,, for all
n € N. Summarizing, we have

B(zg,7m9) C D, D,, C B(z, Ro)

for all sufficiently large n € N. According to [BDN21, Lemma 4.1, Claim 1], this
implies that there exists a constant M = M (rg, Rg) > 0 such that if a ray emanating
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from zg hits C' and C), at points z and w, respectively, then
(4.2) |z —w| < Mdy(C,C,).

For € > 0 we consider the curve Cy,(g) = {z0+(14+€)(2—2p) : z € C,,} and denote
by D, (¢) the Jordan region bounded by Cy,(¢). By (4.2), if Mdy(C,C,,) < €, then
any ray emanating from zg hits first C' and then C),(¢). Hence, we conclude that

(4.3) C C Dy(e)

for all sufficiently large n.

Summarizing, by and (4.3), for each £ > 0 and for all sufficiently large
n we have C,, C D(e) and C C D,(¢). An application of Crofton’s formula (see
[Tab05, p. 38]) shows that

length(C},) < length(C(g)) and length(C) < length(C,(¢))

for all sufficiently large n. Letting first n — oo and then € — 0 shows that
length(C),) converges to length(C), as desired. This proves the first part of the
lemma.

We now parametrize C' and C,, using rays emanating from z,. That is, for
each a € 0B(zg,r9) we let y(a) (resp. yn(a)) be the unique point of intersection
of C (resp. C,) with the ray zo + Aa — z0), A > 0. By , it follows that ~,,
converges to v uniformly. Let A C C be an arc with endpoints z = 7(a) and
w = y(b). We consider the arcs A,, = v,(v"(A)) with endpoints z, = v,(y71(2))
and w, = v, (7" *(w)), n € N. By the uniform convergence, it follows that A, — A
in the Hausdorff metric.

Finally, we show that length(A,,) — length(A). We note that we have

length(A) < liminflength(A,) and
n— oo

length(C' \ A) < liminflength(C), \ Ay).
n—oo

Since lim,,,  length(C,) = length(C'), it follows that length(A,) — length(A), as
desired. O

Next, we start verifying the auxiliary results of Section 2] We first prove the
strict convexity of C. Suppose, for the sake of contradiction, that C' contains a line
segment A in its boundary. Then, by Lemma there exists a sequence of arcs
A, C C, converging to A. The “thickness” of the arc A,, can be measured by

inf sup dist(z, L(w)),
wEA, yc A,
where L(w) is a line tangent to A,, at the point w. By Lemmal[2.2] (i), the thickness
of A, is at least clength(A,)?/length(C,,), where c is a constant depending only
on k. Since length(A,) — length(A) and length(C),) — length(C), it follows that
the thickness of A, is uniformly bounded below as n — oco. However, since A,
converges to a straight line segment, the thickness converges to 0, a contradiction.
This establishes the strict convexity of C. Therefore, Lemma holds for curves
0D1 and 0D that can be approximated by such curves C,,.

Next, we discuss the validity of Lemma Note that part (ii) holds imme-
diately from the convergence in the Hausdorff metric and from Lemma 1] Part
(i) holds if L(z2) is a supporting line, rather than a tangent line. Indeed, we let
21,292 € C and L(z2) be a line that intersects C' only at z5. There exists another
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22 L(22)

L'(2)

21

FIGURE 13. The curve C' with two supporting lines L(z2), L'(22)
passing through zs.

supporting line L'(z2) (we could have L(z3) = L'(22)) with extremal slope such
that dist(z1, L(z2)) > dist(z1, L'(22)); see Figure It suffices to show that

) , k length(C|[z1, 22])?
dist(z1, L' (22)) > 3% longth(C) .

We can find points 2; ,, 22,, € C,, converging to z1, 22, respectively, such that
the tangent lines of C,, at zo, converge to the line L’(z3); this is not necessarily
true for the original line L(z2). The convergence of tangents, by working locally
(if one uses as local coordinates the projections from C and C,, to L'(z2)), follows
from the following lemma about convex functions, which we will prove later.

Lemma 4.2. Let f,: (a,b) = R, n € N, be a sequence of convex, smooth functions
and suppose that f,, converges pointwise to a function f: (a,b) — R. Then for each
¢ € (a,b) and for each € > 0 there exist § > 0 and N € N such that for n > N we
have

[frlc£8) = filo) <e,
where f' (c) denote the one-sided derivatives of f.

Lemma (i) applies now to the curve C), and to the tangent L(za,,) at 22 5.
Since the length of C),|[21,, #2,,] converges to the length of C'|[z1, 22| and the length
of C,, converges to the length of C, the conclusion follows.

Theorem holds immediately for C' by Lemmal[4.1] Therefore, C is a chord-arc
curve. Lemma [2.5] implies that the region bounded by C'is Ahlfors 2-regular, so all
of Section [2.2]is valid. This completes the proof of Theorem O

Proof of Lemma[/.3. Pointwise convergence implies that f is convex on (a,b). The
convexity of f implies that f is continuous, and for all ¢ € (a,b) the one-sided
derivatives f! (c) exist and they are monotonically increasing. Hence, f’(c) exists
for all but countably many ¢ € (a,b). Moreover, we have

i, fL(2) = fi(0)

for all ¢ € (a,b); see [Roc70, Theorem 24.1, p. 227]. It follows that that for each ¢ €
(a,b) and € > 0 there exists § > 0 such that f'(c£0) exists and |f/'(c£0)—fL(c)] < e.
By [Roc70, Theorem 24.5, p. 233], if f/(z) exists, then lim, o f(z) = f'(z).
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FIGURE 14. The convex region FI1GURE 15. The strictly convex
Do, q in the proof of Theorem|[T.4] region D, ¢ in the proof of The-

(1). orem (ii).

Therefore, for all sufficiently large n € N we have |f/(c £9) — fi(c)] < ¢, as
desired. 0

5. PROOF OF THEOREMS [L.4] AND [L.5]

The proofs of parts (i) and (ii) of Theorem [1.4] are similar. We first provide
the proof of part (i) and then we will explain the modifications needed in order to
obtain (ii).

Proof of Theorem[1.J) (i). We first construct a family of convex, smooth Jordan
curves with certain properties that will be used in the construction of the packing
Pq. For each square Q = [a, b] X [¢, d] and for each @ > 0 consider a convex, smooth
Jordan curve C, ¢ that agrees with 0Q), except at four balls of radius «, centered
at the vertices of the square (). We denote by D, ¢ the Jordan region bounded by
Cau,0; see Figure By construction, @ \ m is contained in four balls of radius
a.

Consider a sequence £,, n € N, with £, — 0 as n — oco. Let Q C R? be an
open set and consider a cover of {2 by closed squares @; C €2, i € N, with disjoint
interiors such that each compact subset of €2 intersects only finitely many squares;
see Theorem 1.4]. For each square Q); we consider a region D; ; = D,, g, , for
a; = €1/2¢, such that Q; \ Dy is contained in four balls of radius &1/2¢, centered
at the four corners of @;. Then Q\ ;2 D1 is covered by balls By ; of radius
1,5 < €1, 7 € N, with

o0
E T1,5 = 461.
j=1

We note that Uf; D, ; is a closed subset of €. Indeed, if z; € Dy, i € N, then
z; € Q;. Since each compact subset of  intersects only finitely many squares
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Q;, it follows that the sequence {z;};en accumulates only at 9. We define Q; =
O\U2, D ; and it follows that this is an open set. Hence, we can repeat the above
procedure with ; in the place of Q.

Inductively, once 2, has been defined, we obtain regions D, 1; C Qy, ¢ € N,
such that the open set 2,11 = Qn\Ufil Dy, 41,5 is covered by balls By, 41, ; of radius
Tn+l,j < En+t1, J € N, with

o0
E Tn+l,5 = 4En+1.
j=1

We consider the packing P = {D,, ; }inen in . Its residual set S can be written
as

S= U aDTL’L U Q\ U n,i
n,tEN n,i €N

Note that each curve 0D, ; has finite length and thus finite Hausdorff 1-measure.
Moreover, by construction, for each € > 0 there exists a cover of the set £ =
Q\ U,.ien Dn,i by balls B;, j € N, of radius r; < € so that

Z diam(B Z 2r; < 8e.

This implies that ! (E) < 8¢. Letting ¢ — 0 gives 1 (F) = 0. Summarizing, S is
the countable union of sets of finite Hausdorff 1-measure. In particular dim s (S) =
1. t

Proof of Theorem (i4). The main modification we need to make in the proof of
part (i) is in the family of curves Cy . For each square Q = [a,b] x [c,d] and
for each 0 < o < £(Q) consider a strictly convex, smooth Jordan curve Cy o that
bounds a Jordan region D, ¢ C @ such that Q \ D, ¢ is covered by N = 44(Q)/«
balls of radius «; recall that £(Q)) denotes the side length of Q. See Figure [15] for
an illustration. The curve Cy g can be taken, for example, to be the image of the
circle |z| = r, where r < 1 is close to 1, under a conformal map from the unit disk
onto the interior of @); since @ is convex, such curves are strictly convex by Study’s
theorem [Stull].

We fix a sequence s,, > 1 with s,, — 1 and a sequence ¢,, > 0 with ¢, — 0
as n — oo. As in the proof of (i), we write Q = |J,cy Qi, where Q; are closed
squares with disjoint interiors that accumulate only at 9. For each square @Q; we
consider a region Dy ; = D,, q,, where a; is chosen so that 40(Q)as' ' < £,/2°
and a; < €1. Note that @; \ D1 is covered by 4€(Qi)a;1 balls of radius «;. The
set Q1 = Q\ U2, D1, is open and is covered by balls By ; of radius rq;, j € N,
with

8
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Inductively, one can define the open set Q,11 = Q, \ Ufil Dpt1,; C £y, that is
covered by balls B, ; of radius 7p41,; < €n+1, j € N, with

o0

Sn41
E rn+17j < En+1-
Jj=1

We consider the packing P = {D,, ;}n,ien. Its residual set can be decomposed
into the union of the curves dD,, i, n,i € N, with the set E = Q\ U, ;cn Dni- It
suffices to show that the set E has Hausdorff dimension equal to 1. Let s > 1. By
construction, for each n € N there exists a cover of I by balls B,, ;, j € N, of radius
Tn,j < En SO that

oo
D o < en.
j=1
If n is sufficiently large, then s,, < s and ry, ; <&, <1, s0 1, ; <77 Therefore,
(o] o0
> diam(B, ;)" = > 25 < 2%,
j=1 j=1
for sufficiently large n. This implies that 2% (E) < 2°¢,,. As e, — 0, we obtain
#°(E) = 0. This holds for all s > 1, hence, dim»(E) = 1. O

Proof of Theorem[I.5. The proof is based on the fact that if a set E has o-finite
Hausdorff 1-measure, then for almost every horizontal line L (with respect to
Lebesgue measure) the intersection LN FE is at most countable; see [VAi71, Theorem
30.16, p. 104].

Consider a packing Po = {D; }ien such that 9D; N 0D; is at most countable for
all i # j. Hence, the set

F = U (8Diﬁ8Dj)
i,jEN
i#])
is at most countable.

For each i € N we consider a parametrization +;: T — 0D; and we let G; be the
set of local maximum and local minimum values of the function Im(;): T — R.
Note that y € Gj, if and only if there exists an open segment I, of the horizontal line
L, = {(z,y) : z € R} such that I, N dD; # () and either I, C D; or I,, C R?\ D;;
see Figure The set of local extremal values of a real-valued function on a
separable metric space is always at most countable; see |[Nta20a, Lemma 2.10] for
an argument. Therefore, the set G; is at most countable.

We will show that if a horizontal line L does not intersect the countable set
F U,y Gi, then the intersection of L with the residual set S is uncountable. This
will complete the proof. In fact, we will show that the locally compact set LN S is
perfect (in its relative topology). This will imply that L NS is uncountable.

Let z€ LNS =LN(Q\ U2, D;). Our goal is to show that z is not isolated in
LNS, ie., any open segment I C L containing z intersects S \ {z}. Suppose first
that z ¢ 9D, for any ¢ € N. Then any open segment I C L that contains z is either
contained in S or it intersects D; for some i € N. In the second case, since z ¢ D,
there exists a point w € INJD; C LNS. In any case (I \ {z}) NS #0.

Now, suppose that z € 9D;, for some iy € N and let I C L be an open segment
that contains z. Since I does not intersect the set G;,, it follows that I intersects
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Ficure 16. The values y; and
y3 are local maximum values of
Im(~;) and ys is a local minimum
of Im(y;). Each of the segments extI'"emal value  at Z SO the
I,,,1,,,1,, is contained either in hor1zonta¥ segment 1 mter.sects
D; or in R2\ D;. both the interior and exterior of

D;,. Moreover z ¢ 0D, for any
J # o

FiGure  17. The function
Im(y;,) does not attain a local

both D;, and R?\ D;,. We let w € IN(R?\ D;,). If w € S, then (I\ {z})NS #0
and there is nothing to prove. If w € D; for some j € N, j # io, we consider the
segment [z, w] C I. Since z € dD;, and D; N 9D;, = 0, it follows that [z, w] is not
contained in D;. Therefore there exists a point w € [z, w] N 0D;; see Figure
The line L does not intersect the set F', so w # z. It follows that (I \ {z})NS # 0
in this case too. The proof is complete. O
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