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A B S T R A C T 

We present a new moment-based energy-integrated neutrino transport code for neutron star merger simulations in general 

relativity. In the merger context, ours is the first code to include Doppler effects at all orders in υ/ c , retaining all non-linear 

neutrino–matter coupling terms. The code is validated with a stringent series of tests. We show that the inclusion of full 

neutrino–matter coupling terms is necessary to correctly capture the trapping of neutrinos in relativistically moving media, 

such as in differentially rotating merger remnants. We perform preliminary simulations proving the robustness of the scheme 

in simulating ab-initio mergers to black hole collapse and long-term neutron star remnants up to ∼70 ms. The latter is the 

longest dynamical space-time, 3D, general relativistic simulations with full neutrino transport to date. We compare results 

obtained at different resolutions and using two different closures for the moment scheme. We do not find evidences of significant 

out-of-thermodynamic equilibrium effects, such as bulk viscosity, on the post-merger dynamics or gravitational wave emission. 

Neutrino luminosities and average energies are in good agreement with theory expectations and previous simulations by other 

groups using similar schemes. We compare dynamical and early wind ejecta properties obtained with M1 and with our older 

neutrino treatment. We find that the M1 results have systematically larger proton fractions. Ho we ver, the dif ferences in the 

nucleosynthesis yields are modest. This work sets the basis for future detailed studies spanning a wider set of neutrino reactions, 

binaries, and equations of state. 
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1  I N T RO D U C T I O N  

Neutrinos mediate the transport of energy and lepton number in dense 

and hot environments. As such, neutrinos play a crucial role in power- 

ing the explosion of massive stars as core-collapse supernovae (Lentz 

et al. 2015 ; Melson et al. 2015 ; O’Connor & Couch 2018b ; Burrows 

et al. 2020 ; Mezzacappa et al. 2020 ; Bollig et al. 2021 ; Burrows & 

Vartanyan 2021 ), in the cooling of the protoneutron star (Roberts & 

Reddy 2017 ) and in the synthesis of heavy elements neutrino-driven 

winds (Arcones & Thielemann 2013 ). Neutrinos also determine the 

composition and the final r-process nucleosynthesis yields of the 

dynamical ejecta from neutron star (NS) mergers (Sekiguchi et al. 

2015 ; Foucart et al. 2016a ; Radice et al. 2016 ; Sekiguchi et al. 2016 ; 

Perego, Radice & Bernuzzi 2017b ). Neutrinos directly drive winds 

from NS merger remnants (Dessart et al. 2009 ; Perego et al. 2014 ; 

Fujibayashi et al. 2017 ) and impact the composition of outflows 

driven by hydrodynamic or magnetic torques and nuclear processes 

⋆ E-mail: david.radice@psu.edu 

(Metzger & Fern ́andez 2014 ; Fujibayashi et al. 2018 ; Fern ́andez 

et al. 2019 ; Miller et al. 2019a ; Nedora et al. 2019 ; Fujibayashi et al. 

2020a , b ; Just et al. 2022 ; Li & Siegel 2021 ). Finally, neutrinos might 

participate in the launching of gamma-ray burst jets from these sys- 

tems (Eichler et al. 1989 ; Rosswog & Ramirez-Ruiz 2002 ; Zalamea 

& Beloborodov 2011 ; Just et al. 2016 ; Perego, Yasin & Arcones 

2017a ). 

In the context of NS mergers, the most popular approach to 

include neutrinos in simulations is the so-called neutrino leakage 

scheme. This method was first proposed by van Riper & Lattimer 

( 1981 ) in the context of core-collapse supernovae, and then used to 

perform Newtonian simulations of NS mergers by Ruffert, Janka & 

Schaefer ( 1996 ) and Rosswog & Ramirez-Ruiz ( 2002 ). A general- 

relativistic (GR) extension of the leakage scheme was first proposed 

in Sekiguchi ( 2010 ) and was subsequently applied to NS mergers 

in Sekiguchi et al. ( 2011 ). Publicly available implementations of 

the relativistic leakage scheme are available in GR1D and ZELMANI 

(O’Connor & Ott 2010 ) and in the THC code (Radice et al. 2016 ). 

The latter uses a methodology first proposed by Neilsen et al. ( 2014 ) 

to compute the optical depth, which is able to capture the complex 

geometries of neutron star merger remnants (Endrizzi et al. 2020 ). 

© 2022 The Author(s) 
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This approach has also been used by Siegel & Metzger ( 2017 ) and 

Murguia-Berthier et al. ( 2021 ). More sophisticated implementations 

include the Advanced Spectral Leakage scheme of Perego, Cabez ́on 

& K ̈appeli ( 2016 ), Gizzi et al. ( 2021 ), and the Impro v ed Leakage- 

Equilibration-Absorption scheme of Ardevol-Pulpillo et al. ( 2019 ), 

Kullmann et al. ( 2022 ). Leakage schemes do not attempt to simulate 

the transport of neutrinos, but instead parametrize the rate of cooling 

of the remnant using of phenomenological formulas based on the 

optical depth. Specifically, they replace the emission rate of neutrinos 

with a scaling factor O ( e −τ ), where τ is the optical depth. As such, 

leakage schemes a v oid stiff source terms in the hydrodynamics 

equations and are computationally ine xpensiv e. Standard leakage 

schemes ignore the reabsorption of neutrinos, so they cannot model 

the deposition of heat and lepton number in the ejecta by neutrinos. 

Moreo v er, leakage schemes are not accurate o v er time-scales com- 

parable with the cooling time-scale of optically thick source, that is 

several hundreds of milliseconds for NS merger remnants (Sekiguchi 

et al. 2011 ). 

To include the effect of neutrino reabsorption, several groups have 

coupled leakage scheme, used to treat the optically thick regions, 

with schemes designed to treat the free streaming neutrinos (Perego 

et al. 2014 ; Sekiguchi et al. 2015 ; Radice et al. 2016 ; Fujibayashi 

et al. 2017 ; Radice et al. 2018b ; Ardevol-Pulpillo et al. 2019 ). 

This approach is likely inspired by the isotropic diffusion source 

approximation developed in the context of core-collapse supernovae 

(Liebendoerfer, Whitehouse & Fischer 2009 ). The combination of 

leakage and transport schemes addresses some of the limitations 

of the formers, namely the inability to model reabsorption, while 

preserving the o v erall computational efficienc y of the method, since 

no stiff source terms are present. However, the use of these methods is 

questionable when modelling optically thick sources on time-scales 

comparable to their cooling time-scale. This is an important limita- 

tion, since it is now well established that secular ejecta, launched on 

time-scales of several seconds, likely dominate the kilonova signal 

and the nucleosynthesis yield from mergers (Shibata & Hotokezaka 

2019 ; Siegel 2019 ; Radice, Bernuzzi & Perego 2020 ; Nedora et al. 

2021b ; Shibata, Fujibayashi & Sekiguchi 2021 ). Moreo v er, most of 

these methods cannot model out-of-weak-equilibrium effects, which 

might impact the post-merger evolution and the gravitational wave 

(GW) signal of binary NS systems (Alford et al. 2018 ; Alford, 

Harutyunyan & Sedrakian 2020 ; Hammond, Hawke & Andersson 

2021 ; Most et al. 2022 ). 

On the opposite end of the spectrum, the most sophisticated 

GR radiation-(magneto)hydrodynamics simulations of NS mergers 

and their post-merger evolution use Monte Carlo schemes (Miller 

et al. 2019a ; Miller, Ryan & Dolence 2019b ; Foucart et al. 2020 , 

2021b ). These schemes directly attempt to solve the 7D Boltzmann 

equation by sampling the distribution function of neutrinos at random 

points in phase space. While these methods can be very accurate, 

they become prohibitively expensive when optically thick media 

are present. This is because, in order to correctly capture the 

thermodynamic equilibrium of matter and radiation, Monte Carlo 

schemes need to resolve the mean free path of the neutrinos. To 

a v oid this issue, the method of Foucart et al. ( 2021b ) artificially alters 

emission, absorption, and scattering rates at high optical depth in a 

way that does not impact the energy distribution of neutrinos close to 

the neutrino sphere. This approach can accurately predict the neutrino 

distribution outside of the remnant, but it is only valid for short times 

compared to the diffusion time-scale. Moreo v er, this method does 

not correctly capture out-of-thermodynamic equilibrium effects for 

matter and neutrinos. 

Other methods solving the full-Boltzmann equation of radiation 

transport equations in seven dimensions include the short characteris- 

tic method (Davis, Stone & Jiang 2012 ), the S N schemes of Nagakura, 

Sumiyoshi & Yamada ( 2014 ) and Chan & M ̈uller ( 2020 ), the FP N 

approach (McClarren & Hauck 2010 ; Radice et al. 2013 ), the lattice 

Boltzmann method (Weih et al. 2020b ), and the recently proposed 

method of characteristics moment closure (MOCMC) method (Ryan 

& Dolence 2020 ). All of these approaches can, in principle, model 

the full range of conditions and effects encountered in NS mergers. 

In practice, these methods are extremely computationally intensive, 

because high angular resolutions is required to obtain solutions that 

are competitive with those of moment based schemes (Richers et al. 

2017 ). So while the continued development of such methods is im- 

portant and full-Boltzmann simulations are necessary to validate NS 

merger models, simplified neutrino transport methods are necessary 

to perform systematic surv e ys of the binary and equation of state 

(EOS) parameter space. 

The moment formalism casts the Boltzmann equation for classical 

neutrino transport in a form resembling the hydrodynamics equations 

(Thorne 1981 ; Shibata et al. 2011 ). The main advantage of moment- 

based approaches is that they reduce the 7D Boltzmann equation to 

a system of 3 + 1 equations. Unlike the hydrodynamics equations, 

ho we ver, the moment equations for radiative transfer cannot be 

closed with an EOS, because, in general, there is no frame in 

which radiation can be assumed to be isotropic. Consequently, 

although moment-based approaches can model all effects arising 

from the interaction between matter and radiation, their accuracy 

is limited by the accuracy of the adopted closures (Richers 2020 ). 

Moment-based approaches are currently becoming very popular in 

the context of core-collapse supernovae (Obergaulinger et al. 2014 ; 

O’Connor 2015 ; Kuroda, Takiwaki & Kotake 2016 ; Roberts et al. 

2016 ; O’Connor & Couch 2018a ; Glas et al. 2019 ; Rahman, Just & 

Janka 2019 ; Skinner et al. 2019 ; Laiu et al. 2021 ). Moment-based 

methods have been first introduced by Foucart et al. ( 2015 , 2016a , 

b ) in the context of NS mergers. 

Here, we introduce THC M1 : a new moment-based radiation 

transport code designed to perform long-term merger and post- 

merger simulations of binary NS. We adopt a formalism similar 

to that of Foucart et al. ( 2016b ), but with two important differences. 

First, we introduce a new numerical scheme able to capture the 

diffusion limit of radiative transfer without resorting to the use of 

the relativistic heat-transfer equation, which is known to be ill posed 

(Hiscock & Lindblom 1985 ; Andersson & Lopez-Monsalvo 2011 ). 

Secondly, we retain all terms appearing in the coupling of matter 

and radiation. To the best of our knowledge, the only other codes 

to include these terms are that of Anninos & Fragile ( 2020 ) and 

Kuroda et al. ( 2016 ), which have not been applied to NS mergers. 

We demonstrate that these terms are necessary to correctly capture the 

trapping of neutrinos in relativistically moving media. After having 

validated our code with a series of tests, we use it to perform inspiral, 

mer ger, and post-mer ger simulations of two binary NS systems, and 

we study the impact of neutrinos on their dynamics, GW signal, and 

nucleosynthesis yields. 

The rest of this paper is organized as follows. We introduce the 

mathematical formalism for the moment-based treatment of radiation 

in Section 2 . We give the details of our numerical implementation 

in Section 3 . We validate our approach with a series of tests in 

Section 4 . We present a first application to the study of the merger 

and post-merger evolution of binary NS systems in Sections 5 and 6 . 

Finally, Section 7 is dedicated to discussion and conclusions. Unless 

otherwise specified, we use a system of units in which G = c = 1. 
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2  MA  T H E M A  T I C A L  FORMALISM  

The M1 scheme describes the neutrino fields in term of their 

associated (energy integrated) stress energy tensors T 
αβ

( ν) , where 

ν ∈ { νe , ̄νe , νx } and α, β ∈ { 0, 1, 2, 3 } . Since the formalism we 

are going to discuss applies in the same way to all neutrino species, 

we will omit the · ( ν) subscript in the following discussion. 

We decompose the (neutrino) radiation stress energy tensor along 

and orthogonally to n α , the future-oriented unit normal to the t = 

const hypersurfaces, as 

T αβ = En αn β + F 
αn β + n αF 

β + P 
αβ , (1) 

with F 
αn α = 0 and P 

αβn α = 0. The quantities E , F 
α , and P 

αβ

appearing in this decomposition are the radiation energy density, 

the radiation flux, and the radiation pressure tensor in the Eulerian 

frame, respectively. 

In an analogous way, we can decompose the radiation stress energy 

tensor using the fluid four-velocity u α: 

T αβ = J u 
αu 

β + H 
αu 

β + u 
αH 

β + K 
αβ , (2) 

with H 
αu α = 0 and K 

αβu α = 0. The new quantities J , H 
α , and K 

αβ

are, respectively, the radiation energy density, the radiation flux, and 

the radiation pressure tensor in the fluid rest frame. 

Conservation of energy and angular momentum reads 

∇ βT αβ = −∇ βT 
αβ

HD , (3) 

where ∇ is the covariant derivative operator compatible with the 

space-time metric and T 
αβ

HD is the matter stress–energy tensor. In 3 + 1 

form equation ( 3 ) reads (Shibata et al. 2011 ) 

∂ t 
(√ 

γE 
)

+ ∂ i 
[√ 

γ ( αF 
i − β i E) 

]

= α
√ 

γ [ P 
ik K ik − F 

i ∂ i log α − S 
μn μ] , 

∂ t 
(√ 

γF i 

)
+ ∂ k 

[√ 
γ
(
αP 

k 
i − βk F i 

)]

= 
√ 

γ
[ 
−E∂ i α + F k ∂ i β

k + 
α

2 
P 

jk ∂ i γjk + αS 
μγiμ

] 
, (4) 

where γ ik is the three metric and γ is its determinant, α is the lapse 

function, β i is the shift vector, and K ik is the extrinsic curvature, not 

to be confused with the fluid frame radiation pressure tensor. S 
μ is 

the term representing the interaction between the neutrino radiation 

and the fluid. It can be written as 

S 
μ = ( η − κa J ) u 

μ − ( κa + κs ) H 
μ, (5) 

where η, κa , and κ s are the neutrino emissivity, and absorption and 

scattering coefficients. Scattering is assumed to be isotropic and 

elastic. Inelastic scattering effects could, in principle, be treated 

within this formalism as absorption events immediately followed 

by emission. 

It is important to remark that equation ( 4 ) are e xact, but the y are 

not closed, since P 
ik cannot be expressed in terms of E and F 

i . The 

key idea of the M1 scheme is to introduce an (approximate) analytic 

closure for these equations, that is a relation P 
ik = f ( E , F 

i ). Clearly, 

if P 
ik were known, then the M1 scheme would provide an exact 

solution of the transport equation. Ho we ver, because P 
ik depends on 

the global geometry of the radiation field, no closure in the form P 
ik 

= f ( E , F 
i ) can be exact in general. 

THC M1 adopts the so-called Minerbo closure , which is exact 

in two limits: (1) the optically thick limit in which matter and 

radiation and in thermodynamic equilibrium and (2) the propagation 

of radiation from a point source (at large distances) in a transparent 

medium. We consider these two cases separately below. 

2.1 Optically thick limit 

In the optically thick limit, in which matter and radiation are in 

equilibrium, the radiation pressure tensor is isotropic in the fluid 

frame 

K αβ = 
1 

3 
J ( g αβ + u αu β ) , (6) 

where g αβ is the space-time metric. The stress energy tensor reads 

T αβ = 
4 

3 
J u 

αu β + H 
αu β + H βu 

α + 
1 

3 
J δα

β , (7) 

where δα
β is the Kronecker delta. The radiation pressure tensor in 

the laboratory frame is written as 

P αβ = γαγ γβδT 
γ δ = 

4 

3 
J W 

2 υαυβ

+ γαγ H 
γ υβW + γγβH 

γ υαW + 
1 

3 
J γαβ , (8) 

where W = −u αn α is the fluid Lorentz factor and υα = 
1 
W γ

α
βu 

β is 

the fluid three velocity. Since M1 evolves ( E , F 
i ), it is necessary to 

reformulate equation ( 8 ) in terms of these variables. To this aim, we 

exploit the decomposition of equation ( 1 ) to write 

E = T αβn αn β = 
4 

3 
J W 

2 − 2 H αn αW −
1 

3 
J , (9) 

F α = −γαβn μT βμ = 
4 

3 
J W 

2 υα + W H α + W H 
βn β ( n α − υα) . (10) 

Since H 
α is orthogonal to u α , it is possible to project equation ( 10 ) 

to find 

F αu 
α = 

4 

3 
J W ( W 

2 − 1) − W H 
βn β ( W + W 

−1 ( W 
2 − 1)) 

= 
4 

3 
J W ( W 

2 − 1) − H 
βn β (2 W 

2 − 1) 

= 

[
4 

3 
J W 

2 − 2 H 
βn βW −

1 

3 
J 

]
W − J W + H 

αn α . 

The term in parenthesis in the last expression is the RHS of equation 

( 9 ), so we conclude that 

H 
αn α = F αu 

α − EW + J W . (11) 

Substituting this into equation ( 9 ) we find 
(

2 

3 
W 

2 + 
1 

3 

)
J = E(2 W 

2 − 1) − 2 W 
2 F αυ

α . (12) 

This equation can be used to e v aluate J gi ven the e volved fluid 

and radiation quantities. Determining H 
α is more complex, but 

fortunately only its projection on the t = const hypersurface is 

required. To find it, we use equation ( 10 ) to write 

W H 
α = F 

α −
4 

3 
J W 

2 υα − W H 
βn β ( n α − υα) (13) 

and 

γ α
βH 

β = 
F 

α

W 
−

4 

3 
J W υα + υαH 

βn β

= 
F 

α

W 
−

4 

3 
J W υα + υα

[
W F 

βυβ − EW + J W 
]
. (14) 

We can thus e v aluate the radiation pressure tensor by combining 

equations ( 8 ), ( 12 ), and ( 14 ). 

2.2 Optically thin limit 

In the optically thin limit, we assume that radiation is streaming at the 

speed of light in the direction of the radiation flux. This ansatz is well 
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verified for radiation propagating at large distances from a central 

source. In this case, the radiation pressure tensor can be written 

as 

P αβ = 
E 

F μF μ
F αF β . (15) 

We remark that, differently from the optically thick limit, the 

optically thin limit is not unique. It is instead determined by the 

global geometry of the radiation field. This choice of the optically 

thin limit is also responsible for the appearance of ‘radiation shocks’ 

in M1 calculations. These artefacts emerge when radiation beams 

from different directions intersect. In these cases, the M1 method 

will force radiation to stream in the direction of the total (weighted 

and averaged) radiation flux causing neutrinos to interact in an 

unphysical manner. To quantify the impact of such artefact, we 

perform calculations in which the optically thick closure is used 

throughout the simulation domain. This is the so-called Eddington 

closure . It is not affected by radiation shocks, since it preserves the 

linearity of the transport operator. Ho we ver, it predicts a maximum 

propagation speed of neutrinos of c √ 
3 

and leads to substantial artificial 

diffusion (radiation can diffuse past obstacles that would otherwise 

cause shadows to appear). 

2.3 Minerbo closure 

The Minerbo closure combines the optically thin and optically thick 

limits as 

P αβ = 
3 χ − 1 

2 
P 

thin 
αβ + 

3(1 − χ ) 

2 
P 

thick 
αβ , (16) 

where χ ∈ 
[

1 
3 , 1 

]
is the so-called Eddington factor, which is taken 

to be 

χ ( ξ ) = 
1 

3 
+ ξ 2 

(
6 − 2 ξ + 6 ξ 2 

15 

)
, (17) 

where 

ξ 2 = 
H αH 

α

J 2 
. (18) 

In the optically thick regions of the flow H α ≃ 0 and χ ≃ 
1 
3 , so 

P αβ ≃ P 
thick 
αβ . Conversely, in the optically thin regions ξ ≃ 1 and χ

≃ 1, so P αβ ≃ P 
thin 
αβ . It is important to remark that ξ is computed 

using H α and J , instead of F α and E . This is because F α is not 

guaranteed to be small in the optically thick limit if the background 

flow is moving. On the other hand, the knowledge of the M1 evolved 

quantities, E and F 
α , is not immediately sufficient to calculate H α : it 

is necessary to also know P αβ . Equations ( 16 ), ( 17 ), and ( 18 ) need 

to be solved numerically for χ using a root finding scheme. To this 

purpose, we adopt the Brent–Dekker method as implemented in the 

GNU Scientific Library (Galassi 2009 ). 

2.4 Neutrino number density 

Weak reactions conserve the total lepton number of the system, but 

they can alter the electron fraction of the matter. For this reason, 

it is desirable to also evolve the number density of neutrinos. To 

this aim, we follow the phenomenological approach proposed by 

Foucart et al. ( 2016b ) and, for each neutrino species, we introduce 

a neutrino number current N 
α
( ν) , with ν ∈ { νe , ̄νe , νx } . The neutrino 

number density in the fluid frame is 

n = −N 
αu α, (19) 

where we have suppressed once again the index · ( ν) .The continuity 

equation for neutrinos reads 

∇ αN 
α = 

√ 
−g 

(
η0 − κ0 

a n 
)
, (20) 

where g is the determinant of the space-time metric and κ0 
a and 

η0 are the neutrino number absorption and emission coefficients. 

Equation ( 20 ) is exact, but like the neutrino energy and momentum 

equations ( 4 ), it is also not closed. The closure we adopt for equation 

( 20 ) is 

N 
α = nf α = n 

(
u 

α + 
H 

α

J 

)
. (21) 

Since H 
αu α = 0, this closure is consistent with equation ( 19 ). The 

closure assumes that the neutrino number and energy flux are aligned. 

While this closure would be exact if neutrinos had a single energy, 

it is not for the energy-integrated fluxes in general. The closure on 

the neutrino number flux ( 21 ) and neutrino pressure tensor ( 16 ), the 

simplified treatment of the energy dependence of neutrino absorption 

and scattering opacities (Section 3.2.3 ), and the fact that we neglect 

neutrino oscillations are the only modelling assumptions in THC M1 . 

In 3 + 1 form equation ( 20 ) becomes 

∂ t 
(√ 

γ nŴ 
)

+ ∂ i 
(
α
√ 

γ nf i 
)

= α
√ 

γ
(
η0 − κ0 

a n 
)
, (22) 

where 

Ŵ = αf 0 = W −
1 

J 
H 

αn α, f i = W 

(
υ i −

β i 

α

)
+ 

H 
i 

J 
. (23) 

When computing Ŵ, we follow Foucart et al. ( 2016b ) and rewrite it 

as 

Ŵ = −f αn α = W 

(
E − F αυ

α

J 

)
, (24) 

where we have used the fact that 

− H 
μn μ = W ( E − J − F 

αυα) . (25) 

3  N U M E R I C A L  I MPLEMENTATI ON  

The M1 equations can be summarized as 

∂ t U + ∂ i F 
i ( U ) = G ( U ) + S ( U ) , (26) 

where 

U = 

⎛ 

⎝ 

√ 
γ nŴ √ 
γE √ 
γF k 

⎞ 

⎠ , (27) 

F 
i = 

⎛ 

⎝ 

α
√ 

γ nf i √ 
γ [ αF 

i − β i E] √ 
γ
[
αP 

i 
k − β i F k 

]

⎞ 

⎠ , (28) 

S = 

⎛ 

⎝ 

α
√ 

γ [ η0 − κ0 
a n ] 

−α
√ 

γS 
μn μ

α
√ 

γS 
μγkμ

⎞ 

⎠ , (29) 

and 

G = 

⎛ 

⎝ 

0 

α
√ 

γ [ P 
ik K ik − F 

i ∂ i log α] √ 
γ
[
F i ∂ k β

i − E∂ k α + 
α
2 P 

ij ∂ k γji 

]

⎞ 

⎠ . (30) 

Among these terms, the coupling with matter S is stiff and cannot 

be treated using an explicit time integration strategy. Since S 
μ is a 

function of ( E , F 
i ) through the (non-linear) closure of the M1 scheme, 

the matter coupling is not only stiff, but also non-linear. Our code 

is the first M1 code in GR to treat this term in full generality in the 

merger context. On the other hand, if the opacity coefficients are 
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kept fixed during the update of the radiation quantities, the number 

density equation formally decouples from the others, so it can be 

treated separately. 

THC M1 integrates equation ( 26 ) using a semi-implicit scheme. 

Given the solution U 
( k) at time t = k � t , we compute the solution at 

the next time-step U 
( k+ 1) in two main steps: 

(i) 
U 

∗ − U 
( k) 

�t 
= −∂ i F 

i [ U 
( k) ] + G [ U 

( k) ] + S [ U 
∗] , 

(ii) 
U 

( k+ 1) − U 
( k) 

�t 
= −∂ i F 

i [ U 
∗] + G [ U 

∗] + S [ U 
( k+ 1) ] . 

In particular, the advection terms and the metric sources are treated 

explicitly, as discussed below, while the coupling with matter is 

treated implicitly. Fluid quantities are kept fixed during the radiation 

update until the end of the second step, when matter energy and 

momentum densities, as well as the electron fraction, are updated 

according to energy, momentum, and lepton number conservation. 

Conservation is also enforced by limiting the changes in the radiation 

quantities that would correspond to ne gativ e matter energy density, 

or to electron fractions outside the boundaries of the EOS table 

(typically 0 ≤ Y e ≤ 0.6). The treatment of the adv ectiv e and source 

terms are discussed in detail belo w. The deri v ati ve of the metric 

terms appearing in G are discretized using standard second order 

finite differencing. 

3.1 Radiation advection 

THC M1 uses a second order flux-limited conserv ati ve finite- 

differencing scheme to evolve the radiation fields. In particular, 

numerical fluxes are computed separately for each variable and 

direction-by-direction. These are then combined in a directionally 

unsplit fashion. For simplicity, we discuss the treatment of the 

radiation fluxes for one of the evolved variables, say u , in the x - 

direction. 

Let u i be the evolved quantity at the coordinate position x i . Then, 

THC M1 approximates the deri v ati ve of the flux f ( u ) at the location 

x i as 

∂ x f ( u ) ≃ 
F i−1 / 2 − F i+ 1 / 2 

�x 
, (31) 

where F i − 1/2 and F i + 1/2 are numerical fluxes defined at x i ∓ �x 
2 , 

respectiv ely. The flux es are constructed as linear combination of 

a non-dif fusi ve second order flux F 
HO and a dif fusi ve first order 

correction F 
LO : 

F i+ 1 / 2 = F 
HO 
i+ 1 / 2 − A i+ 1 / 2 ϕ i+ 1 / 2 

(
F 

HO 
i+ 1 / 2 − F 

LO 
i+ 1 / 2 

)
. (32) 

The term ϕ i + 1/2 is the so-called flux limiter (LeVeque 1992 ), while 

A i + 1/2 is a coefficient introduced to switch off the diffusive correction 

at high optical depth (more below). The role of the flux limiter is 

to introduce numerical dissipation in the presence of unresolved 

features in the solution u and ensure the non-linear stability of the 

scheme. In particular, if A i + 1/2 ϕ i + 1/2 = 0 the second-order flux is 

used, while if A i + 1/2 ϕ i + 1/2 = 1, then the low order flux is used. A 

standard second order non-dif fusi ve flux is used for F 
HO , while the 

Lax–Friedrichs flux is used for F 
LO : 

F 
HO 
i+ 1 / 2 = 

f ( u i ) + f ( u i+ 1 ) 

2 
, (33) 

F 
LO 
i+ 1 / 2 = 

1 

2 
[ f ( u i ) + f ( u i+ 1 )] −

c i+ 1 / 2 

2 
[ u i+ 1 − u i ] . (34) 

The characteristic speed in the Lax–Friedrichs flux c i is taken to be 

the maximum value of the speed of light between the right and left 

cells 

c i+ 1 / 2 = max 
a∈{ i ,i + 1 } 

{∣∣αa 

√ 
γ xx 

a ± βx 
a 

∣∣} . (35) 

We remark that it is known that the M1 system can, in some 

circumstances, lead to acausal (faster than light) propagation of 

neutrinos in GR (Shibata et al. 2011 ). For this reason, one might 

argue that a better choice of the characteristic velocity for the Lax–

Friedrichs formula would have been given by the eigenvalue of the 

Jacobian of F . These values are known analytically (Shibata et al. 

2011 ), ho we ver in our preliminary tests we found that the use of the 

full eigenvalues resulted did not impro v e on the stability or accuracy 

of the M1 solver. 

The flux limiter is computed using a standard minmod approach: 

ϕ i+ 1 / 2 = min 

[
1 , min 

(
u i − u i−1 

u i+ 1 − u i 
, 
u i+ 2 − u i+ 1 

u i+ 1 − u i 

)]
. (36) 

The resulting scheme is formally second-order accurate away from 

shocks or extrema in the solution. 

The coefficient A i + 1/2 is computed as 

A i+ 1 / 2 = min 

(
1 , 

1 

�xκave 

)
, (37) 

where 

κave = 
1 

2 
[( κa ) i + ( κa ) i+ 1 + ( κs ) i + ( κs ) i+ 1 ] . (38) 

In particular, A i + 1/2 = 1 in optically thin regions, while A i + 1/2 ≪ 1 

at high optical depths ( �xκave is the optical distance between x i and 

x i + 1 ). In the optically thick limit F i+ 1 / 2 ≃ F 
HO 
i+ 1 / 2 and the scheme 

reduces to a centred second order scheme, which is asymptotic pre- 

serving (Rider & Lowrie 2002 ). This means that THC M1 can capture 

the optically thick limit without having to artificially replace the 

adv ectiv e terms with the flux obtained from the diffusion equation, 

which is known to be ill posed 1 in special and general relativity 

(Hiscock & Lindblom 1985 ; Andersson & Lopez-Monsalvo 2011 ). 

This can be shown easily for an optically thick stationary medium 

in flat space-time. To keep our notation simple, we also restrict 

ourselves to the discussion of the 1D case, ho we ver the general- 

ization to 3D is straightforward. In this case, the radiative transfer 

equations reduce to 

∂ t E + ∂ x F 
x = κa ( B − E) , 

∂ t F 
x + 

1 

3 
∂ x E = −( κa + κs ) F 

x , (39) 

where B is the blackbody function. In the limit of L ( κa + κ s ) ≫ 1, 

where L is a characteristic length scale of the system, the radiation 

flux becomes 

F x = 
−1 

3( κa + κs ) 
∂ x E, (40) 

and the energy equation reduces to the heat diffusion equation: 

∂ t E − ∂ x 

(
1 

3( κa + κs ) 
∂ x E 

)
= κa ( B − E) . (41) 

A similar deri v ation applied to the THC M1 discretization of equation 

( 39 ), shows that the numerical discretization of the radiation energy 

1 Here we say that a mathematical problem is ‘ill posed’ if it is not well posed 

according to Hadamard. That is if it does not (1) admit a single solution that 

(2) depends continuously on the initial/boundary data. 
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flux reduces to a finite differencing scheme for the heat equation: 

[ ∂ x F 
x ] i ≃ 

F 
x 
i+ 1 − F 

x 
i−1 

2 �x 
= 

−1 

3( κa + κs ) 

(
E i+ 2 − 2 E i + E i−2 

(2 �x) 2 

)
. 

(42) 

In the last step, we have also assumed the absorption coefficients to 

be constant in space for simplicity. Ho we ver, a v alid scheme for the 

diffusion equation is also obtained for non-constant coefficients. 

Although the scheme described by equation ( 42 ) is a valid 

discretization of the heat equation, it can suffer from an odd–even 

decoupling instability, as evident from the fact that the solution at x i 
does not depend on the solution at x i − 1 and x i + 1 . To suppress this 

instability, we check if 

( u i − u i−1 )( u i+ 1 − u i ) < 0 and ( u i − u i−1 )( u i+ 1 − u i ) < 0 . 

If this condition is satisfied, we set A i + 1/2 = 1. We find this to 

be sufficient to obtain stable evolution in the scattering dominated 

regime. 

3.2 Radiation-matter coupling 

The implicit update of the neutrino number densities does not pose 

particular challenges and reads (in the first substep of the method): 

N 
∗ = 

N 
( k) − �t∂ i 

[
α
√ 

γ n ( k) f i 
]
+ �t 

[
α
√ 

γ η0 
]

1 + �tακ0 
a Ŵ −1 

, (43) 

where N = 
√ 

γ nŴ, and Ŵ is given by equation ( 23 ). n ∗ is obtained 

from N 
∗ using the Ŵ recomputed with the updated neutrino fields 

( E , F i ). The flux terms are computed as discussed in the previous 

section. 

The implicit part of the time update for the radiation energy 

quantities is significantly more complex, since it involves the solution 

of a 4 × 4 system of non-linear equations. These are in the form 

U 
∗ = W + �t S [ U 

∗] , (44) 

where W contains the explicit terms of the scheme. For example, in 

the first substep of the update 

W = U 
( k) + �t( −∂ i F 

i [ U 
( k) ] + G [ U 

( k) ]) . (45) 

We employ the Powell’s Hybrid method as implemented in the GNU 

scientific library (Galassi 2009 ) to solve ( 44 ). This algorithm requires 

the e v aluation of the Jacobian of the system as well as a suitable 

initial guess. Both are discussed in detail belo w. Before di ving into 

the details, we remark that equation ( 44 ) requires the solution of a 

nested non-linear equation for the closure. THC M1 is the first GR 

code to treat these terms without approximations and it is thus able to 

correctly captured the trapping of neutrinos in optically thick rapidly 

moving media. In some rare situations, the non-linear solver can fail 

to converge to the desired accuracy. This typically happens in the 

optically thick limit, since the source term become stiff only in this 

limit. In such cases, we linearize the equations by fixing χ = 1/3. 

Finally, we remark that, to save computational resources, we treat 

the source term explicitly in the optically thin (non-stiff) limit. 

3.2.1 Source Jacobian 

The undensitized collisional source terms S [ U ] are composed of the 

projections 

− αn αS 
α = αW 

[
η + κs J − κas ( E − F i υ

i ) 
]
, (46) 

+ αγiαS 
α = αW ( η − κa J ) υi − ακas H i , (47) 

where κas = κa + κs . For the computation of the Jacobian matrix 

J ab = ∂ S a /∂ U b ( a , b = 0,..., 3) the density and momentum in 

the laboratory frame must be expressed in terms of the Eulerian 

quantities: 

J ( E, F i ) = B 0 + d thin B thin + d thick B thick , (48) 

H i ( E, F i ) = −( a υ 0 + d thin a υ thin + d thick a υ thick ) υi , (49) 

− d thin a f thin 
ˆ f i − ( a F 0 + d thick a F thick ) F i , (50) 

with ˆ f i = F i / 
√ 

F k F k = F i /F , the definitions 

d thick = 
3 

2 
(1 − χ ) , d thin = 1 − d thick , (51) 

and the coefficients 

B 
0 = W 

2 [ E − 2( υ · F )] , (52) 

B thin = W 
2 E( υ · ˆ f ) 2 , (53) 

B thick = 
W 

2 − 1 

2 W 2 + 1 
[4 W 

2 ( υ · F ) + (3 − 2 W 
2 ) E] , (54) 

a υ0 = W 
3 [ E − 2( υ · F )] = W B 0 , (55) 

a υ thin = W 
3 E( υ · ˆ f ) 2 = W B thin , (56) 

a υ thick = W 
W 

2 − 1 

2 W 2 + 1 
[4 W 

2 ( υ · F ) + (3 − 2 W 
2 ) E] 

+ 
W 

2 W 2 + 1 
[(2 W 

2 − 1)( υ · F ) + (3 − 2 W 
2 ) E] (57) 

= W B thick + 
W 

2 W 2 + 1 
[(2 W 

2 − 1)( υ · F ) + (3 − 2 W 
2 ) E] , 

a f thin = W E( υ · ˆ f ) , (58) 

a F0 = −W , (59) 

a F thick = W υ2 . (60) 

The contractions between the fluid’s velocity and the radiation 

momentum are shortly indicated as, e.g. F i υ
i = υ · F . The Jacobian 

is then given by 

J 00 = −αW 

(
κas − κs 

∂J 

∂E 

)
, (61) 

J 0 j = αW κs 
∂J 

∂F j 
+ αW κas υ

j , (62) 

J i0 = −α

(
κas 

∂H i 

∂E 
+ W κa 

∂J 

∂E 
υi 

)
, (63) 

J ij = −α

(
κas 

∂H i 

∂F j 
+ W κa υi 

∂J 

∂F j 

)
. (64) 

The necessary deri v ati ves are 

∂J 

∂E 
= W 

2 + d thin ( υ · ˆ f ) 2 W 
2 + d thick 

(3 − 2 W 
2 )( W 

2 − 1) 

(1 + 2 W 2 ) 
, (65) 

∂J 

∂F j 
= J υF υ

j + J 
f 
F 

ˆ f j , (66) 

∂H i 

∂E 
= H 

υ
E υi + H 

f 
E 

ˆ f i , (67) 

∂H i 

∂F j 
= H 

δ
F δ

j 
i + H 

υυ
F υi υ

j + H 
ff 
F 

ˆ f i ˆ f j + H 
vf 
F υi 

ˆ f j + H 
f v 
F 

ˆ f i υ
j , 

(68) 
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where the factors X 
z 
Y in the deri v ati ves ∂ X / ∂ Y are the common terms 

multiplying the terms with inde x es z 
j 
i . Specifically, they are 

J υF = 2 W 
2 

( 

−1 + d thin 
E( υ · ˆ f ) 

F 
+ 2 d thick 

W 
2 − 1 

1 + 2 W 2 

) 

, (69) 

J 
f 
F = −2 d thin 

W 
2 E( υ · ˆ f ) 2 

F 
, (70) 

H 
υ
E = W 

3 

(
−1 − d thin ( υ · ˆ f ) 2 + d thick 

2 W 
2 − 3 

1 + 2 W 2 

)
, (71) 

H 
f 
E = −d thin W ( υ · ˆ f ) , (72) 

H 
δ
F = W 

( 

1 − d thick υ
2 − d thin 

E( υ · ˆ f ) 

F 

) 

(73) 

H 
υυ
F = 2 W 

3 

[ 
1 − d thin 

E( υ · ˆ f ) 

F 
− d thick 

(
υ2 + 

1 

2 W 2 (1 + 2 W 2 ) 

)] 
, 

(74) 

H 
ff 
F = 2 d thin 

W E( υ · ˆ f ) 

F 
, (75) 

H 
vf 
F = 2 d thin 

W 
3 E( υ · ˆ f ) 2 

F 
, (76) 

H 
f v 
F = −d thin 

W E 

F 
. (77) 

The calculation of the abo v e terms proceed as follows. The Eulerian 

multipole ( E , F i ) enter the term −αn αS 
α both directly and via 

the fluid frame multipoles ( J , H i ). In particular, F i enters only via 

combinations υ · F (directly and in B 0 , B thin ) and ( υ · ˆ f ) 2 (in B thin ). 

The rele v ant deri v ati ves are 

∂F i 

∂F j 
= δ

j 
i (78) 

∂( υ · F ) 

∂F j 
= υj (79) 

∂ ˆ f i 

∂F j 
= 

1 

F 
δ

j 
i −

1 

F 

ˆ f i ˆ f j (80) 

∂( υ · ˆ f ) 

∂F j 
= 

1 

F 
υj −

( υ · ˆ f ) 

F 

ˆ f j (81) 

∂( υ · ˆ f ) 2 

∂F j 
= 2 

( υ · ˆ f ) 

F 
υj − 2 

( υ · ˆ f ) 2 

F 

ˆ f j (82) 

Consequently, the deri v ati ves ∂ J / ∂ F j have terms proportional to υ j 

and to ˆ f j . The Eulerian multipoles ( E , F i ) do not enter directly 

the terms αγiαS 
α . The dependence on F i of H i is either in terms 

proportional to ( υ · ˆ f ) 2 (in a υ thin ), υ · ˆ f (in a f thin ), υ · F (in 

a υ thick ), or in the direct terms explicitly indicated in equation (15). 

Consequently, the deri v ati ves ∂ H i / ∂ F j have terms proportional to δ
j 
i , 

to υ i υ
j and to F i F 

j . 

A particular cases of the abo v e calculation is the linearization 

around the zero state U 0 = 0 and the zero fluid’s velocity limit υ i = 

0. For the former case, the undensitized collisional term is 

S (0) = [ αηW , αηW υi ] , (83) 

and the Jacobian matrix simplifies: since ˆ f i = 0, the first column and 

first row are proportional to υ i and υ j , respectively, while the spatial 

block has a term proportional to δij and a term proportional to υ i υ
j . 

A simple analytical inversion can be calculated with any computer 

algebra software. For a static fluid υ i = 0 ( E = J and F i = H i ), one 

obtains 

S ( U 0 ) = [ αη − κa E, −ακas F i ] , (84) 

and the Jacobian matrix is diagonal 

J 00 = −ακa , (85) 

J ij = −ακas δij . (86) 

The THC M1 implementation is different from most of the other 

M1 schemes in general relativity. In particular, THC M1 and Anninos 

& Fragile ( 2020 ) are the only codes fully treating the non-linear 

terms in the radiation matter coupling. In Roberts et al. ( 2016 ) the 

linearization is performed about the zero state and only retains some 

of the ( υ · ˆ f ) terms in the Jacobian matrix. In Foucart et al. ( 2015 ) 

and Foucart et al. ( 2016b ), the linearization is also performed about 

the zero state and the angle between the velocity and the neutrino 

flux is kept fixed, i.e. ( υ · F ) = const and ( υ · ˆ f ) = const . In Weih, 

Oli v ares & Rezzolla ( 2020a ), the linearization is also performed 

about the zero state and P 
ij is assumed to be independent from U . 

Hence the projections of P 
ij appear explicitly in the U terms, but the 

P 
ij (closure) is not included in the Jacobian matrix. 

3.2.2 Blackbody function 

Emissi vity, absorption, and scattering coef ficients are kept fixed 

throughout the implicit time integration. This can cause the numerical 

scheme to oscillate if matter is thrown out of equilibrium o v er a small 

time-scale compared with � t . To a v oid this problem, first we compute 

the blackbody function for neutrinos in two ways. 

(i) When the radiation–matter equilibration time 

τ = ( c 
√ 

κa ( κa + κs ) ) 
−1 is larger than � t , then we set 

B ν = 
4 π

( ch ) 3 
( k B T ) 

4 F 3 ( ην) , (87) 

where F 3 is the Fermi function of the order of 3 

F k ( η) = 

∫ ∞ 

0 

x k 

e x−η + 1 
d x (88) 

and ην = μν /( k B T ) is the de generac y parameter of the neutrinos. The 

equilibrium number density of neutrinos is computed as 

B ν = 
4 π

( ch ) 3 
( k B T ) 

3 F 2 ( ην) . (89) 

The temperature T is taken to be the fluid temperature, while the 

neutrino chemical potential are e v aluated at equilibrium using the 

EOS at the fluid density, temperature, and electron fraction Y e , sepa- 

rately for each neutrino fla v our. In particular, μνe = μe + μp − μn , 

μν̄e = −μνe , and μνx = 0. 

(ii) If τ is smaller than � t /2, then the blackbody function is 

computed again using ( 87 ), but now T and Y e are taken to be the 

equilibrium temperature and electron fraction that matter would 

achieve under the assumption of weak equilibrium with neutrinos, 

and lepton number and energy conservation (Perego, Bernuzzi & 

Radice 2019 ). In particular, we solve the following equations 

Y l = Y e, eq + Y νe ( Y e, eq , T eq ) − Y ̄νe ( Y e, eq , T eq ) , (90) 

u = e( Y e, eq , T eq ) + 
ρ

m b 

[ 
Z νe ( Y e, eq , T eq ) 

+ Z ̄νe ( Y e, eq , T eq ) + 4 Z νx ( T eq ) 
] 
, (91) 

where Y l is the total lepton fraction, inferred from both fluid and 

radiation quantities, u is the total (matter and neutrino-radiation) 

energy density, and Z × denotes the energy fraction of the species 
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×. These equations are solved for T eq and Y e , eq under the assump- 

tion of weak equilibrium, that is T matter = T νx = T eq , Y e = Y e , eq , 

μνe = −μν̄e , μνx = 0, and μνe = μe + μp − μn . The rationale for 

this choice is that it captures the correct equilibrium distribution for 

neutrinos, while the blackbody function of point (i) is valid for a 

mixture of matter and radiation in a thermal and lepton bath, or for 

short times compared with the equilibration time. 

(iii) For intermediate values of τ we linearly interpolate between 

the prescriptions from points (i) and (ii). 

Given the blackbody functions, we compute the νe and ̄νe emission 

coefficients and the νx absorption coefficients using Kirchhoff’s law. 

That is, we set 

ηνe = κa,νe B νe , ην̄e = κa, ̄νe B ̄νe , κa,νx = 
B νx 

ηνx 

. (92) 

We apply the same treatment to the neutrino number emissivities and 

opacities, but using B instead of B . 

3.2.3 Opacity correction 

F ollowing F oucart et al. ( 2016b ), we correct absorption and scattering 

opacities by a factor 

(
ε ν

ε ν, eq 

)2 

, 

where ε ν is the average incoming neutrino energy and ε ν, eq is 

the average neutrino energy at the thermodynamic equilibrium 

(computed as in the previous section). This correction is applied 

prior to the imposition of Kirchhoff’s law, to ensure the preservation 

of the correct equilibrium. 

3.2.4 Initial guess 

In order to initialize the implicit solver for equation ( 44 ) we proceed 

as follows. 

(i) We update the radiation fields according to the non-stiff part of 

the equations. For the first substep this update reads: 

˜ U = U 
( k) + �t( G [ U 

( k) ] − ∂ i F 
i [ U 

( k) ]) . (93) 

A similar formula is used for the second substep, but using U 
∗ to 

e v aluate the terms in the parenthesis. 

(ii) The M1 closure is updated and quantities are transformed to 

the fluid frame to obtain ˜ J and ̃  H i . 

(iii) We compute new values ˆ J and ̂ H i in the fluid rest-frame 

according to 

ˆ J = ˜ J + 
�t 

W 
( η − κa 

ˆ J ) , (94) 

̂ H i = ̃  H i −
�t 

W 
( κa + κs ) ̂  H i . (95) 

̂ H 0 is obtained from the requirement that ˆ H αu 
α = 0. 

(iv) Finally, the initial guess for equation ( 44 ) is obtained by 

transforming the radiation quantities to the laboratory frame. For 

this transformation we take χ = 1/3, since the initial guess becomes 

important only in the optically thick limit. 

It is important to remark that ˆ J and ˆ H α are exact solution only at 

leading order in v/ c , when u α∂ α ≃ W ∂ t . It would be incorrect to take 

the obtained ˆ E and ˆ F i as the updated solution, even if we were to 

update the closure before boosting back the solution to the laboratory 

frame. Ho we ver, THC M1 only uses ˆ E and ˆ F i as initial guesses for 

Figure 1. Optically thin advection of radiation through a large velocity 

discontinuity. The frame in which we compute the closure has a velocity 

0.87 c for z < 0 and a velocity of −0.87 c for z > 0 (the relative Lorentz 

factor between left and right state is 7). No artefact appears as THC M1 

advects a pulse of radiation through the interface at z = 0. 

the full non-linear solver. An exception, is the test in Section 4.3 , 

where we show that using the ˆ E and ˆ F i as the new states for the 

radiation fields, instead of performing a non-linear solve, result in 

large errors in the case of moving media. 

4  TEST  PROBLEMS  

We validate THC M1 by performing a series of demanding tests 

meant to independently verify different components of the code. This 

section describes the most representative tests we have performed. 

Most of the tests discussed here are fairly standard and have been 

considered by a number of authors, although with some differences 

in the setup (e.g. Audit et al. 2002 ; Vaytet et al. 2011 ; Radice et al. 

2013 ; McKinney et al. 2014 ; Foucart et al. 2015 ; Skinner et al. 2019 ; 

Anninos & Fragile 2020 ; Weih et al. 2020a ) 

4.1 Optically thin advection through a velocity jump 

As a first test we consider the propagation of beam of radiation in 

an optically thin medium. We assume slab geometry and consider 

initial data with E( t = 0 , z) = H ( z + 
1 
2 ) (arbitrary units), where H 

is the Heaviside function, and F 
z = E . The background fluid velocity 

is chosen to be: 

υz ( z) = 

{
0 . 87 , z < 0 , 

−0 . 87 , z > 0 . 

That is, the medium is moving with Lorentz factor W = 2 in the grid 

frame and the two parts of the domain with z < 0 and z > 0 have a 

relative Lorentz factor of 7. The fluid is taken to be transparent. We 

set �z = 0.01. The time-step is chosen so as to have a CFL of 0.5. It 

is important to emphasize that, although matter and radiation do not 

interact in this test, because our closure is defined in the fluid frame 

(equation 18 ), the equations become stiff in the limit in which W ≫
1, so this is actually a rather demanding test. 

Fig. 1 shows the radiation energy density profile at time t = 1, 

after the beam has propagated through the velocity jump at z = 0. 

As it can be seen from the figure, THC M1 transports the radiation 

front through the shock without creating artificial oscillations. The 

discontinuity is spread o v er man y grid cells, since THC M1 uses a 

rather dissipative central scheme to handle the transport operator in 

the M1 formalism (Section 3.1 ). Ho we ver, since neutrino sources do 
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Figure 2. Diffusion of radiation in a purely scattering medium. Initially the 

radiation has a square profile. The reference profile is a semi-analytic solution 

of the diffusion equation. THC M1 correctly capture the diffusion limit. We 

measure first order convergence for this test problem. 

not switch on abruptly, a sharp preservation of the radiation front is 

not a critical modelling requirement for our applications. Being able 

to handle transport through fast moving media is, instead, critical 

for NS merger applications, since the outflows produced in these 

events can be mildly relativistic ( W � 2) (Hotokezaka et al. 2018 ; 

Nedora et al. 2021a ). This test demonstrates that THC M1 meets this 

requirement. 

4.2 Diffusion limit 

Another requirement for the modelling of NS mergers is to correctly 

handle the diffusion of neutrinos from the central remnant on secular 

time-scales. As discussed in Section 3.1 , THC M1 uses a numerical 

scheme designed to correctly capture the scattering dominated limit. 

To validate it, we consider a purely scattering medium of constant 

density ρ = 1 (arbitrary units) and with scattering opacity κ s = 

10 3 . As in the previous test, we assume slab geometry, so this is 

ef fecti vely a 1D problem. Initially, radiation is concentrated in the 

region [ − 0.5, 0.5] and is spatially homogeneous and isotropic in 

this region. That is, E ( t = 0, z) = H ( z + 0.5) − H ( z − 0.5) and F 
i 

= 0. In these conditions, when considering time-scales longer than 

the equilibration time, the radiative transfer equation can be well 

approximated by the diffusion equation: 

∂ t E = 
1 

3 κs 
∂ 2 x E. (96) 

THC M1 solves the equations in hyperbolic form ( 4 ). Typical hyper- 

bolic solv ers hav e numerical dif fusion with an ef fecti ve dif fusion 

coefficient νnum ∼ ( �z) −1 . In essence, this means that standard 

numerical schemes fail to predict the correct diffusion of radiation 

in a scattering dominated region, unless the mean free path of the 

neutrinos (or photons) is well resolved on the grid (Rider & Lowrie 

2002 ; McClarren & Lowrie 2008 ). Given that the mean free path of 

neutrinos at the centre of an NS merger remnant is of the order of a 

few meters or less, the resolution requirements for merger simulations 

would be extremely demanding. To work around this issue, THC M1 

uses a special numerical scheme for which νnum → 0 when κ s ( �z) 

� 1 (see Section 3.1 ). In this respect, our approach is different from 

that of Foucart et al. ( 2015 ), which instead solve the heat diffusion 

equation in the scattering regime. 

Fig. 2 shows the radiation energy density profile at time t = 10 

at different resolution. The CFL is set to 0.625 in all calculations. 

Figure 3. Diffusion and advection of Gaussian pulse of radiation in a purely 

scattering moving medium. The medium is moving with velocity υ = 0.5. 

The reference profile is a translated semi-analytic solution of the diffusion 

equation. Our results show that it is essential to properly treat all of the 

source terms in the M1 equations to correctly capture the advection of trapped 

radiation. 

The reference solution is a semi-analytic solution of equation ( 96 ). 

We find that THC M1 captures the correct diffusion rate for radiation 

even when κ s ( �z) ≫ 1. The numerical solutions are non-oscillatory, 

even though the initial radiation profile is discontinuous and slope 

limiting is essentially disabled in the scattering dominated regime. 

We measure first order convergence in this test, which is the expected 

order of convergence given that the initial data are discontinuous. 

4.3 Diffusion limit in a moving medium 

Matter in NS mergers is not only optically thick, but also moving 

at mildly relativistic velocities. Correctly capturing the advection 

of trapped radiation in moving media is one of the key challenges 

in radiation hydrodynamics and is of crucial importance for both 

mergers and core-collapse supernovae (Nagakura et al. 2014 ; Chan 

& M ̈uller 2020 ). This requires a careful treatment of the radiation 

matter coupling in the stiff limit. 

To demonstrate that our code can handle this, we consider a 

constant density, purely scattering medium with ρ = 1 and κ s = 

10 3 , which we take to be moving towards the right with velocity υz 

= 0.5. Once again, we assume slab geometry. We setup a Gaussian 

pulse of radiation centred around the origin: 

E( t = 0 , z) = e −9 z 2 . (97) 

To initialize the radiation flux, we use equations ( 7 ), ( 9 ), and ( 10 ) 

under the assumption of fully trapped radiation ( H 
α = 0) to write 

J = 
3 E 

4 W 2 − 1 
, F i = 

4 

3 
J W 

2 υα . (98) 

The exact solution corresponds to a slowly diffusing and translating 

pulse of radiation. The baseline grid spacing adopted for this problem 

is �z = 0.01 and the CFL is fixed to 0.625. 

Fig. 3 shows the results obtained using different schemes. The 

reference profile is a semi-analytic solution of the diffusion equa- 

tion advected along the background fluid velocity. We find that 

THC M1 reproduce the correct solution when all the non-linear terms 

in the sources are consistently treated. This ensures that neutrinos will 

not be ‘left behind’ as the NS merger remnant, typically deformed 

into a bar (Shibata 2005 ), rotates. 
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Figur e 4. Conver gence of the THC M1 to the reference solution for the 

diffusion test in a moving medium. We find an approximate second order 

convergence. 

We remark that the solution of the full non-linear source term 

is computationally e xpensiv e, howev er cheaper alternatives fail to 

capture the correct behaviour of the trapped radiation. A first order 

in v/ c approach obtained by Lorentz transforming the radiation mo- 

ments to and from the reference frame as discussed in Section 3.2.4 

produces a stable ev olution, b ut predicts the wrong advection speed 

for the radiation energy (Fig. 3 ). Even worse, this approach predicts 

different advection speeds for the neutrino number densities (not 

shown) and the radiation energy density which produce large errors 

in the average neutrino energies. 

The treatment of the optically thick limit of ZelmaniM1 (Roberts 

et al. 2016 ), which is similar to the approach used in SpEC (Foucart 

et al. 2015 ), is also problematic and affected by two important 

issues. First, the dif fusi v e flux es corrected using the (acausal) heat 

diffusion equation significantly o v erestimate the rate of diffusion for 

the radiation, resulting in a significant broadening of the radiation 

pulse. Minor impro v ements in the diffusion rate can be obtained 

by implementing a better treatment using modified HLLE fluxes 

following Skinner et al. ( 2019 ). Secondly, because of the approxima- 

tion in the source terms, the ZelmaniM1 solution violates energy 

conservation and the radiation energy density increases with time 

(Fig. 3 ). The violation of energy conservation is exacerbated in this 

problem, because there is no back reaction of the radiation on to 

the matter. In a more realistic setting, ZelmaniM1 would enforce 

energy conservation, so the increase in the radiation energy density 

would come at the expense of the fluid kinetic energy. That is matter 

would experience an unphysical drag force driving it to rest in the 

grid frame. 

We perform additional simulations with �z = 0.16, 0.08, 0.04, and 

0.02 in addition to �z = 0.01. The L 
2 norm of the difference between 

the THC M1 solution with the complete treatment of the radiation- 

matter source terms and the semi-analytic solution is presented in 

Fig. 4 . Overall, we find second-order convergence for THC M1 in 

this test. 

4.4 Shadow test 

As a first multidimensional test, we consider the problem of a beam 

of radiation interacting with a semi-transparent cylinder with radius 

̟ = 1 centred at the origin. The absorption opacity in the cylinder is 

set to κa = 1 and the density to 1. Absorption is zero elsewhere. The 

scattering opacity κ s is set to zero. We initialize the radiation fields 

Figure 5. Shadow cast by an absorbing cylinder illuminated by a beam of 

radiation propagating from the left to the right. THC M1 correctly captures 

the formation of the shadow. 

to zero and inject a beam of radiation from the left of the domain 

with F 
x = E = 1. The grid spacing used in this test is � x = � y = 

0.0125 and the CFL is set to 0.4. 

Fig. 5 shows the radiation energy density at time t = 10, when the 

solution has achieved steady state. We observe some lateral diffusion 

of radiation and the formation of small unsteady oscillation in the 

radiation field in the w ak e of the cylinder. The latter are artefacts 

caused by the non-linear nature of the Minerbo closure. Nevertheless, 

THC M1 correctly captures the o v erall solution. The attenuation of 

radiation in the cylinder and the formation of a shadow behind it 

agree with the analytic solution for this problem. 

4.5 Homogeneous sphere 

The homogeneous sphere test has been considered by many authors, 

since it reproduces the typical geometry encountered in astrophysical 

applications. In this test an homogeneous sphere, which we take 

to be of radius r = 1, emits and absorbs radiation at a constant 

rate η = κa = 1. Scattering is neglected in this problem, so it 

is possible to compute an exact solution of the radiative transfer 

equations by numerical quadrature. This is an extremely idealized 

model of a hot protoneutron star or a neutron star merger remnant 

emitting neutrinos. We perform this test in full 3D and in Cartesian 

coordinates. The resolution adopted for this test is � x = � y = 

�z = 0.0125. This corresponds to about 80 points along the radius 

of the ‘star’, a typical resolution for production neutron star merger 

simulations. To reduce the computational costs, we impose reflection 

symmetry across the xy , xz , and yz planes and only simulate the part 

of the domain with x , y , z ≥ 0. The CFL is set to 0.3. 

Fig. 6 shows the radiation energy density as a function of radius 

in the diagonal direction at time t = 10, when the solution has 

reached steady state. THC M1 does not solve the full radiative transfer 

equations, so the numerical solution is not expected to converge to the 

e xact solution. Nev ertheless, the THC M1 solution shows e xcellent 

agreement with the analytic solution and even compares fa v ourably 

with the full-Boltzmann FP N solution presented in Radice et al. 

( 2013 ) for modest angular resolutions. 

4.6 Gravitational light bending 

Finally, we present a test validating the implementation of space- 

time curvature source terms in THC M1 . We study the propagation 
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Figure 6. Radiation from an homogeneous absorbing and emitting sphere of 

radius one. The reference solution is obtained by solving the radiative transfer 

equation. The THC M1 solution agrees well with the analytical solution. Small 

deviations are expected, since the adopted closure is not expected to reproduce 

the solution to the angle-dependent radiative transfer equations. 

Figure 7. Beam of radiation propagating in the meridional plane of a non- 

rotating black hole (BH) in Kerr–Schild coordinates. The mass of the BH is 

set to be one. The green lines show null geodesics. THC M1 correctly captures 

the bending of the beam of radiation in the strong gravitational field of the 

BH. 

of a beam of radiation in a black hole (BH) space-time described by 

the Kerr–Schild metric. The BH spin is set to zero and its mass to 

one (in geometrized units). The computational grid is centred at the 

location of the BH. We only consider the region near the meridional 

plane y = 0 and x , z > 0. We simulate a beam of radiation injected 

at the location x = 0 and z = 3.5 propagating towards the positive x - 

direction (see Fig. 7 ). In particular, we set E = 1 at the beam injection 

location. The fluxes F i are set so that αF 
i − β i E is along the x -axis 

and F i F 
i = 0.99 E 

2 . The resolution used for this test is � x = �z = 

0.025 and the CFL is set to 0.2. 

Fig. 7 shows the THC M1 solution at time t = 20, after steady 

state has been achieved. We also plot two analytically predicted 

trajectories for photons (null geodesics) in the same metric. THC M1 

correctly captures the bending of radiation due to the BH, indicating 

that curvature terms have been implemented correctly. The THC M1 

solution shows lateral diffusion of radiation comparable to other GR 

M1 codes (McKinney et al. 2014 ; Foucart et al. 2015 ; Weih et al. 

2020a ). This later diffusion is a numerical artefact. Ho we ver, we do 

not consider this to be as a significant issue for our approach, because 

isolated beams of radiation are never found in the astrophysical 

systems we intend to model. 

5  N E U T RO N  STAR  M E R G E R S  

As a first application of THC M1 , we consider the late inspiral and 

merger of a binary of two 1.364 M ⊙ NSs. We adopt the SRO(SLy4) 

EOS (SLy for brevity in the rest of the text; Douchin & Haensel 

2001 ; Schneider, Roberts & Ott 2017 ). To ease the comparison with 

previous results, we use the same set of reactions and opacities 

as in Radice et al. ( 2018b ). We construct initial data with an 

initial separation of 45 km using the Lorene pseudo-spectral code 

(Gourgoulhon et al. 2001 ). We have already considered this initial 

data in Endrizzi et al. ( 2020 ) and Nedora et al. ( 2021b ), to which we 

refer for more details. The evolution grid employs se ven le vels of 

adaptive mesh-refinement (AMR), with the finest grid having finest 

grid spacing of h = 0.25 G M ⊙/ c 2 , 0.167 G M ⊙/ c 2 and 0.125 G M ⊙/ c 2 , 

respectively denoted as VLR, LR, and SR setups. For this purpose, 

we use the Carpet AMR driver (Schnetter, Hawley & Hawke 

2004 ; Reisswig et al. 2013 ) of the Einstein Toolkit (Loffler 

et al. 2012 ; Etienne et al. 2021 ). Carpet implements the Berger- 

Oilger scheme with refluxing (Berger & Oliger 1984 ; Berger & 

Colella 1989 ). THC can make use of this infrastructure to ensure 

mass and energy conservation as matter flows between different 

refinement le vels. Ho we ver, since the current implementation of 

refluxing in Carpet is memory intensive, we do not employ it 

for the radiation variables. To have a baseline for comparison, 

in addition to the simulations with THC M1 , we perform three 

simulations using the M0 + Leakage neutrino scheme (Radice et al. 

2016 , 2018b ). This is the current methodology employed for neutrino 

transport in production simulations with the THC general-relativistic 

hydrodynamics code (Radice & Rezzolla 2012 ; Radice, Rezzolla 

& Galeazzi 2014b , a , 2015 ). Ho we v er, we hav e updated the M0 

scheme to compute neutrino opacities using the approach discussed 

in Section 3.2.2 . Although THC has the ability to model subgrid-scale 

viscous angular momentum transport using the GRLES formalism 

(Radice 2017 , 2020 ), we do not employ it in the simulations presented 

here. 

5.1 Merger dynamics 

Our simulations span the last ∼4 orbits of the binary prior to merger, 

the merger, and extend to ∼10 ms after the merger. After the star 

come into contact, the remnant experiences one centrifugal bounce 

before collapsing to BH. We use the AHFinderDirect Thornburg 

( 2004 ) thorn of the Einstein Toolkit to locate an apparent 

horizon. Both the M0 scheme and THC M1 excise the region inside 

the apparent horizon. Both codes handle BH formation well, but, due 

to the low resolution, the BH experiences an unphysical drift starting 

from ∼5 to 10 ms after merger. The drift is particularly large for 

the M0 runs and eventually the code fails when the BH leaves the 

finest refinement level in the grid. The M1 runs, instead, experience 

smaller drifts. The M1 LR run fails at ∼12 ms after merger, while 

the M1 VLR and SR runs remain stable for the entire duration of 

the simulation. Such drifts are known to be the result of issues in 

the shift gauge condition, they are often seen in simulations, and 

some fix es hav e been proposed (Brue gmann et al. 2008 ; Most et al. 

2021 ; Shibata et al. 2021 ). We remark that such drifts are also seen in 

purely hydrodynamics simulations, so this issue does not appear to 

be connected with the neutrino treatment. Since we are not interested 

in evolving the system for long times after BH formation, we do not 

attempt to address this issue here. 
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Figure 8. Rest mass outside of the apparent horizon for the SLy4 1.364 M ⊙
− 1.364 M ⊙ binary as a function of time. The figure shows the results for 

three resolutions (VLR, LR, and SR) and two radiation transport methods. 

There is a persistent trend of increasing disc mass with resolution, but we 

find good agreement between M0 and M1 results. 

Figure 9. Maximum temperature for the SLy4 1.364 M ⊙ − 1.364 M ⊙ binary 

as a function of time. The figure shows the results for three resolutions 

(VLR, LR, and SR) and two radiation transport methods. We find consistent 

results among all the simulations, even after BH formation, demonstrating 

the robustness of our new M1 solver. 

Fig. 8 shows the amount of (rest) mass outside of the BH apparent 

horizon as a function of time. The mass of the accretion disc increases 

monotonically with resolution and does not appear to have fully 

conv erged ev en at the highest resolution considered in this study. 

There are differences of up to ∼50 per cent in the disc mass 8 ms after 

merger between M1 and M0. Ho we ver, such dif ferences are smaller 

than the o v erall uncertainty due to finite resolution effects, suggesting 

that neutrino transport is not the dominant source of uncertainty in 

the merger dynamics o v er these time-scales. 

Fig. 9 shows the maximum temperature outside the apparent 

horizon. During the inspiral, the surface of the stars is artificially 

heated to temperatures exceeding 10 MeV (Hammond et al. 2021 ). 

Equal mass systems with soft EOSs, such as the one considered here, 

experience the most violent mergers (Radice et al. 2020 ). Indeed, we 

observe the temperature to raise to values in excess of 120 MeV. This 

leads to the production of a dense trapped neutrino gas. This is a very 

challenging test for a neutrino radiation-hydrodynamics code, since 

matter is thrown out of weak equilibrium and the radiation-matter 

coupling becomes very stiff. Our leakage schemes circumvent this 

Figure 10. Maximum density for the SLy4 1.364 M ⊙ − 1.364 M ⊙ binary 

as a function of time. The figure shows the results for three resolutions and 

three radiation transport methods. We find consistent results among all the 

simulations, even after BH formation, demonstrating the robustness of our 

new M1 solver. 

problem by using ef fecti ve source terms that are not stiff, but does 

not capture the correct thermodynamic conditions of matter in the 

remnant (see Perego et al. 2019 , for a discussion on the implications). 

THC M1 , instead, captures the correct weak equilibrium of matter 

inside the star, but at the price of having to solve a stiff set of 

equations. 

After t − t mrg ≃ 2 ms, an apparent horizon is found and Fig. 9 

shows the maximum temperature in the accretion stream outside 

of the horizon. Since the highest temperatures are reached close to 

the horizon, these data are rather sensitive to resolution. It also has 

large excursions when new grid cells are tagged as being inside 

the horizon, or when the converse happens. Overall, we find good 

agreement between the M0 + Leakage and the M1 simulations. This 

test demonstrate that THC M1 can handle even the most demanding 

conditions encountered in NS mergers. 

A complementary view on the dynamics of the system can be 

obtained from Fig. 10 which shows the maximum density outside 

the apparent horizon. We observe a large oscillation in the maximum 

density corresponding to the merger and a subsequent centrifugal 

bounce, followed by the collapse. After t − t mrg ≃ 2, the figure shows 

the maximum density reached in the accretion disc as a function of 

time. This figure shows that all simulations are in excellent agreement 

in the description of the bulk motion of matter in the system. 

Fig. 11 shows the composition of the remnant accretion torus 

formed in the highest resolution M1 binary shortly after BH forma- 

tion. The disc is primarily composed of matter expelled from the 

inner part of the remnant at the time of merger. The accretion flow is 

turbulent. The torus has a large ℓ = 2 deformation, an imprint of the 

geometry of the remnant shortly after merger (Radice et al. 2018b ). 

We find that the bulk of the torus is very neutron rich, but that its 

surface layers have higher Y e � 0.25 (blue colour in the figure). 

5.2 Neutrino luminosities 

We compute the emergent neutrino luminosities on a coordinate 

sphere with radius r = 300 G M ⊙/ c 2 ≃ 443 km. The results are shown 

in Fig. 12 . The curves are time shifted to approximately take into 

account the time of flight of the neutrinos from the remnant to the 

detection sphere. The neutrino luminosity is artificially large prior 

to the merger, due to the spurious heating of the stellar surface 
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Figure 11. Remnant BH + torus system for the SLy 1.364 M ⊙ − 1.364 M ⊙
M1 (Minerbo) SR binary at t − t mrg ≃ 2.5 ms. The colour code represents 

Y e (red: Y e < 0.25; blue: Y e > 0.25). The inner grey surface shows the 

approximate location of the apparent horizon ( α = 0.3; Bernuzzi et al. 2020 ). 

The transparency is set to show only matter with density ρ � 5 × 10 10 g cm −3 . 

The visualization shows the data in a box of diameter 118 km centred at the 

origin of the coordinate system used in the simulation. We find that the torus 

is in a turbulent state and is far from axisymmetric. 

discussed in the previous subsection. This effect is less severe 

at higher resolutions. The luminosity peaks shortly after merger 

and sharply drops following BH formation. As dense neutron rich 

material is decompressed and heated during merger, it tends to 

protonize. As a result, the anti-electron neutrino luminosity is the 

highest among all species, while the electron neutrino luminosity is 

partially suppressed and is the smallest among all species. Overall, 

the different resolutions are in good qualitative and quantitative 

agreement, particularly before BH formation. Discrepancies are 

found after BH simulation, likely because of the low resolution 

adopted in this study. 

The binary considered here has not yet been simulated by other 

groups, so detailed comparisons with the literature are not possible. 

Ho we v er, the o v erall neutrino luminosities are in good qualitativ e 

agreement with those reported by Foucart et al. ( 2016b ), Vincent et al. 

( 2020 ), and Foucart et al. ( 2020 ) for similar binaries. An important 

difference is that our luminosities peak at the time of merger and 

then drop rapidly after BH formation, while the luminosities shown 

in the aforementioned works increase monotonically, since no BH 

is formed in those cases. Moreo v er, those works report the neutrino 

luminosity only for t − t mrg > 0. The luminosities predicted by 

THC M1 are in good agreement with the M0 luminosities, but 

the M0 data (not shown in Fig. 12 to a v oid o v ercrowding the 

figure) is truncated shortly after BH formation. A more quantitative 

comparison between M1 and M0 is discussed in Section 6.4 . The 

luminosities predicted by M1 are a factor of several smaller than 

those predicted by the leakage scheme alone (not taking into account 

reabsorption; cf . Sekiguchi et al. 2011 ; Palenzuela et al. 2015 ; Lehner 

et al. 2016 ; Radice et al. 2016 ). Our luminosities are also a factor of 

several smaller than those predicted by the M1 + Leakage scheme of 

Sekiguchi et al. ( 2015 , 2016 ). 

The average neutrino energies are also computed on a coordinate 

sphere of radius r = 300 G M ⊙/ c 2 ≃ 443 km and are shown in Fig. 13 . 

With the exception of the average energy anti-electron neutrinos 

in the LR resolution simulation, we find excellent quantitative 

agreement between the simulations. The average energies satisfy 

the expected hierarchy 〈 ǫνμ
〉 > 〈 ǫν̄e 〉 > 〈 ǫνe 〉 (Ruffert & Janka 1998 ; 

Foucart et al. 2016b ; Endrizzi et al. 2020 ; Cusinato et al. 2021 ) and 

are in good quantitative agreement with the Monte Carlo simulations 

of Foucart et al. ( 2020 ), with the caveat that we are not considering 

the same binary configuration. At t − t mrg ≃ 2.5 ms we observe the 

formation of a shock in the collapsing remnant of the LR simulation, 

just outside the apparent horizon. This generates a burst of neutrinos 

that is responsible for the peak in L ̄νe . Because the radiation is highly 

redshifted this results in a dip in 〈 ǫν̄e 〉 . This feature is absent in the 

other resolutions. 

5.3 Dynamical ejecta 

Material is ejected dynamically during the merger by tidal torques 

and shocks (Shibata & Hotokezaka 2019 ). We monitor this dynamical 

ejecta by computing the flux of matter on a coordinate sphere of 

radius r = 300 G M ⊙/ c 2 ≃ 443 km. We consider a fluid element to 

be unbound if its velocity is larger than the escape velocity from 

the system ( −u t > 1). This is the so-called geodesic criterion (e.g . 

Kastaun & Galeazzi 2015 ). 

Figure 12. Neutrino luminosity for the SLy 1.364 M ⊙ − 1.364 M ⊙ binary computed with THC M1 at three resolutions. The simulations are in good qualitative 

agreement at the peak of the neutrino burst, but diverge after BH formation, indicating that the collapse phase is not well resolved in these simulations. 
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Figure 13. Average neutrino energies for the SLy 1.364 M ⊙ − 1.364 M ⊙ binary computed with THC M1 at three resolutions. We find good qualitative and 

quantitative agreement between the three resolutions. The dip in the average ̄νe for the LR resolution is due to a burst of highly redshifted radiation originating 

in the vicinity of the BH. 

Figure 14. Electron fraction distribution for the dynamical ejecta from the 

SLy4 1.364 M ⊙ − 1.364 M ⊙ binary. M1 predicts a broad distribution in Y e 
extending to Y e ≃ 0.4. The M0 ejecta distribution, instead, clearly peaks at 

Y e ≃ 0.2. The M1 results appear to be more sensitive to resolution. 

Neutrino irradiation is known to have a strong impact on the 

composition of the dynamical ejecta from NS mergers (Sekiguchi 

et al. 2015 ; Foucart et al. 2016a , b ; Radice et al. 2016 ; Perego 

et al. 2017b ; Foucart et al. 2020 ), which, in turn, has a strong 

impact on their nucleosynthesis yields (Lippuner & Roberts 2015 ; 

Thielemann et al. 2017 ; Cowan et al. 2021 ; Perego, Thielemann 

& Cescutti 2021 ). Not surprisingly, we find that the composition 

of the dynamical ejecta, shown in Fig. 14 , is sensitive to the 

adopted neutrino transport scheme. In particular, the M0 + Leakage 

simulations show a characteristic peak in the Y e distribution at Y e 

≃ 0.2, while the SR M1 shows a broader distribution extending to 

Y e ≃ 0.4. It also predict the presence of a proton-rich component of 

the ejecta with 0.55 < Y e < 0.6. This component is lumped in the 

highest Y e bin in our analysis and is responsible for the bump in the 

histogram at Y e ≃ 0.55. That said, while the Y e distribution of the 

M0 runs is consistent across all resolutions, the Y e distribution for 

M1 vary significantly with resolution. The VLR results are in better 

agreement with the M0 calculations, apart from the presence of a 

high- Y e peak for Y e ≃ 0.5. The LR M1 simulations, instead, predict 

a lower Y e than the M0 simulations. 

Figure 15. Nucleosynthesis yields for the SLy4 1.364 M ⊙ − 1.364 M ⊙
binary. Compared to the Solar abundance pattern from Arlandini et al. ( 1999 ), 

this binary o v erproduces r-process elements with A ≃ 100, or, equi v alently, 

underproduces second and third peak elements, according to all schemes. 

Despite the qualitative differences in the Y e distribution, well resolved M0 

and M1 simulations produce similar abundance patterns. 

The differences in composition are reflected in the final abun- 

dances after r-process nucleosynthesis, shown in Fig. 15 . The 

abundances are obtained using a grid of pre-computed trajectories 

with SkyNet (Lippuner & Roberts 2017 ), as discussed in detail 

in Radice et al. ( 2018b ). We normalize the relative abundances by 

fixing the height of the third r-process peak ( A ≃ 190). We also 

report Solar r-process abundances from Arlandini et al. ( 1999 ) in 

the same figure. Ho we ver, we emphasize that even if NS mergers 

were the sole contributor of r-process elements, there is no reason 

to expect that every merger should produce ejecta with relative 

abundances close to Solar. Indeed, variability between the yields 

of different mergers is required to explain observed abundances in 

metal-poor stars (Holmbeck et al. 2019 ). Overall, the simulations 

span a factor ∼2 in the ratio of A ≃ 100 to third r-process peak. 

Ho we ver, the dif ference between the M0 and M1 at the SR resolution, 

which is the resolution we use for production simulation, are modest 

compared to the systematic uncertainties from the unknown NS EOS 

and to the variability due to the binary mass ratio (Radice et al. 
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Figure 16. Maximum density as a function of time in millisecond from 

the merger for the SLy 1.3 M ⊙ − 1.3 M ⊙ binary. Small differences in the 

evolution of the merger remnant are seen starting from ∼10 ms after merger. 

2018b ; Nedora et al. 2021b ). Clearly, strong conclusions cannot be 

drawn from this limited study alone, but our simulations suggest that 

the uncertainties in the yields from mergers arising from neutrino 

radiation treatment are modest. This is also supported by the results 

of Foucart et al. ( 2020 ). They compared M1 and Monte Carlo 

neutrino transport in the context of NS mergers and reported only 

a modest ∼10 per cent difference in the Y e of the ejecta between 

the two schemes. Interestingly, they reported that M1 systematically 

o v erestimates the Y e of the ejecta, so we cannot exclude that the 

M0 + Leakage results are actually more accurate than the results 

obtained with THC M1 . That said, it is important to emphasize that 

this comparisons has only been made for the dynamical ejecta and 

not for the secular ejecta, which we discuss in Section 6.5 . 

6  L O N G - T E R M  POST-MERGER  E VO L U T I O N S  

The main application we envision for THC M1 is to simulate the 

diffusion of neutrinos out of the merger remnant and the production of 

winds on secular time-scales after merger. These winds are currently 

thought to constitute the bulk of the outflow from binary mergers 

(Shibata & Hotokezaka 2019 ; Siegel 2019 ; Radice et al. 2020 ; 

Nedora et al. 2021b ). In this section, we demonstrate the viability of 

this approach by performing long-term post-merger simulations for 

a binary producing a long-lived remnant. In particular, we consider 

the merger of two identical 1.3 M ⊙ NSs simulated with the SLy EOS. 

Initial data produced with the Lorene code are prepared at an initial 

separation of 45 km, and have already been considered in Breschi 

et al. ( 2019 ). We perform simulations with THC M1 with both the Ed- 

dington and Minerbo closures. Additionally, we perform a simulation 

with the M0 + Leakage scheme used in production simulations with 

THC . The M1 (Eddington) simulation is discontinued shortly after 

BH formation ( t − t mrg ≃ 55 ms), while the M0 + Leakage and the 

M1 (Minerbo) simulations are carried out until t − t mrg ≃ 77 ms. The 

simulation setup is the same as in that of the calculations presented in 

the pre vious section. Ho we ver, due to the large computational costs, 

we only present results with the VLR grid spacing. 

6.1 Qualitati v e dynamics 

Fig. 16 shows the maximum density for the three simulations. These 

are in good agreement, especially during the first 10 ms after the 

merger. Systematic differences appear at later times. In particular, 

the M1 simulation with Eddington closure collapses to BH at t −
t mrg ≃ 55 ms, while the other remnants remain stable for the entire 

simulation time. That said, we caution the reader that the collapse 

time of the remnant NS is known to be sensitive to resolution and 

small perturbations, so these differences might not be related to 

the different neutrino treatment. A detailed investigation of possible 

neutrino effects on the evolution of the remnant would require many 

more simulations at higher resolution, so it is outside of the scope of 

this work. 

It has been proposed that out-of-weak-equilibrium effects in the 

post-merger could give raise to an effective bulk viscosity (Alford 

et al. 2018 , 2020 ; Hammond et al. 2021 ; Most et al. 2022 ). Such effect 

cannot be captured with leakage schemes, but can be captured with 

THC M1 , since our code does not assume thermodynamic equilibrium 

between matter and neutrinos. Our M1 simulations do not show 

evidences of enhanced damping of the radial oscillations of the 

remnant compared to the M0 runs. This suggests that the impact 

of bulk viscosity cannot be too large. That said, higher resolution 

simulations with a variety of possible EOSs would be required to 

draw firm conclusions. We also leave this to future work. 

The dynamics of the binary is imprinted in the GW signal. We 

show the dominant ℓ = 2, m = 2 component of the strain in Fig. 17 . 

As for the maximum density, we find that the strain from the three 

simulations agree both qualitatively and quantitatively. There is a 

small dephasing between the three waveforms in the post-merger, 

as can be observed in the figure inset. Ho we ver, this dephasing is 

well within the estimated uncertainties in the post-merger signal 

at this resolution (Radice et al. 2017 ; Breschi et al. 2019 ). The 

most substantial difference between the waveforms is that the M1 

(Eddington) GW emission abruptly shuts off at the time of BH 

formation. Overall, our results show that leakage simulations are 

adequate to study the GW emission and the early evolution of 

binary NS remnants. This is not surprising, given the typical neutrino 

cooling time-scale for the remnant is of a few seconds (Sekiguchi 

et al. 2011 ), while most of the GW energy is radiated within ∼20 ms 

of the merger (Bernuzzi et al. 2016 ; Zappa et al. 2018 ). 

6.2 Dynamical ejecta 

Fig. 18 shows the electron fraction of the ejecta in the meridional 

plane of the binary about 12 ms after the merger. Overall, we find that 

the M0 + Leakage scheme tends to underestimate the proton fraction 

in the ejecta, when compared to the M1 scheme. This is consistent 

with our findings in Section 5 , but the 2D plot reveals two interesting 

systematic differences. 

First, the M1 simulations find pockets of moderate Y e material 

also in the equatorial regions. This is material that is shock heated 

and irradiated as the tidal tail and the shocked ejecta collide. The 

M0 simulations also exhibits an interaction between the tidal tail 

and the shocked ejecta, ho we ver the material remains very neutron 

rich Y e � 0.2. A possible explanation for this difference is that 

the irradiating neutrinos are not propagating radially, so they are not 

correctly treated by the M0 scheme. This is suggested by the fact that 

there is a strong density and temperature gradient in the ejecta along 

the azimuthal direction. This effect is more prominent in the M1 

simulation with the Minerbo closure, likely because the Eddington 

closure limits the propagation velocity of free streaming neutrinos 

to c/ 
√ 

3 . This implies that neutrinos interact with the ejecta at larger 

radii, where they are more diluted. 

Secondly, the M1 simulations predict the formation of a tenuous, 

but rapidly expanding neutrino driven wind with Y e ≃ 0.5 starting 

few milliseconds after the merger. A similar wind also develops in 
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Figure 17. Real part of the ℓ = 2, m = 2 dominant GW strain mode for the SLy 1.3 M ⊙ − 1.3 M ⊙ binary. Small differences in the evolution of the merger 

remnant are seen starting from ∼10 ms after merger. 

Figure 18. Electron fraction (colour) of the dynamical ejecta cloud formed for the SLy 1.3 M ⊙ − 1.3 M ⊙ binary. The black lines are isodensity contours of ρ

= 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , 10 10 , 10 11 , and 10 12 g cm −3 . The purple contour shows corresponds to ρ = 10 13 g cm −3 and denotes the approximate location of the 

surface of the merger remnant. M0 and M1 results are in good qualitative agreement, but M1 predicts higher electron fractions for both the polar and equatorial 

ejecta. 

the M0 case, but with a delay of ∼10–15 ms from the merger. The 

properties of the neutrino driven winds are discussed in more detail in 

Section 6.3 and in Nedora et al. ( 2021b ). We speculate that the reason 

for this discrepancy is that the M0 scheme only models neutrino 

heating in optically thin regions 2 and might not be able to capture the 

sharp transition from optically thick to thin conditions along the spin 

axis of the remnant. As a result, the wind needs to be bootstrapped 

by the presence of a sufficient amount of low density material ( ρ

� 10 11 g cm 
−3 ) in the polar region of the remnant. This speculation 

is tentatively confirmed by the fact that the M0 luminosities for 

2 Absorption is included also at high optical-depth, but is suppressed with a 

factor O ( e −τ ), τ being the optical depth, to be consistent with the ef fecti ve 

sources of the leakage scheme. 

electron-fla v our neutrinos are larger by a factor of a few compared 

to the M1 luminosities (see Section 6.4 and Fig. 23 ), as expected if 

neutrinos do not entrain baryons in their way out. We remark that the 

wind is present with both the Minerbo and Eddington closure, so it is 

not the result of the well known beam-crossing artefact of non-linear 

M1 closures (Frank et al. 2007 ). 

6.3 Remnant structure 

Fig. 19 shows the structure and composition of the merger remnant 

∼55 ms after the merger. We find good qualitative agreement between 

the three numerical schemes. In particular, all simulations predict a 

very neutron rich composition ( Y e � 0.2) for the accretion torus and 

the presence of a high- Y e wind at high latitudes. They also predict 
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Figure 19. Electron fraction (colour) of the of the SLy 1.3 M ⊙ − 1.3M ⊙ merger remnant ∼55 ms after merger. The black lines are isodensity contours of ρ = 

10 5 , 10 6 , 10 7 , 10 8 , 10 9 , 10 10 , 10 11 , and 10 12 g cm −3 . The purple contour shows corresponds to ρ = 10 13 g cm −3 and denotes the approximate location of the 

surface of the merger remnant. M0 and M1 results are in good qualitative agreement, but M1 predicts higher electron fractions in the disc corona and somewhat 

smaller electron fraction in the neutrino-driven wind along the rotation axis. 

a shift to higher Y e at densities below 10 11 g cm 
−3 , where thermal 

electron-type neutrinos are expected to decouple (Endrizzi et al. 

2020 ). Ho we ver, there are important quantitati ve dif ferences. 

First, the M0 + Leakage scheme systematically underpredicts the 

Y e in the corona of the disc. This is because M0 only transports 

neutrinos radially, so it cannot model the irradiation of the corona 

by neutrinos emerging from the disc below, while THC M1 does not 

have this limitation. 

Secondly, there are small, but important differences in the Y e of 

the remnant. These differences arise because our leakage scheme 

does not model the presence of a trapped component of ν̄e in the 

remnant. THC M1 , instead, correctly captures the protonization of 

the region of the remnant around ρ = 10 14 g cm 
−3 and the creation of 

a trapped component of anti-electron neutrinos, in agreement with the 

predictions of Perego et al. ( 2019 ). This trapped neutrino component 

can impact the pressure at the several percent level (Perego et al. 

2019 ), which might be sufficient to impact the remnant stability 

(Radice et al. 2018a ). 

Thirdly, the M1 simulations produce a denser neutrino-driven 

wind, as can be seen from the isodensity contours in Fig. 19 . This 

wind also entrains material from the outer layers of the central 

remnant, so it is more neutron rich than that predicted by the M0 

simulation. This difference could have been anticipated, because the 

M0 + Leakage scheme only models the transport and reabsorption of 

free streaming neutrinos, while M1 can also capture the heating of 

the outer layers of the remnant due to the diffusion of neutrinos along 

the steep density and temperature gradient along the rotational axis 

of the binary. In particular, because the opacity in the M0 + Leakage 

scheme is weighted with the optical depth, this scheme systematically 

underestimates heat deposition for optical depths τ � 1. 

Fig. 20 shows the neutrino energy density for the M1 (Minerbo) 

simulation ∼55 ms after the merger. This is a representative time 

for the neutrino field in the post-merger. Ho we ver, we emphasize 

that the neutrino energy density oscillates and shows quasi-periodic 

bursts, especially shortly after merger. The M1 (Eddington) neutrino 

radiation energy densities are qualitatively and quantitatively similar. 

We observe the formation of a trapped component of neutrinos. As 

previously discussed, ν̄e are the dominant neutrino species in the 

inner part of the remnant. Ho we ver, we find trapped neutrinos of all 

fla v ours in the central part of the remnant and in the accretion disc. 

Radiation is geometrically focused in the polar direction and most 

intense ∼10–20 km abo v e the surface of the massive NS. Equatorial 

outflows are shielded from the intense neutrino radiation from the 

inner part of the remnant by the torus, but they are instead irradiated 

by neutrinos produced directly in the disc. 

There are ef fecti vely two sources of electron-fla v our neutrinos. 

The massive NS at the centre and the disc. Neutrinos from the massive 

NS ha ve ∼50 per cent higher a verage energies (see Fig. 21 ), so their 

interaction cross-section with matter is ∼3 times larger. Ho we ver, 

only material outflowing in the polar direction is directly exposed to 

these neutrinos. The neutrinos from the disc are less energetic, but 

fill a significantly larger area (Fig. 21 ). The net effect is to enhance 

the differences in the Y e of polar and equatorial ejecta and to increase 

the anisotropic character of the resulting kilonova emission (Perego 

et al. 2017b ; Kawaguchi, Shibata & Tanaka 2020 ; Korobkin et al. 

2021 ). 

Fig. 22 shows the average neutrino energy obtained with the 

Eddington closure. There are small differences with the Minerbo 

closure in the location of the separatix between the stream of 

neutrinos emerging from the massive NS and the disc. This is 

because, on the one hand, the Minerbo closure artificially prevents 

different neutrino streams from mixing. On the other hand, the 

Eddington closure tends to smooth out structures in the radiation 

energy density profile. Most notably, the x-shaped feature present in 

the M1 (Minerbo) run for both E νμ
and 〈 ǫνμ

〉 close to the massive 

NS is absent in the Eddington simulations. This suggests that this 

feature is likely to be an artefact of the Minerbo closure. That said, 

Minerbo and Eddington closure are broadly consistent with each 

other, suggesting that the results discussed so far are robust. 

6.4 Neutrino emission 

We show the angle integrated neutrino luminosities for the SLy 

1.3 M ⊙ − 1.3 M ⊙ binary in Fig. 23 . The neutrino luminosities for 
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Figure 20. Neutrino radiation energy density (colour) for the SLy 1.3 M ⊙ − 1.3M ⊙ binary ∼55 ms after merger. The black lines are isodensity contours of ρ

= 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , 10 10 , 10 11 , and 10 12 g cm −3 . The purple contour shows corresponds to ρ = 10 13 g cm −3 and denotes the approximate location of the 

surface of the merger remnant. Due to the geometry of the post-merger, radiation is preferentially focused in the polar regions. 

Figure 21. Average neutrino energies (colour) for the SLy 1.3 M ⊙ − 1.3M ⊙ binary ∼55 ms after merger. The black lines are isodensity contours of ρ = 10 5 , 

10 6 , 10 7 , 10 8 , 10 9 , 10 10 , 10 11 , and 10 12 g cm −3 . The purple contour shows corresponds to ρ = 10 13 g cm −3 and denotes the approximate location of the surface 

of the merger remnant. The average neutrino energy is highly anisotropic, especially for electron-type neutrinos, since the disc is optically thick to high energy 

neutrinos. 

the M1 (Minerbo) and M1 (Eddington) simulations are extracted 

on a coordinate sphere of radius r = 300 G M ⊙/ c 2 ≃ 443 km. 

The luminosities of the M0 + Leakage scheme are computed at the 

outer boundary of the M0 spherical grid 512 G M ⊙/ c 2 ≃ 756 km. 

All data are time shifted to account for the neutrino time of 

flight. As anticipated, we find that M0 + Leakage systematically 

o v erestimates the luminosity of electron-fla v our neutrinos. Good 

agreement is found for heavy-lepton neutrons, instead. In all cases, 

the luminosities peak within a few milliseconds of the merger, in 

contrast to Vincent et al. ( 2020 ), and then decay exponentially. The 

oscillations in the luminosity are not due to a numerical artefact, 

but are associated with the oscillations of the massive NS remnant 

(Cusinato et al. 2021 ). As was the case for the SLy 1.364 M ⊙ −

1.364 M ⊙ binary, L ̄νe > L νμ
> L νe , showing that the remnant is 

protonizing. 

The average neutrino energies for the SLy 1.3 M ⊙ − 1.3 M ⊙ binary 

are shown in Fig. 24 . We find excellent agreement in the average 

electron-fla v our neutrino energies for all schemes. The M0 + Leakage 

scheme predicts a ∼50 per cent smaller average energy for heavy- 

lepton neutrinos. Moreo v er, the M0 + Leakage scheme predicts a 

nearly constant heavy-lepton neutrino energy as a function of time. 

This is because M0 does not properly diffuse neutrinos through the 

remnant. Instead, each part of the remnant cools at a rate that depends 

on its optical depth. In contrast, THC M1 models the diffusion of 

neutrinos to the neutrino spheres and their thermalization. Also in 

this case, we find that 〈 ǫνμ
〉 > 〈 ǫν̄e 〉 > 〈 ǫνe 〉 , as expected. 
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Figure 22. Average neutrino energies (colour) for the SLy 1.3 M ⊙ − 1.3M ⊙ binary ∼55 ms after merger. The black lines are isodensity contours of ρ = 10 5 , 

10 6 , 10 7 , 10 8 , 10 9 , 10 10 , 10 11 , and 10 12 g cm −3 . The purple contour shows corresponds to ρ = 10 13 g cm −3 and denotes the approximate location of the surface 

of the merger remnant. This figure should be contrasted with Fig. 21 , which shows the same profiles with obtained with the Minerbo closure. 

Figure 23. Neutrino luminosity for the SLy 1.3 M ⊙ − 1.3 M ⊙ binary. The data are smoothed using a rolling average with width of 1 ms. We find that at 

this resolution M0 systematically o v erestimates the νe and ν̄e luminosities by about a factor of two. The M1 Eddington and Minerbo luminosities are in good 

agreement. 

6.5 Secular ejecta 

We observe the emergence of an outflow driven by hydrodynamics 

torques: the so-called spiral-wave wind (Nedora et al. 2019 , 2021b ), 

in addition to the aforementioned neutrino-driven wind. This secular 

ejecta is extracted at the same extraction radius of the dynamical 

ejecta ( r = 300 G M ⊙/ c 2 ≃ 443 km), but we use the Bernoulli criterion 

( −hu t > 1), which is more appropriate for a steady wind. See Foucart 

et al. ( 2021a ) for a recent discussion of the issues connected to the 

discrimination between gravitationally bound and unbound outflows. 

The time-integrated outflow rate is shown in Fig. 25 . We find that 

the leakage + M0 simulation produces a more robust wind with a 

larger Ṁ , while the two M1 simulations are in good agreement with 

each other. Ho we ver, we warn the reader that, at this resolution, the 

numerical uncertainties in the outflow is � 50 per cent (Nedora et al. 

2021b ), so these differences might not be particularly meaningful. 

In particular, our previous simulations at higher resolution (Breschi 

et al. 2019 ), but with simpler neutrino physics, suggest that this 

binary might form a BH few tens of milliseconds after merger. Since 

the spiral wave wind ceases with BH formation (Nedora et al. 2019 ), 

the uncertainty in the BH formation time is likely to dominate the 

o v erall error budget on the total ejecta mass for this binary. 

Fig. 26 shows the composition of the o v erall ejecta (dynamical + 

secular) for the SLy 1.3 M ⊙ − 1.3 M ⊙ binary. We find that all schemes 

produce a wide distribution in Y e . The results are qualitatively 

consistent with our previously published M0 simulations (Nedora 

et al. 2019 , 2021b ). An important quantitative difference is that the 

M0 scheme predicts a peak in the electron fraction distribution at Y e ≃ 

0.3. The outflows in the M1 simulations are, instead, characterized by 

a peak in their electron fraction at ∼0.5. We attribute this difference 

to the irradiation of outflows at intermediate latitudes by neutrinos 

from the disc, an effect that is not captured by the M0 scheme (see 

Fig. 19 ). Some differences are also found in the low- Y e tail of the 

ejecta, which is primarily of dynamical origin, as anticipated by 

Fig. 18 . 
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Figure 24. Average neutrino energies for the SLy 1.3 M ⊙ − 1.3 M ⊙ binary. The data are smoothed using a rolling average with width of 1 ms. We find excellent 

agreement in the average neutrino energies for electron type neutrinos. The M0 scheme predicts smaller average energies for heavy-lepton flavour neutrinos. 

Figure 25. Ejecta mass for the SLy 1.3 M ⊙ − 1.3 M ⊙ binary. The M0 

simulations slightly o v erestimate the outflow rate for the post-merger wind 

compared to M1. The results of the Minerbo and Eddington closures are 

consistent with each other. 

Figure 26. Ejecta Y e for the SLy 1.3 M ⊙ − 1.3 M ⊙ binary. The shaded 

regions show the contributions to the Y e histogram due to the material ejected 

after the first 20 ms of the merger. The ejecta distribution peaks at significantly 

larger Y e in the M1 runs. The Eddington and Minerbo results are in good 

agreement, but the Eddington simulations produce a smaller amount of very 

neutron rich ejecta ( Y e ∼ 0.1). 

Figure 27. Normalized nucleosynthesis yield for the SLy 1.3 M ⊙ − 1.3 M ⊙
binary. The M1 runs predict elemental abundances that are in better agreement 

with the Solar pattern, while M0 underproduces r-process elements with A ∼
110. Overall, ho we ver, the differences between M0 and M1 are modest. 

These changes in Y e do not contribute to very large differences 

in the nucleosynthesis. This is because the main effect of M1 is to 

shift the peak of the Y e distribution from 0.3 to 0.5, but both peaks 

correspond to a regime in which only light r-process elements are 

produced. The integrated nucleosynthesis yields for the three SLy 

1.3 M ⊙ − 1.3 M ⊙ simulations are shown in Fig. 27 . The relative 

abundances of light to heavy r-process peak elements differs by 

about a factor of two between the M1 and the M0 + Leakage runs. 

This is a significant, but not substantial discrepancy, considering the 

large variabilities of the yields with EOS and mass ratio (Radice 

et al. 2018b ; Nedora et al. 2021b ). The differences between the M1 

(Minerbo) and M1 (Eddington) simulations are below the level of 

finite resolution uncertainties (see Section 5.3 ). 

7  C O N C L U S I O N S  

We have presented THC M1 , a new moment-based neutrino transport 

code for numerical relativity simulations of merging NSs. THC M1 

handles radiation advection using a high-resolution shock capturing 

scheme that can capture both the free streaming and the dif fusi ve 

regimes. THC M1 simultaneously evolves the frequency-integrated 
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energy and neutrino number density equations. Ours is one of the 

first GR radiation transport codes, the first in the merger context, to 

include velocity-dependent effects at all orders in υ/ c . We have shown 

that this full treatment, while technically more complex than that used 

in other codes, is necessary to correctly capture neutrino trapping in 

relativistically moving media, such as rotating NSs remnants. 

After having validated our new code with a stringent series of 

tests, we have coupled it with the THC relativistic hydrodynamics 

code to perform merger simulations of two equal mass binaries: 

an intermediate mass binary resulting in a short lived remnant that 

quickly collapses to BH, and a low-mass binary that produces a long- 

lived remnant. We have studied numerical resolution effects using 

the first binary, while we have performed long-term evolutions at 

a fixed resolution for the second binary using two different closure 

relations, the so-called Eddington and Minerbo closures. To have a 

baseline for comparison, we have also simulated the same systems 

using a more approximated M0 + Leakage scheme, which is currently 

used for production simulations with THC . 

The intermediate mass binary experiences a violent merger. The 

remnant is rapidly heated to temperatures exceeding 100 MeV 

following the collision between the stars. The massive NS formed in 

the collision undergoes one centrifugal bounce that launches a shock 

in the merger debris and drives a massive outflow, before collapsing 

to BH. This is one of the most challenging binary to model due to 

the high temperatures and the BH formation. We find that THC M1 is 

as robust, if not more robust, than our production leakage code. The 

predicted neutrino luminosities and average energies are consistent 

with theoretical expectations and other results from the literature. 

The remnant of the low mass binary merger also experiences a 

series of violent oscillations at birth, with maximum density jumping 

by more than 50 per cent on a dynamical time-scale. Ho we ver, the 

remnant eventually settles into a massive, differentially rotating NS 

evolving on secular time-scales. Even though THC M1 includes out- 

of-weak-equilibrium effects which have been suggested to result in 

an ef fecti ve bulk viscosity (Alford et al. 2018 ), we do not find any 

evidence of additional damping of the remnant oscillations in the M1 

runs, compared to simulations that do not model them. That said, 

simulations with a more comprehensive set of reactions, with more 

EOSs, and at more resolutions are needed before firm conclusions 

can be drawn. 

We have performed simulations extending for over 70 ms after 

the merger. For comparison, the longest published simulations 

performed with a neutrino-transport scheme having comparable 

sophistication only extended to 10 ms into the post-merger (Vincent 

et al. 2020 ). We find that the post-merger GW signal is not sensitive 

to details in the neutrino transport. Ho we ver, the inner structure of the 

massive NS is modified by the presence of a trapped component of 

anti-electron neutrinos. This could impact the stability of the remnant 

of higher mass binaries. We find that, due to the geometry of the 

system, neutrino radiation is most intense along the rotational axis 

of the system. Matter at lower latitudes is shielded from the direct 

irradiation from the massive NS by the disc. Instead, it is irradiated 

by lower energy neutrinos produced in the accretion disc. Because 

neutrino absorption cross-sections roughly scale with the square 

of the incoming neutrino energy, this enhances the Y e difference 

between polar and equatorial ejecta and has implications for the 

viewing angle dependence of kilonovae. 

We have computed integrated neutrino luminosities and average 

neutrino energies from our simulations. Consistently with previous 

studies, we find that anti-electron neutrinos have the highest luminos- 

ity and that heavy-lepton neutrinos have the highest average energies. 

Our M1 data is in good qualitative and quantitative agreement 

with results published by the SXS collaboration using SpEC . On 

the other hand, we find that our older M0 neutrino scheme can 

o v erestimate electron-fla v our neutrino luminosities by as much as a 

f actor tw o. Discrepancy with the results from leakage calculations, 

either performed by us or by other groups, are significantly larger and 

amount to factors of several. We find an excellent agreement between 

M1 and M0 + Leakage in the neutrino average energies, instead. 

Neutrino transport impacts the neutron richness of both the 

dynamical and the secular ejecta in our simulations. In particular, 

we find that there is a systematic tendency of M0 + Leakage to 

underestimate the electron fraction of the ejecta. This is because the 

M0 scheme does not model the irradiation of material at intermediate 

latitudes with neutrinos generated in the remnant accretion disc. 

Ho we ver, because the net effect is to reprocess material with Y e ≃ 

0.2–0.35 to Y e ≃ 0.4–0.55, this has only a modest impact on the final 

abundances of the r-process nucleosynthesis. 

THC M1 represents a step forward in the modelling of neutrinos in 

mergers, particularly o v er long time-scales o v er which diffusion of 

neutrinos from the inner part of the remnant needs to be taken into 

account. Ho we ver, this study still has some important limitations to 

be addressed. Most importantly, our work used a rather crude set of 

weak reactions and accounted for the energy-dependence of neutrino- 

matter cross-sections in a simplistic way. We plan to update the set 

of weak reactions included in our code and to use Planck-averaged 

opacities that take into account the average incoming neutrino energy. 

We also plan to perform a larger campaign of simulations spanning a 

range of binary masses, mass ratios, and EOSs, in order to understand 

the general features of neutrino-driven winds from NS mergers and 

the role of non-equilibrium effects in the post-merger. Finally, our 

work has neglected quantum kinetic effects in the neutrino transport 

(Zhu, Perego & McLaughlin 2016 ; Deaton et al. 2018 ; Richers et al. 

2019 ; George et al. 2020 ; Li & Siegel 2021 ; Richers, Willcox & Ford 

2021 ). Future work should quantify the importance of these effects 

for mergers. 
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