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Abstract—User authentication plays an important role in se-
curing systems and devices by preventing unauthorized accesses.
Although surface Electromyogram (sEMG) has been widely
applied for human machine interface (HMI) applications, it has
only seen a very limited use for user authentication. In this
paper, we investigate the use of multi-channel SEMG signals
of hand gestures for user authentication. We propose a new
deep anomaly detection-based user authentication method which
employs sEMG images generated from multi-channel sEMG
signals. The deep anomaly detection model classifies the user
performing the hand gesture as client or imposter by using SEMG
images as the input. Different sSEMG image generation methods
are studied in this paper. The performance of the proposed
method is evaluated with a high-density hand gesture sEMG
(HD-sEMG) dataset and a sparse-density hand gesture SEMG
(SD-sEMG) dataset under three authentication test scenarios.
Among the sEMG image generation methods, root mean square
(RMS) map achieves significantly better performance than others.
The proposed method with RMS map also greatly outperforms
the reference method, especially when using SD-sEMG signals.
The results demonstrate the validity of the proposed method with
RMS map for user authentication.

Index Terms—User authentication, deep anomaly detection,
hand gesture, multi-channel surface electromyogram (SEMG)
signal, SEMG image.

I. INTRODUCTION

SER authentication is an important functionality of the

identity management system (IDMS), which verifies the
identity of a user to prevent unauthorized access to the
sensitive information stored on systems or devices. There are
three types of factors that can be used to represent the user’s
identity for the authentication purpose: knowledge factors,
ownership factors, and inherence factors [1]. Passwords, PINs,
and patterns are some typical examples of knowledge factors
which are known by a user. Ownership factors are the elements
possessed by a user, e.g. smart card and security token.
Biometrics are the most popular type of inherence factors
which are integral to a user. A user authentication method can
employ one of the three types of authentication factors for a
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single-factor authentication or a combination of two or more
factors for a multi-factor authentication as shown in Fig. 1.
Knowledge factors have been widely used for user authentica-
tion but are susceptible to a number of attacks including brute-
force attacks, guessing attacks, shoulder surfing attacks, and
other more advanced attacks [2]. For example, smudge attacks
were proposed in [3] to recover a mobile user’s unlock pattern
by observing the oily smudge left on the device screen. In [4],
thermal cameras were used to launch attacks to reveal the PINs
or patterns used for authentication. Naval et al. [5] developed
an attack strategy to infer 4-digit PIN of a smartphone from
mobile sensors’ data. Ownership-based authentication methods
require extra devices such as smart cards or security tokens
to be carried by users which are inconvenient and the devices
could be lost or stolen.

Inherent factors provide a number of advantages in usability
and security over knowledge factors and ownership factors
such as no need to memorize the authentication code and
hard to stolen, which make them more and more popular for
authentication in recent years. Biometrics based on physio-
logical signals are a typical category of inherent factors that
have attracted a lot of attention. The physiological signals
commonly employed for user authentication are Electroen-
cephalography (EEG) and Electrocardiography (ECG) [6]-
[8]. For example, a two-factor user authentication scheme
was proposed in [9] that combines EEG and signature data
and employs a multimodal Siamese Neural Network (mSNN)
for classification. In [10], Zhang et al. proposed DeepKey,
a deep learning based multimodal biometric authentication
system, which combines EEG and gait signals. A mobile
user authentication scheme was developed in [11] that a user
gains the access to the mobile device by touching two ECG
electrodes of the device. Zhao et al. [12] designed a ECG-
based authentication system, which generates ECG trajectory
images using a generalized S-transformation to serve as the
input to a convolutional neural network (CNN) model for
classification.

On the other hand, surface Electromyogram (SEMG), an-
other typical type of physiological signal widely applied
for human machine interface (HMI) applications [13]-[20],
has only seen a limited application for user authentication.
In this paper, we propose a new deep learning based user
authentication method using multi-channel sEMG signals of
hand gestures. Deep learning has been successfully applied in
a variety of areas including SEMG-based hand gesture recog-
nition [21]. Unlike gesture recognition which can be treated as
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Fig. 1. User authentication factors and methods

a supervised classification problem, user authentication cannot
be solved using supervised learning as there are unlimited
potential imposters. Instead, user authentication can be treated
as an anomaly detection or novelty detection problem, where
the detector is trained with only normal instances collected
from the client at the registration or enrollment stage. In this
study, we solve the SEMG-based user authentication problem
with deep anomaly detection. Deep anomaly detection has
demonstrated significantly better performance than traditional
anomaly detection methods in many challenging applications
due to its unique capabilities such as end-to-end optimization
and tailored representation learning [22]. Specifically, we
utilize multi-channel sSEMG signals generated by hand gestures
as the biometric trait for user authentication. Both sparse-
density SEMG (SD-sEMG) and high-density sEMG (HD-
SEMG) are investigated in our study. HD-sEMG signals are
acquired with an electrode array of high channel count that
provide richer information of electrical muscle activities than
SD-sEMG signals acquired with a low-density electrode array.
The multi-channel SEMG signals are converted as images to
be used as the input of the deep anomaly detection model.

The main contributions of this paper are: (1) we propose
a new user authentication method based on deep anomaly
detection and sEMG images of hand gestures. To the best
of our knowledge, this is the first work that employs a deep
anomaly detection model with sSEMG images for sSEMG-based
user authentication; (2) we investigate different techniques to
generate images from multi-channel sSEMG signals including
instantaneous sSEMG images, difference sSEMG images, and
SEMG maps for user authentication; (3) we conduct a per-
formance evaluation with two publicly available hand gesture
SEMG datasets to demonstrate that the proposed method is a
viable solution for sSEMG-based user authentication.

The rest of this paper is organized as follows. Section
II introduces the related work on sSEMG-based hand gesture
recognition, traditional hand gesture based user authentication,
and sEMG-based identity management. In Section III, we
present the details of the proposed user authentication method
based on sSEMG images of hand gestures and deep anomaly
detection. The experiments and results of the performance
evaluation using two publicly available hand gesture sSEMG
datasets are shown in Section IV. Finally, conclusions of this
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paper are drawn in Section V.

II. RELATED WORK

In this section, we review the existing work in three areas
that are related to the proposed method: sSEMG based hand
gesture recognition, traditional hand gesture based user au-
thentication, and SEMG based identity management.

A. SEMG based Hand Gesture Recognition

Hand gesture recognition has been widely used in HMI
applications such as sign language [13], medical rehabilitation
[17], virtual reality [18] and robot control [15]. Traditional
hand gesture recognition can be categorized as static gesture
recognition and dynamic gesture recognition [23]. The former
recognizes gestures by using hand shape while the latter
does the recognition through hand motion trajectory in space.
Usually the gesture shape and location information is gathered
using vision-based devices such as camera, depth sensitive
sensor, or special wearable glove [24]. With the development
of more applicable and user-friendly wearable devices for
non-invasive acquisition of SEMG signals, sSEMG based hand
gesture recognition has become more and more popular. Three
types of features extracted from sEMG signals can be used
for hand gesture recognition: time domain features, frequency
domain features, and time-frequency domain features [25].

A gesture recognition system using sEMG signals was
proposed in [26] to classify nine gestures, which employs
time domain features, root mean square ratio (RMSR) and
autoregressive (AR) model, and a linear discriminant analysis
(LDA) algorithm as the classifier. Neacsu et al. [27] proposed
an sEMG-based hand gesture recognition system by using
fully-connected neural networks and time domain features
to classify the SEMG signals. Both systems use SD-sEMG
signals for gesture recognition, 3 channels in [26] and 7
channels in [27].

In addition to traditional machine learning algorithms, deep
learning has also been applied on the problem of sEMG-
based hand gesture recognition. For example, CNNs have
been widely adopted to extract the spatial relationship between
multi-channel SEMG signals. Allard et al. [28] developed a
CNN based scheme for hand gesture recognition in robotic
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arm guidance using SEMG based frequency domain features.
In [21], Geng et al. proposed a CNN-based gesture recognition
system using instantaneous SEMG images generated from the
multi-channel sEMG signals as the input of the CNN model.
Their experiment results show that the recognition accuracy
can reach 89.3 % with a single SEMG image, which can be fur-
ther improved to 99.0 % by using a simple majority voting over
40 consecutive sSEMG images. A novel attention-based hybrid
CNN and Recursive Neural Network (RNN) architecture was
proposed in [29] for sEMG-based hand gesture recognition,
where the multi-channel SEMG signals are generated as six
different types of images to be used as the input of the hybrid
CNN-RNN architecture. The hybrid CNN-RNN architecture
aims to capture both spatial and temporal information of
SsEMG signals. Inspired by the work of [21], [29], we generate
different types of images from multi-channel SEMG signals to
serve as the input of the deep anomaly detection model for
the purpose of user authentication.

B. Traditional Hand Gesture based User Authentication

Traditionally, hand gestures have been used as a popular
way for the purpose of user authentication. The methods can
be classified as two main categories: trajectory-based and
vision-based [30].

1) Trajectory-based Methods: Methods in this category
track key-points of hand obtained by specific devices or
sensors during hand motion as trajectories, which are a kind
of behavior traits. Features extracted from these trajectories
are then used for the purpose of authentication. Khoh et al.
[31] proposed an in-air hand gesture signature scheme which
employs Microsoft Kinect sensor camera as the acquisition
device. A sequence of images are captured when a subject
performs the sign action in air. Features based on the temporal
and motion information are extracted from the image sequence
for user identification or verification. In [32], Lewis et al. pro-
posed a finger movement-based authentication method which
utilizes an optical motion capturing system employing optical
markers placed on hand and optical tracking cameras. A group
of goniometric (joint-related) and dermatologic (skin-related)
features are extracted from the captured data to build the
authentication model. A 3D gesture authentication scheme
called GesID was proposed in [33] which utilizes an infrared
depth camera, Leap Motion, as the acquisition device. The
scheme builds the authentication model based on the sparse
autoencoder (SAE) one-class classifier.

2) Vision-based Methods: Unlike trajectory-based methods,
vision-based methods use features such as hand shape, hand
geometry, skin texture, hand finger pattern, etc., directly ex-
tracted from the acquired images or videos for authentica-
tion. In [34], a hand biometric authentication method was
proposed which employs images of stationary hand gestures
captured by a low-cost video camera. Features are extracted
from the original intensity image and the hand contour for
classification. Wong and Kang [35] proposed a stationary hand
gesture authentication scheme which utilizes edit distance
on finger pointing direction interval (ED-FPDI) to model
hand gesture behavior. In [30], a deep learning model called
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Dynamic-Hand-Gesture Authentication network (DHGA-net)
was built for automatically extracting discriminant features
from hand gesture video for authentication. The model consists
of two components: a 3D convolution network to extract the
spatial and temporal features from hand gesture videos and
a Temporal-Identity-Extracting (TIE) module to handle the
extracted spatio-temporal gesture features.

C. sSEMG based Identity Management

Although SEMG has been widely applied for HMI appli-
cations, only limited works have been seen recently on using
SEMG for identity management. Biometrics can be applied to
two identity management functionalities: user authentication
(or called user verification) and user identification (or called
person identification) [36]. In [37], [38], sSEMG signals gen-
erated from a list of hand gestures were used for building a
mobile user authentication system. He and Jiang [39] studied
the feasibility of using SEMG of wrist and hand gestures
as a biometric trait for user verification and identification,
where improved Discrete Fourier Transform (iDFT) features
extracted from windowed raw sEMG signals were used for
Mahalanobis distance based similarity matching. They further
investigated the impact of feature sets and number of channels
on the performance of SEMG based biometrics for user verifi-
cation and identification [40]. Three feature sets, time-domain
features, frequency division technique (FDT), and autore-
gressive (AR) features, and their combinations were studied.
In [41], Li et al. proposed a two-factor user authentication
scheme that utilizes sSEMG-based biometrics to enhance the
security of Android pattern unlock. 11 time domain features
extracted from a single channel sSEMG signal were used as
the input of a one-class classifier to identify the user as client
or imposter. A cancelable person identification scheme was
proposed by Jiang et al. [42], where HD-sEMG signals under
the isometric contractions of different finger muscles were
used as biometric tokens. A feature vector combining three
features, waveform length (WL), frequency median (FMD)
and spatial synchronization (SS), from each channel, was fed
into a KNN classifier for person identification. The work of
[37], [38], [40], [42] didn’t consider the spatial relationship
between multi-channel sEMG signals. Jiang et al. [43] also
proposed a neuromuscular password-based user authentication
scheme using HD-sEMG based neuromuscular biometrics. The
isometric contractions of different finger muscles are used
as passwords for authentication. The scheme utilizes both
time—frequency—space domain features at macroscopic level
and motor neuron firing rate features at microscopic level to
differentiate imposters and client. Unlike the aforementioned
approaches, our work uses the deep anomaly detection model
to automatically capture the spatial relationship between the
multi-channel SEMG signals from the generated SEMG image
for improved performance of user authentication.

III. METHODOLOGY

In this section, we first present an overview of the proposed
user authentication method using SEMG images of hand
gestures followed by the description of the methods used for
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Fig. 2. An illustration of the proposed deep anomaly detection-based user authentication method using multi-channel SEMG signals of hand gestures

generating SEMG images. The deep anomaly detection model
adopted for classifying the client and impostors is presented
next. Finally, the majority voting strategy for improving the
authentication performance is described.

A. Overview of the Proposed User Authentication Method

The proposed user authentication method consists of three
steps as illustrated in Fig. 2. An electrode grid of size W x H is
placed on the forearm of the user to be authenticated, where W
and H are the numbers of rows and columns of the electrode
grid respectively. In the first step of the authentication process,
the user performs a hand gesture as the authentication code
while the multi-channel SEMG signals are acquired from the
electrode grid in the meantime. The second step is to convert
the multi-channel sEMG signals into a sequence of SEMG
images using a method described in Section III-B. The sSEMG
images will be fed into a deep anomaly detection model to
classify the user as client or imposter in the final step. It should
be noted that the proposed authentication method can be used
individually as a single-factor method or combined with other
authentication methods as a multi-factor method. Although we
only consider a single gesture as the authentication code in this
study, the proposed method can be easily extended to use a
sequence of gestures as the authentication code.

B. sSEMG Image Generation

According to Section III-A, the electrode grid placed on the
forearm of the user has C' electrodes which are arranged as
a 2-D array of size W x H. The multi-channel SEMG data
of a hand gesture are acquired from the C' channels where
the SEMG signal of each channel has N samples (or frames).
Three methods are applied for generating images from the
multi-channel sEMG data: instantaneous sEMG image [21],
difference SEMG image [21], and SEMG map [44]. Different
time domain and frequency domain features are considered for
generating SEMG maps. Depending on the input size of the
adopted deep anomaly detection model, the generated SEMG
images may need to be resized for using as the model input.

1) Instantaneous sEMG Image: An instantaneous sEMG
image is directly generated by treating the sample values of
the C' channels in a time instance as pixels, which results in
an image of the same size as the electrode grid, i.e. W x H.
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By using this method, the multi-channel sSEMG data of a hand
gesture is converted into a sequence of [V instantaneous sSEMG
images.

2) Difference sSEMG Image: A difference SEMG image is
obtained as the difference between two consecutive instanta-
neous SEMG images, whose size is also W x H. A sequence of
(N —1) difference SEMG images is generated from the multi-
channel sSEMG data of a hand gesture by using this method.

3) SEMG Map: To generate an SEMG map, the value of
a time domain or frequency domain feature is extracted from
a time windowed SEMG signal segment in a channel first.
In this study, we consider two time domain SEMG features:
root mean square (RMS) and WL, and two frequency domain
features: H jorth2 and spectral entropy (Spectral En), which
are popular SEMG features widely used in previous studies
[45]-[49]. The feature values obtained from all channels are
used as pixels to form an image of size W x H. A sequence of
SEMG maps can be generated from the multi-channel SEMG
data by shifting the time window with a stride size of S.

RMS and WL are two of the most popular time domain
features for EMG signal processing where RMS indicates
the envelope of the signal and WL implies the measure of
complexity in each segment of EMG signal [48]. The values
of the two features for a time windowed sEMG signal segment
X are calculated as follows:

l
1
MS=,-) X;? 1
RMS z; , (1)
-1
WL=>Y |Xit1 — Xl 2)
=1

where X; is the ith sample of X and [ is the size of the time
window.

Hjorth2 is calculated as the mean frequency or average
dominant frequency of a time series signal as shown in
Equation (3). Hjorth2 is also called Mobility derived from
the statistical moments of the power spectrum [50].

Hjorth2 = (3)

where X' is the first-order derivative of SEMG segment X,
and var(X) known as Activity or Hjorthl represents the
signal power.
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Spectral En measures the complexity of time series in the
frequency domain. It’s defined as the Shannon entropy of the
power spectral density (PSD) of the SEMG signal segment X
[51]:

N
Spectral En = — Z P;log, P; 4

j=1

where P; is the energy of jth frequency component of X’s
spectrum, and [V is the number of components in the spectrum.

C. Deep Anomaly Detection Model

The deep anomaly detection model adopted in our study
is GANomaly [52], which is an advanced model based on
Generative Adversarial Networks (GANs). GANomaly has
been successfully applied for applications such as geochemical
anomaly detection [53], anomaly detection of aerospace data
[54], machine fault detection [55], [56], and heart disease
diagnosis [57]. Since the goal of this study is to investigate
the validity of the proposed authentication method, we directly
adopt the hyperparameters of the GANomaly model in [52]
without fine-tuning.

As illustrated in Fig. 3, a GANomaly model is composed
of three sub-networks: Generator G, Inference I, and Discrim-
inator D. Generator G employs an encoder-decoder structure
called adversarial auto-encoder (AAE) contains encoder Gg
and decoder Gp. The encoder Gg takes an input image x
and forwards it into 2d-convolution layers followed by the
LeakReLU activation and 2d-BatchNorm layers. The convo-
lutional layers downscale image = and map it into a lower
dimension latent space representation s = G g(z), which can
be considered as the best representative features of the input
image x. The decoder Gp uses the convolutional transpose
layers (ConvTranspose2D), with ReLU activation and 2d-
BatchNorm layers. The convolutional transpose layers up-
sample the latent space s to be the reconstruction of input
image x, named as r,, i.e. r, = Gp(s). Inference I is an
encoder I/ with the same architecture as Gg but different
parametrization. E takes r, as the input and maps it into
a lower dimension latent space representation ry = FE(r;),
which has the same dimension as the first latent space s. For
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the decoder Gp in Generator, the fanh activation is used for
the last convolutional layer to output the reconstruction 7, but
not the ReLU activation, which makes a GAN architecture
more stable [58]. Discriminator D is the third sub-network
with a CNN-based classifier which takes x and r, from G as
inputs and classifies them as real or fake, respectively. The
convolutional layers in the discriminator are fully connected.
The LeakyReLU activation and 2d-BatchNorm are used for all
layers except for the last convolutional layer, which is flattened
and then fed into a Sigmoid function layer for classification.

The objective function of GANomaly for model training
combines three loss functions: adversarial loss, contextual loss,
and encoder loss. The adversarial loss L is the Lo distance
between the feature representations of the original image z and
the reconstructed image r, generated by D which is defined
as:

Lp =||f(x) = f(r2)ll2 S

where f(-) is the output function of an intermediate layer of D.
The adversarial loss is the feature matching loss for adversarial
learning. The contextual loss L is defined as the L distance
between the original image x and the reconstructed image 7,:

Lo =|lz —rsll (6)

The encoder loss Lg is defined as the Lo distance between
the latent space representation of the input image s = Gg(x)
and the latent space representation of the reconstructed image
rs = E(rg):

Lg =[|Ge(z) — E(ra)||2 ¥

With the three loss functions, the objective function for model
training is defined as:

L=wpLp +wgLg+ wgLg ®

where wp, wg, and wg are the weights of the three loss
functions for adjusting their contributions to the objective
function.

After receiving a test image & as input, the trained
GANomaly model outputs an anomaly score A(Z) which is
defined based on the encoder loss as shown in Equation (9).
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The value of the anomaly score indicates the abnormality of
the test image.

A(2) = ||Ge(2) — E(Gp(Gr(2)))|l2 ©)

D. Majority Voting for Improving Authentication Performance

The simple majority voting strategy was used in [21] to
improve the accuracy of hand gesture recognition with instan-
taneous and difference SEMG images. Similarly, the majority
voting strategy can be applied in the proposed method to im-
prove the authentication performance. When a user performs a
hand gesture for authentication, a sequence of SEMG images
are generated from the acquired multi-channel SEMG signals.
The trained deep anomaly detection model classifies each
image as one of the two classes: client or imposter. A voting
time window is selected starting from the beginning of the
signal acquisition. The final authentication result will be the
class that has more than half of the votes from the images in
the voting window. In practice, considering the authentication
performance and time, one can select the voting time window
size as the point when there is no significant performance
improvement by further increasing the window size.

IV. PERFORMANCE EVALUATION

In this section, we first introduce the datasets used for
performance evaluation of the proposed method followed by
the description of experimental settings. Then we present the
evaluation results which demonstrate the feasibility of the
proposed method for user authentication.

A. Hand Gesture SEMG Datasets

Two publicly available hand gesture SEMG datasets are used
in our study to evaluate the performance of the proposed user
authentication method. The first one is CapgMyo DB-a [21],
an HD-sEMG dataset, which contains SEMG data acquired
from 18 subjects by using a 128-channel electrode grid. The
128 electrodes were organized as a 16 x 8 grid placed on
the forearms of subjects when they performed required hand
gestures. Each subject was asked to perform 8 isometric and
isotonic hand gestures shown in Fig. 4 and repeat each gesture
for 10 times.

The second dataset is Ninapro DB-1, a SD-sEMG dataset
acquired from 27 subjects by using a 10-channel electrode
grid [59], [60]. Ninapro DB-1 consists of SEMG data of
four different exercises where exercise B includes the same
8 isometric and isotonic hand gestures as CapgMyo DB-a and
9 basic wrist movements. To be consistent in the evaluation,
we only use the sSEMG data of the 8 isometric and isotonic
hand gestures of exercise B in our study. Similar to CapgMyo
DB-a, each subject was asked to repeat a gesture for 10 times
during the acquisition of Ninapro DB-1.

B. Experiments

We consider three authentication scenarios based on the
relationship between the gesture used for authentication and
the registered gesture to evaluate the proposed authentication

Authorized licensed use limited to:

Gesture  Description Gesture  Description
R Thump Up Abduction of
the fingers
Extension of
index and Fingers flexed
middle finger, together in
: flexion fist
others
Flexion of
i rlngf and little Pointing
inger, )
; index
extendsion
others
Thurr.1b Adduction
opposing ~ of extended
: base of little fingers
finger

Fig. 4. 8 isometric and isotonic hand gestures of CapgMyo DB-a dataset

method [39]: (1) Normal Test - the client uses the registered
gesture for authentication while an imposter uses any possible
gesture for authentication, i.e. the registered gesture is not
compromised by the imposters; (2) Leaked Test - both the
client and imposters use the registered gesture for authen-
tication, i.e. the registered gesture is compromised by the
imposters; and (3) Self Test - the client forgets the registered
gesture and tries to use any possible gesture for authentication.

For each authentication scenario, the evaluation is repeated
by treating each gesture in a dataset as the registered au-
thentication gesture. Thus, the process repeats 144 and 216
times for CapgMyo DB-a and Ninapro DB-1, respectively.
The subject who performed the registered gesture is treated
as client while other subjects are treated as imposters. For all
three authentication scenarios, the training dataset is formed
by SEMG images generated from the SEMG data of randomly
chosen 5 repetitions of the registered gesture. SEMG images
generated from the sEMG data of other 5 repetitions of the
registered gesture are combined with the imposter data to form
the testing dataset. For the scenario of normal test, the imposter
data are the sSEMG images generated from all gestures of
imposters. The imposter data of the leaked test are the SEMG
images generated from the registered gestures of imposters.
For the scenario of self test, the imposter data are the SEMG
images from other gestures of the client.

When generating the SEMG maps from the SEMG data of
a gesture, we set the sliding window size and stride size as 50
ms and 10 ms, respectively. Thus, there is an overlap of 40
ms between two consecutive windows. The sliding window
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and stride sizes were determined through our preliminary
experiments empirically. All generated sEMG images are
resized to 16 x 16 by using the bi-cubic interpolation, which
is the input size of the GANomaly model.

We evaluate the performance of the proposed user au-
thentication method by considering different SEMG image
generation methods described in Section III-B. We also include
a method proposed recently in [39] for comparison, which
utilizes the iDFT features extracted from multi-channel SEMG
signals for user verification and identification. The perfor-
mance of different methods are analyzed by using the detec-
tion error tradeoff (DET) curve, which plots the relationship
between false rejection rate (FRR) and false acceptance rate
(FAR) under various detection thresholds. FRR represents how
likely an authentication attempt is rejected by the method when
the client performs the registered gesture. FAR represents how
likely a gesture from an imposter is accepted by the method.
We use two performance metrics obtained from the DET
curve for evaluation: the area under the DET curve (AUC)
and the equal error rate (EER). EER is obtained when FRR
equals to FAR. For both metrics, a lower value indicates
a better authentication performance. We use the accuracy
as the performance metric to compare the performance of
different methods with majority voting under different voting
window sizes. The paired t-test with a level of significance
a = 0.05 is employed to evaluate the statistical significance
of performance comparison.

C. Results

1) Results on HD-sEMG Dataset: We first present the
results obtained from the HD-sEMG dataset, CapgMyo DB-a.
Figs. 5 and 6 use the boxplots to summarize the performance
of different methods in terms of AUC and EER, respectively.
The results clearly show that RMS map achieves the best
performance in all three test scenarios among the sEMG
image generation methods. The proposed method with RMS
map also has a significantly better performance than the
iDFT-based method for all three test scenarios (all p-values
< .001). The EERs (Mean + Standard Deviation) obtained
by the proposed method with RMS map for the normal,
leaked, and self tests are 2.31+£2.98 %, 3.07+£3.70 %, and
13.3949.76 %, respectively. Another observation from the
results is that all methods have better performance in the
normal and leaked tests than the self test. This shows that it is
harder to differentiate multi-channel SEMG signals generated
from hand gestures performed by the same user than signals
generated from hand gestures performed by different users.
However, a false positive in the self test scenario does much
less harm compared with false positives in the other two test
scenarios as it’s still the client who gets authenticated.

In Fig. 7, we compare the performance of four different
methods with majority voting using the accuracy as the perfor-
mance metric. In the figure, the mean and standard deviation
values of the results obtained by a method under different
voting window sizes are plotted. We only report the results of
RMS map in Fig. 7 because it has the best performance among
the four SEMG map generation methods. The z-axis of Fig. 7
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Fig. 5. Performance comparison of different methods without majority voting
in terms of AUC for the CapgMyo-DB-a dataset

is the number of SEMG frames which is the size of the voting
window. The results show that majority voting has significant
impact on improving the performance of instantaneous image,
difference image and the iDFT-based method, especially in the
early stage, while it only slightly improves the performance
of RMS map. When the voting window reaches around 70
ms, instantaneous and difference images achieve comparable
performance as RMS map in the normal and leaked tests.
RMS map still has a significantly better performance than
other methods in the self test when majority voting is applied
(p-values < .001 for all voting window sizes). The results
also show that RMS map can achieve a good authentication
performance in a small time window (50 ms), which implies
its advantage in the authentication time.

2) Results on SD-sEMG Dataset: We then present the
results obtained from the SD-sEMG dataset, Ninapro DB-1.
Performance of different methods in terms of AUC and EER
are summarized in Figs. 8 and 9, respectively. The results are
similar to those obtained from the CapgMyo DB-a dataset
that RMS map significantly outperforms other methods in the
three test scenarios (all p-values < .001). All methods also
have worse performance in the self test compared with other
two tests. The EERs obtained by the proposed method with
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Fig. 6. Performance comparison of different methods without majority voting
in terms of EER for the CapgMyo-DB-a dataset

RMS map for the normal, leaked, and self tests are 6.18+6.99
%, 7.30+7.52 %, and 12.86+£11.62 %, respectively. Compared
with the results shown in Figs. 5 and 6, it can be observed that
using SD-sEMG signals result in a larger variation in results
than using HD-sEMG signals for all methods. This shows that
HD-sEMG signals provide richer spatio-temporal information
than SD-sEMG signals leading to a more stable authentication
performance.

Same as Fig. 7, we compare the performance of four
different methods with majority voting. The results are shown
in Fig. 10. Unlike the results obtained from the CapgMyo
DB-a dataset, major voting has a great impact on improving
the performance of RMS map in all three test scenarios when
using the SD-sEMG signals. The most significant impact is
seen in the self test where the average accuracy of RMS
map has an increment of 9.67 % from 50 ms to 170 ms.
The results show that RMS map significantly outperforms
other methods in all three test scenarios under different voting
window sizes (all p-values < .01). This demonstrates that
the proposed method with RMS map is a viable solution for
user authentication even when only SD-sEMG signals of hand
gestures are acquired.
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Fig. 7. Performance comparison of different methods with majority voting
in terms of accuracy for the CapgMyo DB-a dataset

V. CONCLUSIONS

Multi-channel SEMG signals are widely employed for hand
gesture recognition but have only seen limited applications
for user authentication. In this paper, we propose a new
use authentication method based on deep anomaly detection
using multi-channel SEMG signals of hand gestures. Different
methods to convert multi-channel SEMG signals as a sequence
of images are investigated. The sSEMG images are fed into
a GANomaly-based deep anomaly detection model which
classifies the user performing the hand gesture as client or
imposter. We evaluate the performance of the proposed method
under three test scenarios using two publicly available hand
gesture SEMG datasets: an HD-sEMG dataset, CapgMyo DB-
a, and a SD-sEMG dataset, Ninapro DB-1. The results show
that RMS map has the best performance in all test scenarios
among the investigated SEMG image generation methods.
The proposed method with RMS map achieves much better
performance than the reference method, especially when using
SD-sEMG signals. It is found that the majority voting strategy
can generally improve the authentication performance of the
proposed method. Overall, the results demonstrate that the
proposed method with RMS map is a viable solution for user
authentication. In future, a fine-tuning of the hyperparameters
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Fig. 8. Performance comparison of different methods without majority voting
in terms of AUC for the Ninapro DB-1 dataset

of the GANomaly model will be conducted to explore possible
performance improvement. We will also research novel deep
anomaly detection models that capture more discriminative
spatio-temporal information in multi-channel SEMG signals,
which could lead to improved authentication performance in
the self test and when SD-sEMG signals are used.
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