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ABSTRACT1
The development of traffic models based on macroscopic fundamental diagram (MFD) enables2
many real-time control strategies for urban networks, including cordon-based pricing schemes.3
However, most existing MFD-based pricing strategies are designed only to optimize the traffic-4
related performance, without considering the revenue collected by operators. In this study, we5
investigate cordon-based pricing schemes for mixed networks with urban networks and freeways.6
In this system, heterogeneous commuters choose their routes based on the user equilibrium prin-7
ciple. There are two types of operational objectives for operating urban networks: (1) to optimize8
the urban network’s performance, i.e., to maximize the outflux; and (2) to maximize the revenue9
for operators. To compare those two objectives, we first apply feedback control to design pricing10
schemes to optimize the urban network’s performance. Then, we formulate an optimal control11
problem to obtain the revenue-maximization pricing scheme. With numerical examples, we illus-12
trate the difference between those pricing schemes.13

14
Keywords: Congestion pricing, feedback control, macroscopic fundamental diagram, optimal con-15
trol, revenue16
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INTRODUCTION1
Congestion pricing has been studied extensively both theoretically and practically to reduce traffic2
congestion in urban networks. In practice, single cordon-based pricing schemes have been de-3
signed and implemented in many cities, such as Stockholm and Milan. A hybrid scheme combining4
facility-based and cordon-based pricing has been implemented in Singapore, whereas a zone-based5
scheme has been applied in London. A comprehensive overview of nine congestion pricing prac-6
tices is provided in (1). By imposing a fee to enter specific areas, congestion pricing can change7
commuters’ behavior, including mode choice, route choice and departure time choice. A compre-8
hensive review of congestion pricing methodologies and technologies is provided in (2, 3). Pigou9
(4) and Knight (5) were the first to advocate congestion pricing by arguing that an optimal charge10
should be implemented for the congested road to internalize the externality of vehicles and drive11
the system to an optimal state. The first-best pricing is proposed to reach a system optimal flow12
by setting the toll rate as the difference between marginal social cost and marginal private cost.13
Some assumptions to realize the first-best pricing include: (1) individual drivers choose the route14
based on utility maximization principle; (2) congestion pricing is applied to all relevant road seg-15
ments in the network; (3) full information on all costs is available for both the operators and the16
drivers; (4) congestion pricing is technically feasible and the transaction costs are reasonably low17
(6). Therefore, the applications of first-best pricing models have been impractical despite the ide-18
alized theoretical basis. As a result, second-best pricing schemes have been proposed, in which19
tolls are only active in a subset of links. A mathematical program with equilibrium constraints20
(MPEC) has been formulated to derive the second-best pricing in (7–12). However, the solution21
to the MPEC for a large-scale dynamic network is computationally complex (13). In addition, one22
common assumption in those studies is that the traffic is in steady state, which may not capture23
traffic dynamics accurately.24

To develop an effective congestion pricing scheme for urban networks, it is essential to25
understand the traffic dynamics at a network level. A macroscopic fundamental diagram (MFD)26
that relates the average speed and the average per-lane vehicle density in a road network was first27
proposed and calibrated for Ipswich in (14). Recently, the existence of MFD has been revealed in28
many cities (15, 16). The development of MFD models has enabled many real-time control strate-29
gies to improve network performance. For example, a model predictive control-based perimeter30
control is proposed in (17–19), and a dynamic routing strategy is developed in (20, 21).31

Recently, MFD-based pricing schemes are developed to reduce congestion. Geroliminis32
and Levinson (22) combined Vickrey’s bottleneck model (23) with a MFD to derive an optimal33
fine toll when commuters are homogeneous. Results show that the proposed toll shortens the du-34
ration of the peak period, and is Pareto-efficient for every commuter. Zheng et al. (24) applied an35
integral controller to adjust the flat cordon-based tolls with an agent-based simulation of Zurich36
urban road network. Simoni et al. (25) derived two alternative cordon-based tolls, i.e., a step toll37
and a hybrid toll, by using the marginal cost pricing and a MFD, and applied to a case study of38
Zurich. Some other types of MFD-based congestion pricing schemes are proposed when consid-39
ering the distribution of trip lengths, such as a usage-based toll (26), a distance-based toll (27), a40
joint distance and time toll and a joint distance and delay toll (JDDT) (13). Besides, Gu et al. (28)41
formulated two new high-dimensional toll level problems (TLPs) in a large-scale heterogeneously42
congested traffic network by integrating a linear JDDT with the MFD. Those two problems were43
solved by using surrogate-based optimization. Later, four state-of-the-art simulation-based opti-44
mization methods were applied and compared to solve the TLPs (29). Furthermore, recent studies45



Wang and Gayah 4

extend the single-mode MFD to a bi-modal with cars and buses. Zheng et al. (30) proposed a1
proportional-integral controller to determine the area-based pricing for an urban network with cars2
and buses, and tested the performance with an agent-based simulation of the Sioux Fall network.3
Dantsuji et al. (31) proposed a simulation-based joint optimization framework to develop conges-4
tion pricing schemes and road space allocation plans based on the congestion costs represented by5
a multimodal MFD. In addition, Zheng and Geroliminis (32) designed an optimal VOT-based toll6
for a two-region bi-modal city when commuters differ in their income levels and value of times7
(VOTs).8

Laval et al. (33) investigated the dynamic user equilibrium in a mixed network with two9
routes, an urban network modeled with a MFD and a freeway. However, to our knowledge, no10
study has investigated a mixed network that considers joint pricing and traffic dynamics in the11
combined system. In addition, in most MFD-based pricing schemes, commuters are assumed to12
have the same VOT or their VOTs have limited set of values. In this study, we aim to propose13
different pricing schemes for the urban networks when commuters differ in VOTs. Two popu-14
lar operation objectives are explored: performance-optimization and revenue-maximization. The15
performance-optimization is realized by a feedback control approach, which is similar to (34, 35).16
The controllers do not directly determine the price, but estimate coefficients in the price model.17
The revenue-maximization pricing scheme is obtained by solving an optimal control problem.18
Note that the proposed framework is different from (17, 18) for several reasons: (1) the study site19
is different; and, (2) the utility function is different, since tolls are included in our paper. Also, this20
paper applies a feedback pricing scheme to optimize the performance, which is not considered in21
those studies.22

The rest of this study is organized as follows. In Section 2, we describe the system dy-23
namics, including traffic dynamics and route choice. In Section 3, we develop a feedback control24
approach and an optimal control approach to determine the prices for urban networks, considering25
two different operation objectives. In Section 4, we present numerical examples to show how pro-26
posed pricing schemes perform in various mixed networks. In Section 5, we conclude this study27
and provide future research topics.28

SYSTEM DYNAMICS29
An O-D pair is connected by mixed networks with urban networks and freeways. Figure 1 provide30
both realistic and schematic representation of a mixed network with two urban networks and two31
freeways. Each mixed network i is made up of one urban network and one freeway. The free-flow32
travel time on the freeway is longer than the urban network. In addition, commuters need to pay a33
fee to enter the urban networks, but they can use freeways for free.34
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(a) Realistic representation (b) Schematic representation

FIGURE 1: A mixed network with two urban networks and two freeways

A list of notations in provided in Table 1.1

TABLE 1: A list of nations

niU(t) Accumulation in urban network i λiF(0) Number of queueing vehicles on freeway i
CiF Capacity of freeway i tiF , f f Free-flow travel time on freeway i
wiU(t) Travel time in urban network i wiF(t) Travel time on freeway i
fi(t) External demand of mixed network i fi0(t) Internal demand of urban network i
fiU(t) Demand of urban network i giU(t) Trip completion rate of urban network i
fiF(t) Influx of freeway i giF(t) Outflux of freeway i
µ capacity drop ratio β Proportion of trips that end in urban network

hiF(t) Outflux of the point queue i π∗
Average value of time (VOT) for
commuters who make route choice

PiU
Proportion of commuters that
always choose urban network i

PiF
Proportion of commuters that
always choose freeway i

Pri(t)
Proportion of commuters that
choose urban network i

ζi(t) Residual accumulation in the urban network

ui(t) Price for urban network i umax Maximum allowable price for urban network

Traffic dynamics2
The traffic dynamics of each urban network depends on the sum of internal and external demand,3
and the outflux. The internal demand includes commuters who start their trips inside the urban4
network. They can finish trips either within or downstream of the urban network. The external5
demand is generated upstream of the mixed network. Those commuters can end trips in the urban6
network or travel through the network. We assume that there is no demand generated inside the7
freeway. Thus, each freeway ’s traffic dynamics is determined by its external demand and supply.8

Note that, although it is known that tolling may affect the commuters’ behavior by shifting9
the demand to other periods, we assume that the exogenous total demand is not influenced by the10
toll, i.e., completely inelastic demand.11

The urban traffic dynamics12
We consider a homogeneous urban network i with length of LiU . This network has a well-defined13
MFD, qiU(t) = Q(niU(t)). As mentioned in (36), the MFD can be used to derive the network exit14
function (NEF), which expresses the flow rate of vehicles exiting the network, giU(t), as a function15
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of the total number of vehicles circulating in the network, niU(t). If the trip length within an urban1
network, liU , is identical for all commuters,2

giU(t) = G(niU(t)) =
LiU

liU
Q(niU(t)), (1)

and niU(t) is captured by the following equation:3

d
dt

niU(t) = fiU(t)−giU(t), (2)

where fiU(t) is the demand of the urban network i, which can be internal or external. The average4
speed in the urban network, viU(t), is computed by5

viU(t) =
giU(t))liU

niU(t)
. (3)

And the travel time in the urban network can be obtained by the ratio of the trip length and6
average speed.7

The freeway dynamics8
We apply the point queue model (PQM) to model traffic dynamics of a freeway, because it has been9
extensively applied to study the congestion effect of a bottleneck. As demonstrated in (37), a point10
queue is an approximation of the road by omitting the length of the road but retaining the influx11
and outflux. It can be derived as limits of two link-based queueing models: the link transmission12
model (38) and the link queue model (39). So, a point queue is sufficient for analyzing the total13
delay caused by queues. We choose the number of queueing vehicles (λiF(t)) as the state variable.14
Then, the dynamics of queue is described by the following ordinary differential equation:15

d
dt

λiF(t) = fiF(t)−hiF(t), (4)

where fiF(t) is the demand of freeway i at time t. When no capacity drop exits, the outflux of the16
point queue is17

hiF(t) = min{ fiF(t)+
λiF(t)

ε
,CiF}, (5)

where CiF is the capacity of the freeway, and ε equals time step in discrete time.18
In reality, the discharging rate drops to a value that is smaller than the downstream capacity,19

when a queue forms upstream to the bottleneck. Here, we apply a phenomenological model of20
capacity drop to calculate the discharging flow rate (40).21

hiF(t) = min{ fiF(t)+
λiF(t)

ε
,(1−H( fiF(t)+

λiF(t)
ε
−CiF)µ)CiF}, (6)

where H(y) is the Heavyside function, equal to 0 when y≤ 0 and 1 when y > 0. µ is the capacity22
drop ratio.23

We denote tiF, f f as the free-flow travel time on the freeway. Then, the travel time on the24
freeway is25

wiF(t) = tiF, f f +
λiF(t)
CiF

. (7)
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Connection between multiple mixed networks1
In this section, we show how the dynamics are modeled in a complex network with multiple urban2
networks and freeways. Here, we define a new variable: giF(t). It is the outflux of freeway i. We3
assume that the queue forms at the beginning of each freeway, that is, commuters need to travel4
for an extra tiF , f f after leaving the queue to reach the end of the freeway. In this network, the5
relationship between giF(t) and the outflux of the point queue (hiF(t)) is6

giF(t) =
{

0 t < tiF , f f
hiF(t− tiF , f f ) t ≥ tiF , f f

(8)

It is straightforward that the total external demand of the first mixed network is f1(t). For7
any other network, the external demand is the sum of the outflux of the preceding network and8
freeway. In addition, we assume the trip completion rate inside each urban network i is βgiU(t) (β9
is a fixed value between 0 and 1). Then, fi(t) = gi−1U(t)(1−β )+gi−1F(t) (i≥ 2). For example,10
for the second mixed network, the demand is a function with delay: when t < t1F , f f , f2(t)= g1U(t);11
when t >= t1F , f f , f2(t) = g1U(t)(1−β )+h1F(t− t1F , f f ).12

Route choice13
As mentioned earlier, commuters need to pay to the corresponding toll to enter an urban network,14
but they can use the freeway for free. Since commuters only pay the price when they enter, this15
pricing scheme is cordon-based.16

In the original Wardrop’s user equilibrium (UE) state (41), “the journey times on all the
routes actually used are equal, and less than (or equal to) those which would be experienced by
a single vehicle on any unused route”. Here we extend the UE principle for individual vehicles
choosing different routes based on generalized cost. We denote wiF(t) and wiU(t) as the travel
time on freeway and the urban network in the mixed network, and ui(t) is the price for entering the
urban network i. Then, if commuter i chooses the urban network at t, then
wiU(t)πi +ui(t)≤ wiF(t)πi, (9a)

if commuter j chooses the urban network i, then
wiF(t)π j ≤ wiU(t)π j +ui(t), (9b)
where πi is the VOT of commuter i. Without loss of generality, assuming that πi (π j) is a continuous17
random variable that follows a probability density function of d(π) and wiF(t)> wiU(t), we have18
the following conclusion:19

Lemma 3.1. The proportion of commuters choosing the urban network at t is given by

Pri(t) = 1−D
(

ui(t)
wiF(t)−wiU(t)

)
, (10)

where D(·) is the cumulative distribution function of d(·).20

Proof. From (9a), we can see that, for any commuter i choosing the urban network i, πi≥ ui(t)
wiF (t)−wiU (t) ;21

for any commuter j choosing the urban network i, π j ≤ ui(t)
wiF (t)−wiU (t) ; Therefore, the proportion of22

commuters choosing the urban network i is given by (10).23

For example, if the VOTs follow the simplified variant of the Burr distribution (35, 42), the24
proportion of commuters choosing the urban network at t is25
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Pri(t) =
1

1+( ui(t)
π∗(wiF (t)−wiU (t)))

γ
,

where π∗ is the average VOT and γ is a shape parameter affecting the relative width of the VOT1
distribution. To capture the randomness in the choice model, the proportion is multiplied by a2
variable η(t).3

The complete dynamics4
Inside a mixed network i, a proportion of PiF commuters will always use the freeway, a proportion5
of PiU commuters will always choose the urban network, and the remaining commuters make6
choose between two routes. In addition, there is an internal demand, fi0(t), inside urban network7
i. The traffic dynamics of the urban network and the freeway inside the mixed network are as8
follows:9

d
dt

niU(t) = fi0(t)+ fi(t)PiU + fi(t)(1−PiU −PiF)Pri(t)η(t)−giU(t), (11a)

d
dt

λiF(t) = max{ fi(t)PiF + fi(t)(1−PiU −PiF)(1−Pri(t)η(t))−CiF ,−
λiF(t)

ε
}, (11b)

TWO PRICING SCHEMES FOR URBAN NETWORKS10
When designing pricing schemes, two objectives are commonly considered: system performance11
and revenue. In this section, we propose two pricing schemes for a single mixed network when the12
travel time on the freeway is longer than the urban network. First, we apply feedback control to13
obtain prices that maximize the outflux of the urban network. Then, we propose a pricing scheme14
to maximize the revenue for the urban network.15

A feedback control approach16
There are two types of equilibrium states, depending on the demand profile. When the demand is17
low, the maximum outflux is reached when all commuters choose to use the urban network. So,18
it is straightforward that the price should be set as 0 to attract as many commuters as possible.19
On the other hand, when the demand is high, the pricing scheme should keep the urban network’s20
accumulation at its critical value. Next, we will discuss the latter case in detail. The results will21
provide some insights on the design of pricing schemes.22

Solution of the control problem with high demand23
We define a new variable ζi(t), which represents the residual accumulation in the urban network i.24
Mathematically,25

ζi(t) = n∗iU −n1U(t)− ( fiU(t)−G(niU(t)))∆t, (12)
where fiU(t) = fi0(t)+ fi(t)PiU + fi(t)(1−PiU −PiF)Pri(t)η(t), n∗iU is the critical accumulation26
for urban network i, and ∆t is the time step.27

Combining (10), we can obtain the following equation to calculate price:28

ui(t) = z(
(n∗iU −niU(t)−ζi(t))/∆t +G(niU(t)))− fi0(t)− fi(t)PiU

fi(t)(1−PiU −PiF)η(t)
)(wiF(t)−wiU(t)), (13)
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where z(p) is the 100(1− p) th-percentile, defined by p = 1−D(z(p)).1
As an example, if the VOTs follow a Burr distribution, then the price would be2

ui(t) = π
∗(

fi(t)(1−PiU −PiF)η(t)+ fi0(t)+ fi(t)PiU − (n∗iU −niU (t)−ζi(t))/∆t−G(niU (t)))
(n∗iU −niU (t)−ζi(t))/∆t +G(niU (t))− fi0(t)− fi(t)PiU

)1/γ(wiF(t)−wiU (t)).

(14)
As another example, if the VOTs follow an exponential distribution: F(x) = 1−e

−x
π∗ , where3

π∗ is the average VOT, we have4

ui(t) = π
∗ ln(

fi(t)(1−PiU −PiF)η(t)
(n∗iU −niU (t)−ζi(t))/∆t +G(niU (t))− fi0(t)− fi(t)PiU

)(wiF(t)−wiU (t)). (15)
In both (14) and (15), the relationship between the residual accumulation and price can be5

written in the following form:6

ui(t) = A(ζi(t))(wiF(t)−wiU(t)), (16)
which can be considered as a general route choice model. A(ζi(t)) represents the price for a unit7
of travel time difference when the residual accumulation is ζi(t). Note that, A(ζi(t)) depends on8
the route choice mode and the corresponding parameters, which are unknown to the operators.9

Design of controller10
The block diagram of the control system for mixed network i is shown in Figure 2. The objective is11
to determine a pricing scheme for the peak period that maximizes the urban network’s outflux via12
impacting commuters’ route choice. To achieve the objective, the controller calculates the price13
based on the congestion level. The toll is then fed into the plant, which determines route choice14
and the traffic dynamics of the system. In this control system, ζi(t) is the state variable.15

FIGURE 2: Block diagram of the control system

Figure 3 shows the design of the controller. Based on the analysis in the previous section,16
we can see that when the accumulation is around or over the critical value, the price is the product17
of a positive number and the travel time difference; otherwise, the price is 0. Then, the non-negative18
price ui(t) is updated as follows:19

ui(t) = max{αi(t)(wiF(t)−wiU(t)),0}, (17)
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where αi(t) is determined by the following integral controller:1

d
dt

αi(t) =−Kiζi(t) (18)
where Ki is a positive coefficient. That is, when the accumulation is higher than the optimal2
accumulation (i.e., ζi(t) < 0), we should increase the price to reduce the demand of the urban3
network.4

FIGURE 3: Design of the controller

An optimal control approach5
In this section, we are interested in the revenue problem. We want to propose another pricing6
scheme that can maximize the operation revenue for the urban network over a time period. The7
demand of paying commuters at time t is composed of two groups. The first group includes8
commuters who always choose the urban network. The second group refers to commuters who9
make choice considering the travel time and dynamic tolls. So, the demand of paying commuters10
is fi(t)PiU + fi(t)(1−PiU −PiF)Pri(t)η(t). We apply an optimal control approach to obtain the11
optimal pricing scheme. Mathematically,12

maxR =
N

∑
n=1

∫ T

0
( fi(t)PiU + fi(t)(1−PiU −PiF)Pri(t)η(t))ui(t)dt

subject to
d
dt

niU(t) = fi0(t)+ fi(t)PiU + fi(t)(1−PiU −PiF)Pri(t)η(t)−giU(t),

d
dt

λiF(t) = max{ fi(t)PiF + fi(t)(1−PiU −PiF)(1−Pri(t)η(t))−CiF ,−
λiF(t)

ε
},

Pri(t) = 1−D
(

ui(t)
wiF(t)−wiU(t)

)
,

0≤ ui(t)≤ umax

(19)

where umax is the maximum allowable price for operating urban networks, which is determined by13
agencies.14
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CASE STUDY1
Case study for a single mixed network2
We first present the result for a single mixed network, as show in Figure 4. An approximate formula3
for the corresponding NEF has been given in (43).4

G(n) =
{

2.28×10−8n3
1−8.62×10−4n2

1 +9.58n1 0≤ n1 < 14000,
27331−1.38655(n1−14000) n1 ≥ 14000.

(20)

FIGURE 4: A mixed network with a freeway and an urban network

The maximum average outflux from is 33168 vph, which is achieved at an accumulation of5
8271 veh. The maximum (jam) accumulation is 34,000 veh. The MFD, Q(n1U(t)), is a scaled up6
version of the NEF formula - scaled up by the 2.3 km average trip length observed in Yokohama.7
When the outflux of the urban network is maximized, the travel time is 14.96 min. For the freeway,8
the capacity is C1F = 30 veh/min, and t1F , f f = 15 min. The capacity drop ratio is µ = 0.1.9

The initial accumulation in the urban network is 8000 veh, and the freeway is initially10
empty. For the first 60 minutes, f10(t) is Poisson with average of 50 veh/min, and f (t) is Poisson11
with average of 560 veh/min. For the next 120 minutes, f10(t) is Poisson with average of 3012
veh/min, and f1(t) is Poisson with average of 210 veh/min. In the lane choice model, P1U = 15%,13
P1F = 5%. η(t) follows a truncated normal distribution with mean of 1 and variance of 0.04. Also,14
the value of η(t) is between 0.9 and 1.1. The average VOT is π∗ = $0.5/min, which is the same as15
(35, 44). The Burr distribution is evaluated for γ = 3. The traffic dynamics are updated every 3016
seconds.17

The performance-optimization pricing scheme18
The coefficients in the controller is chosen as K1 = 1/1000, and the initial guess of α1 is α1(0) =19
0.5. The results for the performance-optimization pricing scheme are presented in Figure 5. We20
test the performance when the prices are updated at three different frequencies (every 30 second, 521
minutes, and 10 minutes), We also provide the results when no price is implemented to the urban22
network.23
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(a) Accumulation in the urban network
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(b) Demand of the urban network
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(c) Queue size on the freeway
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FIGURE 5: Results for performance-optimization pricing scheme at different frequencies for
updating price

In Figure 5a, the accumulation in the urban network drops when the initial price is ap-1
plied to the system, because α1(0) is high. After that, the accumulation starts to increase. When2
no price is implemented, the accumulation keeps increasing as long as the total demand is high.3
When the prices are updated every 30 seconds, the accumulation fluctuates closer to the critical4
value (marked by the horizontal dashed line) than the 5-minute case. The accumulation is always5
below the critical value, if the prices are updated every 10 minutes. When the demand is low, the6
accumulation first decreases dramatically and then fluctuates around 1645 veh in all four cases.7
Figure 5b shows the demand of the urban network. When the upstream demand is high, a larger8
update interval results in a larger fluctuation in the demand of the urban network. For example, the9
lowest demand of the urban network is 382 veh/min when the update frequency is set to be every10
10 minutes. When the demand is low, f1U(t) becomes around 227 veh/min in all scenarios. As11
shown in Figure 5c, the queue size increases fast in the first because fewer commuters decide to12
use the urban network. The queue size keeps increasing as long as the external demand is high.13
When no price is applied, the maximum queue size on the freeway is 695 veh, which is the smallest14
in all cases. The longest queue (1429 veh) appears in the case where the prices are updated every15
10 minutes. Meanwhile, if the price is not active, the queue is eliminated at t = 118 min, which16
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is the fastest in those four scenarios. However, the queue cannot be eliminated at the end of the1
study period when the update frequency is every 10 minutes. In Figure 5d, the maximum prices2
are $11.82, $5.76, and $7.35, respectively. When the demand is low, we just set the price to be 03
to attract more commuters to use the urban network.4

We also compare the revenue and the average outflux of the urban network, and the maxi-5
mum absolute residual accumulation (in high demand) in different pricing schemes in Table 2. The6
maximum absolute residual accumulation is 682 veh if no price is implemented. If we increase7
the duration of the high demand period, the value would keep increasing. When the prices are8
updated every 30 seconds, the urban network has the highest average trip completion rate when9
the upstream demand is high. When the prices are updated every 5 minutes, the average trip com-10
pletion rate is 0.2 veh/min lower, and the maximum absolute residual accumulation is 38 veh than11
the 30-second case. If the update frequency is every 10 minutes, the urban network has the lowest12
average trip completion rate, but the highest revenue.13

TABLE 2: Comparison of four pricing schemes

Average trip completion rate of the
urban network (veh/min)

Maximum absolute residual
accumulation (veh) Total revenue

no price 552.28 682 0
30 seconds 552.64 420 62,923
5 miutes 552.44 458 40,845

10 minutes 552.08 514 90,058

Based on the results in Figure 5 and some practical issues for implementing tolls, we will14
update the prices every five minute for the case study for two mixed networks later.15

The revenue-maximization pricing scheme16
In this section, we test the impact of the maximum allowable price on the performance and revenue17
by setting two umax: $3 and $12. In all four figures in Figure 6, the dashed line represents the results18
with umax = $3, and the solid line shows the results with umax = $12.19
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(a) Accumulation in the urban network
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(b) Demand of the urban network
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(c) Queue size on the freeway
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FIGURE 6: Results for the revenue-maximizing pricing schemes under two maximum allowable
prices

In Figure 6a, when umax = $12, the accumulation keeps decreasing in the first 12 minutes,1
until it reaches 6893 veh. After that, the accumulation starts to increase, as the demand (shown2
in Figure 6b) is higher than the outflux. At the end of the high demand period, the accumulation3
is 7467 veh. When the demand drops, the accumulation fluctuates around 1591 veh, which is4
lower than that in the performance-optimization pricing scheme. However, when umax = $3, the5
accumulation is higher than the critical value between 52 and 60 minutes, while it fluctuates around6
1568 veh when the demand is low. In Figure 6b, the initial demands are both too low because of7
the high price. At the same time, when the demand is low, the demands are around 220 veh/min8
and 215 veh/min whenumax = $12 and umax = $3, respectively. The queue size increases rapidly9
at first, since the external demand high and fewer commuters choose to pay to travel in the urban10
network. As more commuters choose the urban network, the queue size increases at a relatively11
lower speed, as shown in Figure 6c. When umax = $12, the maximum queue size on the freeway12
is 2571 veh. The queue size starts to drop as demand drops. At the end of the study period, the13
queue size is 1517 veh. The maximum queue size is 1231 veh when umax = $3. When the demand14
is low, the queue on the freeway cannot be eliminated either. Instead, the queue size decreases15
to 141 veh at the end of the study period. This shows that a higher maximum allowable would16
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lead to a more congested condition on the freeway. In Figure 6d, the two prices are constant at1
their maximum allowable values respectively, which are independent of the demand profile. This2
is totally different from the performance-optimization pricing scheme.3

In addition, at the end of the study period, the revenue is $161,356 when umax = $3, and4
$628,900 when umax = $12.5

Comparing the results of those two types of schemes, we have the following conclusions:6
(1) the performance-optimization pricing scheme is dynamic when the demand is high, while the7
revenue-maximization pricing scheme is static; (2) the revenue-maximization pricing scheme cre-8
ates much more revenue than the performance-optimization pricing scheme; and (3) the revenue-9
maximization pricing scheme leads to a poor traffic condition: very long queue on the freeway and10
low utilization of the urban network.11

Thus, we think performance-optimization pricing schemes would be more helpful in prac-12
tice. In the next section, we will test this pricing scheme in a more complex traffic network.13

Case study for two mixed networks14
In this section, we provide a case study for an extended mixed network, as shown in Figure 1.15
Both urban networks exhibit the same NEF in (20). The study period is 180 minutes, the traffic16
dynamics are updated every 30 seconds, and the prices are calculated every 5 minutes. A detailed17
description of traffic and operation parameters can be found in Table 3. Note that, we assume18
the demands follow Poisson distributions, and the value in the cells shows the average value. In19
addition, to include the randomness in the choice model, we set η(t) follows a truncated normal20
distribution with mean of 1 and variance of 0.04, and its value is between 0.9 and 1.1. Same as the21
previous setup, the VOTs are Burr distributed with π∗ = $0.5/min and r = 3.22

TABLE 3: Parameters for the two mixed networks

Fixed parameters
P1U 0.15 P1F 0.05
P2U 0.1 P2F 0.02
C1F 30 veh/min C2F 30 veh/min
t1F , f f 15 min t2F , f f 15 min
K1 1/500 K2 1/750
µ 0.1 β 0.1

Initial Conditions
n1(0) 8000 veh λ1F(0) 0
n2(0) 8000 veh λ2F(0) 0
a1(0) $0.5/min a2(0) $0.5/min
Demand in the first 60 minutes Demand in the remaining 120 minutes
f1(t) 560 veh/min f1(t) 210 veh/min
f10(t) 50 veh/min f10(t) 75 veh/min
f20(t) 30 veh/min f20(t) 40 veh/min

The numerical results are illustrated in Figure 7. In Figure 7a, for each network, the accu-23
mulation cross the optimal value just once when the upstream demand is high. When the demand24
becomes low, the accumulation in the first network fluctuates around 1646 veh. The accumulation25
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in the second urban network is away from the optimal value in the first 15 minutes, because the1
external demand is relatively low. Then, it fluctuates around the optimal value. When the demand2
becomes low, the accumulation is around 1919 veh, which is higher than the first urban network.3
This can be explained by Figure 8: when the queue on the freeway is not eliminated in the first4
mixed network, the external demand of the second mixed network is higher. In Figure 7b, the total5
demands of those two urban networks have a similar trend when the demand is high, except that6
the demand of the second urban network is less stable. The second urban network has a higher7
demand when the upstream demand decreases. As shown in Figure 7c, the maximum and average8
queue size on the second freeway is smaller than that on the first freeway. Since the demand of the9
second freeway is relatively low when the price is 0, the queue length is eliminated at 130 minutes,10
which is earlier than the first freeway (153 minutes). In Figure 7d, the prices for urban networks11
are non-negative when the demands are high, and eventually become 0 when the demands are low.12
The maximum price for the second urban network ($7.58) is higher than the first one ($5.50), be-13
cause the ne. The price for the second urban network does not become 0 immediately when f1(t)14
drops, because there is a delay in the outflux of the first freeway.15
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FIGURE 7: Results for the extended network when prices are updated every 5 minutes

In addition, we present the external demands of each mixed network in Figure 8. For the16
first mixed network, the influx follows a Poisson distribution with average value of 560 veh/min17
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and 210 veh/min for the high and low demand case, respectively. The external demand of the1
second mixed network in the first 15 minutes is about 497 veh/min, which equals the outflux2
to leave the freeway in the first mixed network (i.e., t = 15 min), f2(t) increases and keeps at3
524 veh/min (since queue exists on the first freeway, the outflux of the freeway is at the dropped4
capacity). Then, f2(t) decreases as the external demand of the first mixed network drops. Note5
that, when t > 168 min, there is a larger fluctuation in f2(t), as highlighted in the figure. This is6
caused by the the randomness in g1F(t). When the queue is eliminated on the first freeway, g1F(t)7
varies between 8.8 and 28.9 veh/min.8

FIGURE 8: External demands of two mixed networks

CONCLUSIONS9
In this study, we investigate cordon-based pricing schemes for mixed networks with urban net-10
works and freeways. In most control strategies for urban networks, the operation objective is11
to optimize the urban network’s performance, i.e., to maximize the outflux. In real-world appli-12
cation, another common operation objective is to maximize the operation revenue. To compare13
those two objectives, we first apply feedback control to design pricing schemes to optimize the14
urban network’s performance. We also propose an optimal control problem to obtain the revenue-15
maximization pricing scheme. The differences between those pricing schemes are illustrated with16
numerical examples.17

We first provide dynamics of the traffic system in Section 2. Each urban network has a18
well-defined MFD, and the traffic dynamics on the freeway is captured by a point queue model.19
Commuters with different VOTs choose their routes based on the UE principle. In Section 3, we20
consider two different operation objectives, and design pricing schemes for mixed networks. The21
first objective is to optimize the outflux of urban network. A feedback pricing scheme is proposed22
to reach the objective. The second pricing scheme aims to maximize the operation revenue, and23
it is formulated as an optimal control problem. Numerical examples are provided in Section 4.24
In order to obtain the maximum revenue, the price is at the maximum allowable value. However,25
the traffic condition is poor when the demand is high. When a high maximum allowable price26
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is set, the queue size on the freeway is very long and the urban network is underutilized; when1
the maximum allowable price is low, the urban network is congested. Thus, the performance-2
optimization pricing scheme would be more practical in real-world operation. When discussing3
the performance-optimization pricing schemes, we compare the system performance when the4
prices are updated at three different frequencies. We also include a case study to show how the5
feedback pricing scheme works in an extended mixed network when we update the price every 56
minutes.7

The following are some potential future research topics.8
• In this study, we apply an optimal control approach when solving the revenue maximiza-9

tion problem. We will be interested in proposing MFD-based economic model predictive10
control schemes (45) to solve the problem in our future study.11

• In this study, we optimize the performance of two networks separately, based on the12
traffic condition in each mixed network. We will be interested in addressing the two-13
region coordinated congestion pricing design problem.14

• We will be interested in the distribution of trip lengths in an urban network, such as15
deterministic distributions of trip lengths (46) and constant trip length (47).16

• When the trip distribution is introduced, we would like to propose a distance-based pric-17
ing strategy for the urban network (26, 27). We will be interested in comparing the18
performance of cordon-based and distance-based pricing schemes.19

• We will also be interested in the departure time choice and related pricing schemes in20
mixed networks (24, 30).21

• We will introduce new modes in the system, such as carpool and transit system (48).22
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