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ABSTRACT 1 
Restricting left-turns throughout a network improves overall flow capacity by reducing conflicts 2 
between left-turning and through-moving vehicles. However, doing so comes with the drawback 3 
of requiring vehicles to travel longer distances on average. Implementing these restrictions at only 4 
a subset of locations can help by balancing this tradeoff between increased capacity and longer 5 
trips. Unfortunately, identifying exactly where these restrictions should be implemented is a 6 
complex problem due to the very large number of configurations that must be considered and 7 
interdependencies between left-turn restriction decisions at adjacent intersections. This paper 8 
implements three heuristic solution algorithms—population-based incremental learning, Bayesian 9 
optimization and a hybrid of the two—to identify optimal location of left-turn restrictions at 10 
individual intersections in a perfect and imperfect grid network. Scenarios are tested in which 11 
restriction decisions are the same for all intersection approaches and in which this decision is only 12 
the same for approaches in the same direction. The latter case is particularly complex as it increases 13 
the number of potential configurations exponentially. The results suggest all methods can be 14 
effectively used to solve this problem, though the hybrid method appears to perform the best under 15 
more complex scenarios with a larger solution space. The proposed framework and procedures can 16 
be applied to realistic city networks to identify where left-turn restrictions should be implemented 17 
to improve overall network operations. Application of these methods to square grid networks under 18 
uniform demand patterns also reveal a general pattern in which left-turns should be restricted at 19 
central intersections that carry larger vehicle flows, but allowed otherwise. Such findings can be 20 
used as a starting point for where to restrict left-turns in more realistic networks.  21 
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INTRODUCTION 1 
Conflicting left-turns represent a significant safety issue at signalized intersections. Left-turning 2 
vehicles have to cross the path opposing through vehicles to traverse the intersection and managing 3 
these left-turning and opposing through vehicle conflicts is a primary driver of Signal Phasing and 4 
Timing (SPaT) plans (1, 2). Providing protected phases for left-turns is the safest option as it 5 
eliminates these conflicts. However, this takes time away from through movements and introduces 6 
additional lost times during which the intersection is not serving any vehicles, both of which can 7 
reduce overall intersection capacity (3, 4). Serving left-turns in a permitted manner requires drivers 8 
to select appropriate gaps in which to move, which is less safe since the conflicts still exist. This 9 
might be more operationally efficient if sufficient gaps exist for left-turning vehicles to move; 10 
however, the left-turning vehicles might block other vehicles from discharging if they have to wait 11 
a long time for an appropriate gap (5). Dedicated left-turn pockets can be installed to mitigate this, 12 
but queued left-turn vehicles can still spillover and block vehicles in adjacent lanes from 13 
discharging through the intersection (6). 14 

One-way streets have traditionally been used to eliminate these left-turn conflicts and thus 15 
provide higher vehicle flows (7-9). However, one-way streets have other negative externalities that 16 
make them less desirable. This includes reduced economic activity (10,11), safety concerns 17 
(particularly for non-motorized traffic) (12), circuitous routes for drivers (13), and confusion for 18 
transit users (14), among others. Perhaps for this reason, there is a growing number of cities that 19 
have performed one-way to two-way street network conversions (15). While such conversions 20 
have been found to mitigate some the negative features of one-way streets, engineers have long 21 
thought they came at the expense of traffic flow. And, these conversions lead to left-turning 22 
conflicts at intersections that need to be mitigated.  23 

Several strategies have been proposed to accommodate left-turns while considering the 24 
issues they create. Alternative intersection designs have been developed that allow left-turning 25 
vehicles in non-traditional ways. These strategies manage left-turn conflicts by using additional 26 
features (e.g., downstream U-turns or additional signals) and/or changing the intersection 27 
geometry (16–22). However, these designs are generally not well-suited for urban areas with 28 
limited road space since they require large spatial footprints or long blocks. 29 

Instead, conflicting left turns can be simply restricted at signalized intersections. This 30 
simplifies the SPaT plan and allows the intersection to achieve higher overall flow capacities due 31 
to fewer change intervals and use of only through/right-turn phases. However, such restrictions 32 
will require vehicles that would have otherwise made a left-turn to reroute, which may induce 33 
longer average travel distances. Several recent studies have examined the competing impacts of 34 
such left turn restrictions enacted across entire grid networks (23–27). The studies apply 35 
macrosocpic traffic flow models (28) to quantify overall network performance under scenarios 36 
with and without left turns. The findings generally agree that eliminating left-turns can improve 37 
overall network operation (specifically, the rate that trips can be completed in the network), 38 
particularly when the network is operating near its capacity. However, these prior studies fail to 39 
consider the optimal spatial location of such restrictions at individual intersections within a 40 
network.  41 

This type of problem is most closely related to general facility location problems in the 42 
transportation research literature, which are classified as NP-hard optimization problems due to 43 
the large solution space and lack of analytical solution (29). Within urban networks, many studies 44 
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have proposed methods to determine optimal location of treatments along individual links—e.g., 1 
optimal bus lanes locations (30–33)–or at individual intersections—e.g., optimal transit signal 2 
priority locations (34, 35). Very few studies have examined the application of left turn restrictions 3 
or alternative left-turn treatments at individual intersections on a network. The problem is complex 4 
as changes in left-turn treatments at one intersection might influence traffic patterns and operations 5 
at adjacent intersections. Additionally, vehicles will reroute themselves due to the left-turn 6 
restrictions enacted. These issues do not facilitate the expression of the optimal left-turn restriction 7 
problem as a traditional mathematical program. Instead, one study proposed a generic 8 
methodology to identify intersections that should restrict left turns that relied on fairly simplistic 9 
traffic models that did not account for traffic dynamics, such as queue spillbacks and changes in 10 
vehicle routing (36). Others utilized simulation to test the performance of a set of candidate left-11 
turn restriction configurations but did not necessarily perform any optimization (37, 38).  12 

Another factor that complicates the problem of selecting left turn restriction locations is 13 
the spatial dependency between the possible restriction locations. The spatial dependency can be 14 
defined as the influence of restricting left turns at one intersection on the effect of restricting left 15 
turns at adjacent intersections. This happens for multiple reasons. For one, restriction decisions at 16 
one intersection will influence how vehicles traverse the intersection and arrive to the downstream 17 
intersection (both in terms of amount and pattern of arrivals). Additionally, these decisions can 18 
change routing of vehicles. The existing studies on determining optimal location of treatments 19 
along individual links primarily use genetic algorithms to find the optimum locations (30, 39-42). 20 
However, genetic algorithms assume independent relationship between decision variables, and 21 
thus the unaccounted dependencies can significantly limit the performance of genetic algorithms 22 
(43,44). There are two groups of evolutionary algorithms that can account the dependencies 23 
between decision variables. Messy genetic algorithms conducts a partial enumeration of the 24 
solution space to select promising building blocks to identify dependencies, and then uses these 25 
building blocks to continue with a solution method similar to the basic genetic algorithms. The 26 
need for partial enumeration makes these types of algorithms infeasible to use for simulation-based 27 
transportation optimization problems due to the required computation time. On the other hand, 28 
estimation of distribution algorithms identify the existing dependencies within the decision 29 
variables by leveraging probability theory. These methods construct and sample probabilistic 30 
models of dependencies, and do not require a computationally expensive partial enumeration. 31 
Hence, this paper will explore the use of estimation of distribution algorithms to optimize left turn 32 
restriction locations.   33 

The purpose of this paper is to propose and compare several methods to determine the 34 
optimal spatial configuration of left-turn restrictions. Several heuristic algorithms are considered 35 
to identify candidate configurations, the performance of which are tested in a micro-simulation 36 
environment. The first is a population-based incremental learning (PBIL) algorithm that combines 37 
the evolutionary nature of genetic algorithms with competitive learning features (45). The second 38 
is a Bayesian optimization algorithm that seeks to directly learn and leverage dependencies 39 
inherent within the solution space using Bayesian networks (46). The final method is a hybrid of 40 
the two that uses the PBIL method to generate a set of candidate solutions and then implements a 41 
Bayesian network to generate similar solutions that might also perform well. These are applied 42 
within a dense, grid-like urban network under uniform traffic patterns, though it can be applied in 43 
more realistic cases as well. The results suggest that these methods are generally suitable for the 44 
optimal spatial left-turn optimization problem and provides insights into the conditions under 45 
which each might perform best.  46 



Bayrak and Gayah  4 

The remainder of this paper is organized as follows. First, the proposed optimization 1 
methods and experimental setup are described. Then, the results of the proposed algorithms are 2 
provided for two optimization scenarios that are considered. Finally, some concluding remarks are 3 
provided.  4 
 5 

METHODOLOGY 6 
This section describes the methods that were used in this paper to determine where left-turns 7 
should be restricted spatially across an urban network. The remainder of this section describes the 8 
methods used to optimize the left-turn restrictions and the network-setup. 9 
 10 

Optimization of left-turn restriction configurations 11 
The relationship between a transport agency that decides the left turn restriction locations and the 12 
people in the network can be modeled as a leader-follower problem. The leader (transport agency) 13 
enacts a set of restrictions to reduce the total delay of the network. The followers (people in the 14 
network) react to that decision by adapting their route choice with the aim of minimizing their 15 
travel times. Since the reaction of the followers affects the resulting delay change in the network, 16 
a bi-level optimization approach is needed to find the optimum locations of left turn restrictions. 17 
The upper level uses a metaheuristic method to select promising left turn restriction configurations. 18 
Then the total travel time associated with the selected left turn restriction configuration is 19 
calculated by the lower level. The lower level uses a microsimulation model to accurately simulate 20 
the traffic and account for the changes in the routing behavior of the network users. The resulting 21 
total travel time is used by the upper level to select the next set of promising left turn restriction 22 
configurations. The next two subsections describe the methods used for the network evaluation 23 
and the selection of LT restriction locations.  24 
 25 

The lower level network assessment 26 
The lower of the bi-level optimization algorithm aims to calculate total travel time for a given LT 27 
restriction configuration. For this purpose, an accurate method is needed to capture routing 28 
behavior of drivers, the effects of network elements (e.g., traffic signals), and the related traffic 29 
phenomena (e.g., queue spillbacks, heterogeneous driver behavior). Due to the accuracy needed 30 
for travel time calculation, the Aimsun micro-simulation platform is selected for network 31 
assessment (47), since it accurately captures vehicle dynamics, queue spillover and other realistic 32 
features.   33 

The stochastic c-logit route choice model is used for vehicle routing within the micro-34 
simulation environment. This model emulates a user-equilibrium routing pattern in which drivers 35 
select the route to minimize their own expected travel time. The drivers make the routing decision 36 
when they initiate the trip and the decisions are based on the average travel time on links over the 37 
past 3 minutes. However, a portion of the drivers (50% in the tests performed in this paper) are 38 
allowed to change their route during their trip based on the current traffic situation. The re-routing 39 
occurs at regular intervals of 3 minutes. Previous research has shown that such adaptive traffic 40 
routing algorithms provide better network-wide operational performance (48). 41 
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 1 

The upper level optimization 2 
The upper level optimization procedure seeks to identify the optimal configuration of left-turn 3 
restrictions—i.e., the locations at which left-turn restrictions should be enacted to optimal traffic 4 
performance. Here, traffic performance is measured using total travel time that is experienced by 5 
all vehicles during a simulated peak period. Three different optimization algorithms are considered 6 
for this upper level optimization. These methods are selected due to their capability of accounting 7 
for spatial dependencies in the left-turn restriction decisions at individual locations.  8 

 9 
Population-based incremental learning 10 
Population-based incremental learning combines the generational evolution of genetic algorithms 11 
with competitive learning (45). The flowchart of the PBIL algorithm is shown in FIGURE 1. The 12 
algorithm has four basic steps that will be described in this section: 1) initiation, 2) generation and 13 
evaluation, 3) mutation and update of the probability vector, and 4) termination.  14 

 15 

 16 
 17 

FIGURE 1. Flow chart of population-based incremental learning  18 

 19 

The initiation step involves generating an initial probability vector, 𝑃𝑃1, that serves as a 20 
starting point for the algorithm. Each element 𝑖𝑖  of this vector is associated with a specific 21 
intersection (or intersection approach) and the corresponding value in the initial probability vector, 22 
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𝑃𝑃𝑖𝑖1, represents the probability that left-turn restriction is applied at that intersection (or approach). 1 
Thus, the size of the probability vector is equal to the number of candidate locations that left-turn 2 
restrictions are considered for implementation. In this paper, the probability vector is initiated by 3 
setting the value of each element to 0.5. This represents a truly random guess with no prior 4 
knowledge on if left-turn restrictions should be applied at each candidate location.  5 

The generation and evaluation step generates a population of candidate left-turn restriction 6 
configurations (60 individual configurations in this paper) by randomly sampling the solution 7 
space using the probability vector associated with the current generation, 𝑃𝑃𝑡𝑡 . Each candidate 8 
configuration is represented by a vector of the same size as 𝑃𝑃𝑡𝑡 and consists of binary values, where 9 
the value 1 represents a left-turn restriction and the value 0 represents no left-turn restriction. After 10 
the set of candidate configurations are generated, each is evaluated by the lower level to obtain the 11 
total travel time value associated with each configuration.  12 

After the evaluation, the probability vector is updated by learning from the best solution 13 
vector (i.e. the configuration with the lowest total travel time) in the current generation, 𝐵𝐵𝑡𝑡, and 14 
the worst solution in the current generation. The former adjustment (1) represents positive learning, 15 
while the latter (2) represents negative learning.     16 

𝑃𝑃𝑖𝑖𝑡𝑡+1 = �𝑃𝑃𝑖𝑖𝑡𝑡 × (1 − 𝐿𝐿𝑅𝑅+)�+ (𝐵𝐵𝑖𝑖𝑡𝑡 × 𝐿𝐿𝑅𝑅+) (1) 17 

𝑃𝑃𝑖𝑖𝑡𝑡+1 = 𝑃𝑃𝑖𝑖𝑡𝑡 × (1 + 𝐿𝐿𝐿𝐿−) − 𝑤𝑤𝑖𝑖
𝑡𝑡 × 𝐿𝐿𝐿𝐿 (2) 18 

where,  𝑃𝑃𝑖𝑖𝑡𝑡 is the probability of LTs at a location 𝑖𝑖 in generation 𝑡𝑡, 𝐿𝐿𝑅𝑅+ is the positive learning rate, 19 
𝐿𝐿𝑅𝑅− is the negative learning rate, and 𝐵𝐵𝑖𝑖𝑡𝑡 is the value (0 or 1) of the 𝑖𝑖th position of the best solution 20 
found in generation 𝑡𝑡 , and 𝑤𝑤𝑖𝑖

𝑡𝑡  is the value of the 𝑖𝑖 th position of the worst solution found in 21 
generation 𝑡𝑡. Equation (1) essentially adjusts the probability vector so that future solutions that are 22 
evaluated are more likely to adopt features of the best solution found in the current generation, 23 
while Equation (2) essentially adjusts the probability vector so that future less likely to adopt 24 
features of the worst solution found in the current generation.  25 

Similar to other evolutionary algorithms, PBIL converges around a solution as the search 26 
progresses. However, PBIL allows explicit control of the speed of convergence with the learning 27 
rate parameters, 𝐿𝐿𝑅𝑅+ and 𝐿𝐿𝐿𝐿−. The learning rate parameters enables the PBIL to explore a larger 28 
portion of the solution space, which is essential for problems with dependencies, before starting to 29 
converge to a solution. The 𝐿𝐿𝐿𝐿 values seeks to create a balance between the portion of the solution 30 
space explored and the convergence speed. In this study, we apply 𝐿𝐿𝑅𝑅+ = 0.1 and 𝐿𝐿𝐿𝐿− = 0.05. 31 
The latter is selected as negative learning might restrict the search for optimal solutions in some 32 
cases.  33 

In addition to the learning process, the mutation operator is also responsible for expanding 34 
the explored solution space by randomly changing the probabilities in 𝑃𝑃𝑡𝑡 by some magnitude of 35 
∆𝑚𝑚 = 0.05. Mutation is applied with a predefined random probability 𝑚𝑚 = 0.02, known as the 36 
mutation rate. Each element in the solution vector is randomly updated according to (3) with 37 
probability 𝑚𝑚. 38 

𝑃𝑃𝑖𝑖𝑡𝑡+1 = 𝑃𝑃𝑖𝑖𝑡𝑡 × (1 − ∆𝑚𝑚) + ∆𝑚𝑚 (3) 39 

After the probability vector is updated using (1-3), steps 2 and 3 are repeated until the 40 
termination criteria is met. The termination criteria can be based on convergence of probability 41 
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vector or maximum number of generations. In this study, the PBIL algorithm is terminated after 1 
60 generations.  2 

 3 
Bayesian optimization algorithm (BOA) 4 
PBIL relies on random sampling of potential solutions and learning about the performance of these 5 
sampled solutions to generate better solutions. Unlike PBIL, the BOA does not assume an 6 
independent relationship between decision variables (e.g., locations of LT restrictions). BOA aims 7 
to learn the dependency structure between decision variables using Bayesian networks and uses 8 
this information to generate better solutions. The structure of a Bayesian network is a directed 9 
acyclic graph which the nodes are the decision variables (i.e. left turn restriction locations). The 10 
links between nodes of the Bayesian network represent the dependencies between left-turn 11 
restriction decisions at individual intersections. The flowchart of the BOA is shown in FIGURE 2. 12 

 13 

 14 
 15 

FIGURE 2. Flow chart of Bayesian optimization algorithm 16 

 17 
The BOA has 7 steps: 1) initiation, 2) selection, 3) Bayesian network construction, 4) 18 

offspring creation, 5) evaluation, 6) recombination, and 7) termination. The algorithm starts by 19 
randomly generating an initial population (in this case, 60) individual LT restriction 20 
configurations. Similar to PBIL, each solution vector is a binary vector that represents the LT 21 
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restriction at each location. After the initial population is generated, each individual solution is 1 
evaluated by the lower level to compute the total travel time associated with each LT restriction 2 
configuration.  3 

The selection step selects the parent solutions that will be used for Bayesian network 4 
construction. A tournament selection method is used (49) in which two LT restriction 5 
configurations are randomly selected from the initial population and the better performing 6 
configuration of the two options is identified as a parent. The process repeats itself until a pre-7 
specified number of parents are determined (30 in this paper), where repetition is allowed (i.e., a 8 
particular solution can be used as a parent multiple times if randomly selected).  9 

A Bayesian network is then constructed using a greedy algorithm. The procedure used to 10 
construct the Bayesian network is essentially a separate optimization algorithm inside the BOA. 11 
The procedure starts with a Bayesian network with no edges (i.e., a network with no dependencies). 12 
Then, basic graph operations (edge addition, removal, and reversal) are applied to a random node 13 
pair. The operations that increases the quality of the Bayesian network most is kept and the others 14 
are discarded. These two steps (testing and selecting operations) are repeated until the network can 15 
no longer be improved. Notice that, only one graph operation is performed at each cycle of the 16 
Bayesian network construction process. For the selection of the graph operation that is applied, the 17 
quality of the Bayesian network is assessed with a scoring metric. In this study, the Bayesian 18 
information criterion (BIC) shown in (4) and (5) is used as a scoring metric (50).  19 

𝐵𝐵𝐵𝐵𝐵𝐵 = ∑ �−𝐻𝐻(𝑋𝑋𝑖𝑖|𝐷𝐷𝑖𝑖)𝑁𝑁 − 2|𝐷𝐷𝑖𝑖| log2(𝑁𝑁)
2

�𝑛𝑛
𝑖𝑖=1   (4) 20 

𝐻𝐻(𝑋𝑋𝑖𝑖|𝐷𝐷𝑖𝑖) = −∑ 𝑝𝑝(𝑥𝑥𝑖𝑖,𝑑𝑑𝑖𝑖) log2(𝑥𝑥𝑖𝑖|𝑑𝑑𝑖𝑖)𝑥𝑥𝑖𝑖,𝑑𝑑𝑖𝑖   (5) 21 

Where, 𝑛𝑛 is the number of decision variables; 𝐷𝐷𝑖𝑖 is the variables that decision variable 𝑋𝑋𝑖𝑖 depend 22 
on; 𝐻𝐻(𝑋𝑋𝑖𝑖|𝐷𝐷𝑖𝑖) is the conditional entropy of  𝑋𝑋𝑖𝑖  given 𝐷𝐷𝑖𝑖 ; 𝑁𝑁 is the population size; 𝑝𝑝(𝑥𝑥𝑖𝑖,𝑑𝑑𝑖𝑖) and 23 
(𝑥𝑥𝑖𝑖|𝑑𝑑𝑖𝑖) are the observed probabilities from the population where 𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖 and 𝐷𝐷𝑖𝑖 = 𝑑𝑑𝑖𝑖. The BIC 24 
assumes that the number of dependencies in the network is proportional to the amount of 25 
compression of the data allowed by the Bayesian network. The term with log2(𝑁𝑁) favors simpler 26 
network (i.e. network with fewer number of dependencies) and helps to eliminate inclusion of 27 
unnecessary dependencies to the Bayesian network.  Therefore, a Bayesian network structure that 28 
maximizes the BIC metric can describe the dependencies.  29 

Next, offspring solutions are generated by sampling the fitted Bayesian network. For the 30 
sampling process the joint probability distribution (6) encoded in the Bayesian network is used. 31 
This enables algorithm to keep exploring the solution space with independent variables while 32 
keeping the values of dependent decision variables conditioned to the variables they depend on. 33 
Since low performing solutions are eliminated at the end of each generation (Step 6), the algorithm 34 
fits the Bayesian network to better solutions at each generation and finds successful value 35 
combinations of dependent variables and the variables they depend on.   36 

𝑝𝑝(𝑋𝑋) = ∏ 𝑝𝑝(𝑋𝑋𝑖𝑖|𝐷𝐷𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (6)  37 

In the Bayesian network, each variable (i.e., the of left-turn restrictions at a given intersection) can 38 
be categorized into one of three groups: 1) completely independent (i.e., no links are formed in the 39 
Bayesian network); 2) dependent on others; and, 3) others are dependent on this variable (i.e., the 40 
value of the variables in group 2 depend on the value of the variables in group 3). In order to 41 
sample from these sets of variables, a forward simulation process is used (51). First the value (0 – 42 
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no left-turn restrictions, or 1 – left-turn restriction) of independent variables (those in group 1), 1 
next the value of variables in group 3 (since the values of these do not depend on other variables) 2 
and finally by assigning the values of variables in group 2 (since their values depend on the values 3 
of the variables in group 3). The sampling process is repeated until 30 offspring solutions are 4 
generated.  5 

After the offspring solutions are generated, they are evaluated by the lower level. After the 6 
evaluation step, the offspring solutions and the previous population are recombined by replacing 7 
the worse half of the population with the offspring solutions. Similar to PBIL, BOA is run for 60 8 
generations. The steps 2-6 are repeated until enough number of generations are evaluated.  9 

 10 
PBIL-BOA hybrid algorithm  11 
Both BOA and PBIL are capable algorithms to solve complicated problems but have several 12 
limitations. PBIL samples configurations from different parts of the solution space due to its 13 
exploration focus, but this makes the PBIL algorithm slow to converge to a point in solution space 14 
(29). BOA is faster to converge to a solution due to its focus on learning dependencies between 15 
decision variables, but requires a large population to accurately learn the dependencies between 16 
decision variables for problems with high number of dependent decision variables. When the 17 
solution evaluation is computationally intensive (e.g., like in the micro-simulation approach that 18 
is applied here) large number of evaluations may not be feasible. Thus, in this study, a hybrid 19 
method that combines the exploration capability of PBIL and the dependency learning capability 20 
of BOA is proposed.  21 

The hybrid algorithm has three main steps. First, generate a large set of promising solutions 22 
(i.e., a set of LT restriction configurations that has good total travel time values). Second, use this 23 
large set of solutions to create a Bayesian network. Finally, use the constructed Bayesian network 24 
to generate new solutions. The flowchart of the Hybrid algorithm is shown in FIGURE 3.  25 

 26 

 27 

FIGURE 3. Flow chart of PBIL-BOA hybrid optimization algorithm 28 

 29 
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The first step involves shorter independent PBIL runs with small populations. The aim of 1 
this step is not to necessarily find the global optimum solution. Instead, the aim is to identify 2 
promising solutions from different parts of the solutions space. Thus, several PBIL runs with 3 
different initial populations are used to identify promising solutions. To select the sample that will 4 
be used for Bayesian network construction, all configurations evaluated during the independent 5 
PBIL runs are ranked, and the top 500 unique configurations are selected for Bayesian network 6 
construction.  7 

The selected sample of promising configurations are then used to construct a Bayesian 8 
network. The algorithm used for Bayesian network construction is similar to the one used for BOA 9 
algorithm. Since a much larger population (500 unique configurations) is used in hybrid algorithm 10 
to create the Bayesian network compared to BOA’s procedure, the hybrid algorithm is more likely 11 
to capture dependencies between decision variables. After the Bayesian network creation, a new 12 
set of solutions is generated by forward simulation, similar to BOA. Finally, the new set of 13 
solutions are evaluated by the lower level to estimate total travel time values.   14 

 15 

Experimental setup 16 
The methodology described above is tested using an illustrative network shown in FIGURE 4. The 17 
test network is an 8x8 grid. The block length is 200 meters. Each link is coded as an arterial in 18 
Aimsun and has two lanes per direction and the speed limit and capacity of links are 48 km/h and 19 
1600 veh/h. Every intersection in the network is a signalized intersection with 90-sec cycle length 20 
without any offset between adjacent intersections. During each cycle, each direction receives 42 21 
seconds of green time with three seconds of change interval is applied between consecutive phases. 22 
Left turns are either set to permitted operation during each phase or restricted altogether. When 23 
permitted, left-turning vehicles waiting for a gap at the intersection tend to block one lane and 24 
reduce overall intersection capacity. Origin and destination nodes are located in the middle of each 25 
block and 32 entry/exit points on the periphery of the network. A uniform demand pattern in which 26 
each origin generates the same number of trips (on average) and each destination is equally like to 27 
be selected is used; however, the proposed methods can be applied to any generic demand pattern 28 
as desired. The simulation run using an average of 367 total trips per minute. The selected demand 29 
level is enough to saturate the network when LTs are permitted at all intersections. However, due 30 
to the randomness of Aimsun’s simulation process, there are small variations in the uniform 31 
demand pattern in each simulation. Each LT configuration is simulated for 45 minutes followed 32 
by a recovery period of 15 minutes. The resulting cumulative count curves of vehicle entries and 33 
exits are used to determine the total travel time of the network users.  34 
 35 
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 1 

FIGURE 4. Test network and OD locations 2 

 3 
The BOA, PBIL, and hybrid algorithms described in the methodology section are tested on 4 

two different optimization scenarios related to how left-turn restrictions are implemented at 5 
individual intersections. The first scenario considers the case where a single left-turn restriction is 6 
made for each intersection. In this case, the same decision (restrict or allow left-turns) is made at 7 
all intersection approaches at a given intersection. In this scenario, there are 64 possible left-turn 8 
restriction locations for this scenario. The second scenario considers the case where multiple left-9 
turn restriction decisions are made at each intersection. Specifically, left-turn restrictions decisions 10 
are made independently at each intersection for each of the two competing directions (e.g., 11 
north/south and east/west) at each intersection. In this scenario, there are two LT restriction 12 
decisions that can be made for each of the 64 intersections for a total of 128 binary decisions.  13 

Given that the number of possible LT restriction configurations increases exponentially 14 
with the number of possible restriction locations, the number of possible LT restriction 15 
configurations for both scenarios is extremely large (264 in the first scenario, (2 × 2)64 in the 16 
second). Several constraints/assumptions are implemented to reduce the solution space to examine 17 
in detail the performance of the proposed heuristics. First, a symmetry constraint is implemented. 18 
Since the network is a perfect grid with a uniform demand pattern, the global optimum solution is 19 
likely to be rotationally symmetrical.  For both scenarios, the upper-level algorithms only search 20 
for LT restriction configurations that are rotationally symmetrical around the center of the network.  21 
The second constraint is LT restrictions are never applied at the intersections at the corners of the 22 
network to always provide a feasible path between all OD pairs. These two constraints reduced the 23 
number of possible LT restriction configurations to 32,768 and 1.07x109 for first and second 24 
scenarios, respectively. For the first scenario, the reduced number of possible LT restriction 25 
configurations is low enough to use brute-force enumeration to determine the global optimal 26 
configuration. These constraints/assumptions are later relaxed to demonstrate the performance of 27 
the proposed algorithms in a more realistic setting.  28 
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In addition to the scenarios with the symmetry constraint, two other optimization scenarios 1 
created to demonstrate the capabilities of the bi-level methodology under more realistic 2 
assumptions. For the first scenario, the symmetry constraint is relaxed, and the performance of the 3 
used upper-level algorithms are compared. The second scenario considers optimization of LT 4 
restriction locations for a non-perfect grid network. For both of the scenarios, the demand pattern, 5 
network parameters, and the algorithm specific optimization parameters are same as for the 6 
scenarios with the symmetry constraint.  7 

 8 

RESULTS  9 
This section describes the results of the optimal left-turn restriction configuration problem using 10 
the three proposed methods. First, the results of the first scenario with only one restriction decision 11 
per intersection are provided. Then, the results of the second scenario with two decisions per 12 
intersection are provided. Finally, the results of the tests under more realistic assumptions are 13 
presented.  14 

 15 

Scenario 1: One left-turn restriction decision per intersection 16 
This section provides the results when only one restriction decision per intersection is made. First, 17 
the results are provided when restriction configurations are assumed to be perfectly symmetric, to 18 
reduce the size of the solution space and examine if the heuristics can find the optimal solution 19 
under these assumptions. Then, the results are presented when this symmetry constraint is relaxed.  20 

 21 
Tests under symmetric configurations 22 
The PBIL, BOA and hybrid algorithms were run multiple times to obtain best-performing 23 
solutions. Multiple runs of each algorithm were performed since they are heuristic methods that 24 
rely on random processes, particularly the first set of randomly generated solutions. The PBIL and 25 
BOA algorithm were each run 15 times since they were the most well-known of the three methods 26 
tested but also the most computationally intensive. The hybrid optimization procedure was 27 
repeated 100 times to learn more about how well it is able to improve upon the PBIL and BOA 28 
methods. The sample used for Bayesian network construction contains the best 500 LT restriction 29 
configurations found during a subset of independent PBIL runs. At each instance of this algorithm, 30 
a Bayesian network that represents the dependencies between LT restriction locations was 31 
constructed by using these 500 configurations. Using the constructed Bayesian network, 500 new 32 
configurations are generated. Since Bayesian network construction and new configuration 33 
generation are heuristic processes, each run of the hybrid algorithm created a different set of new 34 
solutions.  35 

In addition to these heuristic methods, a brute-force enumerate approach was applied to 36 
identify the global optimal solution. In this method, all 32,768 potential configurations were tested 37 
to determine the configuration with the lowest travel time. The results suggest that the 38 
implementation of left-turn restrictions at a subset of intersections can reduce travel time 39 
significantly compared to implementing left-turn restrictions at no intersections (at least 3.8% 40 
reduction) or at all intersections (at least 12.3% reduction). Note that accommodating left-turns at 41 
all intersections outperforms restricting left-turns at all intersections due to the low level of 42 
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congestion in the network. Under these conditions, it is not necessary to prohibit left turns 1 
everywhere since some intersections are under-saturated. 2 

All configurations obtained from the proposed optimization methods and the global 3 
optimal configuration are presented in FIGURE 5a. In this figure, red dots represent intersections 4 
at which left-turn restrictions are applied. Note that only seven unique configurations were 5 
identified: five using PBIL, five using the BOA, and five using the hybrid approach. The results 6 
reveal that all methods are able to identify a solution that provides travel times within 1.7% of the 7 
global optimal solution; i.e., the maximum optimality gap of any solution identified was 1.71%. 8 
Comparing the three methods, the average optimality gap of the PBIL, BOA and hybrid methods 9 
are 1.51%, 1.44%, and 1.11%, respectively. Overall, this suggest strong performance across the 10 
three optimization methods. However, the hybrid method appears to generally provide better 11 
results. For one, it has the smallest average optimality gap. In addition, it is the only method to 12 
identify the global optimal solution (though this was just found 2% of the times and can be 13 
attributed to randomness). Still, was able to outperform or equal the PBIL method in 92% of runs 14 
and outperform or equal the BOA method 47% of runs. A comparison of these methods by TTT 15 
produced is illustrated in FIGURE 6.  16 
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(a)  1 

(b)  2 

FIGURE 5. Results of Scenario 1 under symmetry constraints. (a) Optimal left-turn restriction configurations 3 
obtained by proposed algorithms; and, (b) common locations of left-turn restrictions identified in top-4 
performing algorithms.  5 



Bayrak and Gayah  15 

 1 

 2 

FIGURE 6. Ranking of best-performing left-turn restriction configurations identified (Scenario 1) 3 

A review of these configurations suggests some common features about where left-turn 4 
restrictions should be enacted. FIGURE 5b overlays the configurations so that darker points 5 
represent intersections at which left-turn restrictions are applied more commonly in the 6 
configurations shown in FIGURE 5a. Notice that left-turn restrictions in the best-performing 7 
solutions are more likely in the central portion of the network. This is reasonable as these locations 8 
serve the highest flows (combined across all approaches) in the network. Restricting left-turns at 9 
these locations increases the capacity at these locations, which helps to improve overall network 10 
operations. Although vehicles will have to re-route when left-turns are restricted, the central 11 
portion of the network has many alternative routes that can be used for those vehicles wishing to 12 
make left turns. When left-turns are restricted at these central locations, this re-routing can often 13 
occur without additional incurred travel distance. By contrast, left-turn restrictions are less likely 14 
on the periphery of the network. This is reasonable as these intersections generally carry lower 15 
total flow so the additional capacity gained by restricting left-turns is less beneficial. Furthermore, 16 
these intersections experience a higher proportion of vehicles turning left so left-turn restrictions 17 
would cause more vehicles to re-route. Finally, left-turn restrictions at these periphery locations 18 
are more likely to induce additional travel distance due to fewer routing options available at the 19 
edge of the network.  20 

 21 
Tests under asymmetric configurations 22 
The previous section finds that the heuristic algorithms work well to identify a (nearly) global 23 
optimal solution when the restriction configuration is assumed to be symmetric. Now, we relax 24 
this symmetry assumption to see how the performance and spatial restriction changes under more 25 
realistic settings. This is a much more challenging problem as there are 32,768 times more feasible 26 
configurations. Because of this, a brute-force enumeration is not possible and thus the global 27 
optimal configuration, in this case, is unknown. FIGURE 7 provides the set of best-performance 28 
solutions using each of the three algorithms. In all cases, travel time can be further reduced – as 29 
expected – when the symmetry assumption is relaxed.  Note that unlike the previous section, the 30 
different algorithms do not identify the same solutions, likely due to the extremely large solution 31 
space. Nevertheless, the overall pattern is the same: left turns are more likely to be restricted at the 32 
central intersections and less likely to be restricted at the periphery intersections to improve travel 33 
time. Furthermore, the hybrid algorithm finds the best-performing configuration and three of the 34 
top five configurations.  35 
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(a)  1 

(b)  2 
FIGURE 7. Results of Scenario 1 relaxing symmetry constraints. (a) Optimal left-turn restriction 3 
configurations obtained by proposed algorithms; and, (b) common locations of left-turn restrictions identified 4 
in top-performing algorithms.  5 
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 1 

Scenario 2: Two left-turn restriction decisions per intersection 2 
The optimization procedure was then repeated for the scenario in which two left-turn restrictions 3 
decisions are made per intersection. As with Scenario 1, the PBIL, BOA and hybrid methods were 4 
repeated multiple times. However, the number of repeats was reduced due to the computational 5 
burden required. Thus, the PBIL method was performed four times, the BOA method was 6 
performed four times, and the hybrid method was performed 35 times. 7 
 Comparing the results of this scenario with Scenario 1, we find that separating the left-turn 8 
restrictions between the north/south and east/west approaches provides more efficient network 9 
operations (i.e., reduced travel time). This is expected since having more options is more flexible 10 
and left-turn restrictions do not necessarily need to be enacted simultaneously at all intersection 11 
approaches. Overall, travel time is found to be reduced by an additional 1.25% (worst-performing 12 
configuration identified) to 2.38% (best-performing configuration identified) over the global 13 
optimal solution in Scenario 1. This represents a reduction in total travel time over not 14 
implementing any left-turn restrictions at any intersections of 7.7% and a reduction in total travel 15 
time over implementing left-turn restrictions at all approaches of all intersections of 15.8%. All 16 
methods were always able to outperform the best-performing configuration identified in Scenario 17 
1, which suggests that these methods are still able to improve upon the problem in this more 18 
flexible case even though the solution space is much larger. FIGURE 7 provides a graphical 19 
comparison of the configurations identified using each method.  20 

 21 

 22 

FIGURE 8. Ranking of best-performing left-turn restriction configurations identified (Scenario 2) 23 

The unique configurations that were identified are shown in FIGURE 8a. In this figure, red 24 
vertical or horizontal lines represent left-turn restrictions in the north-south or east-west direction, 25 
respectively, implemented at a specific intersection. As shown, only 17 unique configurations were 26 
identified. The PBIL was able to provide the best-performing configuration, while the 27 
configurations identified using the BOA and hybrid methods performed a bit worse. A review of 28 
these configurations again reveals common features about where left-turn restrictions should be 29 
enacted. FIGURE 8b overlays the configurations so that darker lines represent approaches at which 30 
left-turn restrictions are applied more commonly in the configurations shown in FIGURE 8a. A 31 
very clear pattern of common left-turn restriction locations emerges from this overlapping figure. 32 
The general pattern is similar to Scenario 1: left-turn restrictions occur frequently in the central 33 
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portion of the network and generally do not occur in the periphery of the network. These reasons 1 
are the same as those in the previous scenario. However, there are some key differences. Left-turns 2 
are generally permitted at approaches that lead from the central portion of the network toward the 3 
periphery of the network, whereas they are restricted at those approaches leading toward the central 4 
portion of the network.   5 

 6 
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 1 

(a) 2 

(b)  3 

FIGURE 9. Results of Scenario 2 under symmetry constraints. (a) Optimal left-turn restriction configurations 4 
obtained by proposed algorithms; and, (b) common locations of left-turn restrictions identified in top-5 
performing algorithms.  6 

 7 
  8 
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FIGURE 10 provides solutions obtained for this scenario when symmetry constraints are 1 
relaxed. Notice that travel times are able to be improved when the solution space is made larger, 2 
as expected. However, the general spatial pattern of left-turn restriction configurations remains the 3 
same. This suggests that this is a general pattern that should optimize operations in perfect grid 4 
networks. Notice also that the hybrid method is again the best-performing method. It found the top 5 
two configurations and three of the top five.  6 
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(a) 2 
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 1 
(b) 2 

FIGURE 10. Results of Scenario 2 relaxing symmetry constraints. (a) Optimal left-turn restriction 3 
configurations obtained by proposed algorithms; and, (b) common locations of left-turn restrictions identified 4 
in top-performing algorithms. 5 

 6 

Tests on imperfect networks 7 
The previous results were all obtained in a perfect grid network. While useful for exploratory 8 
purposes, most networks do not have such an idealistic structure. To demonstrate the applicability 9 
under more realistic settings, the PBIL method was performed on an imperfect grid network 10 
structure. This imperfect grid was created by randomly removing links from the perfect grid in 11 
such a way that all OD pairs could still be served. This could represent the applicability of these 12 
methods to a real-world network configuration. The imperfect networks also lead to non-uniform 13 
traffic patterns even under a uniform traffic demand; thus, these tests also demonstrate the 14 
applicability of these methods under non-uniform traffic patterns.  15 

The results of the optimization under Scenario 2 (two restriction decisions made per 16 
intersection) without any symmetry constraints are shown in FIGURE 11. The total travel times 17 
found represent a reduction of 15.4 percent compared to the case where left-turns are allowed at 18 
all intersections and 48.3 percent when left-turns are restricted at all intersections. This suggests 19 
that the algorithms work and can be applied to a more realistic setting.  20 

 21 
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 1 
(a) 2 

 3 
(b) 4 

FIGURE 11. Results of PBIL method applied to an imperfect grid network. (a) Individual solutions; and, (b) 5 
common locations of left-turn restrictions identified. 6 

 7 
 8 

DISCUSSION AND CONCLUDING REMARKS 9 
This paper demonstrates that restricting left-turns at a subset of signalized intersections can help 10 
improve overall network traffic conditions, which contributes to the growing body of literature on 11 
left-turn restrictions in urban environments. It specifically considers the identification of which 12 
intersections left-turn restrictions should be implemented at to maximize overall network 13 
efficiency, measured by the total travel time for all vehicles on the network. Two scenarios are 14 
considered: one where the same left-turn restriction decision is made for all approaches at an 15 
intersection and another where two decisions are made (one for the north-south approach and 16 
another for the east-west approach). Both are complex combinatorial problems with an incredibly 17 
large solution space. To determine optimal left-turn restriction configurations, three heuristic 18 
methods are compared: a population-based incremental learning algorithm, a Bayesian 19 
optimization algorithm and a hybrid of the two.  20 

The results reveal that all three methods are fairly reasonable for solving this problem and 21 
identifying a left-turn configuration that reduces total travel time within the network. In general, 22 
the population-based incremental learning algorithm performs slightly better than the other two 23 
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methods when the solution space is small, while the hybrid method performs better as the solution 1 
space increases. In general, the two-decision-per-intersection case always provides lower travel 2 
times than the one-decision-per-intersection case. While this is expected because it is more 3 
flexible, the fact that better-performing configurations can be obtained even though the solution 4 
space is exponentially greater is promising.  5 

Regardless of the method and scenario, the results suggest that a fairly consistent and 6 
generic spatial pattern of left-turn restrictions that minimizes vehicle travel and maximizes 7 
network efficiency might exist in grid networks. In this pattern, left-turns are restricted at 8 
intersections in the inner portion of the network that carry the largest vehicle flows, and left-turns 9 
are allowed at the intersections in the periphery where flows are low and the proportion of vehicles 10 
making a left-turn is higher. While this is obtain under a uniform demand pattern, it might provide 11 
general inights for how to implement such decisions at more complicated and realistic network 12 
structures. While the actual configuration on any network would be subject to its network-specific 13 
features, signal settings and demand pattern, the overall pattern that was observed here should be 14 
fairly general and serve as a good starting point that could be refined due to network-specific 15 
features without the need for an exhaustive search. However, any search would benefit from the 16 
methods provided here. The results also reveal that the livability and economic benefits of two-17 
way streets can be achieved while simultaneously reducing total vehicle travel time by simply 18 
restricting left-turning vehicles at specific intersection locations. While not specifically studied 19 
here, the reduction of delay could also have other inherent benefits – such as reducing harmful 20 
vehicle emissions and fuel/energy consumption – since improving vehicle travel times would 21 
reduce unnecessary delays and vehicle stopping maneuvers (52).  22 

Further work should also consider how these central left-turn restrictions might influence 23 
overall network resilience to disruptions that might occur along links, such as traffic crashes or 24 
bottlenecks caused by freight vehicles. Additionally, methods are needed to simultaneously 25 
identify optimal restriction locations while changing signal timings at intersections with/without 26 
left turn restrictions. This is a much more complex problem that requires both binary and 27 
continuous decisions. The authors are currently exploring methods to address this problem.  28 
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