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ABSTRACT

Restricting left-turns throughout a network improves overall flow capacity by reducing conflicts
between left-turning and through-moving vehicles. However, doing so comes with the drawback
of requiring vehicles to travel longer distances on average. Implementing these restrictions at only
a subset of locations can help by balancing this tradeoff between increased capacity and longer
trips. Unfortunately, identifying exactly where these restrictions should be implemented is a
complex problem due to the very large number of configurations that must be considered and
interdependencies between left-turn restriction decisions at adjacent intersections. This paper
implements three heuristic solution algorithms—population-based incremental learning, Bayesian
optimization and a hybrid of the two—to identify optimal location of left-turn restrictions at
individual intersections in a perfect and imperfect grid network. Scenarios are tested in which
restriction decisions are the same for all intersection approaches and in which this decision is only
the same for approaches in the same direction. The latter case is particularly complex as it increases
the number of potential configurations exponentially. The results suggest all methods can be
effectively used to solve this problem, though the hybrid method appears to perform the best under
more complex scenarios with a larger solution space. The proposed framework and procedures can
be applied to realistic city networks to identify where left-turn restrictions should be implemented
to improve overall network operations. Application of these methods to square grid networks under
uniform demand patterns also reveal a general pattern in which left-turns should be restricted at
central intersections that carry larger vehicle flows, but allowed otherwise. Such findings can be
used as a starting point for where to restrict left-turns in more realistic networks.
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INTRODUCTION

Conflicting left-turns represent a significant safety issue at signalized intersections. Left-turning
vehicles have to cross the path opposing through vehicles to traverse the intersection and managing
these left-turning and opposing through vehicle conflicts is a primary driver of Signal Phasing and
Timing (SPaT) plans (/, 2). Providing protected phases for left-turns is the safest option as it
eliminates these conflicts. However, this takes time away from through movements and introduces
additional lost times during which the intersection is not serving any vehicles, both of which can
reduce overall intersection capacity (3, 4). Serving left-turns in a permitted manner requires drivers
to select appropriate gaps in which to move, which is less safe since the conflicts still exist. This
might be more operationally efficient if sufficient gaps exist for left-turning vehicles to move;
however, the left-turning vehicles might block other vehicles from discharging if they have to wait
a long time for an appropriate gap (35). Dedicated left-turn pockets can be installed to mitigate this,
but queued left-turn vehicles can still spillover and block vehicles in adjacent lanes from
discharging through the intersection (6).

One-way streets have traditionally been used to eliminate these left-turn conflicts and thus
provide higher vehicle flows (7-9). However, one-way streets have other negative externalities that
make them less desirable. This includes reduced economic activity (/0,11), safety concerns
(particularly for non-motorized traffic) (/2), circuitous routes for drivers (/3), and confusion for
transit users (/4), among others. Perhaps for this reason, there is a growing number of cities that
have performed one-way to two-way street network conversions (/5). While such conversions
have been found to mitigate some the negative features of one-way streets, engineers have long
thought they came at the expense of traffic flow. And, these conversions lead to left-turning
conflicts at intersections that need to be mitigated.

Several strategies have been proposed to accommodate left-turns while considering the
issues they create. Alternative intersection designs have been developed that allow left-turning
vehicles in non-traditional ways. These strategies manage left-turn conflicts by using additional
features (e.g., downstream U-turns or additional signals) and/or changing the intersection
geometry (/6—22). However, these designs are generally not well-suited for urban areas with
limited road space since they require large spatial footprints or long blocks.

Instead, conflicting left turns can be simply restricted at signalized intersections. This
simplifies the SPaT plan and allows the intersection to achieve higher overall flow capacities due
to fewer change intervals and use of only through/right-turn phases. However, such restrictions
will require vehicles that would have otherwise made a left-turn to reroute, which may induce
longer average travel distances. Several recent studies have examined the competing impacts of
such left turn restrictions enacted across entire grid networks (23-27). The studies apply
macrosocpic traffic flow models (28) to quantify overall network performance under scenarios
with and without left turns. The findings generally agree that eliminating left-turns can improve
overall network operation (specifically, the rate that trips can be completed in the network),
particularly when the network is operating near its capacity. However, these prior studies fail to
consider the optimal spatial location of such restrictions at individual intersections within a
network.

This type of problem is most closely related to general facility location problems in the
transportation research literature, which are classified as NP-hard optimization problems due to
the large solution space and lack of analytical solution (29). Within urban networks, many studies
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have proposed methods to determine optimal location of treatments along individual links—e.g.,
optimal bus lanes locations (30-33)—or at individual intersections—e.g., optimal transit signal
priority locations (34, 35). Very few studies have examined the application of left turn restrictions
or alternative left-turn treatments at individual intersections on a network. The problem is complex
as changes in left-turn treatments at one intersection might influence traffic patterns and operations
at adjacent intersections. Additionally, vehicles will reroute themselves due to the left-turn
restrictions enacted. These issues do not facilitate the expression of the optimal left-turn restriction
problem as a traditional mathematical program. Instead, one study proposed a generic
methodology to identify intersections that should restrict left turns that relied on fairly simplistic
traffic models that did not account for traffic dynamics, such as queue spillbacks and changes in
vehicle routing (36). Others utilized simulation to test the performance of a set of candidate left-
turn restriction configurations but did not necessarily perform any optimization (37, 38).

Another factor that complicates the problem of selecting left turn restriction locations is
the spatial dependency between the possible restriction locations. The spatial dependency can be
defined as the influence of restricting left turns at one intersection on the effect of restricting left
turns at adjacent intersections. This happens for multiple reasons. For one, restriction decisions at
one intersection will influence how vehicles traverse the intersection and arrive to the downstream
intersection (both in terms of amount and pattern of arrivals). Additionally, these decisions can
change routing of vehicles. The existing studies on determining optimal location of treatments
along individual links primarily use genetic algorithms to find the optimum locations (30, 39-42).
However, genetic algorithms assume independent relationship between decision variables, and
thus the unaccounted dependencies can significantly limit the performance of genetic algorithms
(43,44). There are two groups of evolutionary algorithms that can account the dependencies
between decision variables. Messy genetic algorithms conducts a partial enumeration of the
solution space to select promising building blocks to identify dependencies, and then uses these
building blocks to continue with a solution method similar to the basic genetic algorithms. The
need for partial enumeration makes these types of algorithms infeasible to use for simulation-based
transportation optimization problems due to the required computation time. On the other hand,
estimation of distribution algorithms identify the existing dependencies within the decision
variables by leveraging probability theory. These methods construct and sample probabilistic
models of dependencies, and do not require a computationally expensive partial enumeration.
Hence, this paper will explore the use of estimation of distribution algorithms to optimize left turn
restriction locations.

The purpose of this paper is to propose and compare several methods to determine the
optimal spatial configuration of left-turn restrictions. Several heuristic algorithms are considered
to identify candidate configurations, the performance of which are tested in a micro-simulation
environment. The first is a population-based incremental learning (PBIL) algorithm that combines
the evolutionary nature of genetic algorithms with competitive learning features (45). The second
is a Bayesian optimization algorithm that seeks to directly learn and leverage dependencies
inherent within the solution space using Bayesian networks (46). The final method is a hybrid of
the two that uses the PBIL method to generate a set of candidate solutions and then implements a
Bayesian network to generate similar solutions that might also perform well. These are applied
within a dense, grid-like urban network under uniform traffic patterns, though it can be applied in
more realistic cases as well. The results suggest that these methods are generally suitable for the
optimal spatial left-turn optimization problem and provides insights into the conditions under
which each might perform best.
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The remainder of this paper is organized as follows. First, the proposed optimization
methods and experimental setup are described. Then, the results of the proposed algorithms are
provided for two optimization scenarios that are considered. Finally, some concluding remarks are
provided.

METHODOLOGY

This section describes the methods that were used in this paper to determine where left-turns
should be restricted spatially across an urban network. The remainder of this section describes the
methods used to optimize the left-turn restrictions and the network-setup.

Optimization of left-turn restriction configurations

The relationship between a transport agency that decides the left turn restriction locations and the
people in the network can be modeled as a leader-follower problem. The leader (transport agency)
enacts a set of restrictions to reduce the total delay of the network. The followers (people in the
network) react to that decision by adapting their route choice with the aim of minimizing their
travel times. Since the reaction of the followers affects the resulting delay change in the network,
a bi-level optimization approach is needed to find the optimum locations of left turn restrictions.
The upper level uses a metaheuristic method to select promising left turn restriction configurations.
Then the total travel time associated with the selected left turn restriction configuration is
calculated by the lower level. The lower level uses a microsimulation model to accurately simulate
the traffic and account for the changes in the routing behavior of the network users. The resulting
total travel time is used by the upper level to select the next set of promising left turn restriction
configurations. The next two subsections describe the methods used for the network evaluation
and the selection of LT restriction locations.

The lower level network assessment

The lower of the bi-level optimization algorithm aims to calculate total travel time for a given LT
restriction configuration. For this purpose, an accurate method is needed to capture routing
behavior of drivers, the effects of network elements (e.g., traffic signals), and the related traffic
phenomena (e.g., queue spillbacks, heterogeneous driver behavior). Due to the accuracy needed
for travel time calculation, the Aimsun micro-simulation platform is selected for network
assessment (47), since it accurately captures vehicle dynamics, queue spillover and other realistic
features.

The stochastic c-logit route choice model is used for vehicle routing within the micro-
simulation environment. This model emulates a user-equilibrium routing pattern in which drivers
select the route to minimize their own expected travel time. The drivers make the routing decision
when they initiate the trip and the decisions are based on the average travel time on links over the
past 3 minutes. However, a portion of the drivers (50% in the tests performed in this paper) are
allowed to change their route during their trip based on the current traffic situation. The re-routing
occurs at regular intervals of 3 minutes. Previous research has shown that such adaptive traffic
routing algorithms provide better network-wide operational performance (46).
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The upper level optimization

The upper level optimization procedure seeks to identify the optimal configuration of left-turn
restrictions—i.e., the locations at which left-turn restrictions should be enacted to optimal traffic
performance. Here, traffic performance is measured using total travel time that is experienced by
all vehicles during a simulated peak period. Three different optimization algorithms are considered
for this upper level optimization. These methods are selected due to their capability of accounting
for spatial dependencies in the left-turn restriction decisions at individual locations.

Population-based incremental learning

Population-based incremental learning combines the generational evolution of genetic algorithms
with competitive learning (45). The flowchart of the PBIL algorithm is shown in FIGURE 1. The
algorithm has four basic steps that will be described in this section: 1) initiation, 2) generation and
evaluation, 3) mutation and update of the probability vector, and 4) termination.

( Generate initial population - Step 1 )

v

Evaluate initial population- Step 2

v

Select the best solution vector - Step 3 [€—

v

Update probability vector- Step 3

v

Generate a new population - Step 2

v

Evaluate the new population - Step 2

Check
Stopping
criteria

False

Output the best configuration found - Step 4

FIGURE 1. Flow chart of population-based incremental learning

The initiation step involves generating an initial probability vector, P!, that serves as a
starting point for the algorithm. Each element i of this vector is associated with a specific
intersection (or intersection approach) and the corresponding value in the initial probability vector,
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P!, represents the probability that left-turn restriction is applied at that intersection (or approach).
Thus, the size of the probability vector is equal to the number of candidate locations that left-turn
restrictions are considered for implementation. In this paper, the probability vector is initiated by
setting the value of each element to 0.5. This represents a truly random guess with no prior
knowledge on if left-turn restrictions should be applied at each candidate location.

The generation and evaluation step generates a population of candidate left-turn restriction
configurations (60 individual configurations in this paper) by randomly sampling the solution
space using the probability vector associated with the current generation, Pt. Each candidate
configuration is represented by a vector of the same size as P* and consists of binary values, where
the value 1 represents a left-turn restriction and the value 0 represents no left-turn restriction. After
the set of candidate configurations are generated, each is evaluated by the lower level to obtain the
total travel time value associated with each configuration.

After the evaluation, the probability vector is updated by learning from the best solution
vector (i.e. the configuration with the lowest total travel time) in the current generation, B¢, and
the worst solution in the current generation. The former adjustment (1) represents positive learning,
while the latter (2) represents negative learning.

Pi*t = (PEx (1 LR%)) + (Bf X LR*) (1)
Pt =Pt x (1+LR™) —w} x LR ()

where, P} is the probability of LTs at a location i in generation ¢, LR is the positive learning rate,
LR~ is the negative learning rate, and Bf is the value (0 or 1) of the ith position of the best solution
found in generation t, and w{ is the value of the ith position of the worst solution found in
generation t. Equation (1) essentially adjusts the probability vector so that future solutions that are
evaluated are more likely to adopt features of the best solution found in the current generation,
while Equation (2) essentially adjusts the probability vector so that future less likely to adopt
features of the worst solution found in the current generation.

Similar to other evolutionary algorithms, PBIL converges around a solution as the search
progresses. However, PBIL allows explicit control of the speed of convergence with the learning
rate parameters, LR* and LR™. The learning rate parameters enables the PBIL to explore a larger
portion of the solution space, which is essential for problems with dependencies, before starting to
converge to a solution. The LR values seeks to create a balance between the portion of the solution
space explored and the convergence speed. In this study, we apply LR* = 0.1 and LR~ = 0.05.
The latter is selected as negative learning might restrict the search for optimal solutions in some
cases.

In addition to the learning process, the mutation operator is also responsible for expanding
the explored solution space by randomly changing the probabilities in Pt by some magnitude of
Am = 0.05. Mutation is applied with a predefined random probability m = 0.02, known as the
mutation rate. Each element in the solution vector is randomly updated according to (3) with
probability m.

PH*1 = Pl x (1 — Am) + Am (3)

After the probability vector is updated using (1-3), steps 2 and 3 are repeated until the
termination criteria is met. The termination criteria can be based on convergence of probability
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vector or maximum number of generations. In this study, the PBIL algorithm is terminated after
60 generations.

Bavesian optimization algorithm (BOA)

PBIL relies on random sampling of potential solutions and learning about the performance of these
sampled solutions to generate better solutions. Unlike PBIL, the BOA does not assume an
independent relationship between decision variables (e.g., locations of LT restrictions). BOA aims
to learn the dependency structure between decision variables using Bayesian networks and uses
this information to generate better solutions. The structure of a Bayesian network is a directed
acyclic graph which the nodes are the decision variables (i.e. left turn restriction locations). The
links between nodes of the Bayesian network represent the dependencies between left-turn
restriction decisions at individual intersections. The flowchart of the BOA is shown in FIGURE 2.

C Generate initial population - Step 1 )

Evaluate initialpopulation - Step 1

v

Select parents of Bayesian network - Step 2

v

Fit a Bayesian network- Step 3

v

Generate offspring population - Step 4

v

Evaluate offspringpopulation - Step 5

v

Recombine offspring and parent population - Step 6

Check False

Stopping
criteria

Output the best configuration found - Step 7

FIGURE 2. Flow chart of Bayesian optimization algorithm

The BOA has 7 steps: 1) initiation, 2) selection, 3) Bayesian network construction, 4)
offspring creation, 5) evaluation, 6) recombination, and 7) termination. The algorithm starts by
randomly generating an initial population (in this case, 60) individual LT restriction
configurations. Similar to PBIL, each solution vector is a binary vector that represents the LT
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restriction at each location. After the initial population is generated, each individual solution is
evaluated by the lower level to compute the total travel time associated with each LT restriction
configuration.

The selection step selects the parent solutions that will be used for Bayesian network
construction. A tournament selection method is used (49) in which two LT restriction
configurations are randomly selected from the initial population and the better performing
configuration of the two options is identified as a parent. The process repeats itself until a pre-
specified number of parents are determined (30 in this paper), where repetition is allowed (i.e., a
particular solution can be used as a parent multiple times if randomly selected).

A Bayesian network is then constructed using a greedy algorithm. The procedure used to
construct the Bayesian network is essentially a separate optimization algorithm inside the BOA.
The procedure starts with a Bayesian network with no edges (i.e., a network with no dependencies).
Then, basic graph operations (edge addition, removal, and reversal) are applied to a random node
pair. The operations that increases the quality of the Bayesian network most is kept and the others
are discarded. These two steps (testing and selecting operations) are repeated until the network can
no longer be improved. Notice that, only one graph operation is performed at each cycle of the
Bayesian network construction process. For the selection of the graph operation that is applied, the
quality of the Bayesian network is assessed with a scoring metric. In this study, the Bayesian
information criterion (BIC) shown in (4) and (5) is used as a scoring metric (50).

1 N
BIC = Xy (—HOXIDN — 2171 22) )

H(X;1D;) = = X, 0, P (xi, d;) loga (x;d;) (5)

Where, n is the number of decision variables; D; is the variables that decision variable X; depend
on; H(X;|D;) is the conditional entropy of X; given D;; N is the population size; p(x;, d;) and
(x;1d;) are the observed probabilities from the population where X; = x; and D; = d;. The BIC
assumes that the number of dependencies in the network is proportional to the amount of
compression of the data allowed by the Bayesian network. The term with log, (N) favors simpler
network (i.e. network with fewer number of dependencies) and helps to eliminate inclusion of
unnecessary dependencies to the Bayesian network. Therefore, a Bayesian network structure that
maximizes the BIC metric can describe the dependencies.

Next, offspring solutions are generated by sampling the fitted Bayesian network. For the
sampling process the joint probability distribution (6) encoded in the Bayesian network is used.
This enables algorithm to keep exploring the solution space with independent variables while
keeping the values of dependent decision variables conditioned to the variables they depend on.
Since low performing solutions are eliminated at the end of each generation (Step 6), the algorithm
fits the Bayesian network to better solutions at each generation and finds successful value
combinations of dependent variables and the variables they depend on.

p(X) = [Ii=1 p(X;|D;) (6)

In the Bayesian network, each variable (i.e., the of left-turn restrictions at a given intersection) can
be categorized into one of three groups: 1) completely independent (i.e., no links are formed in the
Bayesian network); 2) dependent on others; and, 3) others are dependent on this variable (i.e., the
value of the variables in group 2 depend on the value of the variables in group 3). In order to
sample from these sets of variables, a forward simulation process is used (57). First the value (0 —
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no left-turn restrictions, or 1 — left-turn restriction) of independent variables (those in group 1),
next the value of variables in group 3 (since the values of these do not depend on other variables)
and finally by assigning the values of variables in group 2 (since their values depend on the values
of the variables in group 3). The sampling process is repeated until 30 offspring solutions are
generated.

After the offspring solutions are generated, they are evaluated by the lower level. After the
evaluation step, the offspring solutions and the previous population are recombined by replacing
the worse half of the population with the offspring solutions. Similar to PBIL, BOA is run for 60
generations. The steps 2-6 are repeated until enough number of generations are evaluated.

PBIL-BOA hybrid algorithm

Both BOA and PBIL are capable algorithms to solve complicated problems but have several
limitations. PBIL samples configurations from different parts of the solution space due to its
exploration focus, but this makes the PBIL algorithm slow to converge to a point in solution space
(29). BOA is faster to converge to a solution due to its focus on learning dependencies between
decision variables, but requires a large population to accurately learn the dependencies between
decision variables for problems with high number of dependent decision variables. When the
solution evaluation is computationally intensive (e.g., like in the micro-simulation approach that
is applied here) large number of evaluations may not be feasible. Thus, in this study, a hybrid
method that combines the exploration capability of PBIL and the dependency learning capability
of BOA is proposed.

The hybrid algorithm has three main steps. First, generate a large set of promising solutions
(i.e., a set of LT restriction configurations that has good total travel time values). Second, use this
large set of solutions to create a Bayesian network. Finally, use the constructed Bayesian network
to generate new solutions. The flowchart of the Hybrid algorithm is shown in FIGURE 3.

(Start parallel PBIL runs - Step 1 ?

v

Collect and rank all tested configurations - Step 1

v

Select top 500 LT configurations - Step 1

v

Fit a Bayesiannetwork - Step 2

v

Produce a new set of configurations - Step 3

v

Evaluate the new set- Step 3

v

Output the best configuration found

FIGURE 3. Flow chart of PBIL-BOA hybrid optimization algorithm
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The first step involves shorter independent PBIL runs with small populations. The aim of
this step is not to necessarily find the global optimum solution. Instead, the aim is to identify
promising solutions from different parts of the solutions space. Thus, several PBIL runs with
different initial populations are used to identify promising solutions. To select the sample that will
be used for Bayesian network construction, all configurations evaluated during the independent
PBIL runs are ranked, and the top 500 unique configurations are selected for Bayesian network
construction.

The selected sample of promising configurations are then used to construct a Bayesian
network. The algorithm used for Bayesian network construction is similar to the one used for BOA
algorithm. Since a much larger population (500 unique configurations) is used in hybrid algorithm
to create the Bayesian network compared to BOA’s procedure, the hybrid algorithm is more likely
to capture dependencies between decision variables. After the Bayesian network creation, a new
set of solutions is generated by forward simulation, similar to BOA. Finally, the new set of
solutions are evaluated by the lower level to estimate total travel time values.

Experimental setup

The methodology described above is tested using an illustrative network shown in FIGURE 4. The
test network is an 8x8 grid. The block length is 200 meters. Each link is coded as an arterial in
Aimsun and has two lanes per direction and the speed limit and capacity of links are 48 km/h and
1600 veh/h. Every intersection in the network is a signalized intersection with 90-sec cycle length
without any offset between adjacent intersections. During each cycle, each direction receives 42
seconds of green time with three seconds of change interval is applied between consecutive phases.
Left turns are either set to permitted operation during each phase or restricted altogether. When
permitted, left-turning vehicles waiting for a gap at the intersection tend to block one lane and
reduce overall intersection capacity. Origin and destination nodes are located in the middle of each
block and 32 entry/exit points on the periphery of the network. A uniform demand pattern in which
each origin generates the same number of trips (on average) and each destination is equally like to
be selected is used; however, the proposed methods can be applied to any generic demand pattern
as desired. The simulation run using an average of 367 total trips per minute. The selected demand
level is enough to saturate the network when LTs are permitted at all intersections. However, due
to the randomness of Aimsun’s simulation process, there are small variations in the uniform
demand pattern in each simulation. Each LT configuration is simulated for 45 minutes followed
by a recovery period of 15 minutes. The resulting cumulative count curves of vehicle entries and
exits are used to determine the total travel time of the network users.
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FIGURE 4. Test network and OD locations

The BOA, PBIL, and hybrid algorithms described in the methodology section are tested on
two different optimization scenarios related to how left-turn restrictions are implemented at
individual intersections. The first scenario considers the case where a single left-turn restriction is
made for each intersection. In this case, the same decision (restrict or allow left-turns) is made at
all intersection approaches at a given intersection. In this scenario, there are 64 possible left-turn
restriction locations for this scenario. The second scenario considers the case where multiple left-
turn restriction decisions are made at each intersection. Specifically, left-turn restrictions decisions
are made independently at each intersection for each of the two competing directions (e.g.,
north/south and east/west) at each intersection. In this scenario, there are two LT restriction
decisions that can be made for each of the 64 intersections for a total of 128 binary decisions.

Given that the number of possible LT restriction configurations increases exponentially
with the number of possible restriction locations, the number of possible LT restriction
configurations for both scenarios is extremely large (2%* in the first scenario, (2 X 2)%* in the
second). Several constraints/assumptions are implemented to reduce the solution space to examine
in detail the performance of the proposed heuristics. First, a symmetry constraint is implemented.
Since the network is a perfect grid with a uniform demand pattern, the global optimum solution is
likely to be rotationally symmetrical. For both scenarios, the upper-level algorithms only search
for LT restriction configurations that are rotationally symmetrical around the center of the network.
The second constraint is LT restrictions are never applied at the intersections at the corners of the
network to always provide a feasible path between all OD pairs. These two constraints reduced the
number of possible LT restriction configurations to 32,768 and 1.07x10° for first and second
scenarios, respectively. For the first scenario, the reduced number of possible LT restriction
configurations is low enough to use brute-force enumeration to determine the global optimal
configuration. These constraints/assumptions are later relaxed to demonstrate the performance of
the proposed algorithms in a more realistic setting.
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In addition to the scenarios with the symmetry constraint, two other optimization scenarios
created to demonstrate the capabilities of the bi-level methodology under more realistic
assumptions. For the first scenario, the symmetry constraint is relaxed, and the performance of the
used upper-level algorithms are compared. The second scenario considers optimization of LT
restriction locations for a non-perfect grid network. For both of the scenarios, the demand pattern,
network parameters, and the algorithm specific optimization parameters are same as for the
scenarios with the symmetry constraint.

RESULTS

This section describes the results of the optimal left-turn restriction configuration problem using
the three proposed methods. First, the results of the first scenario with only one restriction decision
per intersection are provided. Then, the results of the second scenario with two decisions per
intersection are provided. Finally, the results of the tests under more realistic assumptions are
presented.

Scenario 1: One left-turn restriction decision per intersection

This section provides the results when only one restriction decision per intersection is made. First,
the results are provided when restriction configurations are assumed to be perfectly symmetric, to
reduce the size of the solution space and examine if the heuristics can find the optimal solution
under these assumptions. Then, the results are presented when this symmetry constraint is relaxed.

Tests under symmetric configurations

The PBIL, BOA and hybrid algorithms were run multiple times to obtain best-performing
solutions. Multiple runs of each algorithm were performed since they are heuristic methods that
rely on random processes, particularly the first set of randomly generated solutions. The PBIL and
BOA algorithm were each run 15 times since they were the most well-known of the three methods
tested but also the most computationally intensive. The hybrid optimization procedure was
repeated 100 times to learn more about how well it is able to improve upon the PBIL and BOA
methods. The sample used for Bayesian network construction contains the best 500 LT restriction
configurations found during a subset of independent PBIL runs. At each instance of this algorithm,
a Bayesian network that represents the dependencies between LT restriction locations was
constructed by using these 500 configurations. Using the constructed Bayesian network, 500 new
configurations are generated. Since Bayesian network construction and new configuration
generation are heuristic processes, each run of the hybrid algorithm created a different set of new
solutions.

In addition to these heuristic methods, a brute-force enumerate approach was applied to
identify the global optimal solution. In this method, all 32,768 potential configurations were tested
to determine the configuration with the lowest travel time. The results suggest that the
implementation of left-turn restrictions at a subset of intersections can reduce travel time
significantly compared to implementing left-turn restrictions at no intersections (at least 3.8%
reduction) or at all intersections (at least 12.3% reduction). Note that accommodating left-turns at
all intersections outperforms restricting left-turns at all intersections due to the low level of
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congestion in the network. Under these conditions, it is not necessary to prohibit left turns
everywhere since some intersections are under-saturated.

All configurations obtained from the proposed optimization methods and the global
optimal configuration are presented in FIGURE 5a. In this figure, red dots represent intersections
at which left-turn restrictions are applied. Note that only seven unique configurations were
identified: five using PBIL, five using the BOA, and five using the hybrid approach. The results
reveal that all methods are able to identify a solution that provides travel times within 1.7% of the
global optimal solution; i.e., the maximum optimality gap of any solution identified was 1.71%.
Comparing the three methods, the average optimality gap of the PBIL, BOA and hybrid methods
are 1.51%, 1.44%, and 1.11%, respectively. Overall, this suggest strong performance across the
three optimization methods. However, the hybrid method appears to generally provide better
results. For one, it has the smallest average optimality gap. In addition, it is the only method to
identify the global optimal solution (though this was just found 2% of the times and can be
attributed to randomness). Still, was able to outperform or equal the PBIL method in 92% of runs
and outperform or equal the BOA method 47% of runs. A comparison of these methods by TTT
produced is illustrated in FIGURE 6.
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1# TTT = 3,716,136 2# TTT = 3,749,210 3# TTT = 3,764,648
Global optimum, Hybrid 2 times BOA 2 times, Hybrid 45 tlmes PBIL 5, BOA 5, Hybrid 45 times
4# TTT =3,771,929 5#TTT =3,773, 735 6# TTT =3,778,958

PBIL 2, Hybrid 2 times PBIL 3, BOA 2, Hybrid 6 tlmes PBIL 2, BOA 2 times

7# TTT = 3,779,501
PBIL 3, BOA 4 times

) I

FIGURE 5. Results of Scenario 1 under symmetry constraints. (a) Optimal left-turn restriction configurations
obtained by proposed algorithms; and, (b) common locations of left-turn restrictions identified in top-
performing algorithms.
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FIGURE 6. Ranking of best-performing left-turn restriction configurations identified (Scenario 1)

A review of these configurations suggests some common features about where left-turn
restrictions should be enacted. FIGURE 5b overlays the configurations so that darker points
represent intersections at which left-turn restrictions are applied more commonly in the
configurations shown in FIGURE 5a. Notice that left-turn restrictions in the best-performing
solutions are more likely in the central portion of the network. This is reasonable as these locations
serve the highest flows (combined across all approaches) in the network. Restricting left-turns at
these locations increases the capacity at these locations, which helps to improve overall network
operations. Although vehicles will have to re-route when left-turns are restricted, the central
portion of the network has many alternative routes that can be used for those vehicles wishing to
make left turns. When left-turns are restricted at these central locations, this re-routing can often
occur without additional incurred travel distance. By contrast, left-turn restrictions are less likely
on the periphery of the network. This is reasonable as these intersections generally carry lower
total flow so the additional capacity gained by restricting left-turns is less beneficial. Furthermore,
these intersections experience a higher proportion of vehicles turning left so left-turn restrictions
would cause more vehicles to re-route. Finally, left-turn restrictions at these periphery locations
are more likely to induce additional travel distance due to fewer routing options available at the
edge of the network.

Tests under asymmetric configurations

The previous section finds that the heuristic algorithms work well to identify a (nearly) global
optimal solution when the restriction configuration is assumed to be symmetric. Now, we relax
this symmetry assumption to see how the performance and spatial restriction changes under more
realistic settings. This is a much more challenging problem as there are 32,768 times more feasible
configurations. Because of this, a brute-force enumeration is not possible and thus the global
optimal configuration, in this case, is unknown. FIGURE 7 provides the set of best-performance
solutions using each of the three algorithms. In all cases, travel time can be further reduced — as
expected — when the symmetry assumption is relaxed. Note that unlike the previous section, the
different algorithms do not identify the same solutions, likely due to the extremely large solution
space. Nevertheless, the overall pattern is the same: left turns are more likely to be restricted at the
central intersections and less likely to be restricted at the periphery intersections to improve travel
time. Furthermore, the hybrid algorithm finds the best-performing configuration and three of the
top five configurations.
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FIGURE 7. Results of Scenario 1 relaxing symmetry constraints. (a) Optimal left-turn restriction
configurations obtained by proposed algorithms; and, (b) common locations of left-turn restrictions identified
in top-performing algorithms.
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Scenario 2: Two left-turn restriction decisions per intersection

The optimization procedure was then repeated for the scenario in which two left-turn restrictions
decisions are made per intersection. As with Scenario 1, the PBIL, BOA and hybrid methods were
repeated multiple times. However, the number of repeats was reduced due to the computational
burden required. Thus, the PBIL method was performed four times, the BOA method was
performed four times, and the hybrid method was performed 35 times.

Comparing the results of this scenario with Scenario 1, we find that separating the left-turn
restrictions between the north/south and east/west approaches provides more efficient network
operations (i.e., reduced travel time). This is expected since having more options is more flexible
and left-turn restrictions do not necessarily need to be enacted simultaneously at all intersection
approaches. Overall, travel time is found to be reduced by an additional 1.25% (worst-performing
configuration identified) to 2.38% (best-performing configuration identified) over the global
optimal solution in Scenario 1. This represents a reduction in total travel time over not
implementing any left-turn restrictions at any intersections of 7.7% and a reduction in total travel
time over implementing left-turn restrictions at all approaches of all intersections of 15.8%. All
methods were always able to outperform the best-performing configuration identified in Scenario
1, which suggests that these methods are still able to improve upon the problem in this more
flexible case even though the solution space is much larger. FIGURE 7 provides a graphical
comparison of the configurations identified using each method.

37749 .
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2 I 1y brid
23661 Y
H
F
5 3.64 -
o
=
3621 I _
3.6
0 5 10 15 20 25 30 35 40

Rank

FIGURE 8. Ranking of best-performing left-turn restriction configurations identified (Scenario 2)

The unique configurations that were identified are shown in FIGURE 8a. In this figure, red
vertical or horizontal lines represent left-turn restrictions in the north-south or east-west direction,
respectively, implemented at a specific intersection. As shown, only 17 unique configurations were
identified. The PBIL was able to provide the best-performing configuration, while the
configurations identified using the BOA and hybrid methods performed a bit worse. A review of
these configurations again reveals common features about where left-turn restrictions should be
enacted. FIGURE 8b overlays the configurations so that darker lines represent approaches at which
left-turn restrictions are applied more commonly in the configurations shown in FIGURE 8a. A
very clear pattern of common left-turn restriction locations emerges from this overlapping figure.
The general pattern is similar to Scenario 1: left-turn restrictions occur frequently in the central
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portion of the network and generally do not occur in the periphery of the network. These reasons
are the same as those in the previous scenario. However, there are some key differences. Left-turns
are generally permitted at approaches that lead from the central portion of the network toward the
periphery of the network, whereas they are restricted at those approaches leading toward the central
portion of the network.
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FIGURE 9. Results of Scenario 2 under symmetry constraints. (a) Optimal left-turn restriction configurations
obtained by proposed algorithms; and, (b) common locations of left-turn restrictions identified in top-
performing algorithms.
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FIGURE 10 provides solutions obtained for this scenario when symmetry constraints are
relaxed. Notice that travel times are able to be improved when the solution space is made larger,
as expected. However, the general spatial pattern of left-turn restriction configurations remains the
same. This suggests that this is a general pattern that should optimize operations in perfect grid
networks. Notice also that the hybrid method is again the best-performing method. It found the top
two configurations and three of the top five.
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(b)

FIGURE 10. Results of Scenario 2 relaxing symmetry constraints. (a) Optimal left-turn restriction
configurations obtained by proposed algorithms; and, (b) common locations of left-turn restrictions identified
in top-performing algorithms.

Tests on imperfect networks

The previous results were all obtained in a perfect grid network. While useful for exploratory
purposes, most networks do not have such an idealistic structure. To demonstrate the applicability
under more realistic settings, the PBIL method was performed on an imperfect grid network
structure. This imperfect grid was created by randomly removing links from the perfect grid in
such a way that all OD pairs could still be served. This could represent the applicability of these
methods to a real-world network configuration. The imperfect networks also lead to non-uniform
traffic patterns even under a uniform traffic demand; thus, these tests also demonstrate the
applicability of these methods under non-uniform traffic patterns.

The results of the optimization under Scenario 2 (two restriction decisions made per
intersection) without any symmetry constraints are shown in FIGURE 11. The total travel times
found represent a reduction of 15.4 percent compared to the case where left-turns are allowed at
all intersections and 48.3 percent when left-turns are restricted at all intersections. This suggests
that the algorithms work and can be applied to a more realistic setting.
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FIGURE 11. Results of PBIL method applied to an imperfect grid network. (a) Individual solutions; and, (b)

common locations of left-turn restrictions identified.

DISCUSSION AND CONCLUDING REMARKS

This paper demonstrates that restricting left-turns at a subset of signalized intersections can help
improve overall network traffic conditions, which contributes to the growing body of literature on
left-turn restrictions in urban environments. It specifically considers the identification of which
intersections left-turn restrictions should be implemented at to maximize overall network
efficiency, measured by the total travel time for all vehicles on the network. Two scenarios are
considered: one where the same left-turn restriction decision is made for all approaches at an
intersection and another where two decisions are made (one for the north-south approach and
another for the east-west approach). Both are complex combinatorial problems with an incredibly
large solution space. To determine optimal left-turn restriction configurations, three heuristic
methods are compared: a population-based incremental learning algorithm, a Bayesian
optimization algorithm and a hybrid of the two.

The results reveal that all three methods are fairly reasonable for solving this problem and
identifying a left-turn configuration that reduces total travel time within the network. In general,
the population-based incremental learning algorithm performs slightly better than the other two
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methods when the solution space is small, while the hybrid method performs better as the solution
space increases. In general, the two-decision-per-intersection case always provides lower travel
times than the one-decision-per-intersection case. While this is expected because it is more
flexible, the fact that better-performing configurations can be obtained even though the solution
space is exponentially greater is promising.

Regardless of the method and scenario, the results suggest that a fairly consistent and
generic spatial pattern of left-turn restrictions that minimizes vehicle travel and maximizes
network efficiency might exist in grid networks. In this pattern, left-turns are restricted at
intersections in the inner portion of the network that carry the largest vehicle flows, and left-turns
are allowed at the intersections in the periphery where flows are low and the proportion of vehicles
making a left-turn is higher. While this is obtain under a uniform demand pattern, it might provide
general inights for how to implement such decisions at more complicated and realistic network
structures. While the actual configuration on any network would be subject to its network-specific
features, signal settings and demand pattern, the overall pattern that was observed here should be
fairly general and serve as a good starting point that could be refined due to network-specific
features without the need for an exhaustive search. However, any search would benefit from the
methods provided here. The results also reveal that the livability and economic benefits of two-
way streets can be achieved while simultaneously reducing total vehicle travel time by simply
restricting left-turning vehicles at specific intersection locations. While not specifically studied
here, the reduction of delay could also have other inherent benefits — such as reducing harmful
vehicle emissions and fuel/energy consumption — since improving vehicle travel times would
reduce unnecessary delays and vehicle stopping maneuvers (52).

Further work should also consider how these central left-turn restrictions might influence
overall network resilience to disruptions that might occur along links, such as traffic crashes or
bottlenecks caused by freight vehicles. Additionally, methods are needed to simultaneously
identify optimal restriction locations while changing signal timings at intersections with/without
left turn restrictions. This is a much more complex problem that requires both binary and
continuous decisions. The authors are currently exploring methods to address this problem.
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