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The study of motivic Chern classes unifies several theories of characteristic classes of singular
varieties [10]. The motivic Chern and Hirzebruch classes are polynomials in a formal variable y;
the motivic Hirzebruch class T, specializes to the Chern-Schwartz-MacPherson (CSM) class for
y = —1, the K-theoretic Todd class for y = 0, and the Cappell-Shaneson L-class for y = 1. The
top degree term of T',, of a compact variety gives the Hirzebruch y,-genus which specializes to the
topological Euler characteristic for y = —1, the holomorphic Euler characteristic for y = 0, and
the signature for y = 1.

In this article, we compute the motivic Chern and Hirzebruch classes of Grassmannian and
vexillary degeneracy loci in type A. In particular, our results give formulas for their CSM classes
and L-classes. Several invariants of these degeneracy loci have been computed, for example, a
determinantal formula for their classes in cohomology [8, 19], in K-theory [5, 27], and in algebraic
cobordism [28]. In the important special case of a degeneracy locus of a single map between vector
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bundles, the CSM class was computed by Parusinski-Pragacz [34]. However, formulas for their
L-classes and for CSM classes of more general degeneracy loci were not known. CSM classes and
motivic Chern classes have recently been studied for Schubert varieties and Schubert cells in flag
manifolds [1-4, 29] and matrix Schubert cells [17, 18, 37]. Hirzebruch y,-genera have also been
computed in other instances, for example, for Hilbert schemes of points [11, 24] and for singular
toric varieties [32].
‘We consider maps of vector bundles over a smooth algebraic variety X:
E,5F »F ..»F
p 4 °F) a

with rank(E,,) = p and rank(F, ) = g;. The Grassmannian degeneracy locus corresponding to the
partition A = (4; > - > A, > 0) with 4; := q; — p + i is defined as

Wi i={xeX : dimker(E, - Fy )l > 1.
More generally, we will consider maps of vector bundles

?
Ep1 L)Epz"'L)Ept_)Fql —>>Fq2--~—»th (1)
over a smooth algebraic variety X, with rank(E, ) = p; and rank(F, ) = g;. Note that 0 < p; <
-+ < p;and q; > - 2 q; > 0. Given a (weakly) increasing sequence k := (ky, ..., k;) of positive
integers, the vexillary degeneracy locus corresponding to the triple 7 = (k, p, q) is defined as

W, = {x €X : dimker(Epi _’Fqi)lx Bki}.

This nomenclature arises because the rank conditions can be described by the vexillary permuta-
tions from [31] (that is, permutations avoiding the pattern 214 3), see [7, § 1]. The Grassmannian
case is recovered when p; = --- = p, and k; = i for each i.

Our main result gives formulas to compute the motivic Chern and Hirzebruch classes of vexil-
lary degeneracy loci. We proceed in two steps.

First, we relate the motivic Hirzebruch classes of a vexillary degeneracy locus W and a cer-
tain resolution of W,. As in Kempf-Laksov [30], W, is resolved by ¢ : Q_ — W, where Q, is the
variety parametrizing complete flags of sub-bundles V, C --- €V} such that rank(V;) =i and
Vi, € ker(E » — F qi) for each i, see § 3. (In §6, we will also study a partial resolution Q@ — Q — W,
hence the use of the tilde here.) Let t : W, & X denote the inclusion. We carry out an explicit
computation of the class (i¢). Ty(ﬁr):

Theorem 1. For a triple T = (k, p, q) and with assumptions as in § 1.4, the class (t¢), Ty(ﬁ,) is
computed by a universal operator applied to [W ] N T (X), where [W ] is the determinantal formula
for the class of W in A*(X) (explicitly, Theorem 3.1).

Second, since the fibers of ¢ are not constant, in order to compare the motivic Hirzebruch
classes of W, and Q., we proceed to find the stratification of W, into locally closed strata on
which ¢ is locally trivial.

As reviewed in § 1.1.2 after [8], a triple 7 = (k, p, ) can be inflated to a triple 7’ = (K/, p’,q’)
by inflating the sequences k, p, and q of length ¢ to sequences k', p’, and ¢’ of length k, with
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k' =(1,2,..,k,) such that
qg-p+1>qg, —-p,+2>..>q —p, +k>0
1 1 2 2 k, k; t

and W, = W/. The locus W contains the loci W+ for 7+ = (k*, p’,¢) with k* > k’ in compo-
nentwise order. For degree reasons, there are only finitely many such sub-loci W_+ € W_. The map
¢ is locally trivial precisely on the locally closed strata W?, C W+ (defined in (3) as expected) —

see § 5.1. We express the class (t¢),, Ty(ﬁf) computed in Theorem 1 in terms of the motivic Hirze-
bruch classes of the strata of W_:

Theorem 2. For a triple t = (k, p, q) and with assumptions as in § 1.4, one has

). T, Z( —y) K=K T (W),

where t+ = (k*, p’,q') and the sum is over the set of weakly increasing sequences k* > k' =

,....k,).

For instance, consider the triples (i) := ((i), (3),(3)), for i = 1,2,3, and the triple 7(22) : =
((2,2),(2,3),(3,3)). The strata required for the locus W, are W:(l,) fori = 1,2, 3. Since the triple

7(2)is inflated to the triple ((1,2),(2,3),(3,3)), the strata required for the locus W, are Wr(z)’ W:(z)’

and W° 22 Then Theorem 2 gives

(). Ty (Qer)) =
(), Ty (Qrz)) =
(). Ty (Quz) =1 Ty
(). Ty (Qua)) =

o) =V Ty (Weey) + 32 0. Ty (We),

W) = Y6 Ty(Wea) =y Ty (Wees)),

Finally, by the inclusion-exclusion principle, applying Theorem 2 to the (closure of the) strata
of W_, and then to the strata of the strata, and so on, one can express the motivic Hirzebruch class
of W, in terms of classes (i), Ty(ﬁo.) corresponding to a subset of the finitely many vexillary
degeneracy sub-loci W, C W_. Thus we have:

Theorem 3. Combining Theorems 1 and 2 allows one to compute the motivic Hirzebruch class of W,
for any triple .

As an example, for the triple 7(1) := ((1), (3),(3)) as above, solving for ¢, T),(W_() gives

Ty (Wey) = (). Ty () + ¥ (). Ty (Qe)) + ¥ (1), Ty (R 2y)-

Theorem 1 can then be applied to compute the right-hand side as a polynomial in y with coeffi-
cients expressed in terms of the Chern classes of the given vector bundles.
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Brill-Noether theory

In § 7, we apply our results to classical and pointed Brill-Noether varieties. Brill-Noether theory
studies the geometry of line bundles and linear series on algebraic curves. For a smooth algebraic
curve C, the classical Brill-Noether variety W;(C) parametrizes line bundles of degree d on C
having at least r + 1 independent global sections [9]. More generally, the pointed Brill-Noether
variety WS(C’P) parametrizes line bundles of degree d on C having at least r + 1 independent
global sections with vanishing orders at the point P at least equaltoa = (0 < a5 < - < a, < d).
In §7.3, we compute the motivic Hirzebruch class of W;(C) and W;‘(C,P) for a general (C, P), as
these are examples of Grassmannian degeneracy loci. This extends the study of the CSM class of
the classical Brill-Noether varieties W;(C) treated by Parusiniski-Pragacz [34].

Similarly, we compute the motivic Hirzebruch class of the Brill-Noether variety G}(C)
parametrizing linear series on C of degree d and projective dimension r, and its pointed coun-
terpart G7(C, P) parametrizing linear series on C of degree d with prescribed vanishing a at the
point P. For these, we use the result presented more generally about a degeneracy locus Q; in § 6.

For a smooth Brill-Noether-Petri general curve C of genus g, one has: (i) G;(C) is smooth and
has dimension equal to p(g,r,d) := g — (r + 1)(¢ —d +r); (ii) W/,(C) has dimension equal to
p(g,r,d), provided that ¢ — d + r > 0; and (iii) when g —d +r > 0 the singular locus of W, (C)
coincides with W'.*1(C) c W/,(C) [9, p. 214].

For instance, W(’i (C) is smooth when C is a smooth Brill-Noether-Petri general curve,
p(g,r,d) <2and g > 2. Write A = g — d + r, and let © be the cohomology class of the theta divisor
in Pic?(C). In the surface case, we prove:

Corollary 4. Fix g > 2 and r,d such that p(g,r,d) = 2. For a Brill-Noether—Petri general smooth
curve C of genus g, the motivic Hirzebruch class of the surface W (C) is

Ar+3)(y -1
T, (W(O) = <1+ %
Ar + D(Ar + Dy —1)* =2y > . 21_[
20+r)A+r+2) (g — d+r+l)'

in H*(Pic® (C)[y]- Since the top degree term of T, gives the Hirzebruch x,-genus, one has

/l(r + D(Ar + D(y — 1)* — 2y)
20+ r)(A+r+2) H(g d+r+1)'

Xy (WH(©) =

Moreover, with the same hypotheses, one has )(y(G;(C)) = )(y(W;(C)).

The formula for y,, in Corollary 4 recovers the topological and holomorphic Euler characteris-
tics for y = —1 and y = 0 (known from [34] and [6], respectively), and gives a new result on the
signature of the surface W;(C) fory =1:

r _ 2-y
G(Wd(c))_g(g d+2r)(g— d+2r+2)H(g d+r+l)'

and similarly for the surface G),(C), since in this case o(G/,(C)) = a(W}(C)).
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We briefly review the definition of the signature. For a compact oriented manifold X of real
dimension 4k, consider the non-degenerate symmetric bilinear form on the finite-dimensional
vector space H?*(X, R) given by

(a, B) :=/Xocu,6’, for a, B € H* (X, R).

The signature o(X) of X is defined as the number of positive entries minus the number of negative
entries in a diagonalized version of this form. When X is smooth, Hirzebruch’s signature theorem
expresses o(X) as a universal linear combination of the Pontrjagin numbers of the tangent bundle
of X [25]. When X is possibly singular, o(X) is computed by the top degree term of the L-class of
X [10, 12].

When ¢ = 2, then WZ(C) = Pic%(C), thus indeed Xy = 0, since Abelian varieties have triv-
ial tangent bundle. As a further check, o and the topological Euler characteristic y,, always
have the same parity [35, Corollary 64], and this is indeed satisfied by the formulas resulting
from Corollary 4. In fact, we observe the following, perhaps surprising, relations for the surface
W;(C):

g-
2

(29 =3)a(WH(O)) = —x10p (W(O)),

(9= 2) Xtop (W(O)) = (49 = 6) 1ot (W(O)).

(W) = =xna (Wg(©)),

In § 7.6, we also compute explicitly the motivic Hirzebruch class of pointed Brill-Noether sur-
faces parametrizing pencils (that is, r = 1). Interestingly, we show that the motivic Hirzebruch
classes of Grassmannian degeneracy loci corresponding to a partition 4 do not specialize from
the case A; > 4;,, to the case A; = 4;,;, for some i (Remark 7.6). This is in contrast with the K-
theory class (the case y = 0) of degeneracy loci with rank conditions imposed by arbitrary (not
only vexillary) permutations, given by Grothendieck polynomials [22].

Our strategy

Our approach draws a great deal of inspiration from Parusinski-Pragacz [34]. Indeed, all compu-
tations build on three fundamental computations of CSM classes, treated in [34]:

(a) the CSM class of the zero locus of a regular section of a vector bundle;
(b) the CSM class of a Grassmannian bundle; and
(c) the push-forward of the CSM class via a fibration.

In §2, we compute the motivic refinement of (a)-(c), see Lemmata 2.2-2.4. The CSM classes in
cases (a)—(c) are recovered by specializing to y = —1. In order to make the generalization to Grass-
mannian and vexillary degeneracy loci possible, we combine (a)-(c) with the proof strategy intro-
duced in [8] (see § 3). Additional care is needed in dealing with motivic Chern and Hirzebruch
classes when one generalizes methods designed for fundamental classes. Indeed, while the fun-
damental class coincides with the push-forward of the fundamental class of a resolution, motivic
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Chern and Hirzebruch classes are more delicate to handle. To arrive at the motivic Chern class
of a vexillary degeneracy locus W_, we first compute the push-forward of the motivic Chern class
of a resolution Q_ of W, (Theorem 3.1). Furthermore, using (c), we relate the push-forward of
the motivic Chern class of ﬁr with 7 = (k, p, @) to the motivic Chern class of varieties W_+ with
t =(k*, p’,q), for k™ > k’ (Theorem 5.1). Finally, the motivic Chern class of W follows by the
inclusion—exclusion principle.

A key step in our argument is the careful analysis in §5.1 of the stratification of a degener-
acy locus induced from its resolution. We stratify W, with 7 = (k, p, q) by the loci W, with
tt = (k*, p',q'), for k™ > k’. These are precisely the strata on which the resolution Q, — W,
is locally trivial.

Theorem 5.1 uses the additivity of the motivic Hirzebruch class T, as a transformation from the
Grothendieck group K(var/X) of algebraic varieties over X. In fact, the Hirzebruch yx,-genus
is the most general additive genus [10]. Computation of other invariants, as the elliptic class and
elliptic genus, would thus require new strategies.

Specializing to the case when the ambient variety X is a Grassmannian, our results give the
motivic class of its Schubert varieties in terms of the motivic class of the Grassmannian. For
instance, when y = —1, using the formula of [1] for the CSM class of Grassmannians, one can
verify that the resulting formulas for the CSM class of Schubert varieties are consistent with the
results in [1] after some nontrivial combinatorics (see § 5.2).

Motivic Chern classes of Schubert cells in partial flag varieties have been computed in [18]
via localization; the classes of the Schubert varieties could then be obtained from [18] by sum-
ming over all the strata of the closure of the Schubert cells. In the case of vexillary permu-
tations, our strategy produces the classes of Schubert varieties as a first outcome; this makes
it feasible to arrive at a viable formula in the application to the Brill-Noether setting (see

§7.3).

Open questions

In [6], we study more generally two-pointed Brill-Noether varieties, and show that they have
the structure of determinantal varieties obtained from maps of flag bundles with rank conditions
imposed by 321-avoiding permutations. We compute in [6] their connective K-theory class and
holomorphic Euler characteristic. It would be interesting to compute their motivic Chern class,
extending this work to the two-pointed case.

The holomorphic Euler characteristic of two-pointed Brill-Noether varieties is expressed in
[14] as the enumeration of certain standard set-valued tableaux. We have found tableau formulas
expressing the Hirzebruch y-genus of one-pointed Brill-Noether surfaces. We wonder whether
there exist tableau formulas expressing the Hirzebruch y,-genus of one- or two-pointed Brill-
Noether varieties in general.

1 | VEXILLARY DEGENERACY LOCI

Here we set the notation and collect the assumptions used throughout. We adopt the notation of
triples 7 from [5, 8].
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1.1 | Vexillary degeneracy loci

Let X be an irreducible variety over an algebraically closed field. Given maps of vector bundles
over X as in (1) and a (weakly) increasing sequence k := (k, ..., k;) of positive integers, the vex-
illary degeneracy locus corresponding to the triple 7 = (k, p, q) is defined as

W, = {x eEX : dimker(Epi —>Fqi)|x > k; foralli}

with inclusion:: W_ < X. Such a locus is Cohen-Macaulay when it has the expected dimension
and when X is Cohen-Macaulay. We will compute the motivic Hirzebruch class of W_in A, (X)[y],
where A, (X) is the Chow group of X and y is a formal variable. It will be convenient to consider
arbitrary weakly increasing sequences k (see e.g., § 5.1).

1.1.1 | The reduced triple T

Some of the conditions defining W, may be redundant, and W, could be similarly described as the
vexillary degeneracy locus corresponding to a triple consisting of shorter sequences. After [19], a
tripler = (k, p,@) with p=(0< p; < - < p;)and q =(q; = -+ > q, = 0) is called essential if

0<ky <<k, and q —p,+k > >q —p, +k >0

Given 7 = (k, p, q), we denote by 7 = (k, p, q) the essential triple of shortest subsequences k, P,
and q of k, p, and q such that W, = W+. Necessarily, k is strictly increasing.

Example_l.l. The sequences k = (2,2,3,4), p =(4,5,6,7), and q = (8,7, 6, 3) and their subse-
quences k = (2,3), p = (4,6), and q = (8, 6) describe the same degeneracy locus.

1.1.2 | The inflated triple 7’/

Assume the flag E, CE, C - CE, extends to a full flag of sub-bundles E, CE, C -+ CE},
defined on X, and similarly, the flag F;, » F, - - » F, extends to a full flag of quotients
Fy - -+ > F, » F, defined on X. This assumption is indeed not restrictive, see Remark 3.3.
Contrary to the previous subsection, we describe here how to inflate the triple 7 to a triple con-
sisting of longer sequences defining the same locus W . This will be used to define the locus ﬁ,
in §3.1.

Assume the triple 7 is essential, that is, 7 = 7. The triple = can then be inflated to a triple ¢’/ =
(K, p', q') by inflating the sequences k, p, and q of length  to sequences k', p’, and q’ of length
k, with k' = (1,2, ...,k,) as in [8, §1.4] (see also further details in [5, §1]). Namely, suppose that
k; > k;_, + 1, for some i. Then necessarily p; > p;_; or q; < q;_; (otherwise the corresponding
conditions defining W are redundant, and the triple 7 can be reduced). When p; > p;_;, inflate
by inserting the entry k; — 1 between k;_; and k; in k, the entry p; — 1 between p;_; and p; in p,
and the entry g; between g;_, and g; in g. On the geometric side, the condition dimker(E, —
Fy)l, > k; implies dimker(E, _; — Fg )|, > k; — 1 for a point x € W. The case p; = p;_; and
g; < q;_, is treated similarly. Proceeding in this way, one arrives at sequences k', p’, and q’ of
length k, such that k' = (1,2,...,k,) and W, = W .
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1.1.3 | Feasibility

For an essential triple 7, in order for the conditions defining the locus W to be feasible, we assume
that the sequence

/lk< = Qi_pi+ki f0ri=1,...,t, (2)

1

is weakly decreasing.

1.2 | The partition 4.
Fix an essential triple 7. Extending (2), define the partition 4, = (4;, ..., 4; ) as
4

A =2y, fork, ; <i<kg.

For a triple 7 which is not necessarily essential, define 4, := Az, where 7 is the reduced triple
consisting of the shortest subsequences of k, p, g such that W_ = Wz (§1.1.1). The expected codi-
mension of the locus W, in X is

kt
codimy (W,) = |4,] := Z/li.
i=1

Example 1.2. For the triple 7 = (k, p, q) where k = (2,2,3), p=(4,5,6), and q = (8,7, 6), one
has 4, = (6,6, 3).

1.3 | The bundles E(i), F(i), classes c(i), and operators T (i)

For an essential triple 7z, define the vector bundles E(i) and F(i) as
E(@) := E, and F() := Fy, fork, ; <i<k,.
For a triple 7 which is not necessarily essential, define

E():=E; and F(i):=F; fork, , <i<k,.
Here k, D, q are the shortest subsequences of k, p, g such that W, = Wz with 7 = (E, P, q) (see
§1.1.1). Let

c(F(@)

ZEQ) e A*(X).

c(i) 1= c(F(@) - E@)) =

1.3.1

For each i, the raising operator R; increases the index of the class c(i) by one, that s,

R; c(i), = c(i) g1 and R; c(k),, = c(k),,, fork #i.
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Moreover, R; is extended linearly over Q and multiplicatively on monomials in classes c(j), for
example, R;(c(j), c(k),) = (R; ¢(j)n)(R; c(k)y,).

1.3.2

For a formal variable R and a vector bundle E of rank e with Chern roots q;, fori = 1, ..., e, define

‘ 1
T,(RQE) := | Q,(R + q;), with Q,(a) := % —ay € Qly][«].

i=1

As in (6), the terms in degree at most two are given by

T,(R®E) =1+ %(1 — Y)(eR + ¢,(E))

+ 1—12(1 +)%(eR? + 2¢,(E)R + chy(E))
+ %(1 —y)? < <§>R2 + (e — 1)c;(E)R + cz(E)> + ..

where ch(E) = Zle ch;(E) is the Chern character of E. The motivic Hirzebruch class Ty(X )Jofa

smooth variety X is recovered when R = 0 and E is the tangent bundle of X (see § 2). Similarly, in
the absence of E, we set

Ty(R) = Qy(R).
For each i, define the operator
T, (i) := T,(R; ® F(Q) — ED))

acting on the classes c¢(j) such that R; acts as in § 1.3.1, and the Chern roots of the virtual bundle
F(i) — E(i) act by multiplication.

1.4 | Assumptions

We collect here the assumptions used throughout. For a triple 7 = (k, p, q), consider the vexillary
degeneracy locus W, and a sub-locus W,+ C W, where z* = (k*, p/,q') with k* > Kk in compo-
nentwise order. The corresponding locally closed stratum is

we, = {x eEX : dimker(Ep; - Fqi;>|x = k.+}. 3)

1
This is
W:+ =W\ U Wu CX, where 7+ = (k+,p’,q’).
K>kt

We assume that X is an irreducible smooth algebraic variety over an algebraically closed field
of characteristic zero, and for all weakly increasing sequences k' > k' (that is, kl.+ >iforalli=
1,..., k,), the stratum W:+ with + = (k*, p/, ¢’) is smooth of pure dimension dim X — |4_+|.
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Remark 1.3. In [34], Parusinski-Pragacz show that their formula for the CSM class of the degener-
acy locus of a single map between vector bundles holds under a weaker assumption which allows
one to consider a possibly singular analytic variety X as ambient variety. It seems reasonable to
expect that our results hold under a similar weaker assumption. For this, one needs to upgrade
Lemma 2.2, for instance, by working in the analytic category with a Whitney stratification of a
singular X as in [34]. However, X will be smooth in all the applications we consider.

2 | MOTIVIC CLASSES: FUNDAMENTAL COMPUTATIONS

After briefly reviewing motivic Chern and Hirzebruch classes following [10], we discuss here three
fundamental computations: Lemmata 2.2-2.4. These will serve as the cornerstone of the paper.

For an algebraic variety X over a field of characteristic zero, let K,(var/X) be the Grothendieck
group of algebraic varieties over X, let K, (X) be the Grothendieck group of coherent sheaves of
Ox-modules, and A, (X) the Chow group. The transformations

Ky(var/X)

mC Ty
K. (X)® Z[y] A (X) ® Qly]

are the unique transformations which commute with proper push-down and, for X smooth, sat-

isty

mC(dy) = Y [N ZY]y =2 4,(F), @
>0
dim X
T,(dy) = ] Q@) n[X]=: T,(F)n[x]. )
i=1

Here, a; are the Chern roots of the tangent bundle 7y, and Q) («) is the series

Q@) 1= el +) e alyll«]

—e—a+y)

starting as

Q@) = 1+ Za(l =) + a1+ ) + .. ©)

The function 4, satisfies: 1,(a + b) = 4,(a)4,(b). The function T, is the motivic Hirzebruch class
function introduced in [25]. One has Ty, (a + b) = T (a)T ,(b), as well.

For arbitrary X, let {X;};,; be a stratification of X, with X locally closed and smooth. By defini-
tion, we have

mC(idy) := ) mC(X; — X), Ty(idy) := ) T,(X; > X). (7)

iel iel

Since any two such stratifications admit a common refinement, the above is well defined.
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Remark 2.1. The transformations mC and T, satisfy td; ,,,omC =T, where
tdgyy : KX ® Z[y] » A,X)QQ[y,1+»)7'|
is Yokura’s generalization [36] of the Todd class transformation from the singular Riemann-Roch
theorem [20].
2.1 | Zeros of sections
For a vector bundle E on X, lett: Z < X be the zero locus of a regular section s of E — X.

Lemma 2.2. IfX is smooth and s : X — E meets transversally the zero section of E, then

A (EY)

mC(Z < X) = 7 mC(idy),
B ctop(E) .
Ty(Z S X) = mTy(ldX).

Proof. Since s meets transversally the zero section of E, it follows that Z is smooth. We claim that

A_1(Ely)

mC(Z & X) = 1 (E|V)
y\Flx

mC(idy).
Indeed, we have

. (7)) v
mC(Z < X) =ymC(idy) =4 4,(.7,)) = t,(ﬁ)@(ﬂx )

_ (ﬁ)ww _RlB), )

(El A, (Ely)

Here, ¢, is the K-theoretic push-forward via (. We have used the projection formula, and (1) =
A_(E |;’() in K,(X) (see, for instance, [21, V, Proposition 4.3]; this also appears in [18, §8.1]). The
statement for mC follows. The same argument together with ¢, (1) = ctop(E )N [X]in A,.(X) prove
the statement for T,. O

Crop(E)

When y = —1, Lemma 2.2 recovers the computation ¢, cgy(Z) = — )

N cgy(X) treated in [34,
Proposition 1.3].
2.2 | Grassmannian bundles

Given a vector bundle E on X, let

7. Gr(r,E) - X
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be the Grassmannian bundle parametrizing rank r sub-bundles of E. Consider the tautological
exact sequence over Gr(r, E)

0-S—>E—->Q-0.

Lemma 2.3. For arbitrary X, we have

mC (i) = 4,( (87 ®Q)" ) - 7' mC(idy),

Proof. When X is smooth, Gr(r, E) is smooth. From the definition (4), we have

mC(idoxirr) = Ay Tty ) = (57 ®Q)") - w72, (7).

and the statement about the motivic Chern class follows. For arbitrary X, the statement about the
motivic Chern class is an immediate application of the Verdier-Riemann-Roch formula from [10,
Corollary 2.1 (4)]. The proof for T, is similar using [10, Corollary 3.1 (3)]. O

For y = —1, Lemma 2.3 recovers cgy(Gr(r, E)) = c(SY ® Q) N w*cgp(X), treated in [34, Propo-
sition 1.5].

2.3 | Fibrations

Given a proper morphism p: Y — X,let 2" : = {X, },cx be a stratification of X into locally closed
strata X such that p is locally trivial in the Zariski topology over each X with smooth fiber F.
Assume that there exists a unique top-dimensional stratum X, in Z". Let p, be the K-theoretic
push-forward via p.

Lemma 2.4. We have

pmC(Y - X)= Y d; mC()_(k <'—>X>,
keKk

PT,Y -X)= Y ¢ Ty<)_(k < X)
kek
with

wm([ )20 am(fnm)-To

J

where the sums are over j such that X, C X -
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Proof. Since p is locally trivial in the Zariski topology over each X with smooth fiber F,, factoring
piX)CY L X as p~H(Xy) 2 X & X and by multiplicativity of 1,, one has

pmC(p7'(X) » X) = <_[: /1y<ﬂF\l’<>>mC(Xk S X),

for each k € K. Therefore, one has d, = fFo Ay(%\;). One verifies the formula for the coefficient
d;. by recursion on the codimension of the strata in 2". The proof for T, is identical. O

In the case y = —1, Lemma 2.3 was treated in [34, Proposition 1.6].

2.4 | Hirzebruch y,-genus

For a compact X, its Hirzebruch x ,-genus is

2, 1= /X T,X)  eall

This invariant recovers the topological Euler characteristic for y = —1, the holomorphic Euler
characteristic for y = 0, and the signature for y =1 [10]. The Hirzebruch y,-genus extends to
arbitrary X via the additivity in K(var/pt).

Example 2.5. For the projective space CP", one has
2y (CP") = / T,(CP") =1+ (=y) + =+ (=y)".
cpn

Consequently, one has y, (A) = (=)".

3 | MOTIVIC CLASSES OF A RESOLUTION OF VEXILLARY
DEGENERACY LOCI

Since motivic Chern and Hirzebruch classes have an equivalent formalism, as exemplified by
Lemmata 2.2-2.4, for simplicity we consider only the case of motivic Hirzebruch classes from this
point on. The main result of this section is the following Theorem 3.1, computing the motivic
Hirzebruch class of a resolution of vexillary degeneracy loci. This is the explicit version of Theo-
rem 1.

3.1 | Thelocus Q.

Recall the geometric setup of § 1.1 defining the vexillary degeneracy locus W in a variety X given
maps of vector bundles (1) and a weakly increasing sequence k = (ky, ..., k,). We define here a
resolution Q, of W_.
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Asin §1.1.1, we can reduce to the case when the triple 7 = (k, p, q) is essential, that is, it corre-
sponds to a minimal set of conditions dim ker(E,, — F )|, > k; for a point x € W. The triple
could then be inflated to the triple 7’ asin § 1.1.2 and W, = W ,.

Consider the variety X parametrizing full flags of sub-bundles V; C --- C V. with rank(V;) =

iand V; € E; for each i. The variety X is constructed as a sequence of projective bundles

m U ﬂkl
X =: X, P(Epi) = X, & [P’(Ep;/Sl) = Xy et P(Ep/kl/Skl_1> = X,

t

where S;/S;_; is the tautological line bundle on X;, for each i. Here, we omit the obvious pull-
backs via the natural projections 7; to simplify the notation. Since X is assumed to be smooth, X;
is also smooth, for each i. Let 7 : X} — X be the natural projection. Define

a, :={(x,vlg---gvk[>exkl : Vigker<Eplg —>Fqi/)

for all i }

X

with natural inclusiont: Q, & X k,- (We study a quotient Q — Qin § 6, hence the use of the tilde

here.) The restriction ¢ of 7 to ﬁ, is a resolution of singularities as in Kempf-Laksov [30]. One
has a commutative diagram

and the fiber of ¢ over a point x in W is

{(V1§"'gvkt> e M(x) : V; Cker (EP§ - Fql(>’x for alli}.

Note that since (z/)’ = 7/, one has Q, = Q,, by definition.

In general, the locus Q, is not the minimal resolution of W,. The minimal resolution of W,
is given by the variety parametrizing flags V; C---CV} such that rank(V; ) =k; and V; C
ker(E, — F, ) foreachi. There is a forgetful map from Q, to the minimal resolution of W, which
is birational. We find a closed formula precisely for the (push-forward of the) motivic Hirzebruch
class of Q,.

Define 4 = 4. as in §1.2, and bundles E(i), F(i), classes c(i), and operators R;, T, (R;), and T, (i)
asin §1.3. Let c(i)j be the term of degree j in c(i).

Theorem 3.1. With assumptions as in § 1.4, the class (7t), Ty(ﬁ,) is

1
H(i,j)eS Ty (Rj - Ri)

N Ty(X),

1<i,j<k,

1 .
T,0) (), 4j-i

where S :={(i, j) : i <k, < j, for some a} and Ty(Rj —R) :=Q,(R; — R;). Equivalently, this is

ke

1 1
W, NT,(X).
H(i,j)ES Ty (Rj - Ri) g Ty(i) L[W:n y( )
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The second expression in the statement follows from the first since

e A*(X)

1<i,j<k,

(7). [0:] = LWl = [e3, i)

by [19]. For y = —1, the class (1), cSM(ﬁ,) admits a simpler expression, see § 4.

Remark 3.2. We emphasize that all raising operators in Theorem 3.1 apply to the Chern classes
in the expansion of [W_], and do not apply to the Chern classes contributed from the operators
T,(i).

y

The first few terms in the expansion of the operator in Theorem 3.1 are given by multiplying

1 1 1
for (i, j) € S, and
L 14 2= 1)(echy(@)R; + ¢, ()
Ty(l) 2 0 1 1

- 1—12(1 + ) (chy(DR? + 2¢, (DR, + ch, (D))

+ %(1 -y < <°h°(i2) * 1>R3 + (chy(i) + 1)e; (DR;

+ ¢y (EGD) — F(i))> + .

where ch(i) := ch(F(i) — E(i)), for each i.
As an example for the set S, for k = (2, 5), one has

S =1{(1,3),(2,3),(1,4),(2,4),(1,5),(2,5)}.

Remark 3.3. The definition of the locus ﬁ, requires flags of vector bundles finer than the ones
given in (1) precisely when k; > i for some i. However, the expression in the statement only

depends on the two given flags in (1), and not on the choice of finer flags EP{ C--C Ep/k and
t

Fqi > e > Fq]/{ used to define the locus Q..
t
In fact, the flags in (1) can be extended to full flags of vector bundles after passing to an appro-
priate projective bundle over X. Namely, suppose that p; > p;_;. To define a vector bundle E
ofrank p; — 1suchthatE, CE,_; C E,, consider the projective bundle

pi—1

P(Epi /By, ) =X ®)

and set E pi-1 :=Q, where Q/E P is the universal quotient bundle on P(E B J/E PH) — here again
we omit to denote when a bundle is pulled back for simplicity. Proceeding in this way, one con-
structs full flags E; CE, € - CE, and Fy > -+ > F, » F, defined on a space X' obtained as
a tower of projective bundles p : X’ — X.
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The theorem then applies to give the class

1
i jes Ty (R = R:)

Factoring p as a composition of projective bundles, A, (X) can be identified as a subring of A,.(X")
via p*. After Lemma 2.2, the class (1), Ty(ﬁ,) in p*(A,(X)[y]) is recovered after quotienting (9)
by the motivic Hirzebruch class of the consecutive fibers (the fibers of p are locally constant).
Indeed, this has the effect of replacing T', (X "y with p* T,(X)in (9), thus it recovers the formula in
the theorem.

NT,(X") €A (X)yl. 9)

To prove the theorem, we distinguish four cases, following the proof strategy from [8]. In the
basic and dominant cases (§§ 3.2-3.3), we immediately compute the motivic Hirzebruch class of
the corresponding degeneracy loci. In the main and general cases (§§ 3.4-3.5), where the degen-
eracy loci are singular, we compute here the motivic Hirzebruch class of the push-forward of the
resolution Q of the degeneracy loci. In the last two cases, the computation of the motivic Hirze-
bruch class of the actual degeneracy loci is completed as in Theorem 3 building on Theorem 3.1.

3.2 | Basic case
Let L be a line bundle and E a vector bundle of rank e on X.

Lemma 3.4. Ifthelocust: Z < X where a map ¢ : L — E vanishes is smooth of codimension e,
its motivic Hirzebruch class is

1

L, Ty(Z) = m

Co(E = L) NT,(X),

where R is the raising operator acting on c(E — L).

Proof. From Lemma 2.2, we have

c,(EQLY)

L Ty(Z) = m

NT,X).

The statement follows from the identities ¢,(E ® LY) = c,(E — L) and
() (LV))kci(E —L)=c . (E-1L), fork>0andi>e (10)

(see, for example, [8, p. 3]), so that multiplication by ¢; (L") here coincides with the operator R. []

3.3 | Dominant case
Consider maps of vector bundles on X

El [ SN L)Et _)Fql OS> eee _»th
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with rank(E;) = i and rank(Fqi) = q;. Here, we assume that 7 = (k, p, q) is a triple with k; = p; =
i, for 1 <i < t. Consider the degeneracy locus

W, = {x eEX : (El- - Fql_)lx is zeroforalli}
with inclusion ¢t : W, < X. In this case, k; = i and 4; = gq;, for each i.

Lemma 3.5. When W_ is smooth of dimension dim X — 4., the class 1, T, (W) is given by

1
Y~ Cq+j-i <Fq,- - Ei) n Ty(X)-
Ty (Ri ® FQi)

1<i, j<t
Proof. From Lemma 3.4, it follows that

t
1

i=1 T, (Fqi ® (Ei/Ei_1)v>

L Ty(W,) = ¢ (Fqi —E /Ei_1> NT,(X).

1

Asin (10), one has that ¢,((E;/E;_,)") acts as R; on ¢, (F, — E;/E;_;). By means of the identity

N

, (1

1<i, j<t

H% (Fqi - Ei/Ei—1> =

i=1

Chy+j—i (F‘L' - Ei)

valid as in [8, §1.2], the statement follows. O

3.4 | Main case
Consider maps of vector bundles on X

E L)...L)Epl_)Fql_»..._»F

P1 q;

with rank(E Pi) = p; and rank(F qi) = g;. Here, we assume thatz = (k, p, q) isa triple where k; = i,
fori1gi<t,andq, — p; +1> -+ > g, — p, + t. In particular, the triple 7 is essential and 7z = 7’
(notation as in § 1.1). We would like to compute the motivic Hirzebruch class of the locus

W, = {x eX : dimker(Epi —>Fqi)|x Zi}-

Instead, we compute here the motivic Hirzebruch class of the resolution of W_; this will be used
in § 5 to obtain the motivic Hirzebruch class of W.
Consider the following sequence of projective bundles

2 Ty ur
X =: X, <—[P><Ep1) =: X, <—[P’(Ep2/§1) = X, <—[P’(Epl/§t_1> =: X,
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where S;/S;_; is the tautological line bundle on X;. The variety X, here parametrizes flags of sub-
bundles V; C -+ C V, withrank(V;) = iand V; C E, . Since X is assumed to be smooth, X; is also
smooth, for each i. Define

Q, = {(x,v1 CCV)EX, : V,C ker(Epi - Fqi>|x for all i}

with natural maps:: Q, & X, and 7: X, - X.

Proposition 3.6. With assumptions as in § 1.4, the class (7t), Ty(ﬁ,) is

1 1
Ch+j—i (FQi - EPi) n Ty(X)‘
[i<; Ty(R; = R) |T <Ri ® (F _E ))
Yy qi Pi 1<i,j<t
Equivalently, this is
1 d 1
I [W.1NT,X).

Ili;T (Rj—Ri) iz T, (Ri ® <F‘1i - EPi))

Note that for k = (1,...,t), one has E(i) = E,, F(i) = F,,and S = {G@, j) : i < j}, hence the
formula in Theorem 3.1 specializes to the one in Proposition 3.6.

Proof. From Lemma 2.3, we have
T,(X;) = Ty<(§i/§i_1)v ® Epi/§i> N7l Ty (Xiy).

Combining this with the basic case, one has

L T, <(§i/§i—1)v ®E), /§i>

=1 T, ((Si/gi—l)v ®F, )

LT, (8,) = ¢ (Fqi s, /si_l) N 7T (X).

Asin (10), one has that ¢;((S;/S;_;)¥) acts as R; on Cq (Fq,- —S;/S;_;). The statement follows since
one has

TR ®S)=T,(R —c(S))) - T)(R — e, ((Si/Si1)”))
= Ty(Ri - Rl) Ty(Ri - Ri—l)’

and

Co; (F% - Si/gi_l) = qu+j_i(Fqi - Si)

t
i=1 1<i,j<t

asin (11), and

asin [8, §1.3]. O
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3.5 | General case
We consider here the general case of Theorem 3.1 and thus complete its proof.

Proof of Theorem 3.1. After §1.1.1, we can restrict to the case of essential triples 7 = (k, p, q).
Indeed, the formula in the statement remains invariant after replacing a trlple 7 = (k, p, q) with
7=(kp P, q) such that 7 is essential and W, = Wz, asin § 1.1.1, and thus Q = Q—

The case when k = (1,2, ..., t) is treated by Proposition 3.6. Otherwise, to define ﬁf, the triple
7 isinflated to a triple 7/ = (k’, p’, ¢') such that the sequences k', p’, and ¢’ are of length k, with
k' =(Q,2,..,k).Onehas A, = 4., and Q, = Q_, by definition. We can thus apply Proposition 3.6
to compute (7t), Ty(ﬁ,,) with respect to the flag EPQ C.C Ep;(t refining E, C -+ CE,,and the
flag F, g > F %, refining F; - -+ » F . After Remark 3.3, we can assume that such finer

flags exist on X. Thus from Proposition 3.6, the class (7t),, Ty(ﬁ,,) is

1 1

[Tic; Ty (R; = Ry) T, (Ri ® (Fq§ _Epz‘,)>

Chtjmi (Fq; - Ep() NT,(X).

1

1<i, j<k,

It remains to verify that this formula is equivalent to the formula in the statement.
Asin [8, §1.4] (see also [5, §1]), one has

(12)

= |cl,-+j—i(Fqi’ —E

c(i i .
| ()}‘iﬂ ! Pi’l1<i,j<k,

1<, j<kq
Indeed, from the definition of c(i) (see § 1.3), the entries of the two determinants in (12) do not
match, but the determinants do. Furthermore, fix i with 1 <i <k,. One has k,_; <i <k, for
some a. We claim that

Jij>kg jij>i

H 1 1 H 1 1
. - = . (13)
ok, Ty(Rj—R;) Ty > Ty(Rj —R) Ty(Ri®<Fqlf_Epi’))

as operators on (12). Recall that Ty(i) = Ty(Ri ® (F(i) — E(i))), where E(i) = E, andF(i) = F
by definition (§ 1.3). Assume that ql.’ = q,. Then one has

g =q.,=-=q = ad (p.pl.P},)=Pa=katirmPa=1P0)

by construction. It follows that

L ) _ Ty(Ri ® <EPLH/EP§>>
B0 (ke (Fy =By ) TR (Fy-5y))

The second equality follows from the multiplicativity of T, on exact sequences. Furthermore, one
has

Ty(Ep’ka/Ep{>= H Ty(c1<Ep}/Ep}_1>>= H T,(-R

jri<j<k, jri<j<k,
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as operators on (12). The second equality follows from (10): for j such thati < j < k,, the indices

of the Chernclassc(Fy —Ep) =c(Fy —Ey —Ey/E,y )inthe jthrow of the right-hand side
J J J J=1 J J=1

of (12) are at least

/1j+1—j=q;.—p;.+1=q}—p;._1=rank(Fq}—Ep/ )

-1
hence from (10), ¢;(E o J/E o 1) acts as the operator —R; on (12). Then, one has
J J=
T, (Rl- ® (Ey /Ey )) - II 7 (Ri ®c <Ep;/Ep}_] )) = [I 7(&-&r)
“ jri<j<k, jri<j<k,
as operators on (12). It follows that

L_ 1 1 1
LO g, (R —R) T, (Rl- ® (Fq{ —Ep()>

as operators on (12), whence the claim (13). When g < q,,, then necessarily p, = p/, and this case
is treated similarly. We thus conclude that the formula for (1), Ty(ﬁrl) from Proposition 3.6 is
equivalent to the formula in the statement. O

4 | CSM CLASSES OF A RESOLUTION OF VEXILLARY
DEGENERACY LOCI

In the case of the CSM class, the results of the previous section simplify as follows. For a triple 7,
define 4 = 4, as in §1.2, and bundles E(i), F(i), classes c(i), and operators R; and T, (i) as in § 1.3.
Let c(i) j be the term of degree j in c(i), and given a variable ¢, define ¢,(i) := ) 30 c(i) ;j tJ. We use
below the virtual rank ch(i), = rank(F(i) — E(i)).

Theorem 4.1. With assumptions as in § 1.4, the class (7t), CSM((),) is given by

—ch(i)
1 (1+R)" ™
c(i)yi; N cqp(X),
Qjes VTR —Ri| e 1 () Ot su®)
’ L+R; 1<i, j<k,

where S :={(,j) : i < k, < j for some a}. Equivalently, this is

t

—ch(i),
1 H (14 R)™o
I I —[W_ ] negu(X).

T+R;

We emphasize that in the above formula all raising operators apply to the Chern classes coming
from the expressions of type c(i); ,;_; in the expansion of [W_], and do not apply to the Chern

classes contributed from the termsc_ 1 (i).
1+R;
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The first few terms in the expansion of the operator in Theorem 4.1 are given by multiplying

1

————— =1-R, —-R)+ R, —R)* +...
1+R; —R, Jo Jo

for (i, j) € S, and

1 c(i) - . ) 5
c_1 (@) =1- 1+R +(C(l)1_c(l)2><1+Ri> + ...

i
T+R;

=1—c(i); + (D), R; + c(i)? —c(@), + -+

for each i, and

—Ch(i)o(_Ch(i)O - 1)R2 + ..

(1 4+ R)™"o = 1 — ch(i),R; + > h

for each i.
To show Theorem 4.1, we use the following technical lemma:

Lemma 4.2. Let L be a line bundle and E a virtual vector bundle of virtual rank e. One has

CE®L)=(1+cD)c_1_(E).

1+cy (L)

Here,c,(E) := Zizo ¢;(E) t'. The case when E is a vector bundle is [20, Example 3.2.2]. For a virtual
vector bundle, the argument is similar.

Proof of Theorem 4.1. Specializing Theorem 3.1 at y = —1, we have that the class (1), cSM(ﬁf) is
given by

N CSM(X)7

1<i, j<ky

1 1 .
(igls 1+R; —R;|c(R; ® (F(i) — E()))) (D4 j-i

where ¢(R; ® (F(i) — E(i))) := T_;(i) is the specialization at y = —1 of the operator T (i) from
§ 1.3. The virtual bundle F(i) — E(i) has virtual rank equal to ch(i), = rank(F(i)) — rank(E(i)).
Applying Lemma 4.2, we have

c(R; ® (F(i) — E()))) = (1 + R)MPoc (i),

i

hence the statement. [l

5 | MOTIVIC CLASSES OF VEXILLARY DEGENERACY LOCI

For a triple 7, recall the inflated triple z’ from § 1.1.2. The aim of this section is to prove Theorem 2,
here restated:
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Theorem 5.1. For a triple T = (k, p, q) and with assumptions as in § 1.4, one has

0, T, (D) = Y (=K =¥ Ty (w0,
k+

where t+ = (k*, p’,q') and the sum is over the set of weakly increasing sequences k* > k' =
1,... k).

5.1 | The stratification

The degeneracy locus W, is stratified by the loci W2, € W_ defined in (3) with =%, p.q),
for weakly increasing sequences k* > k. After §1.1.3, we set W+ empty, unless 4.+ is weakly
decreasing. The codimension of W+ in W_ is |4,+| — |4,|. There is no such stratum of codimen-
sion one in W_.

Recall the variety ﬁ, from § 3, with the following diagram

The fiber of ¢ over a point x in W_ is

{(V1 c-CcVy)€e 7 N(x) 1 V; Cker (Epl{ - Fql(>

for all i}.

X

The map ¢ is locally trivial on each locally closed stratum W: . CW..

Proof of Theorem 5.1. The collection of loci W2, from (3), with z+ = (kt,p',q)fork™ > K/, givesa
stratification of the locus W, such that ¢ is locally trivial on each W7, . Given k" > K/, the generic

fiber of ¢ on W, is isomorphic to the Schubert variety associated to a partition »* assigned to
k*:

Sye 1= {(Vlg---gvk[) € FI(L, ... ,k;CP") : V, C K.+ for aui},

where K, C---C K, is a fixed complete flag of vector spaces inside CP: with dim(K;) = i. The
vector spaces K+ are meant to be identified with ker(E,» — F,/)|, for a generic point x in W_+.

If k" is strictly increasing, the partition »* is defined as

vt o= (kF

_ +
=k k

o).

In general, for k* not necessarily strictly increasing, a coordinate computation shows that the

Schubert cell $°, in S, is isomorphic to the affine space Al I=IK'l
As in Lemma 2.4, one has

k+



MOTIVIC CLASSES OF DEGENERACY LOCI AND POINTED BRILL-NOETHER | 1809

with dg+y = x,(S,+) — Y s dy, where the sum is over the set of weakly increasing sequences
J such that Wy > W, for ¢ = (f, p’.q), thatis, f < k™ and A4 is weakly decreasing. Clearly
dy = 1,and by recursion one finds that d .+, is equal to the Hirzebruch y  -genus of the Schubert
cell (S,+)°. Since (S,+)° = AlK" =K'l ‘one has dgety = (=" 1=Kl for each k* (as in Example 2.5),
hence the statement. O

Example 5.2. Consider the triple 7 = (k, p,q) where p = (2,3), ¢ = (3,2), and k = (1,2). One
has

(70, Ty(Qe) = 1. Ty (W) =y 6. Ty (Weg) =y Ty (W) + ¥ 6. Ty (Weg)-

Here for simplicity, we use the notation W+ := W_.. For each stratum, one has the following
configuration over its general point:

Wao : dimKer(E, —» F;) =1 and dimKer(E; - F,) =2
Wit dimKer(E, —» F;) =2 and dimKer(E; - F,) =2
Was - dimKer(E, —» F;) =1 and dimKer(E; - F,)=3
Wi dimKer(E, - F3) =2 and dimKer(E; - F,) = 3.

5.2 | Example: Schubert varieties in Grassmannians

The Schubert varieties of a Grassmannian are Grassmannian degeneracy loci for maps from the
tautological vector bundle to a flag of constant bundles. Our results apply to give the motivic
Hirzebruch class of the Schubert varieties in terms of the motivic Hirzebruch class of the Grass-
mannian. For instance, for X = G,(C?), consider the Schubert variety S, associated to the par-
tition 4 = (2,1). This is the degeneracy locus W, corresponding to the triple 7 = (k, p, q) with
k=(1,2), p=(2,2),and q = (3,1). The stratification here consists of two strata: the stratum with
k™ = (1,2) and the one with k™ = (2,2). For y = —1, Theorems 5.1 and 3.1 give

1, csm(Sy) = <EP_2533_253+5833_4HE> N cgp(X)
=Bj+3B:D+3Hﬂ+8HEP+SHE.

The last equality uses the formula for cgy;(X) from [1], and the resulting formula checks with the
CSM class computation in [1].

6 | THE LOCUS Q; AND ITS MOTIVIC HIRZEBRUCH CLASS

We discuss here a setting which is particularly relevant in the study of pointed Brill-Noether vari-
eties (§ 7). Consider the following maps of vector bundles over a variety X:

2
Ep— Fg » Fg,e > Fy.
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The Grassmann degeneracy locus is
W, = {x eX : dimker(Ep - Fqi)lx > i forall i},

with partition 4 = (4;,...,4,) from §1.2 equal to 4; :=q; — p + i. The locus W is the degen-
eracy locus W corresponding to the triple = = (k, p,q) with k= (1,...,t), p=(p, ..., p), and
q = (qy, -, q;)- Its motivic Hirzebruch class is computed by Theorems 5.1 and 3.1. Now consider
the Grassmannian bundle Gr(t, E p) on X with tautological rank ¢ sub-bundle S, and define its
subvariety Q, by the conditions

dim ker(S - FQi) >i forl1gigt.

One has

Q, < Gr(t,E,)

d)\l/ l,r

W, — X,
and the fiber of ¢ over a point x is
{V € Gr(t,E,l,) : dim (Vnker(Ep - Fqi>|x> > i forall i}. 14)

The aim of this section is to describe the (push-forward of the) motivic Hirzebruch class of Q; in
terms of the motivic Hirzebruch class of loci of type W . This is achieved in Proposition 6.4. The
(push-forward of the) motivic Hirzebruch class of Q; then follows after applying Theorems 5.1
and 3.1 to compute the motivic Hirzebruch class of the loci W;.

6.1 | The stratification

We start by describing a stratification of W induced by the projection ¢ : Q; — W ;. Consider
the loci
le‘ 1= {x eX : dimker(Ep - Fqi>|x >i+x foralli} C Wy,

with % = (0 < x; < --- € k;) such that 4 + x is a partition. The map ¢ is locally trivial precisely on
the locally closed strata

(W;)o = {x eX : dimker(Ep _’Fq,->|x =i+x foralli} cwr.

The fiber of ¢ over a general point x in W7 from (14) coincides with the Schubert variety S, in
Gr(t, Ep|,) associated with the partition %“ complementary to x inside the ¢ X (p — t) rectangle.
For instance, when t = 3, p = 7, and % = (1, 1, 2), one has x¢ = (3, 3, 2).

In the following, it is convenient to identify a weakly increasing sequence x with the shape
consisting of x; boxes in the ith row, and note that the componentwise order is compatible with
containment of shapes.



MOTIVIC CLASSES OF DEGENERACY LOCI AND POINTED BRILL-NOETHER | 1811

Remark 6.1. Fixx = (0 < ¥; < --- < x;) such that 4 + x is a partition. We emphasize that the parti-
tion in § 1.2 assigned to the degeneracy locus W7 isnot 4 + x, but rather the partition with 1 + %,
parts equal to A; + x;, and 1 + x, — x; parts equal to 4, + x,, etc.

6.2 | The sequence x™¢
Fix a partition A = (4, ...,4;) and x = (0 < ¥; < --- < x;) such that 4 + % is weakly decreasing.
Definition 6.2. Given A and « as above, the sequence

kred =(0< Kred << Kfed)

red

is defined as the minimal sequence in componentwise order with x;

=%, and

red — g,

Kl i

whenx;,; + 4, <x+4;, fori<t.
For instance, for A = (4,4,1,1) and x = (1,1, 3,3) one has xred = (0,1,1, 3). See Example 6.7
for a graphical representation of some sequences x and corresponding x"d.

Lemma 6.3. Given A and x as above, x4 is the smallest shape inside x which is not contained in
any of the shapes € < x such that A + € is weakly decreasing.

Proof. We first prove that if ¢ contains %™ and 4 + ¢ is weakly decreasing, then ¢ = %. One has
necessarily €; = x;. Next, fixi < ¢ such that Kired < x;, and assume that we have already settled that
€; = x; for j > i. By definition, since Kl.red < x;,one hasx; ; +1;,; = x; + 4;. Since we want that
A+ =2 + €41 = A4 + %4, then necessarily €; = x;.

Finally, we show that any smaller shape %’ < %9 is contained inside some € < x such that
A + ¢ is weakly decreasing. If x/ < x, = 'Y, then #’ is contained inside

€ = (min{x,,x, — 1}, ..., min{x,_;,x, — 1}, %, — 1).

Next, fix i < t such that Kired > Kl.rf‘}, ori = 1andx; > 0.By the definition of %' this implies that

xl.red = %; and ;41 + 4,11 <x; + ;. Consider «’ defined as x| = kl.red —1,and K;. = K;ed for j # i.

Then %’ is contained inside
€ = (minf{x,,x; — 1}, ..., min{x;_;,%; — 1}, % — 1, %1, 1, -, K1)

The condition x;, ; + 4;;; < x; + 4; guarantees that A + ¢ is weakly decreasing. O

6.3 | The motivic Hirzebruch class of Q;

Proposition 6.4. With assumptions as in § 1.4, one has

(), Ty(Q) = ) dy 1, T, (W)

x>0
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where the sum is over x = (0 < x; < -+ < k;) Such that 1 + x is weakly decreasing and

do:= Y (=pFl (15)
7/ =(1c) <+ <))

Kr3d$k’<x

Example 6.5. When y = —1, the topological Euler characteristic of the fibers (14) of ¢ and con-
sequently the coefficients d, are computed as follows.

For = (0 < ¥; < --- < x7), the topological Euler characteristic of the Schubert variety S,. in
Gr(l, CP) associated with the partition complementary to x inside the I X (p — I) rectangle can be
computed as

(16)

X(S,e) = px) := ‘<K1+1—j +l—i+1)

1+j—i

1<,0,j<l

Indeed, y(S,.) coincides with the number of partitions inside (x;, ..., x; ), or equivalently, the num-
ber of shapes inside the shape %. This equals the number of non-intersecting lattice paths

from the points 0,0),(1,0),...,(I1-1,0)

to the points Qg+1-1),2,_+1-2),....,(L,x;)

(see, for example, [26]). From the Gessel-Viennot formula [23], this number equals the above
p(x), hence the first equality in (16).

By definition (15), when y = —1 the coefficient d,, counts the number of shapes inside the shape
% and containing the shape %4, that is, the number of shapes in % \ x™4. Now Lemma 6.3 implies
that % \ %" is a disjoint union of shorter weakly increasing sequences, say ), ¥, ... The num-
ber of shapes in % \ %" is equal to the product of the number of shapes inside each %(®. It follows
that d,, can be computed as the product of the quantities p(x®).

For instance, when A = (4,4,1,1)and x = (1,1, 3,3),one has ™ = (0,1,1, 3), hence x \ %" is
the disjoint union of the length one sequences (1) and (2) (see also how the white tiles representing
% \ k"¢ are indeed union of disjoint shapes in Example 6.7) and indeed d, =p(Q) - p(2) =
2-3=6.

Example 6.6. When 1, = -+ = 1, one has necessarilyx; = --- = x,, hence we have x = (x, ..., x).

For % = (x,...,x) =: ', one has x4 = (0,...,0,%) and thus x \ "¢ = /=1, For y = —t?, the
right-hand side of (15) is t2|"red|P(K,t_1+K)(t), hence we have

d, = tZKP(K,t—1+K)(t)’

where P ;1. (t) is the Poincaré polynomial of the Grassmannian Gr(x,C'~'**). Since
P t—1410(t) is given by the t>-binomial coefficient

f—1+x o™ (=)

e I (- ) T (- )

P(K,[—1+K)(t) = [
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we have

(), Ty(Q) = Y (=p)*

x>0

t—1+
e )
-y

where x = x!. For y = —1, the coefficients in the sum specialize to the binomial coefficients
([—1+K)
K

Example 6.7. When 4 = (4,4,1, 1), one has that (mt), T,,(Q;) equals
1-(1 —y)i+y2(1 —y+)%) m—f (1-y+y* =) e

_y3(1_y)i+y4(l_y)zﬁ_y5<l_y+y2)(l_y)ﬂ

+ 34 (1= y+2)7 =3y +3y* = 29° +)9) ﬂ

+30 (1-y+57) i—y7(1—y)(1—y+yz) i
+y8(1—y+y2)2&

=¥ (1—y+2)2 =3y +4y* = 5)° +5)0 —4y” + 2% — y°) ﬂ

Here for simplicity, the shape # with x; boxes in the ith row stands for ¢, T\,(W7). Inside each %,
the shape %™ is shaded. Note how the complement of ™ in each « is a disjoint union of shapes.

Proof of Proposition 6.4. Write

(7). Ty(Q) = Y d, 1, T, (WE)
x>0
for some coefficients d,.. One has W¢ O W7 exactly when ¢ is contained inside x, that is, ¢; < x;
for alli. From §6.1, the fiber of ¢ over a general point in W7 is the Schubert variety S, in Gr(¢, CP)

associated with the partition ¥ complementary to x inside the ¢ X (p — t) rectangle. Hence from
Lemma 2.4, we have

dy = 2,(See) = D d,

e<x
where the sum is over € such that 4 + ¢ is weakly decreasing, and ¢; < x; for all i, with at least one
strict inequality.

The Schubert variety S, . is the union of the Schubert cells corresponding to (weakly decreasing)
partitions contained inside (x;, ... , k1), or equivalently, shapes inside the shape %x. The sum

S

e<x
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is the sum of the Hirzebruch y,-genera of Schubert cells corresponding to shapes contained
inside some ¢ < % such that 4 + ¢ is weakly decreasing. From Lemma 6.3, it follows that d,,
is the sum of the Hirzebruch y,-genera of Schubert cells corresponding to shapes contained
inside x and containing %9, Since a Schubert cell corresponding to a shape %’ is isomor-
phic to the affine space /-\lx,l, its Hirzebruch yx,-genus is (=p)¥'l (Example 2.5). The statement
follows. O

7 | POINTED BRILL-NOETHER VARIETIES

For a smooth pointed curve (C, P) and a sequence a : 0 < g, < -+ < a, < d, the pointed Brill-
Noether variety of line bundles W“;(C, P) is defined as

Wa(C,P) = {L € Pic’(C) | h%(C,L ® Op(~a;P)) > r +1—1i forall i}.

The pointed Brill-Noether variety of linear series G§(C, P) is defined as

L € Pic%(C), V € H(C, L), dim(V) = r + 1, and
G(C,P) :={ (L,V) ‘ .

dim (VNH(C,L ® Oc(—a;P))) > r+1—i foralli

The variety W;‘(C,P) has the structure of a Grassmannian degeneracy locus in Pict(C),
and the variety GJ(C,P) is of type Qy, as in §6. We briefly review this in §7.1, we verify
the assumptions from §1.4 in §7.2, and apply Theorems 5.1 and 3.1 to compute the motivic
Hirzebruch class of pointed Brill-Noether varieties in § 7.3. Finally, we conclude with some
examples.

7.1 | The construction

Choose a positive integer n large enough so that line bundles of degree d + n are non-special, that
is, n > 29 — 1 — d. Fix a Poincaré line bundle .# on C x Pic?(C), normalized so that .Z| (PIxPicd(C)

is trivial. Consider the following vector bundles on Pic?(C):
& 1= (m,), (£ @ 7 O-(nP)),

F; 1= (my), <.§f ® ”Tﬁ(mam_i)P) forlgi<r+1.

Here 7, and 7, are the projections from C X Pic?(C) to C and Pic?(C), respectively. One com-
putes

p:=rank(&)=d+n—g+1,
(17)

q; :=rank(%)=n+a,,,_; fori<i<r+1.
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There are natural maps
E = Ty > Ty > Ty

and W{(C, P) is the Grassmannian degeneracy locus with partition 4 = (4, ..., 4,,,) from §1.2
equal to

Aji=g—d4+r+a.,,;—F+1-10) forigigr+1. (18)

One has c(#;) =0 for all i, and all classes c(i) from §1.3 are equal to c = c(—&) = e? in
H*(Pic%(C)), where 6 is the cohomology class of the theta divisor [9, §VIII]. Finally, note that
Ty(Picd(C)) = 1, as Abelian varieties have trivial tangent bundles.

7.2 | Dimension and singular locus

The one-pointed Brill-Noether Theorem [15, §1] says that for a general smooth pointed curve
(C, P): (i) the varieties W(‘;(C,P) and G(‘;(C,P) are non-empty if and only if g > Zir:o max{0, g —
d+r+a; —i}, and (ii) when non-empty, G;‘(C, P) has dimension equal to the one-pointed
Brill-Noether number p(g,r,d,a) := g — Zirzo(g —d+r+a; —i)=g— |A|; the same holds for
W(‘;(C,P) when p(g,r,d,a) < g.

The proof in [15] uses degenerations to singular curves. However, explicit examples of smooth
pointed curves of any genus verifying the one-pointed Brill-Noether Theorem and defined over
Q were provided in [16].

Furthermore, the one-pointed Gieseker-Petri Theorem [13] characterizes the smooth locus of
G;‘(C, P) for a general smooth pointed curve (C, P), and implies that the singular locus of G(‘;(C, pP)
is contained in the locus of linear series with excess vanishing at P. Since for p(g,7,d, a) < g the
forgetful map 7 : Gs(C, P) — W;(C,P) is an isomorphism when restricted over the locus

WA(C,Py := {L € Pic(C) | h°(C,L ® Oc(~aiP)) =1 + 1 i forall i | C W4(C,P)

and the smooth locus of G;‘(C,P) as described in [13] includes n‘l(Wg(C,P)°), it follows that
W;‘(C, P)° is smooth for a general (C, P) and p(g,r,d, @) < g.

The stratification of W(‘;(C , P) from § 5.1 consists of strata whose closures are themselves pointed
Brill-Noether varieties of line bundles inside Pic?(C). Namely, the strata are

Wa'(C.P) := {L € PicXO) [°(C,L ® Oc(-aiP) > K, _, forall i (19)

for k* > k = (1,...,r + 1). (Note that some of the conditions defining Wt‘f (C, P) may be redun-
dant.)

In particular, W¢(C, P) satisfies the transversality assumption from §1.4 for a general (C, P)
and p(g,r,d,a) < g.

While in this paper we only treat the one-pointed case, these results are also known more gen-
erally for two-pointed Brill-Noether varieties with appropriate changes, see [13, 15, 33].
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7.3 | Motivic Hirzebruch class of pointed Brill-Noether varieties

For the pointed Brill-Noether variety W(‘;(C,P) with p(g,7,d, a) < g, the (push-forward of the)
motivic Hirzebruch class of its resolution from Theorem 3.1 equals

r+1 P Qy(ak‘i'R)

A = H (Q,R)) ez il (20)
i1 Hj:l Qy(Ri _ Rj) | 1<i,j<r+1
where a, ..., a, are the Chern roots of the vector bundle &. These satisfy
p P
Zak:—e and Zcx}(:O fori>1 (21)
k=1 k=1

[9, p. 336]. The expression (20) is symmetric in the o, hence after expanding and using (21), can
be rewritten as a polynomial in 6 with coefficients in H *(Pic?(C))[y]. For instance, the first terms
of Hlk’zl Q,(ay + R;) are

1- 1+y)? 1-y)?
Qy(Ri)p - Ty 6 Qy(Ri)p_l - ( +6y) eRL Qy(Ri)p_l + % 62 Qy(Ri)p_2 +

When y = —1, the expression A, reduces as follows:

H 1 1+ Ri)_iﬁi
Co+ij—i
T 1+R —R; % i N
J e 1<, j<ky g

Theorems 5.1 and 3.1 imply:

Corollary 7.1. For a general smooth pointed curve (C, P) of genus g and for a sequencea : 0 < a, <
- < a, < dsuch that p(g,r,d, a) < g, one has

A, = g(_y)lk+l_lkl L Ty(W;“(C,P)) in H*(Picd(C))[y],

where the sum is over the set of weakly increasing sequences k* > k = (1,...,r + 1), and for a given
k*, the locus W;‘Jr (C,P) CWS(C,P)isasin (19).

By the inclusion—exclusion principle, this determines the class t, Ty(Ws(C, P)) in H*(Pic? Oyl
in terms of classes of type A;.

Similarly, Proposition 6.4 implies:

Corollary 7.2. For a general smooth pointed curve (C, P) of genus g and for a sequencea : 0 < a, <
-- < a, < dsuch that p(g,r,d, a) < g, one has

(0. T, (GAC.P)) = Y det, T, (WSP(C.P))  inH*(Pic!(©)) )

x>0
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where the sum is over x = (0 < x; < -+ < %) such that A + x is weakly decreasing, the coefficients
d, are asin (15), and a(x) is the strictly increasing sequence

a(x) = (ag, ag+ 1, .., 00 + Ky — Kpyos @y, @ + 1,000, + 17 ).
The expression for a(x) is obtained from (18) using the partition 4 assigned to Wg(")(C, P) as
in Remark 6.1. Examples are studied below.
7.4 | The curve case
When (C, P) is general of genus g > 1 and W;(C,P) is one-dimensional, the stratification from

§5.1 consists of only the stratum with k* = (1, ...,r + 1). Hence the curve W(‘;(C, P) is necessarily
smooth. Expanding formula (20), one has that Ty(W(‘;(C, P))is

(22)

1<i,j<r+1

r+1
<1 + %((r +1)0 + Z(/lk -r—2+ k)Tk>(y - D)’Cliﬂ—i

k=1

One computes

6|Cﬂ +j i| = g";
i 1gi e Y ’
ij<r+ A +j-i 1<i,j<r+1
1
i+ j—i .. i i
g, e Qi+ 8+ T =D g i

where §;  is the Kronecker delta: §; , = 1fori = k,and §; ; = 0 otherwise. The determinants can
be computed via the following application of the Vandermonde identity:

1 B H1<i<j<r+1(li —Li+j-0

‘(li +j—0)! 1<i,j<r+1 B Hl.r;rll(ll- +r+1-10)! ‘

Using the combinatorial identity
(r+ D) =r+i(/1 +r+2-k) 1
@i +Jj =D I<i,jsr+l k=1 ‘ (A + iy + j = D)! 1<i,j<r+1’

the top degree part in (22) gives

. r+1 1

Xy(Wd (C,P)) ~o-vg kz::l/lk (A + 5i,k +Jj =1 1<, jsr+1

For the curve G§(C,P), the stratification in §6.1 consists of a single non-empty stratum, thus
)(y(Gg(C,P)) = )(y(Wg(C,P)). As a check, for y = 0 one recovers the holomorphic Euler char-
acteristic computed in [6, §4.2].
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7.5 | The surface case when 4, =--- =4,

Let us consider the surface case in the classical Brill-Noether setting, that is, with no special ram-
ification required at the marked point. Thus one has q; =ifor0<i<r,and 4, = =4,,, =
g —d +r =: A. In this case, one simplifies the notation as W;(C) = W(‘;(C,P), and similarly,
GS(C) = G“;(C, P). The degree-two operators with non-zero action are:

R2|CA+ . _ r+1)(r+2) gl H
W hgijer+l 20 +r+ DA +r + 2) (A + 1)'
r(r+1) i!
R,R |c . = ] —.
R hgjon T 2A+ @A +r+ 1) Y g 4+
2 - ..
R2|c/1+j“' 1<ij<r+l R1R2|c’1+f‘l|1<i,j<t’ (23)
r+1 i!
OR, |Caji I<ijertl  A4r+17 g )
2 . = ¢! i
0 |c/1+l—l 1<i,j<r+1 9: ilj! @A+

We are now ready to prove Corollary 4:

Proof of Corollary 4. The stratification from §5.1 consists of two strata: the full-dimensional stra-
tum with k* = k =(1,2,...,r + 1), and the codimension two stratum with k™ = (2,2, ...,7 + 1)
whose class is equal to Ry R;|c; |1« j<r+1- From Corollary 7.1, the motivic Hirzebruch class is
given by

TY(W:i(C)) = A/l - Xy( ) R1R2|C/1+j —i (24)

1<i ]<r+1

As in the proof of Theorem 5.1, the affine space A}C here coincides with the maximal Schubert cell

inside the Schubert variety given by the generic fiber of ﬁ, over the codimension-two stratum in
Wi(C).
One has )(y(Ag) = (—y)" (Example 2.5). On a surface, the power series Qy(oc) restricts as

1 1 2
=14+ -a(l-— — 1 .
Q@ =1+ ald-y)+Za’1+y)
The resulting expansion of (24) is

T, (W(0)) = (1 # 3@ =1 = DR + A= PR, + (r+ DO~ )

1
24

+8(1—r—2A)y)R:

=((BA=r+7r=52+2)(y —1)?
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+2(BA—-r@—r—1)—1)(y — 1)* + 20y)RR,
+(BA-r @ -1*+@A+r-2)(—-17*-8y))R:
+2((GAr +1) = 3r(r +2) — 2)(y — 1)* — 8y)6R,

+2(BAr+1) = 3r(r + 1) + 1)(y — 1)> — 8y)6R,

+3(r+ DXy - 1)292)> |C/1+j—i|

1<i,j<r+1

Using (23), this gives the statement.
For the surface G} (C), as the stratification in § 6.1 consists of a single non-empty stratum, Corol-
lary 7.2 implies 7, T (G;(C)) = Ty(WZ(C)), hence )(y(G(;(C)) = )(y(WZ(C)). O

Remark 7.3. We emphasize how the stratification from §5.1 for W/,(C) is finer than the one con-
sidered in [34]. Indeed, for this example, we have two strata, while the stratification used in [34]
for the same locus consists of only one stratum, as W; (C) is a smooth surface.

7.6 | The surface case whenr =1

Here we consider the surface case when r = 1. The case 1; = A, being treated in § 7.5, we assume
here 1; > A,. The stratification from §5.1 consists of the single full-dimensional stratum with k* =
(1, 2), contrary to the case 1; = 1,. From Corollary 7.1, the motivic Hirzebruch class is given by

T, (WS(C,P)) = A;. (25)

Formula (20) gives

T,(Wg(c.p) = <1 + 21 = DRy + (g = DR, + 20 = 1)

+ 2—14 (((3&% — 114, + 12)(y — 1)* — 8yA, )R}
+2((3(4; — 2)4, — 34, + 5)(y — 1)* + 8Y)R,R,
+ (1, = D((34, — )y — 1)° — 8y)R;
+2((61, —11)(y — 1)* — 8y)6R,

+2((64, — 5)(y — 1)* — 8y)6R,

+12(y - 1)292> ) e

1<i,j<2’
The degree-two operators are
3+4, -4
2 . =g 1 2
Rl’%ﬂ—l 1<ij<2 9-(/11 YR
C - = q! ,
e ] PP A, +2)!(4, + 1)!
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Rz’c . = g! /‘11 _ 12 —1
2% i-ha e T S+ DI, + 200
2+ =4
GRl’C/li+j—i <ij<z _(11 + 24,0
/1 _2.2
GRZ’%”—I' 1<ij<2 (/11 + DI, + 1
’C’Ii”‘i 1<ij<2 (/11 + DI,

Using these, the motivic Hirzebruch class is

Corollary 7.4. Fix g > 2 and a =(0< a, < a; < d) with p(g,1,d,a) = 2. For a general smooth
pointed curve (C, P) of genus g, one has

1+, —4, g2 <1 (A} = (A =24 +2)2,

(W“(C P) = (41 + DIA,! A +2)4,+1)

y—-180
+ <<(2/12(/12 +2) + DA — (4, — (2,4, +2) + DA}

+ (A,(10 = A,(64, + 5)) + 3)A; — 31,(A, + 1)2>(y -1)?

— A +2)A + (A +42, — 45 —22, + 3)y>

1
6% ).
A+ 24, =) +2)(44 +3)(A, + DA, +2) >
We deduce the Hirzebruch y -genus:

Corollary 7.5. Fix g > 2 and a = (0 < a, < a; < d) with p(g,1,d, @) = 2. For a general smooth
pointed curve (C, P) of genus g, one has

Xy (WS(C,P)) = <<(2/12(/12 +2) + DA — (4, — (22,4, +2) + DA

+ (,(10 — 2,(61, + 5)) + 3)A; — 34,(4, + 1)2)(y -1)?

g!
A +3)A, +2)1°

— A +2)A + (A +42, — 45 —24, + 3)y>

The stratification in §6.1 consists of a single non-empty stratum, hence x,(G3(C,P))=
£, (WS(C, P))
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Remark 7.6. Interestingly, the above formula for )(y(Wfi‘(C, P))inthecase A, > 4, (thatis,a; > a;)
does not specialize to the formula for the case 1; = A, from § 7.5, unless y = 0.

The discrepancy arises from the fact that the stratification in the surface case with r = 1 consists
of two strata when A, = 4,, while there is only one stratum when 4; > 4,. Indeed, the stratum
with k™ = (2,2) has codimension two when 4, = 1,, while it has codimension at least three when
A, > 4,, hence it is empty on surfaces. Consequently, the motivic Hirzebruch class Ty(Wg(C, P))
in the surface case with r = 1 and 4, > A4, given by (24) does not specialize to the surface case
with 4; = 4, given by (25), unless y = 0.

This is in contrast with the case y = 0, corresponding to the holomorphic Euler characteristic
of a surface W(C, P), which following [6], does specialize from the case 4; > 4;,, to the case
A; = A;4,, for any i. When r = 1, this can be seen here since the second summand in (24) vanishes
fory = 0.
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