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Abstract
Motivic Chern and Hirzebruch classes are polynomials
with K-theory and homology classes as coefficients,
which specialize to Chern–Schwartz–MacPherson
classes, K-theory classes, and Cappell–Shaneson L-
classes. We provide formulas to compute the motivic
Chern and Hirzebruch classes of Grassmannian and
vexillary degeneracy loci. We apply our results to obtain
the Hirzebruch 𝜒𝑦-genus of classical and one-pointed
Brill–Noether varieties, and therefore their topological
Euler characteristic, holomorphic Euler characteristic,
and signature.

MSC ( 2020 )
14H51 (primary), 14N15, 19E99 (secondary)

The study of motivic Chern classes unifies several theories of characteristic classes of singular
varieties [10]. The motivic Chern and Hirzebruch classes are polynomials in a formal variable 𝑦;
the motivic Hirzebruch class 𝑇𝑦 specializes to the Chern–Schwartz–MacPherson (CSM) class for
𝑦 = −1, the K-theoretic Todd class for 𝑦 = 0, and the Cappell–Shaneson L-class for 𝑦 = 1. The
top degree term of 𝑇𝑦 of a compact variety gives the Hirzebruch 𝜒𝑦-genus which specializes to the
topological Euler characteristic for 𝑦 = −1, the holomorphic Euler characteristic for 𝑦 = 0, and
the signature for 𝑦 = 1.
In this article, we compute the motivic Chern and Hirzebruch classes of Grassmannian and

vexillary degeneracy loci in type A. In particular, our results give formulas for their CSM classes
and L-classes. Several invariants of these degeneracy loci have been computed, for example, a
determinantal formula for their classes in cohomology [8, 19], in K-theory [5, 27], and in algebraic
cobordism [28]. In the important special case of a degeneracy locus of a singlemap between vector
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bundles, the CSM class was computed by Parusiński–Pragacz [34]. However, formulas for their
L-classes and for CSM classes of more general degeneracy loci were not known. CSM classes and
motivic Chern classes have recently been studied for Schubert varieties and Schubert cells in flag
manifolds [1–4, 29] and matrix Schubert cells [17, 18, 37]. Hirzebruch 𝜒𝑦-genera have also been
computed in other instances, for example, for Hilbert schemes of points [11, 24] and for singular
toric varieties [32].
We consider maps of vector bundles over a smooth algebraic variety 𝑋:

𝐸𝑝
𝜑

→ 𝐹𝑞1 ↠ 𝐹𝑞2⋯ ↠ 𝐹𝑞𝑡

with rank(𝐸𝑝) = 𝑝 and rank(𝐹𝑞𝑖 ) = 𝑞𝑖 . The Grassmannian degeneracy locus corresponding to the
partition 𝝀 = (𝜆1 ⩾ ⋯ ⩾ 𝜆𝑡 ⩾ 0) with 𝜆𝑖 ∶= 𝑞𝑖 − 𝑝 + 𝑖 is defined as

𝑊𝝀 ∶=
{
𝑥 ∈ 𝑋 ∶ dim ker

(
𝐸𝑝 → 𝐹𝑞𝑖

)|𝑥 ⩾ 𝑖
}
.

More generally, we will consider maps of vector bundles

𝐸𝑝1 ↪ 𝐸𝑝2⋯ ↪ 𝐸𝑝𝑡

𝜑

→ 𝐹𝑞1 ↠ 𝐹𝑞2⋯ ↠ 𝐹𝑞𝑡 (1)

over a smooth algebraic variety 𝑋, with rank(𝐸𝑝𝑖 ) = 𝑝𝑖 and rank(𝐹𝑞𝑖 ) = 𝑞𝑖 . Note that 0 < 𝑝1 ⩽

⋯ ⩽ 𝑝𝑡 and 𝑞1 ⩾ ⋯ ⩾ 𝑞𝑡 > 0. Given a (weakly) increasing sequence 𝒌 ∶= (𝑘1, … , 𝑘𝑡) of positive
integers, the vexillary degeneracy locus corresponding to the triple 𝝉 = (𝒌, 𝒑, 𝒒) is defined as

𝑊𝝉 ∶=
{
𝑥 ∈ 𝑋 ∶ dim ker

(
𝐸𝑝𝑖 → 𝐹𝑞𝑖

)|𝑥 ⩾ 𝑘𝑖

}
.

This nomenclature arises because the rank conditions can be described by the vexillary permuta-
tions from [31] (that is, permutations avoiding the pattern 2 1 4 3), see [7, § 1]. The Grassmannian
case is recovered when 𝑝1 = ⋯ = 𝑝𝑡 and 𝑘𝑖 = 𝑖 for each 𝑖.
Our main result gives formulas to compute the motivic Chern and Hirzebruch classes of vexil-

lary degeneracy loci. We proceed in two steps.
First, we relate the motivic Hirzebruch classes of a vexillary degeneracy locus 𝑊𝝉 and a cer-

tain resolution of𝑊𝝉. As in Kempf–Laksov [30],𝑊𝝉 is resolved by 𝜙∶ Ω̃𝝉 → 𝑊𝝉 where Ω̃𝝉 is the
variety parametrizing complete flags of sub-bundles 𝑉1 ⊆ ⋯ ⊆ 𝑉𝑘𝑡

such that rank(𝑉𝑖) = 𝑖 and
𝑉𝑘𝑖

⊆ ker(𝐸𝑝𝑖 → 𝐹𝑞𝑖 ) for each 𝑖, see § 3. (In §6, wewill also study a partial resolution Ω̃ → Ω → 𝑊,
hence the use of the tilde here.) Let 𝜄 ∶ 𝑊𝝉 ↪ 𝑋 denote the inclusion. We carry out an explicit
computation of the class (𝜄𝜙)∗ 𝑇𝑦(Ω̃𝝉):

Theorem 1. For a triple 𝝉 = (𝒌, 𝒑, 𝒒) and with assumptions as in § 1.4, the class (𝜄𝜙)∗ 𝑇𝑦(Ω̃𝝉) is
computed by a universal operator applied to [𝑊𝝉] ∩ 𝑇𝑦(𝑋), where [𝑊𝝉] is the determinantal formula
for the class of𝑊𝝉 in 𝐴∗(𝑋) (explicitly, Theorem 3.1).

Second, since the fibers of 𝜙 are not constant, in order to compare the motivic Hirzebruch
classes of 𝑊𝝉 and Ω̃𝝉, we proceed to find the stratification of 𝑊𝝉 into locally closed strata on
which 𝜙 is locally trivial.
As reviewed in § 1.1.2 after [8], a triple 𝝉 = (𝒌, 𝒑, 𝒒) can be inflated to a triple 𝝉′ = (𝒌′, 𝒑′, 𝒒′)

by inflating the sequences 𝒌, 𝒑, and 𝒒 of length 𝑡 to sequences 𝒌′, 𝒑′, and 𝒒′ of length 𝑘𝑡 with
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𝒌′ = (1, 2, … , 𝑘𝑡) such that

𝑞′1 − 𝑝′1 + 1 > 𝑞′2 − 𝑝′2 + 2 > … > 𝑞′
𝑘𝑡
− 𝑝′

𝑘𝑡
+ 𝑘𝑡 > 0

and𝑊𝝉 = 𝑊′
𝝉. The locus𝑊𝝉 contains the loci𝑊𝝉+ for 𝝉+ = (𝒌+, 𝒑′, 𝒒′) with 𝒌+ ⩾ 𝒌′ in compo-

nentwise order. For degree reasons, there are only finitelymany such sub-loci𝑊𝝉+ ⊆ 𝑊𝝉. Themap
𝜙 is locally trivial precisely on the locally closed strata𝑊◦

𝝉+
⊂ 𝑊𝝉+ (defined in (3) as expected) —

see § 5.1. We express the class (𝜄𝜙)∗ 𝑇𝑦(Ω̃𝝉) computed in Theorem 1 in terms of the motivic Hirze-
bruch classes of the strata of𝑊𝝉:

Theorem 2. For a triple 𝝉 = (𝒌, 𝒑, 𝒒) and with assumptions as in § 1.4, one has

(𝜄𝜙)∗ 𝑇𝑦
(
Ω̃𝝉

)
=
∑
𝒌+

(−𝑦)|𝒌+|−|𝒌′| 𝜄∗ 𝑇𝑦(𝑊𝝉+),

where 𝝉+ = (𝒌+, 𝒑′, 𝒒′) and the sum is over the set of weakly increasing sequences 𝒌+ ⩾ 𝒌′ =

(1, … , 𝑘𝑡).

For instance, consider the triples 𝝉(𝑖) ∶= ((𝑖), (3), (3)), for 𝑖 = 1, 2, 3, and the triple 𝝉(22) ∶=
((2, 2), (2, 3), (3, 3)). The strata required for the locus𝑊𝝉(1) are𝑊◦

𝝉(𝑖)
for 𝑖 = 1, 2, 3. Since the triple

𝝉(2) is inflated to the triple ((1,2),(2,3),(3,3)), the strata required for the locus𝑊𝝉(2) are𝑊◦
𝝉(2)

,𝑊◦
𝝉(3)

,
and𝑊◦

𝝉(22)
. Then Theorem 2 gives

(𝜄𝜙)∗ 𝑇𝑦
(
Ω̃𝝉(1)

)
= 𝜄∗ 𝑇𝑦

(
𝑊𝝉(1)

)
− 𝑦 𝜄∗ 𝑇𝑦

(
𝑊𝝉(2)

)
+ 𝑦2 𝜄∗ 𝑇𝑦

(
𝑊𝝉(3)

)
,

(𝜄𝜙)∗ 𝑇𝑦
(
Ω̃𝝉(2)

)
= 𝜄∗ 𝑇𝑦

(
𝑊𝝉(2)

)
− 𝑦 𝜄∗ 𝑇𝑦

(
𝑊𝝉(22)

)
− 𝑦 𝜄∗ 𝑇𝑦

(
𝑊𝝉(3)

)
,

(𝜄𝜙)∗ 𝑇𝑦
(
Ω̃𝝉(3)

)
= 𝜄∗ 𝑇𝑦

(
𝑊𝝉(3)

)
,

(𝜄𝜙)∗ 𝑇𝑦
(
Ω̃𝝉(22)

)
= 𝜄∗ 𝑇𝑦

(
𝑊𝝉(22)

)
.

Finally, by the inclusion–exclusion principle, applying Theorem 2 to the (closure of the) strata
of𝑊𝝉, and then to the strata of the strata, and so on, one can express the motivic Hirzebruch class
of 𝑊𝝉 in terms of classes (𝜄𝜙)∗ 𝑇𝑦(Ω̃𝝈) corresponding to a subset of the finitely many vexillary
degeneracy sub-loci𝑊𝝈 ⊆ 𝑊𝝉. Thus we have:

Theorem3. Combining Theorems 1 and 2 allows one to compute themotivic Hirzebruch class of𝑊𝝉

for any triple 𝝉.

As an example, for the triple 𝝉(1) ∶= ((1), (3), (3)) as above, solving for 𝜄∗ 𝑇𝑦(𝑊𝝉(1)) gives

𝜄∗ 𝑇𝑦
(
𝑊𝝉(1)

)
= (𝜄𝜙)∗ 𝑇𝑦

(
Ω̃𝝉(1)

)
+ 𝑦 (𝜄𝜙)∗ 𝑇𝑦

(
Ω̃𝝉(2)

)
+ 𝑦2 (𝜄𝜙)∗ 𝑇𝑦

(
Ω̃𝝉(22)

)
.

Theorem 1 can then be applied to compute the right-hand side as a polynomial in 𝑦 with coeffi-
cients expressed in terms of the Chern classes of the given vector bundles.
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Brill–Noether theory

In § 7, we apply our results to classical and pointed Brill–Noether varieties. Brill–Noether theory
studies the geometry of line bundles and linear series on algebraic curves. For a smooth algebraic
curve 𝐶, the classical Brill–Noether variety 𝑊𝑟

𝑑
(𝐶) parametrizes line bundles of degree 𝑑 on 𝐶

having at least 𝑟 + 1 independent global sections [9]. More generally, the pointed Brill–Noether
variety 𝑊𝒂

𝑑
(𝐶, 𝑃) parametrizes line bundles of degree 𝑑 on 𝐶 having at least 𝑟 + 1 independent

global sections with vanishing orders at the point 𝑃 at least equal to 𝒂 = (0 ⩽ 𝑎0 < ⋯ < 𝑎𝑟 ⩽ 𝑑).
In §7.3, we compute the motivic Hirzebruch class of𝑊𝑟

𝑑
(𝐶) and𝑊𝒂

𝑑
(𝐶, 𝑃) for a general (𝐶, 𝑃), as

these are examples of Grassmannian degeneracy loci. This extends the study of the CSM class of
the classical Brill–Noether varieties𝑊𝑟

𝑑
(𝐶) treated by Parusiński–Pragacz [34].

Similarly, we compute the motivic Hirzebruch class of the Brill–Noether variety 𝐺𝑟
𝑑
(𝐶)

parametrizing linear series on 𝐶 of degree 𝑑 and projective dimension 𝑟, and its pointed coun-
terpart 𝐺𝒂

𝑑
(𝐶, 𝑃) parametrizing linear series on 𝐶 of degree 𝑑 with prescribed vanishing 𝒂 at the

point 𝑃. For these, we use the result presented more generally about a degeneracy locusΩ𝝀 in § 6.
For a smooth Brill–Noether–Petri general curve 𝐶 of genus g , one has: (i) 𝐺𝑟

𝑑
(𝐶) is smooth and

has dimension equal to 𝜌(g , 𝑟, 𝑑) ∶= g − (𝑟 + 1)(g − 𝑑 + 𝑟); (ii) 𝑊𝑟
𝑑
(𝐶) has dimension equal to

𝜌(g , 𝑟, 𝑑), provided that g − 𝑑 + 𝑟 ⩾ 0; and (iii) when g − 𝑑 + 𝑟 > 0, the singular locus of𝑊𝑟
𝑑
(𝐶)

coincides with𝑊𝑟+1
𝑑

(𝐶) ⊂ 𝑊𝑟
𝑑
(𝐶) [9, p. 214].

For instance, 𝑊𝑟
𝑑
(𝐶) is smooth when 𝐶 is a smooth Brill–Noether–Petri general curve,

𝜌(g , 𝑟, 𝑑) ⩽ 2 and g ⩾ 2. Write 𝜆 = g − 𝑑 + 𝑟, and let 𝜃 be the cohomology class of the theta divisor
in Pic𝑑(𝐶). In the surface case, we prove:

Corollary 4. Fix g ⩾ 2 and 𝑟, 𝑑 such that 𝜌(g , 𝑟, 𝑑) = 2. For a Brill–Noether–Petri general smooth
curve 𝐶 of genus g , the motivic Hirzebruch class of the surface𝑊𝑟

𝑑
(𝐶) is

𝑇𝑦
(
𝑊𝑟

𝑑
(𝐶)

)
=

(
1 +

𝜆(𝑟 + 3)(𝑦 − 1)

2(𝜆 + 2)
𝜃

+
𝜆(𝑟 + 1)

(
𝜆(𝑟 + 1)(𝑦 − 1)2 − 2𝑦

)
2(𝜆 + 𝑟)(𝜆 + 𝑟 + 2)

𝜃2
)
⋅ 𝜃g−2

𝑟∏
𝑖=0

𝑖!

(g − 𝑑 + 𝑟 + 𝑖)!

in𝐻∗(Pic𝑑(𝐶))[𝑦]. Since the top degree term of 𝑇𝑦 gives the Hirzebruch 𝜒𝑦-genus, one has

𝜒𝑦
(
𝑊𝑟

𝑑
(𝐶)

)
= g !

𝜆(𝑟 + 1)
(
𝜆(𝑟 + 1)(𝑦 − 1)2 − 2𝑦

)
2(𝜆 + 𝑟)(𝜆 + 𝑟 + 2)

𝑟∏
𝑖=0

𝑖!

(g − 𝑑 + 𝑟 + 𝑖)!
.

Moreover, with the same hypotheses, one has 𝜒𝑦(𝐺𝑟
𝑑
(𝐶)) = 𝜒𝑦(𝑊

𝑟
𝑑
(𝐶)).

The formula for 𝜒𝑦 in Corollary 4 recovers the topological and holomorphic Euler characteris-
tics for 𝑦 = −1 and 𝑦 = 0 (known from [34] and [6], respectively), and gives a new result on the
signature of the surface𝑊𝑟

𝑑
(𝐶) for 𝑦 = 1:

𝜎
(
𝑊𝑟

𝑑
(𝐶)

)
= g !

2 − g
(g − 𝑑 + 2𝑟)(g − 𝑑 + 2𝑟 + 2)

𝑟∏
𝑖=0

𝑖!

(g − 𝑑 + 𝑟 + 𝑖)!

and similarly for the surface 𝐺𝑟
𝑑
(𝐶), since in this case 𝜎(𝐺𝑟

𝑑
(𝐶)) = 𝜎(𝑊𝑟

𝑑
(𝐶)).
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We briefly review the definition of the signature. For a compact oriented manifold 𝑋 of real
dimension 4𝑘, consider the non-degenerate symmetric bilinear form on the finite-dimensional
vector space𝐻2𝑘(𝑋, ℝ) given by

⟨𝛼, 𝛽⟩ ∶= ∫𝑋 𝛼 ∪ 𝛽, for 𝛼, 𝛽 ∈ 𝐻2𝑘(𝑋, ℝ).

The signature 𝜎(𝑋) of𝑋 is defined as the number of positive entriesminus the number of negative
entries in a diagonalized version of this form.When𝑋 is smooth, Hirzebruch’s signature theorem
expresses 𝜎(𝑋) as a universal linear combination of the Pontrjagin numbers of the tangent bundle
of 𝑋 [25]. When 𝑋 is possibly singular, 𝜎(𝑋) is computed by the top degree term of the L-class of
𝑋 [10, 12].
When g = 2, then 𝑊𝑟

𝑑
(𝐶) = Pic𝑑(𝐶), thus indeed 𝜒𝑦 = 0, since Abelian varieties have triv-

ial tangent bundle. As a further check, 𝜎 and the topological Euler characteristic 𝜒top always
have the same parity [35, Corollary 64], and this is indeed satisfied by the formulas resulting
from Corollary 4. In fact, we observe the following, perhaps surprising, relations for the surface
𝑊𝑟

𝑑
(𝐶):

g − 2

2
𝜎
(
𝑊𝑟

𝑑
(𝐶)

)
= −𝜒hol

(
𝑊𝑟

𝑑
(𝐶)

)
,

(2g − 3) 𝜎
(
𝑊𝑟

𝑑
(𝐶)

)
= −𝜒top

(
𝑊𝑟

𝑑
(𝐶)

)
,

(g − 2)𝜒top
(
𝑊𝑟

𝑑
(𝐶)

)
= (4g − 6)𝜒hol

(
𝑊𝑟

𝑑
(𝐶)

)
.

In § 7.6, we also compute explicitly the motivic Hirzebruch class of pointed Brill–Noether sur-
faces parametrizing pencils (that is, 𝑟 = 1). Interestingly, we show that the motivic Hirzebruch
classes of Grassmannian degeneracy loci corresponding to a partition 𝝀 do not specialize from
the case 𝜆𝑖 > 𝜆𝑖+1 to the case 𝜆𝑖 = 𝜆𝑖+1, for some 𝑖 (Remark 7.6). This is in contrast with the K-
theory class (the case 𝑦 = 0) of degeneracy loci with rank conditions imposed by arbitrary (not
only vexillary) permutations, given by Grothendieck polynomials [22].

Our strategy

Our approach draws a great deal of inspiration from Parusiński–Pragacz [34]. Indeed, all compu-
tations build on three fundamental computations of CSM classes, treated in [34]:

(a) the CSM class of the zero locus of a regular section of a vector bundle;
(b) the CSM class of a Grassmannian bundle; and
(c) the push-forward of the CSM class via a fibration.

In §2, we compute the motivic refinement of (a)–(c), see Lemmata 2.2–2.4. The CSM classes in
cases (a)–(c) are recovered by specializing to 𝑦 = −1. In order tomake the generalization to Grass-
mannian and vexillary degeneracy loci possible, we combine (a)–(c) with the proof strategy intro-
duced in [8] (see § 3). Additional care is needed in dealing with motivic Chern and Hirzebruch
classes when one generalizes methods designed for fundamental classes. Indeed, while the fun-
damental class coincides with the push-forward of the fundamental class of a resolution, motivic
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Chern and Hirzebruch classes are more delicate to handle. To arrive at the motivic Chern class
of a vexillary degeneracy locus𝑊𝝉, we first compute the push-forward of the motivic Chern class
of a resolution Ω̃𝝉 of 𝑊𝝉 (Theorem 3.1). Furthermore, using (c), we relate the push-forward of
the motivic Chern class of Ω̃𝝉 with 𝝉 = (𝒌, 𝒑, 𝒒) to the motivic Chern class of varieties𝑊𝝉+ with
𝝉+ = (𝒌+, 𝒑′, 𝒒′), for 𝒌+ ⩾ 𝒌′ (Theorem 5.1). Finally, the motivic Chern class of𝑊𝝉 follows by the
inclusion–exclusion principle.
A key step in our argument is the careful analysis in § 5.1 of the stratification of a degener-

acy locus induced from its resolution. We stratify 𝑊𝝉 with 𝝉 = (𝒌, 𝒑, 𝒒) by the loci 𝑊◦
𝝉+

with
𝝉+ = (𝒌+, 𝒑′, 𝒒′), for 𝒌+ ⩾ 𝒌′. These are precisely the strata on which the resolution Ω̃𝝉 → 𝑊𝝉

is locally trivial.
Theorem 5.1 uses the additivity of the motivic Hirzebruch class 𝑇𝑦 as a transformation from the

Grothendieck group 𝐾0(var∕𝑋) of algebraic varieties over 𝑋. In fact, the Hirzebruch 𝜒𝑦-genus
is the most general additive genus [10]. Computation of other invariants, as the elliptic class and
elliptic genus, would thus require new strategies.
Specializing to the case when the ambient variety 𝑋 is a Grassmannian, our results give the

motivic class of its Schubert varieties in terms of the motivic class of the Grassmannian. For
instance, when 𝑦 = −1, using the formula of [1] for the CSM class of Grassmannians, one can
verify that the resulting formulas for the CSM class of Schubert varieties are consistent with the
results in [1] after some nontrivial combinatorics (see § 5.2).
Motivic Chern classes of Schubert cells in partial flag varieties have been computed in [18]

via localization; the classes of the Schubert varieties could then be obtained from [18] by sum-
ming over all the strata of the closure of the Schubert cells. In the case of vexillary permu-
tations, our strategy produces the classes of Schubert varieties as a first outcome; this makes
it feasible to arrive at a viable formula in the application to the Brill–Noether setting (see
§7.3).

Open questions

In [6], we study more generally two-pointed Brill–Noether varieties, and show that they have
the structure of determinantal varieties obtained frommaps of flag bundles with rank conditions
imposed by 321-avoiding permutations. We compute in [6] their connective K-theory class and
holomorphic Euler characteristic. It would be interesting to compute their motivic Chern class,
extending this work to the two-pointed case.
The holomorphic Euler characteristic of two-pointed Brill–Noether varieties is expressed in

[14] as the enumeration of certain standard set-valued tableaux. We have found tableau formulas
expressing the Hirzebruch 𝜒𝑦-genus of one-pointed Brill–Noether surfaces. We wonder whether
there exist tableau formulas expressing the Hirzebruch 𝜒𝑦-genus of one- or two-pointed Brill–
Noether varieties in general.

1 VEXILLARY DEGENERACY LOCI

Here we set the notation and collect the assumptions used throughout. We adopt the notation of
triples 𝝉 from [5, 8].
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1.1 Vexillary degeneracy loci

Let 𝑋 be an irreducible variety over an algebraically closed field. Given maps of vector bundles
over 𝑋 as in (1) and a (weakly) increasing sequence 𝒌 ∶= (𝑘1, … , 𝑘𝑡) of positive integers, the vex-
illary degeneracy locus corresponding to the triple 𝝉 = (𝒌, 𝒑, 𝒒) is defined as

𝑊𝝉 ∶=
{
𝑥 ∈ 𝑋 ∶ dim ker

(
𝐸𝑝𝑖 → 𝐹𝑞𝑖

)|𝑥 ⩾ 𝑘𝑖 for all 𝑖
}

with inclusion 𝜄 ∶ 𝑊𝝉 ↪ 𝑋. Such a locus is Cohen–Macaulay when it has the expected dimension
andwhen𝑋 is Cohen–Macaulay.Wewill compute themotivicHirzebruch class of𝑊𝝉 in𝐴∗(𝑋)[𝑦],
where 𝐴∗(𝑋) is the Chow group of 𝑋 and 𝑦 is a formal variable. It will be convenient to consider
arbitrary weakly increasing sequences 𝒌 (see e.g., § 5.1).

1.1.1 The reduced triple 𝜏

Some of the conditions defining𝑊𝝉may be redundant, and𝑊𝝉 could be similarly described as the
vexillary degeneracy locus corresponding to a triple consisting of shorter sequences. After [19], a
triple 𝝉 = (𝒌, 𝒑, 𝒒) with 𝒑 = (0 ⩽ 𝑝1 ⩽ ⋯ ⩽ 𝑝𝑡) and 𝒒 = (𝑞1 ⩾ ⋯ ⩾ 𝑞𝑡 ⩾ 0) is called essential if

0 < 𝑘1 < ⋯ < 𝑘𝑡 and 𝑞1 − 𝑝1 + 𝑘1 > ⋯ > 𝑞𝑡 − 𝑝𝑡 + 𝑘𝑡 > 0.

Given 𝝉 = (𝒌, 𝒑, 𝒒), we denote by 𝝉 = (𝒌, 𝒑, 𝒒) the essential triple of shortest subsequences 𝒌, 𝒑,
and 𝒒 of 𝒌, 𝒑, and 𝒒 such that𝑊𝝉 = 𝑊𝝉. Necessarily, 𝒌 is strictly increasing.

Example 1.1. The sequences 𝒌 = (2, 2, 3, 4), 𝒑 = (4, 5, 6, 7), and 𝒒 = (8, 7, 6, 3) and their subse-
quences 𝒌 = (2, 3), 𝒑 = (4, 6), and 𝒒 = (8, 6) describe the same degeneracy locus.

1.1.2 The inflated triple 𝜏′

Assume the flag 𝐸𝑝1 ⊆ 𝐸𝑝2 ⊆ ⋯ ⊆ 𝐸𝑝𝑡 extends to a full flag of sub-bundles 𝐸1 ⊆ 𝐸2 ⊆ ⋯ ⊆ 𝐸𝑝𝑡
defined on 𝑋, and similarly, the flag 𝐹𝑞1 ↠ 𝐹𝑞2 ↠ ⋯ ↠ 𝐹𝑞𝑡 extends to a full flag of quotients
𝐹𝑞1 ↠ ⋯ ↠ 𝐹2 ↠ 𝐹1 defined on 𝑋. This assumption is indeed not restrictive, see Remark 3.3.
Contrary to the previous subsection, we describe here how to inflate the triple 𝝉 to a triple con-
sisting of longer sequences defining the same locus𝑊𝝉. This will be used to define the locus Ω̃𝝉

in § 3.1.
Assume the triple 𝝉 is essential, that is, 𝝉 = 𝝉. The triple 𝝉 can then be inflated to a triple 𝝉′ =

(𝒌′, 𝒑′, 𝒒′) by inflating the sequences 𝒌,𝒑, and 𝒒 of length 𝑡 to sequences 𝒌′, 𝒑′, and 𝒒′ of length
𝑘𝑡 with 𝒌′ = (1, 2, … , 𝑘𝑡) as in [8, §1.4] (see also further details in [5, §1]). Namely, suppose that
𝑘𝑖 > 𝑘𝑖−1 + 1, for some 𝑖. Then necessarily 𝑝𝑖 > 𝑝𝑖−1 or 𝑞𝑖 < 𝑞𝑖−1 (otherwise the corresponding
conditions defining𝑊𝝉 are redundant, and the triple 𝝉 can be reduced). When 𝑝𝑖 > 𝑝𝑖−1, inflate
by inserting the entry 𝑘𝑖 − 1 between 𝑘𝑖−1 and 𝑘𝑖 in 𝒌, the entry 𝑝𝑖 − 1 between 𝑝𝑖−1 and 𝑝𝑖 in 𝒑,
and the entry 𝑞𝑖 between 𝑞𝑖−1 and 𝑞𝑖 in 𝒒. On the geometric side, the condition dimker(𝐸𝑝𝑖 →

𝐹𝑞𝑖 )|𝑥 ⩾ 𝑘𝑖 implies dimker(𝐸𝑝𝑖−1 → 𝐹𝑞𝑖 )|𝑥 ⩾ 𝑘𝑖 − 1 for a point 𝑥 ∈ 𝑊𝝉. The case 𝑝𝑖 = 𝑝𝑖−1 and
𝑞𝑖 < 𝑞𝑖−1 is treated similarly. Proceeding in this way, one arrives at sequences 𝒌

′, 𝒑′, and 𝒒′ of
length 𝑘𝑡 such that 𝒌

′ = (1, 2, … , 𝑘𝑡) and𝑊𝝉 = 𝑊𝝉′ .
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1.1.3 Feasibility

For an essential triple 𝝉, in order for the conditions defining the locus𝑊𝝉 to be feasible, we assume
that the sequence

𝜆𝑘𝑖 ∶= 𝑞𝑖 − 𝑝𝑖 + 𝑘𝑖 for 𝑖 = 1, … , 𝑡, (2)

is weakly decreasing.

1.2 The partition 𝝀𝝉

Fix an essential triple 𝝉. Extending (2), define the partition 𝝀𝝉 = (𝜆1, … , 𝜆𝑘𝑡 ) as

𝜆𝑖 ∶= 𝜆𝑘𝑎 for 𝑘𝑎−1 < 𝑖 ⩽ 𝑘𝑎.

For a triple 𝝉 which is not necessarily essential, define 𝝀𝝉 ∶= 𝝀𝝉, where 𝝉 is the reduced triple
consisting of the shortest subsequences of 𝒌, 𝒑, 𝒒 such that𝑊𝝉 = 𝑊𝝉 (§1.1.1). The expected codi-
mension of the locus𝑊𝝉 in 𝑋 is

codim𝑋 (𝑊𝝉) =
||𝝀𝝉|| ∶= 𝑘𝑡∑

𝑖=1

𝜆𝑖.

Example 1.2. For the triple 𝝉 = (𝒌, 𝒑, 𝒒) where 𝒌 = (2, 2, 3), 𝒑 = (4, 5, 6), and 𝒒 = (8, 7, 6), one
has 𝝀𝝉 = (6, 6, 3).

1.3 The bundles 𝑬(𝒊), 𝑭(𝒊), classes 𝒄(𝒊), and operators 𝑻𝒚(𝒊)

For an essential triple 𝝉, define the vector bundles 𝐸(𝑖) and 𝐹(𝑖) as

𝐸(𝑖) ∶= 𝐸𝑝𝑎 and 𝐹(𝑖) ∶= 𝐹𝑞𝑎 for 𝑘𝑎−1 < 𝑖 ⩽ 𝑘𝑎.

For a triple 𝝉 which is not necessarily essential, define

𝐸(𝑖) ∶= 𝐸𝑝𝑎 and 𝐹(𝑖) ∶= 𝐹𝑞𝑎 for 𝑘𝑎−1 < 𝑖 ⩽ 𝑘𝑎.

Here 𝒌,𝒑, 𝒒 are the shortest subsequences of 𝒌, 𝒑, 𝒒 such that𝑊𝝉 = 𝑊𝝉 with 𝝉 = (𝒌, 𝒑, 𝒒) (see
§1.1.1). Let

𝑐(𝑖) ∶= 𝑐(𝐹(𝑖) − 𝐸(𝑖)) =
𝑐(𝐹(𝑖))

𝑐(𝐸(𝑖))
∈ 𝐴∗(𝑋).

1.3.1

For each 𝑖, the raising operator 𝑅𝑖 increases the index of the class 𝑐(𝑖) by one, that is,

𝑅𝑖 𝑐(𝑖)𝑚 = 𝑐(𝑖)𝑚+1 and 𝑅𝑖 𝑐(𝑘)𝑚 = 𝑐(𝑘)𝑚, for 𝑘 ≠ 𝑖.
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Moreover, 𝑅𝑖 is extended linearly over ℚ and multiplicatively on monomials in classes 𝑐(𝑗), for
example, 𝑅𝑖(𝑐(𝑗)𝑚 𝑐(𝑘)𝑛) = (𝑅𝑖 𝑐(𝑗)𝑚)(𝑅𝑖 𝑐(𝑘)𝑛).

1.3.2

For a formal variable 𝑅 and a vector bundle 𝐸 of rank 𝑒with Chern roots 𝑎𝑖 , for 𝑖 = 1, … , 𝑒, define

𝑇𝑦(𝑅 ⊗ 𝐸) ∶=

𝑒∏
𝑖=1

𝑄𝑦(𝑅 + 𝑎𝑖), with 𝑄𝑦(𝛼) ∶=
𝛼(1 + 𝑦)

1 − 𝑒−𝛼(1+𝑦)
− 𝛼𝑦 ∈ ℚ[𝑦]�𝛼�.

As in (6), the terms in degree at most two are given by

𝑇𝑦(𝑅 ⊗ 𝐸) = 1 +
1

2
(1 − 𝑦)(𝑒𝑅 + 𝑐1(𝐸))

+
1

12
(1 + 𝑦)2

(
𝑒𝑅2 + 2𝑐1(𝐸)𝑅 + ch2(𝐸)

)
+
1

4
(1 − 𝑦)2

((
𝑒

2

)
𝑅2 + (𝑒 − 1)𝑐1(𝐸)𝑅 + 𝑐2(𝐸)

)
+ …

where ch(𝐸) =
∑𝑒

𝑖=1 ch𝑖(𝐸) is the Chern character of 𝐸. The motivic Hirzebruch class 𝑇𝑦(𝑋) of a
smooth variety 𝑋 is recovered when 𝑅 = 0 and 𝐸 is the tangent bundle of 𝑋 (see § 2). Similarly, in
the absence of 𝐸, we set

𝑇𝑦(𝑅) ∶= 𝑄𝑦(𝑅).

For each 𝑖, define the operator

𝑇𝑦(𝑖) ∶= 𝑇𝑦(𝑅𝑖 ⊗ (𝐹(𝑖) − 𝐸(𝑖)))

acting on the classes 𝑐(𝑗) such that 𝑅𝑖 acts as in § 1.3.1, and the Chern roots of the virtual bundle
𝐹(𝑖) − 𝐸(𝑖) act by multiplication.

1.4 Assumptions

We collect here the assumptions used throughout. For a triple 𝝉 = (𝒌, 𝒑, 𝒒), consider the vexillary
degeneracy locus𝑊𝝉 and a sub-locus𝑊𝝉+ ⊆ 𝑊𝝉 where 𝝉+ = (𝒌+, 𝒑′, 𝒒′)with 𝒌+ ⩾ 𝒌′ in compo-
nentwise order. The corresponding locally closed stratum is

𝑊◦
𝝉+

∶=
{
𝑥 ∈ 𝑋 ∶ dim ker

(
𝐸𝑝′

𝑖
→ 𝐹𝑞′

𝑖

)||𝑥 = 𝑘+
𝑖

}
. (3)

This is

𝑊◦
𝝉+

= 𝑊𝝉+ ⧵
⋃

𝒌++>𝒌+

𝑊𝝉++ ⊆ 𝑋, where 𝝉++ =
(
𝒌++, 𝒑′, 𝒒′

)
.

We assume that 𝑋 is an irreducible smooth algebraic variety over an algebraically closed field
of characteristic zero, and for all weakly increasing sequences 𝒌+ ⩾ 𝒌′ (that is, 𝑘+

𝑖
⩾ 𝑖 for all 𝑖 =

1, … , 𝑘𝑡), the stratum𝑊◦
𝝉+
with 𝝉+ = (𝒌+, 𝒑′, 𝒒′) is smooth of pure dimension dim𝑋 − |𝝀𝝉+ |.
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Remark 1.3. In [34], Parusiński–Pragacz show that their formula for the CSM class of the degener-
acy locus of a single map between vector bundles holds under a weaker assumption which allows
one to consider a possibly singular analytic variety 𝑋 as ambient variety. It seems reasonable to
expect that our results hold under a similar weaker assumption. For this, one needs to upgrade
Lemma 2.2, for instance, by working in the analytic category with a Whitney stratification of a
singular 𝑋 as in [34]. However, 𝑋 will be smooth in all the applications we consider.

2 MOTIVIC CLASSES: FUNDAMENTAL COMPUTATIONS

After briefly reviewingmotivic Chern andHirzebruch classes following [10], we discuss here three
fundamental computations: Lemmata 2.2–2.4. These will serve as the cornerstone of the paper.
For an algebraic variety 𝑋 over a field of characteristic zero, let 𝐾0(var∕𝑋) be the Grothendieck

group of algebraic varieties over 𝑋, let 𝐾∗(𝑋) be the Grothendieck group of coherent sheaves of
O𝑋-modules, and 𝐴∗(𝑋) the Chow group. The transformations

are the unique transformations which commute with proper push-down and, for 𝑋 smooth, sat-
isfy

𝑚𝐶(id𝑋) =
∑
𝑖⩾0

[
∧𝑖 T ∨

𝑋

]
𝑦𝑖 =∶ 𝜆𝑦

(
T ∨
𝑋

)
, (4)

𝑇𝑦(id𝑋) =
dim𝑋∏
𝑖=1

𝑄𝑦(𝛼𝑖) ∩ [𝑋] =∶ 𝑇𝑦(T𝑋) ∩ [𝑋]. (5)

Here, 𝛼𝑖 are the Chern roots of the tangent bundle T𝑋 , and 𝑄𝑦(𝛼) is the series

𝑄𝑦(𝛼) ∶=
𝛼(1 + 𝑦)

1 − 𝑒−𝛼(1+𝑦)
− 𝛼𝑦 ∈ ℚ[𝑦]�𝛼�

starting as

𝑄𝑦(𝛼) = 1 +
1

2
𝛼(1 − 𝑦) +

1

12
𝛼2(1 + 𝑦)2 + … . (6)

The function 𝜆𝑦 satisfies: 𝜆𝑦(𝑎 + 𝑏) = 𝜆𝑦(𝑎)𝜆𝑦(𝑏). The function 𝑇𝑦 is themotivic Hirzebruch class
function introduced in [25]. One has 𝑇𝑦(𝑎 + 𝑏) = 𝑇𝑦(𝑎)𝑇𝑦(𝑏), as well.
For arbitrary 𝑋, let {𝑋𝑖}𝑖∈𝐼 be a stratification of 𝑋, with 𝑋𝑖 locally closed and smooth. By defini-

tion, we have

𝑚𝐶(id𝑋) ∶=
∑
𝑖∈𝐼

𝑚𝐶(𝑋𝑖 → 𝑋), 𝑇𝑦(id𝑋) ∶=
∑
𝑖∈𝐼

𝑇𝑦(𝑋𝑖 → 𝑋). (7)

Since any two such stratifications admit a common refinement, the above is well defined.
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Remark 2.1. The transformations𝑚𝐶 and 𝑇𝑦 satisfy 𝑡𝑑(1+𝑦)◦𝑚𝐶 = 𝑇𝑦 , where

𝑡𝑑(1+𝑦) ∶ 𝐾∗(𝑋) ⊗ ℤ[𝑦] → 𝐴∗(𝑋) ⊗ ℚ
[
𝑦, (1 + 𝑦)−1

]
is Yokura’s generalization [36] of the Todd class transformation from the singular Riemann–Roch
theorem [20].

2.1 Zeros of sections

For a vector bundle 𝐸 on 𝑋, let 𝜄 ∶ 𝑍 ↪ 𝑋 be the zero locus of a regular section 𝑠 of 𝐸 → 𝑋.

Lemma 2.2. If 𝑋 is smooth and 𝑠 ∶ 𝑋 → 𝐸 meets transversally the zero section of 𝐸, then

𝑚𝐶(𝑍 ↪ 𝑋) =
𝜆−1(𝐸

∨)

𝜆𝑦(𝐸
∨)

𝑚𝐶(id𝑋),

𝑇𝑦(𝑍 ↪ 𝑋) =
𝑐top(𝐸)

𝑇𝑦(𝐸)
𝑇𝑦(id𝑋).

Proof. Since 𝑠meets transversally the zero section of 𝐸, it follows that 𝑍 is smooth. We claim that

𝑚𝐶(𝑍 ↪ 𝑋) =
𝜆−1

(
𝐸|∨

𝑋

)
𝜆𝑦
(
𝐸|∨

𝑋

) 𝑚𝐶(id𝑋).
Indeed, we have

𝑚𝐶(𝑍 ↪ 𝑋) = 𝜄! 𝑚𝐶(id𝑍) = 𝜄! 𝜆𝑦
(
T ∨
𝑍

)
= 𝜄!

(
𝜆𝑦
(
T ∨
𝑍

)
𝜄∗𝜆𝑦

(
T ∨
𝑋

))𝜆𝑦(T ∨
𝑋

)

= 𝜄!

(
1

𝜄∗𝜆𝑦
(
𝐸|∨

𝑋

))𝜆𝑦(T ∨
𝑋

)
=
𝜆−1

(
𝐸|∨

𝑋

)
𝜆𝑦
(
𝐸|∨

𝑋

) 𝜆𝑦(T ∨
𝑋

)
.

Here, 𝜄! is the K-theoretic push-forward via 𝜄. We have used the projection formula, and 𝜄!(1) =
𝜆−1(𝐸|∨𝑋) in 𝐾∗(𝑋) (see, for instance, [21, V, Proposition 4.3]; this also appears in [18, §8.1]). The
statement for𝑚𝐶 follows. The same argument together with 𝜄∗(1) = 𝑐top(𝐸) ∩ [𝑋] in𝐴∗(𝑋) prove
the statement for 𝑇𝑦 . □

When 𝑦 = −1, Lemma 2.2 recovers the computation 𝜄∗ 𝑐SM(𝑍) =
𝑐top(𝐸)

𝑐(𝐸)
∩ 𝑐SM(𝑋) treated in [34,

Proposition 1.3].

2.2 Grassmannian bundles

Given a vector bundle 𝐸 on 𝑋, let

𝜋∶ Gr(𝑟, 𝐸) → 𝑋
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be the Grassmannian bundle parametrizing rank 𝑟 sub-bundles of 𝐸. Consider the tautological
exact sequence over Gr(𝑟, 𝐸)

0 → 𝑆 → 𝐸 → 𝑄 → 0.

Lemma 2.3. For arbitrary 𝑋, we have

𝑚𝐶
(
idGr(𝑟,𝐸)

)
= 𝜆𝑦

((
𝑆∨ ⊗ 𝑄

)∨)
⋅ 𝜋∗𝑚𝐶(id𝑋),

𝑇𝑦
(
idGr(𝑟,𝐸)

)
= 𝑇𝑦

(
𝑆∨ ⊗ 𝑄

)
⋅ 𝜋∗ 𝑇𝑦(id𝑋).

Proof. When 𝑋 is smooth, Gr(𝑟, 𝐸) is smooth. From the definition (4), we have

𝑚𝐶
(
idGr(𝑟,𝐸)

)
= 𝜆𝑦

(
T ∨
Gr(𝑟,𝐸)

)
= 𝜆𝑦

((
𝑆∨ ⊗ 𝑄

)∨)
⋅ 𝜋∗𝜆𝑦

(
T ∨
𝑋

)
,

and the statement about the motivic Chern class follows. For arbitrary𝑋, the statement about the
motivic Chern class is an immediate application of the Verdier–Riemann–Roch formula from [10,
Corollary 2.1 (4)]. The proof for 𝑇𝑦 is similar using [10, Corollary 3.1 (3)]. □

For 𝑦 = −1, Lemma 2.3 recovers 𝑐SM(Gr(𝑟, 𝐸)) = 𝑐(𝑆∨ ⊗ 𝑄) ∩ 𝜋∗𝑐SM(𝑋), treated in [34, Propo-
sition 1.5].

2.3 Fibrations

Given a propermorphism 𝑝∶ 𝑌 → 𝑋, letX ∶= {𝑋𝑘}𝑘∈𝐾 be a stratification of𝑋 into locally closed
strata 𝑋𝑘 such that 𝑝 is locally trivial in the Zariski topology over each 𝑋𝑘 with smooth fiber 𝐹𝑘.
Assume that there exists a unique top-dimensional stratum 𝑋0 in X . Let 𝑝! be the K-theoretic
push-forward via 𝑝.

Lemma 2.4. We have

𝑝! 𝑚𝐶(𝑌 → 𝑋) =
∑
𝑘∈𝐾

𝑑𝑘 𝑚𝐶
(
𝑋𝑘 ↪ 𝑋

)
,

𝑝∗ 𝑇𝑦(𝑌 → 𝑋) =
∑
𝑘∈𝐾

𝑒𝑘 𝑇𝑦

(
𝑋𝑘 ↪ 𝑋

)
with

𝑑𝑘 ∶=

(
∫𝐹𝑘 𝜆𝑦

(
T ∨
𝐹𝑘

))
−
∑
𝑗

𝑑𝑗, 𝑒𝑘 ∶=

(
∫𝐹𝑘 𝑇𝑦(𝐹𝑘)

)
−
∑
𝑗

𝑒𝑗,

where the sums are over 𝑗 such that 𝑋𝑘 ⊂ 𝑋𝑗 .
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Proof. Since 𝑝 is locally trivial in the Zariski topology over each𝑋𝑘 with smooth fiber𝐹𝑘, factoring
𝑝−1(𝑋𝑘) ⊂ 𝑌

𝑝

→ 𝑋 as 𝑝−1(𝑋𝑘)

𝑝

→ 𝑋𝑘 ↪ 𝑋 and by multiplicativity of 𝜆𝑦 , one has

𝑝! 𝑚𝐶
(
𝑝−1(𝑋𝑘) → 𝑋

)
=

(
∫𝐹𝑘 𝜆𝑦

(
T ∨
𝐹𝑘

))
𝑚𝐶(𝑋𝑘 ↪ 𝑋),

for each 𝑘 ∈ 𝐾. Therefore, one has 𝑑0 = ∫
𝐹0
𝜆𝑦(T

∨
𝐹0
). One verifies the formula for the coefficient

𝑑𝑘 by recursion on the codimension of the strata inX . The proof for 𝑇𝑦 is identical. □

In the case 𝑦 = −1, Lemma 2.3 was treated in [34, Proposition 1.6].

2.4 Hirzebruch 𝝌𝒚-genus

For a compact 𝑋, its Hirzebruch 𝜒𝑦-genus is

𝜒𝑦(𝑋) ∶= ∫𝑋 𝑇𝑦(𝑋) ∈ ℚ[𝑦].

This invariant recovers the topological Euler characteristic for 𝑦 = −1, the holomorphic Euler
characteristic for 𝑦 = 0, and the signature for 𝑦 = 1 [10]. The Hirzebruch 𝜒𝑦-genus extends to
arbitrary 𝑋 via the additivity in 𝐾0(var∕pt).

Example 2.5. For the projective space ℂℙ𝑛, one has

𝜒𝑦(ℂℙ
𝑛) = ∫ℂℙ𝑛 𝑇𝑦(ℂℙ

𝑛) = 1 + (−𝑦) +⋯ + (−𝑦)𝑛.

Consequently, one has 𝜒𝑦(𝔸𝑛
ℂ
) = (−𝑦)𝑛.

3 MOTIVIC CLASSES OF A RESOLUTION OF VEXILLARY
DEGENERACY LOCI

Since motivic Chern and Hirzebruch classes have an equivalent formalism, as exemplified by
Lemmata 2.2–2.4, for simplicity we consider only the case of motivic Hirzebruch classes from this
point on. The main result of this section is the following Theorem 3.1, computing the motivic
Hirzebruch class of a resolution of vexillary degeneracy loci. This is the explicit version of Theo-
rem 1.

3.1 The locus 𝛀̃𝝉

Recall the geometric setup of § 1.1 defining the vexillary degeneracy locus𝑊𝝉 in a variety 𝑋 given
maps of vector bundles (1) and a weakly increasing sequence 𝒌 = (𝑘1, … , 𝑘𝑡). We define here a
resolution Ω̃𝝉 of𝑊𝝉.
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As in § 1.1.1, we can reduce to the case when the triple 𝝉 = (𝒌, 𝒑, 𝒒) is essential, that is, it corre-
sponds to a minimal set of conditions dimker(𝐸𝑝𝑖 → 𝐹𝑞𝑖 )|𝑥 ⩾ 𝑘𝑖 for a point 𝑥 ∈ 𝑊𝝉. The triple 𝝉
could then be inflated to the triple 𝝉′ as in § 1.1.2 and𝑊𝝉 ≅ 𝑊𝝉′ .
Consider the variety𝑋𝑘𝑡

parametrizing full flags of sub-bundles𝑉1 ⊆ ⋯ ⊆ 𝑉𝑘𝑡
with rank(𝑉𝑖) =

𝑖 and 𝑉𝑖 ⊆ 𝐸𝑝′
𝑖
for each 𝑖. The variety 𝑋𝑘𝑡

is constructed as a sequence of projective bundles

𝑋 =∶ 𝑋0

𝜋1
←

 ℙ

(
𝐸𝑝′

1

)
=∶ 𝑋1

𝜋2
←

 ℙ

(
𝐸𝑝′

2
∕𝕊1

)
=∶ 𝑋2⋯

𝜋𝑘𝑡
←


 ℙ

(
𝐸𝑝′

𝑘𝑡

∕𝕊𝑘𝑡−1

)
=∶ 𝑋𝑘𝑡

,

where 𝕊𝑖∕𝕊𝑖−1 is the tautological line bundle on 𝑋𝑖 , for each 𝑖. Here, we omit the obvious pull-
backs via the natural projections 𝜋𝑖 to simplify the notation. Since 𝑋 is assumed to be smooth, 𝑋𝑖

is also smooth, for each 𝑖. Let 𝜋∶ 𝑋𝑘𝑡
→ 𝑋 be the natural projection. Define

Ω̃𝝉 ∶=
{(

𝑥, 𝑉1⊆⋯⊆𝑉𝑘𝑡

)
∈ 𝑋𝑘𝑡

∶ 𝑉𝑖 ⊆ ker
(
𝐸𝑝′

𝑖
→ 𝐹𝑞′

𝑖

)|||𝑥 for all 𝑖
}

with natural inclusion 𝜄 ∶ Ω̃𝝉 ↪ 𝑋𝑘𝑡
. (We study a quotient Ω̃ → Ω in § 6, hence the use of the tilde

here.) The restriction 𝜙 of 𝜋 to Ω̃𝝉 is a resolution of singularities as in Kempf–Laksov [30]. One
has a commutative diagram

and the fiber of 𝜙 over a point 𝑥 in𝑊𝝉 is{(
𝑉1⊆⋯⊆𝑉𝑘𝑡

)
∈ 𝜋−1(𝑥) ∶ 𝑉𝑖 ⊆ ker

(
𝐸𝑝′

𝑖
→ 𝐹𝑞′

𝑖

)|||𝑥 for all 𝑖
}
.

Note that since (𝝉′)′ = 𝝉′, one has Ω̃𝝉 = Ω̃𝝉′ by definition.
In general, the locus Ω̃𝝉 is not the minimal resolution of 𝑊𝝉. The minimal resolution of 𝑊𝝉

is given by the variety parametrizing flags 𝑉𝑘1
⊆⋯⊆𝑉𝑘𝑡

such that rank(𝑉𝑘𝑖
) = 𝑘𝑖 and 𝑉𝑘𝑖

⊆

ker(𝐸𝑝𝑖 → 𝐹𝑞𝑖 ) for each 𝑖. There is a forgetful map from Ω̃𝝉 to theminimal resolution of𝑊𝝉 which
is birational. We find a closed formula precisely for the (push-forward of the) motivic Hirzebruch
class of Ω̃𝝉.
Define 𝝀 = 𝝀𝝉 as in §1.2, and bundles 𝐸(𝑖), 𝐹(𝑖), classes 𝑐(𝑖), and operators 𝑅𝑖 , 𝑇𝑦(𝑅𝑖), and 𝑇𝑦(𝑖)

as in § 1.3. Let 𝑐(𝑖)𝑗 be the term of degree 𝑗 in 𝑐(𝑖).

Theorem 3.1. With assumptions as in § 1.4, the class (𝜋𝜄)∗ 𝑇𝑦(Ω̃𝝉) is

1∏
(𝑖,𝑗)∈𝑆 𝑇𝑦

(
𝑅𝑗 − 𝑅𝑖

) ||||| 1

𝑇𝑦(𝑖)
𝑐(𝑖)𝜆𝑖+𝑗−𝑖

|||||1⩽𝑖,𝑗⩽𝑘𝑡 ∩ 𝑇𝑦(𝑋),
where 𝑆 ∶= {(𝑖, 𝑗) ∶ 𝑖 ⩽ 𝑘𝑎 < 𝑗, for some 𝑎} and 𝑇𝑦(𝑅𝑗 − 𝑅𝑖) ∶= 𝑄𝑦(𝑅𝑗 − 𝑅𝑖). Equivalently, this is

1∏
(𝑖,𝑗)∈𝑆 𝑇𝑦

(
𝑅𝑗 − 𝑅𝑖

) 𝑘𝑡∏
𝑖=1

1

𝑇𝑦(𝑖)
𝜄∗[𝑊𝝉] ∩ 𝑇𝑦(𝑋).
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The second expression in the statement follows from the first since

(𝜋𝜄)∗
[
Ω̃𝝉

]
= 𝜄∗[𝑊𝝉] =

|||𝑐𝜆𝑖+𝑗−𝑖(𝑖)|||1⩽𝑖,𝑗⩽𝑘𝑡 ∈ 𝐴∗(𝑋)

by [19]. For 𝑦 = −1, the class (𝜋𝜄)∗ 𝑐SM(Ω̃𝝉) admits a simpler expression, see § 4.

Remark 3.2. We emphasize that all raising operators in Theorem 3.1 apply to the Chern classes
in the expansion of [𝑊𝝉], and do not apply to the Chern classes contributed from the operators
𝑇𝑦(𝑖).

The first few terms in the expansion of the operator in Theorem 3.1 are given by multiplying

1

𝑇𝑦
(
𝑅𝑗 − 𝑅𝑖

) = 1 +
1

2
(𝑦 − 1)

(
𝑅𝑗 − 𝑅𝑖

)
+
1

6
(𝑦2 − 4𝑦 + 1)

(
𝑅𝑗 − 𝑅𝑖

)2
+ …

for (𝑖, 𝑗) ∈ 𝑆, and

1

𝑇𝑦(𝑖)
= 1 +

1

2
(𝑦 − 1)(ch0(𝑖)𝑅𝑖 + 𝑐1(𝑖))

−
1

12
(1 + 𝑦)2

(
ch0(𝑖)𝑅

2
𝑖
+ 2𝑐1(𝑖)𝑅𝑖 + ch2(𝑖)

)
+
1

4
(1 − 𝑦)2

((
ch0(𝑖) + 1

2

)
𝑅2
𝑖
+ (ch0(𝑖) + 1)𝑐1(𝑖)𝑅𝑖

+ 𝑐2(𝐸(𝑖) − 𝐹(𝑖))

)
+ …

where ch(𝑖) ∶= ch(𝐹(𝑖) − 𝐸(𝑖)), for each 𝑖.
As an example for the set 𝑆, for 𝒌 = (2, 5), one has

𝑆 = {(1, 3), (2, 3), (1, 4), (2, 4), (1, 5), (2, 5)}.

Remark 3.3. The definition of the locus Ω̃𝝉 requires flags of vector bundles finer than the ones
given in (1) precisely when 𝑘𝑖 > 𝑖 for some 𝑖. However, the expression in the statement only
depends on the two given flags in (1), and not on the choice of finer flags 𝐸𝑝′

1
⊆ ⋯ ⊆ 𝐸𝑝′

𝑘𝑡

and

𝐹𝑞′
1
↠ ⋯ ↠ 𝐹𝑞′

𝑘𝑡

used to define the locus Ω̃𝝉.
In fact, the flags in (1) can be extended to full flags of vector bundles after passing to an appro-

priate projective bundle over 𝑋. Namely, suppose that 𝑝𝑖 > 𝑝𝑖−1. To define a vector bundle 𝐸𝑝𝑖−1
of rank 𝑝𝑖 − 1 such that 𝐸𝑝𝑖−1 ⊂ 𝐸𝑝𝑖−1 ⊂ 𝐸𝑝𝑖 , consider the projective bundle

ℙ

(
𝐸𝑝𝑖∕𝐸𝑝𝑖−1

)
→ 𝑋 (8)

and set 𝐸𝑝𝑖−1 ∶= 𝑄, where𝑄∕𝐸𝑝𝑖−1 is the universal quotient bundle on ℙ(𝐸𝑝𝑖∕𝐸𝑝𝑖−1)—here again
we omit to denote when a bundle is pulled back for simplicity. Proceeding in this way, one con-
structs full flags 𝐸1 ⊆ 𝐸2 ⊆ ⋯ ⊆ 𝐸𝑝𝑡 and 𝐹𝑞1 ↠ ⋯ ↠ 𝐹2 ↠ 𝐹1 defined on a space 𝑋′ obtained as
a tower of projective bundles 𝑝∶ 𝑋′ → 𝑋.
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The theorem then applies to give the class

1∏
(𝑖,𝑗)∈𝑆 𝑇𝑦

(
𝑅𝑗 − 𝑅𝑖

) ||||| 1

𝑇𝑦(𝑖)
𝑐(𝑖)𝜆𝑖+𝑗−𝑖

|||||1⩽𝑖,𝑗⩽𝑘𝑡 ∩ 𝑇𝑦
(
𝑋′

)
∈ 𝐴∗

(
𝑋′

)
[𝑦]. (9)

Factoring 𝑝 as a composition of projective bundles,𝐴∗(𝑋) can be identified as a subring of𝐴∗(𝑋
′)

via 𝑝∗. After Lemma 2.2, the class (𝜋𝜄)∗ 𝑇𝑦(Ω̃𝝉) in 𝑝∗(𝐴∗(𝑋)[𝑦]) is recovered after quotienting (9)
by the motivic Hirzebruch class of the consecutive fibers (the fibers of 𝑝 are locally constant).
Indeed, this has the effect of replacing 𝑇𝑦(𝑋′)with 𝑝∗ 𝑇𝑦(𝑋) in (9), thus it recovers the formula in
the theorem.

To prove the theorem, we distinguish four cases, following the proof strategy from [8]. In the
basic and dominant cases (§§ 3.2–3.3), we immediately compute the motivic Hirzebruch class of
the corresponding degeneracy loci. In the main and general cases (§§ 3.4–3.5), where the degen-
eracy loci are singular, we compute here the motivic Hirzebruch class of the push-forward of the
resolution Ω̃ of the degeneracy loci. In the last two cases, the computation of the motivic Hirze-
bruch class of the actual degeneracy loci is completed as in Theorem 3 building on Theorem 3.1.

3.2 Basic case

Let 𝐿 be a line bundle and 𝐸 a vector bundle of rank 𝑒 on 𝑋.

Lemma 3.4. If the locus 𝜄 ∶ 𝑍 ↪ 𝑋 where a map 𝜑∶ 𝐿 → 𝐸 vanishes is smooth of codimension 𝑒,
its motivic Hirzebruch class is

𝜄∗ 𝑇𝑦(𝑍) =
1

𝑇𝑦(𝐸 ⊗ 𝑅)
𝑐𝑒(𝐸 − 𝐿) ∩ 𝑇𝑦(𝑋),

where 𝑅 is the raising operator acting on 𝑐(𝐸 − 𝐿).

Proof. From Lemma 2.2, we have

𝜄∗ 𝑇𝑦(𝑍) =
𝑐𝑒(𝐸 ⊗ 𝐿∨)

𝑇𝑦(𝐸 ⊗ 𝐿∨)
∩ 𝑇𝑦(𝑋).

The statement follows from the identities 𝑐𝑒(𝐸 ⊗ 𝐿∨) = 𝑐𝑒(𝐸 − 𝐿) and

(
𝑐1
(
𝐿∨

))𝑘
𝑐𝑖(𝐸 − 𝐿) = 𝑐𝑖+𝑘(𝐸 − 𝐿), for 𝑘 ⩾ 0 and 𝑖 ⩾ 𝑒 (10)

(see, for example, [8, p. 3]), so thatmultiplication by 𝑐1(𝐿∨)here coincideswith the operator𝑅. □

3.3 Dominant case

Consider maps of vector bundles on 𝑋

𝐸1 ↪ ⋯ ↪ 𝐸𝑡 → 𝐹𝑞1 ↠ ⋯ ↠ 𝐹𝑞𝑡
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with rank(𝐸𝑖) = 𝑖 and rank(𝐹𝑞𝑖 ) = 𝑞𝑖 . Here, we assume that 𝝉 = (𝒌, 𝒑, 𝒒) is a triple with 𝑘𝑖 = 𝑝𝑖 =

𝑖, for 1 ⩽ 𝑖 ⩽ 𝑡. Consider the degeneracy locus

𝑊𝝉 ∶=
{
𝑥 ∈ 𝑋 ∶

(
𝐸𝑖 → 𝐹𝑞𝑖

)|𝑥 is zero for all 𝑖}
with inclusion 𝜄 ∶ 𝑊𝝉 ↪ 𝑋. In this case, 𝑘𝑖 = 𝑖 and 𝜆𝑖 = 𝑞𝑖 , for each 𝑖.

Lemma 3.5. When𝑊𝝉 is smooth of dimension dim𝑋 − 𝝀𝝉, the class 𝜄∗ 𝑇𝑦(𝑊𝝉) is given by

|||||||
1

𝑇𝑦

(
𝑅𝑖 ⊗ 𝐹𝑞𝑖

) 𝑐𝜆𝑖+𝑗−𝑖

(
𝐹𝑞𝑖 − 𝐸𝑖

)|||||||1⩽𝑖,𝑗⩽𝑡
∩ 𝑇𝑦(𝑋).

Proof. From Lemma 3.4, it follows that

𝜄∗ 𝑇𝑦(𝑊𝝉) =

𝑡∏
𝑖=1

1

𝑇𝑦

(
𝐹𝑞𝑖 ⊗ (𝐸𝑖∕𝐸𝑖−1)

∨
) 𝑐𝜆𝑖

(
𝐹𝑞𝑖 − 𝐸𝑖∕𝐸𝑖−1

)
∩ 𝑇𝑦(𝑋).

As in (10), one has that 𝑐1((𝐸𝑖∕𝐸𝑖−1)∨) acts as 𝑅𝑖 on 𝑐𝜆𝑖 (𝐹𝑞𝑖 − 𝐸𝑖∕𝐸𝑖−1). By means of the identity

𝑡∏
𝑖=1

𝑐𝜆𝑖

(
𝐹𝑞𝑖 − 𝐸𝑖∕𝐸𝑖−1

)
=
||||𝑐𝜆𝑖+𝑗−𝑖

(
𝐹𝑞𝑖 − 𝐸𝑖

)||||1⩽𝑖,𝑗⩽𝑡, (11)

valid as in [8, §1.2], the statement follows. □

3.4 Main case

Consider maps of vector bundles on 𝑋

𝐸𝑝1 ↪ ⋯ ↪ 𝐸𝑝𝑡 → 𝐹𝑞1 ↠ ⋯ ↠ 𝐹𝑞𝑡

with rank(𝐸𝑝𝑖 ) = 𝑝𝑖 and rank(𝐹𝑞𝑖 ) = 𝑞𝑖 . Here, we assume that 𝝉 = (𝒌, 𝒑, 𝒒) is a triplewhere 𝑘𝑖 = 𝑖,
for 1 ⩽ 𝑖 ⩽ 𝑡, and 𝑞1 − 𝑝1 + 1 > ⋯ > 𝑞𝑡 − 𝑝𝑡 + 𝑡. In particular, the triple 𝝉 is essential and 𝝉 = 𝝉′

(notation as in § 1.1). We would like to compute the motivic Hirzebruch class of the locus

𝑊𝝉 ∶=
{
𝑥 ∈ 𝑋 ∶ dimker

(
𝐸𝑝𝑖 → 𝐹𝑞𝑖

)|𝑥 ⩾ 𝑖
}
.

Instead, we compute here the motivic Hirzebruch class of the resolution of𝑊𝝉; this will be used
in § 5 to obtain the motivic Hirzebruch class of𝑊𝝉.
Consider the following sequence of projective bundles

𝑋 =∶ 𝑋0

𝜋1
←

 ℙ

(
𝐸𝑝1

)
=∶ 𝑋1

𝜋2
←

 ℙ

(
𝐸𝑝2∕𝕊1

)
=∶ 𝑋2⋯

𝜋𝑡
←

 ℙ

(
𝐸𝑝𝑡∕𝕊𝑡−1

)
=∶ 𝑋𝑡,
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where 𝕊𝑖∕𝕊𝑖−1 is the tautological line bundle on 𝑋𝑖 . The variety 𝑋𝑡 here parametrizes flags of sub-
bundles𝑉1 ⊂ ⋯ ⊂ 𝑉𝑡 with rank(𝑉𝑖) = 𝑖 and𝑉𝑖 ⊆ 𝐸𝑝𝑖 . Since𝑋 is assumed to be smooth,𝑋𝑖 is also
smooth, for each 𝑖. Define

Ω̃𝝉 ∶=
{
(𝑥, 𝑉1 ⊂ ⋯ ⊂ 𝑉𝑡) ∈ 𝑋𝑡 ∶ 𝑉𝑖 ⊆ ker

(
𝐸𝑝𝑖 → 𝐹𝑞𝑖

)|𝑥 for all 𝑖}
with natural maps 𝜄 ∶ Ω̃𝝉 ↪ 𝑋𝑡 and 𝜋∶ 𝑋𝑡 → 𝑋.

Proposition 3.6. With assumptions as in § 1.4, the class (𝜋𝜄)∗ 𝑇𝑦(Ω̃𝝉) is

1∏
𝑖<𝑗 𝑇𝑦

(
𝑅𝑗 − 𝑅𝑖

) |||||||
1

𝑇𝑦

(
𝑅𝑖 ⊗

(
𝐹𝑞𝑖 − 𝐸𝑝𝑖

)) 𝑐𝜆𝑖+𝑗−𝑖

(
𝐹𝑞𝑖 − 𝐸𝑝𝑖

)|||||||1⩽𝑖,𝑗⩽𝑡
∩ 𝑇𝑦(𝑋).

Equivalently, this is

1∏
𝑖<𝑗 𝑇𝑦

(
𝑅𝑗 − 𝑅𝑖

) 𝑡∏
𝑖=1

1

𝑇𝑦

(
𝑅𝑖 ⊗

(
𝐹𝑞𝑖 − 𝐸𝑝𝑖

)) [𝑊𝝉] ∩ 𝑇𝑦(𝑋).

Note that for 𝒌 = (1, … , 𝑡), one has 𝐸(𝑖) = 𝐸𝑝𝑖 , 𝐹(𝑖) = 𝐹𝑞𝑖 , and 𝑆 = {(𝑖, 𝑗) ∶ 𝑖 < 𝑗}, hence the
formula in Theorem 3.1 specializes to the one in Proposition 3.6.

Proof. From Lemma 2.3, we have

𝑇𝑦(𝑋𝑖) = 𝑇𝑦

(
(𝕊𝑖∕𝕊𝑖−1)

∨ ⊗ 𝐸𝑝𝑖∕𝕊𝑖

)
∩ 𝜋∗

𝑖
𝑇𝑦(𝑋𝑖−1).

Combining this with the basic case, one has

𝜄∗ 𝑇𝑦
(
Ω̃𝝉

)
=

𝑡∏
𝑖=1

𝑇𝑦

(
(𝕊𝑖∕𝕊𝑖−1)

∨ ⊗ 𝐸𝑝𝑖∕𝕊𝑖

)
𝑇𝑦

(
(𝕊𝑖∕𝕊𝑖−1)

∨ ⊗ 𝐹𝑞𝑖

) 𝑐𝑞𝑖

(
𝐹𝑞𝑖 − 𝕊𝑖∕𝕊𝑖−1

)
∩ 𝜋∗𝑇𝑦(𝑋).

As in (10), one has that 𝑐1((𝕊𝑖∕𝕊𝑖−1)∨) acts as 𝑅𝑖 on 𝑐𝑞𝑖 (𝐹𝑞𝑖 − 𝕊𝑖∕𝕊𝑖−1). The statement follows since
one has

𝑇𝑦(𝑅𝑖 ⊗ 𝕊𝑖) = 𝑇𝑦
(
𝑅𝑖 − 𝑐1

(
𝕊∨
1

))
⋯𝑇𝑦

(
𝑅𝑖 − 𝑐1

(
(𝕊𝑖∕𝕊𝑖−1)

∨))
= 𝑇𝑦(𝑅𝑖 − 𝑅1)⋯𝑇𝑦(𝑅𝑖 − 𝑅𝑖−1),

and
𝑡∏

𝑖=1

𝑐𝑞𝑖

(
𝐹𝑞𝑖 − 𝕊𝑖∕𝕊𝑖−1

)
=
||||𝑐𝑞𝑖+𝑗−𝑖

(
𝐹𝑞𝑖 − 𝕊𝑖

)||||1⩽𝑖,𝑗⩽𝑡
as in (11), and

𝜋∗
||||𝑐𝑞𝑖+𝑗−𝑖

(
𝐹𝑞𝑖 − 𝕊𝑖

)||||1⩽𝑖,𝑗⩽𝑡 = ||||𝑐𝜆𝑖+𝑗−𝑖
(
𝐹𝑞𝑖 − 𝐸𝑝𝑖

)||||1⩽𝑖,𝑗⩽𝑡
as in [8, §1.3]. □
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3.5 General case

We consider here the general case of Theorem 3.1 and thus complete its proof.

Proof of Theorem 3.1. After § 1.1.1, we can restrict to the case of essential triples 𝝉 = (𝒌, 𝒑, 𝒒).
Indeed, the formula in the statement remains invariant after replacing a triple 𝝉 = (𝒌, 𝒑, 𝒒) with
𝝉 = (𝒌, 𝒑, 𝒒) such that 𝝉 is essential and𝑊𝝉 = 𝑊𝝉, as in § 1.1.1, and thus Ω̃𝝉 ≅ Ω̃𝝉.
The case when 𝒌 = (1, 2, … , 𝑡) is treated by Proposition 3.6. Otherwise, to define Ω̃𝝉, the triple

𝝉 is inflated to a triple 𝝉′ = (𝒌′, 𝒑′, 𝒒′) such that the sequences 𝒌′, 𝒑′, and 𝒒′ are of length 𝑘𝑡 with
𝒌′ = (1, 2, … , 𝑘𝑡). One has 𝝀𝝉 = 𝝀𝝉′ and Ω̃𝝉 = Ω̃𝝉′ by definition. We can thus apply Proposition 3.6
to compute (𝜋𝜄)∗ 𝑇𝑦(Ω̃𝝉′ )with respect to the flag 𝐸𝑝′

1
⊆ ⋯ ⊆ 𝐸𝑝′

𝑘𝑡

refining 𝐸𝑝1 ⊆ ⋯ ⊆ 𝐸𝑝𝑡 , and the
flag 𝐹𝑞′

1
↠ ⋯ ↠ 𝐹𝑞′

𝑘𝑡

refining 𝐹𝑞1 ↠ ⋯ ↠ 𝐹𝑞𝑡 . After Remark 3.3, we can assume that such finer

flags exist on 𝑋. Thus from Proposition 3.6, the class (𝜋𝜄)∗ 𝑇𝑦(Ω̃𝝉′ ) is

1∏
𝑖<𝑗 𝑇𝑦

(
𝑅𝑗 − 𝑅𝑖

) |||||||
1

𝑇𝑦

(
𝑅𝑖 ⊗

(
𝐹𝑞′

𝑖
− 𝐸𝑝′

𝑖

)) 𝑐𝜆𝑖+𝑗−𝑖

(
𝐹𝑞′

𝑖
− 𝐸𝑝′

𝑖

)|||||||1⩽𝑖,𝑗⩽𝑘𝑡
∩ 𝑇𝑦(𝑋).

It remains to verify that this formula is equivalent to the formula in the statement.
As in [8, §1.4] (see also [5, §1]), one has

|||𝑐(𝑖)𝜆𝑖+𝑗−𝑖|||1⩽𝑖,𝑗⩽𝑘𝑡 = |||𝑐𝜆𝑖+𝑗−𝑖(𝐹𝑞′𝑖 − 𝐸𝑝′
𝑖
)
|||1⩽𝑖,𝑗⩽𝑘𝑡 . (12)

Indeed, from the definition of 𝑐(𝑖) (see § 1.3), the entries of the two determinants in (12) do not
match, but the determinants do. Furthermore, fix 𝑖 with 1 ⩽ 𝑖 ⩽ 𝑘𝑡. One has 𝑘𝑎−1 < 𝑖 ⩽ 𝑘𝑎 for
some 𝑎. We claim that∏

𝑗∶𝑗>𝑘𝑎

1

𝑇𝑦
(
𝑅𝑗 − 𝑅𝑖

) ⋅
1

𝑇𝑦(𝑖)
=

∏
𝑗∶𝑗>𝑖

1

𝑇𝑦
(
𝑅𝑗 − 𝑅𝑖

) ⋅
1

𝑇𝑦

(
𝑅𝑖 ⊗

(
𝐹𝑞′

𝑖
− 𝐸𝑝′

𝑖

)) (13)

as operators on (12). Recall that𝑇𝑦(𝑖) ∶= 𝑇𝑦(𝑅𝑖 ⊗ (𝐹(𝑖) − 𝐸(𝑖))), where𝐸(𝑖) = 𝐸𝑝𝑎 and𝐹(𝑖) = 𝐹𝑞𝑎 ,
by definition (§ 1.3). Assume that 𝑞′

𝑖
= 𝑞𝑎. Then one has

𝑞′
𝑖
= 𝑞′

𝑖+1
= ⋯ = 𝑞′

𝑘𝑎
= 𝑞𝑎 and

(
𝑝′
𝑖
, 𝑝′

𝑖+1
, … , 𝑝′

𝑘𝑎

)
= (𝑝𝑎 − 𝑘𝑎 + 𝑖, … , 𝑝𝑎 − 1, 𝑝𝑎)

by construction. It follows that

1

𝑇𝑦(𝑖)
=

1

𝑇𝑦

(
𝑅𝑖 ⊗

(
𝐹𝑞′

𝑖
− 𝐸𝑝′

𝑘𝑎

)) =

𝑇𝑦

(
𝑅𝑖 ⊗

(
𝐸𝑝′

𝑘𝑎

∕𝐸𝑝′
𝑖

))
𝑇𝑦

(
𝑅𝑖 ⊗

(
𝐹𝑞′

𝑖
− 𝐸𝑝′

𝑖

)) .
The second equality follows from themultiplicativity of 𝑇𝑦 on exact sequences. Furthermore, one
has

𝑇𝑦

(
𝐸𝑝′

𝑘𝑎

∕𝐸𝑝′
𝑖

)
=

∏
𝑗∶𝑖<𝑗⩽𝑘𝑎

𝑇𝑦

(
𝑐1

(
𝐸𝑝′

𝑗
∕𝐸𝑝′

𝑗−1

))
=

∏
𝑗∶𝑖<𝑗⩽𝑘𝑎

𝑇𝑦
(
−𝑅𝑗

)



1806 ANDERSON et al.

as operators on (12). The second equality follows from (10): for 𝑗 such that 𝑖 < 𝑗 ⩽ 𝑘𝑎, the indices
of the Chern class 𝑐(𝐹𝑞′

𝑗
− 𝐸𝑝′

𝑗
) = 𝑐(𝐹𝑞′

𝑗
− 𝐸𝑝′

𝑗−1
− 𝐸𝑝′

𝑗
∕𝐸𝑝′

𝑗−1
) in the 𝑗th row of the right-hand side

of (12) are at least

𝜆𝑗 + 1 − 𝑗 = 𝑞′
𝑗
− 𝑝′

𝑗
+ 1 = 𝑞′

𝑗
− 𝑝′

𝑗−1
= rank

(
𝐹𝑞′

𝑗
− 𝐸𝑝′

𝑗−1

)
,

hence from (10), 𝑐1(𝐸𝑝′
𝑗
∕𝐸𝑝′

𝑗−1
) acts as the operator −𝑅𝑗 on (12). Then, one has

𝑇𝑦

(
𝑅𝑖 ⊗

(
𝐸𝑝′

𝑘𝑎

∕𝐸𝑝′
𝑖

))
=

∏
𝑗∶𝑖<𝑗⩽𝑘𝑎

𝑇𝑦

(
𝑅𝑖 ⊗ 𝑐1

(
𝐸𝑝′

𝑗
∕𝐸𝑝′

𝑗−1

))
=

∏
𝑗∶𝑖<𝑗⩽𝑘𝑎

𝑇𝑦
(
𝑅𝑖 − 𝑅𝑗

)
as operators on (12). It follows that

1

𝑇𝑦(𝑖)
=

∏
𝑗∶𝑖<𝑗⩽𝑘𝑎

1

𝑇𝑦
(
𝑅𝑗 − 𝑅𝑖

) ⋅
1

𝑇𝑦

(
𝑅𝑖 ⊗

(
𝐹𝑞′

𝑖
− 𝐸𝑝′

𝑖

))
as operators on (12), whence the claim (13). When 𝑞′

𝑖
< 𝑞𝑎, then necessarily 𝑝𝑎 = 𝑝′

𝑖
, and this case

is treated similarly. We thus conclude that the formula for (𝜋𝜄)∗ 𝑇𝑦(Ω̃𝝉′ ) from Proposition 3.6 is
equivalent to the formula in the statement. □

4 CSM CLASSES OF A RESOLUTION OF VEXILLARY
DEGENERACY LOCI

In the case of the CSM class, the results of the previous section simplify as follows. For a triple 𝝉,
define 𝝀 = 𝝀𝝉 as in §1.2, and bundles 𝐸(𝑖), 𝐹(𝑖), classes 𝑐(𝑖), and operators 𝑅𝑖 and 𝑇𝑦(𝑖) as in § 1.3.
Let 𝑐(𝑖)𝑗 be the term of degree 𝑗 in 𝑐(𝑖), and given a variable 𝑡, define 𝑐𝑡(𝑖) ∶=

∑
𝑗⩾0 𝑐(𝑖)𝑗 𝑡

𝑗 . We use
below the virtual rank ch(𝑖)0 = rank(𝐹(𝑖) − 𝐸(𝑖)).

Theorem 4.1. With assumptions as in § 1.4, the class (𝜋𝜄)∗ 𝑐SM(Ω̃𝝉) is given by

∏
(𝑖,𝑗)∈𝑆

1

1 + 𝑅𝑗 − 𝑅𝑖

|||||||
(1 + 𝑅𝑖)

−ch(𝑖)0

𝑐 1

1+𝑅𝑖

(𝑖)
𝑐(𝑖)𝜆𝑖+𝑗−𝑖

|||||||1⩽𝑖,𝑗⩽𝑘𝑡
∩ 𝑐SM(𝑋),

where 𝑆 ∶= {(𝑖, 𝑗) ∶ 𝑖 ⩽ 𝑘𝑎 < 𝑗 for some 𝑎}. Equivalently, this is

∏
(𝑖,𝑗)∈𝑆

1

1 + 𝑅𝑗 − 𝑅𝑖

𝑡∏
𝑖=1

(1 + 𝑅𝑖)
−ch(𝑖)0

𝑐 1
1+𝑅𝑖

(𝑖)
[𝑊𝝉] ∩ 𝑐SM(𝑋).

We emphasize that in the above formula all raising operators apply to the Chern classes coming
from the expressions of type 𝑐(𝑖)𝜆𝑖+𝑗−𝑖 in the expansion of [𝑊𝝉], and do not apply to the Chern
classes contributed from the terms 𝑐 1

1+𝑅𝑖

(𝑖).
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The first few terms in the expansion of the operator in Theorem 4.1 are given by multiplying

1

1 + 𝑅𝑗 − 𝑅𝑖
= 1 − (𝑅𝑗 − 𝑅𝑖) + (𝑅𝑗 − 𝑅𝑖)

2 + …

for (𝑖, 𝑗) ∈ 𝑆, and

1

𝑐 1

1+𝑅𝑖

(𝑖)
= 1 −

𝑐(𝑖)1
1 + 𝑅𝑖

+
(
𝑐(𝑖)21 − 𝑐(𝑖)2

)( 1

1 + 𝑅𝑖

)2

+ …

= 1 − 𝑐(𝑖)1 + 𝑐(𝑖)1𝑅𝑖 + 𝑐(𝑖)21 − 𝑐(𝑖)2 +⋯

for each 𝑖, and

(1 + 𝑅𝑖)
−ch(𝑖)0 = 1 − ch(𝑖)0𝑅𝑖 +

−ch(𝑖)0(−ch(𝑖)0 − 1)

2
𝑅2
𝑖
+⋯

for each 𝑖.
To show Theorem 4.1, we use the following technical lemma:

Lemma 4.2. Let 𝐿 be a line bundle and 𝐸 a virtual vector bundle of virtual rank 𝑒. One has

𝑐(𝐸 ⊗ 𝐿) = (1 + 𝑐1(𝐿))
𝑒𝑐 1

1+𝑐1(𝐿)

(𝐸).

Here, 𝑐𝑡(𝐸) ∶=
∑

𝑖⩾0 𝑐𝑖(𝐸) 𝑡
𝑖 . The casewhen𝐸 is a vector bundle is [20, Example 3.2.2]. For a virtual

vector bundle, the argument is similar.

Proof of Theorem 4.1. Specializing Theorem 3.1 at 𝑦 = −1, we have that the class (𝜋𝜄)∗ 𝑐SM(Ω̃𝝉) is
given by

∏
(𝑖,𝑗)∈𝑆

1

1 + 𝑅𝑗 − 𝑅𝑖

||||| 1

𝑐(𝑅𝑖 ⊗ (𝐹(𝑖) − 𝐸(𝑖)))
𝑐(𝑖)𝜆𝑖+𝑗−𝑖

|||||1⩽𝑖,𝑗⩽𝑘𝑡 ∩ 𝑐SM(𝑋),
where 𝑐(𝑅𝑖 ⊗ (𝐹(𝑖) − 𝐸(𝑖))) ∶= 𝑇−1(𝑖) is the specialization at 𝑦 = −1 of the operator 𝑇𝑦(𝑖) from
§ 1.3. The virtual bundle 𝐹(𝑖) − 𝐸(𝑖) has virtual rank equal to ch(𝑖)0 = rank(𝐹(𝑖)) − rank(𝐸(𝑖)).
Applying Lemma 4.2, we have

𝑐(𝑅𝑖 ⊗ (𝐹(𝑖) − 𝐸(𝑖))) = (1 + 𝑅𝑖)
ch(𝑖)0𝑐 1

1+𝑅𝑖

(𝑖),

hence the statement. □

5 MOTIVIC CLASSES OF VEXILLARY DEGENERACY LOCI

For a triple 𝝉, recall the inflated triple 𝝉′ from § 1.1.2. The aim of this section is to prove Theorem 2,
here restated:
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Theorem 5.1. For a triple 𝝉 = (𝒌, 𝒑, 𝒒) and with assumptions as in § 1.4, one has

(𝜋𝜄)∗ 𝑇𝑦
(
Ω̃𝝉

)
=
∑
𝒌+

(−𝑦)|𝒌+|−|𝒌′| 𝜄∗ 𝑇𝑦(𝑊𝝉+),

where 𝝉+ = (𝒌+, 𝒑′, 𝒒′) and the sum is over the set of weakly increasing sequences 𝒌+ ⩾ 𝒌′ =

(1, … , 𝑘𝑡).

5.1 The stratification

The degeneracy locus𝑊𝝉 is stratified by the loci𝑊◦
𝝉+

⊆ 𝑊𝝉 defined in (3) with 𝝉+ = (𝒌+, 𝒑′, 𝒒′),
for weakly increasing sequences 𝒌+ ⩾ 𝒌′. After § 1.1.3, we set 𝑊𝝉+ empty, unless 𝝀𝝉+ is weakly
decreasing. The codimension of𝑊𝝉+ in𝑊𝝉 is |𝝀𝝉+ | − |𝝀𝝉|. There is no such stratum of codimen-
sion one in𝑊𝝉.
Recall the variety Ω̃𝝉 from § 3, with the following diagram

The fiber of 𝜙 over a point 𝑥 in𝑊𝝉 is{
(𝑉1⊂⋯⊂𝑉𝑘𝑡

) ∈ 𝜋−1(𝑥) ∶ 𝑉𝑖 ⊆ ker
(
𝐸𝑝′

𝑖
→ 𝐹𝑞′

𝑖

)|||𝑥 for all 𝑖
}
.

The map 𝜙 is locally trivial on each locally closed stratum𝑊◦
𝝉+

⊆ 𝑊𝝉.

Proof of Theorem 5.1. The collection of loci𝑊◦
𝝉+
from (3), with 𝝉+ = (𝒌+, 𝒑′, 𝒒′) for𝒌+ ⩾ 𝒌′, gives a

stratification of the locus𝑊𝝉 such that 𝜙 is locally trivial on each𝑊◦
𝝉+
. Given 𝒌+ ⩾ 𝒌′, the generic

fiber of 𝜙 on 𝑊𝝉+ is isomorphic to the Schubert variety associated to a partition 𝝂+ assigned to
𝒌+:

𝑆𝝂+ ∶=
{
(𝑉1⊆⋯⊆𝑉𝑘𝑡

) ∈ Fl(1, … , 𝑘𝑡; ℂ
𝑝𝑡 ) ∶ 𝑉𝑖 ⊆ 𝐾𝑘+

𝑖
for all 𝑖

}
,

where 𝐾0 ⊂⋯⊂ 𝐾𝑝𝑡
is a fixed complete flag of vector spaces inside ℂ𝑝𝑡 with dim(𝐾𝑖) = 𝑖. The

vector spaces 𝐾𝑘+
𝑖
are meant to be identified with ker(𝐸𝑝′

𝑖
→ 𝐹𝑞′

𝑖
)|𝑥 for a generic point 𝑥 in𝑊𝝉+ .

If 𝒌+ is strictly increasing, the partition 𝝂+ is defined as

𝝂+ ∶= (𝑘+
𝑘𝑡
− 𝑘𝑡, … , 𝑘+

1
− 1).

In general, for 𝒌+ not necessarily strictly increasing, a coordinate computation shows that the
Schubert cell 𝑆◦

𝝂+
in 𝑆𝝂+ is isomorphic to the affine space 𝔸|𝒌+|−|𝒌′|.

As in Lemma 2.4, one has

(𝜋𝜄)∗ 𝑇𝑦
(
Ω̃𝝉

)
=
∑
𝒌+

𝑑(𝒌+) 𝜄∗ 𝑇𝑦(𝑊𝝉+)
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with 𝑑(𝒌+) = 𝜒𝑦(𝑆𝝂+) −
∑

𝒇 𝑑𝒇, where the sum is over the set of weakly increasing sequences
𝒇 such that 𝑊𝝓 ⊃ 𝑊𝝉+ for 𝝓 = (𝒇,𝒑′, 𝒒′), that is, 𝒇 < 𝒌+ and 𝝀𝝓 is weakly decreasing. Clearly
𝑑(𝒌′) = 1, and by recursion one finds that𝑑(𝒌+) is equal to theHirzebruch𝜒𝑦-genus of the Schubert
cell (𝑆𝝂+)◦. Since (𝑆𝝂+)◦ ≅ 𝔸|𝒌+|−|𝒌′|, one has 𝑑(𝒌+) = (−𝑦)|𝒌+|−|𝒌′| for each𝒌+ (as in Example 2.5),
hence the statement. □

Example 5.2. Consider the triple 𝝉 = (𝒌, 𝒑, 𝒒) where 𝒑 = (2, 3), 𝒒 = (3, 2), and 𝒌 = (1, 2). One
has

(𝜋𝜄)∗ 𝑇𝑦
(
Ω̃𝝉

)
= 𝜄∗ 𝑇𝑦

(
𝑊(1,2)

)
− 𝑦 𝜄∗ 𝑇𝑦

(
𝑊(2,2)

)
− 𝑦 𝜄∗ 𝑇𝑦

(
𝑊(1,3)

)
+ 𝑦2 𝜄∗ 𝑇𝑦

(
𝑊(2,3)

)
.

Here for simplicity, we use the notation 𝑊𝒌+ ∶= 𝑊𝝉+ . For each stratum, one has the following
configuration over its general point:

𝑊(1,2) ∶ dimKer(𝐸2 → 𝐹3) = 1 and dimKer(𝐸3 → 𝐹2) = 2

𝑊(2,2) ∶ dimKer(𝐸2 → 𝐹3) = 2 and dimKer(𝐸3 → 𝐹2) = 2

𝑊(1,3) ∶ dimKer(𝐸2 → 𝐹3) = 1 and dimKer(𝐸3 → 𝐹2) = 3

𝑊(2,3) ∶ dimKer(𝐸2 → 𝐹3) = 2 and dimKer(𝐸3 → 𝐹2) = 3.

5.2 Example: Schubert varieties in Grassmannians

The Schubert varieties of a Grassmannian are Grassmannian degeneracy loci for maps from the
tautological vector bundle to a flag of constant bundles. Our results apply to give the motivic
Hirzebruch class of the Schubert varieties in terms of the motivic Hirzebruch class of the Grass-
mannian. For instance, for 𝑋 = 𝐺2(ℂ

5), consider the Schubert variety 𝑆𝝀 associated to the par-
tition 𝝀 = (2, 1). This is the degeneracy locus 𝑊𝝉 corresponding to the triple 𝝉 = (𝒌, 𝒑, 𝒒) with
𝒌 = (1, 2),𝒑 = (2, 2), and 𝒒 = (3, 1). The stratification here consists of two strata: the stratumwith
𝒌+ = (1, 2) and the one with 𝒌+ = (2, 2). For 𝑦 = −1, Theorems 5.1 and 3.1 give

The last equality uses the formula for 𝑐SM(𝑋) from [1], and the resulting formula checks with the
CSM class computation in [1].

6 THE LOCUS𝛀𝝀 AND ITSMOTIVIC HIRZEBRUCH CLASS

We discuss here a setting which is particularly relevant in the study of pointed Brill–Noether vari-
eties (§ 7). Consider the following maps of vector bundles over a variety 𝑋:

𝐸𝑝
𝜑

→ 𝐹𝑞1 ↠ 𝐹𝑞2⋯ ↠ 𝐹𝑞𝑡 .
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The Grassmann degeneracy locus is

𝑊𝝀 ∶=
{
𝑥 ∈ 𝑋 ∶ dim ker(𝐸𝑝 → 𝐹𝑞𝑖 )|𝑥 ⩾ 𝑖 for all 𝑖

}
,

with partition 𝝀 = (𝜆1, … , 𝜆𝑡) from § 1.2 equal to 𝜆𝑖 ∶= 𝑞𝑖 − 𝑝 + 𝑖. The locus 𝑊𝝀 is the degen-
eracy locus 𝑊𝝉 corresponding to the triple 𝝉 = (𝒌, 𝒑, 𝒒) with 𝒌 = (1, … , 𝑡), 𝒑 = (𝑝,… , 𝑝), and
𝒒 = (𝑞1, … , 𝑞𝑡). Its motivic Hirzebruch class is computed by Theorems 5.1 and 3.1. Now consider
the Grassmannian bundle 𝐆𝐫(𝑡, 𝐸𝑝) on 𝑋 with tautological rank 𝑡 sub-bundle 𝕊, and define its
subvariety Ω𝝀 by the conditions

dimker(𝕊 → 𝐹𝑞𝑖 ) ⩾ 𝑖 for 1 ⩽ 𝑖 ⩽ 𝑡.

One has

and the fiber of 𝜙 over a point 𝑥 is{
𝑉 ∈ Gr

(
𝑡, 𝐸𝑝|𝑥) ∶ dim

(
𝑉 ∩ ker

(
𝐸𝑝 → 𝐹𝑞𝑖

)|𝑥) ⩾ 𝑖 for all 𝑖
}
. (14)

The aim of this section is to describe the (push-forward of the)motivicHirzebruch class ofΩ𝝀 in
terms of the motivic Hirzebruch class of loci of type𝑊𝝀. This is achieved in Proposition 6.4. The
(push-forward of the) motivic Hirzebruch class of Ω𝝀 then follows after applying Theorems 5.1
and 3.1 to compute the motivic Hirzebruch class of the loci𝑊𝝀.

6.1 The stratification

We start by describing a stratification of 𝑊𝝀 induced by the projection 𝜙∶ Ω𝝀 → 𝑊𝝀. Consider
the loci

𝑊𝜿
𝝀
∶=

{
𝑥 ∈ 𝑋 ∶ dim ker

(
𝐸𝑝 → 𝐹𝑞𝑖

)|𝑥 ⩾ 𝑖 + 𝜅𝑖 for all 𝑖
}
⊆ 𝑊𝝀,

with 𝜿 = (0 ⩽ 𝜅1 ⩽ ⋯ ⩽ 𝜅𝑡) such that 𝝀 + 𝜿 is a partition. The map 𝜙 is locally trivial precisely on
the locally closed strata

(
𝑊𝜿

𝝀

)◦
∶=

{
𝑥 ∈ 𝑋 ∶ dim ker

(
𝐸𝑝 → 𝐹𝑞𝑖

)|𝑥 = 𝑖 + 𝜅𝑖 for all 𝑖
}
⊆ 𝑊𝜿

𝝀
.

The fiber of 𝜙 over a general point 𝑥 in𝑊𝜿
𝝀
from (14) coincides with the Schubert variety 𝑆𝜿𝑐 in

Gr(𝑡, 𝐸𝑝|𝑥) associated with the partition 𝜿𝑐 complementary to 𝜿 inside the 𝑡 × (𝑝 − 𝑡) rectangle.
For instance, when 𝑡 = 3, 𝑝 = 7, and 𝜿 = (1, 1, 2), one has 𝜿𝑐 = (3, 3, 2).
In the following, it is convenient to identify a weakly increasing sequence 𝜿 with the shape

consisting of 𝜅𝑖 boxes in the 𝑖th row, and note that the componentwise order is compatible with
containment of shapes.
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Remark 6.1. Fix 𝜿 = (0 ⩽ 𝜅1 ⩽ ⋯ ⩽ 𝜅𝑡) such that 𝝀 + 𝜿 is a partition.We emphasize that the parti-
tion in § 1.2 assigned to the degeneracy locus𝑊𝜿

𝝀
is not 𝝀 + 𝜿, but rather the partition with 1 + 𝜅1

parts equal to 𝜆1 + 𝜅1, and 1 + 𝜅2 − 𝜅1 parts equal to 𝜆2 + 𝜅2, etc.

6.2 The sequence 𝜿𝐫𝐞𝐝

Fix a partition 𝝀 = (𝜆1, … , 𝜆𝑡) and 𝜿 = (0 ⩽ 𝜅1 ⩽ ⋯ ⩽ 𝜅𝑡) such that 𝝀 + 𝜿 is weakly decreasing.

Definition 6.2. Given 𝝀 and 𝜿 as above, the sequence

𝜿red = (0 ⩽ 𝜅red
1

⩽ ⋯ ⩽ 𝜅red𝑡 )

is defined as the minimal sequence in componentwise order with 𝜅red𝑡 = 𝜅𝑡 and

𝜅red
𝑖

= 𝜅𝑖 when 𝜅𝑖+1 + 𝜆𝑖+1 < 𝜅𝑖 + 𝜆𝑖 , for 𝑖 < 𝑡.

For instance, for 𝝀 = (4, 4, 1, 1) and 𝜿 = (1, 1, 3, 3) one has 𝜿red = (0, 1, 1, 3). See Example 6.7
for a graphical representation of some sequences 𝜿 and corresponding 𝜿red.

Lemma 6.3. Given 𝝀 and 𝜿 as above, 𝜿red is the smallest shape inside 𝜿 which is not contained in
any of the shapes 𝝐 < 𝜿 such that 𝝀 + 𝝐 is weakly decreasing.

Proof. We first prove that if 𝝐 contains 𝜿red and 𝝀 + 𝝐 is weakly decreasing, then 𝝐 = 𝜿. One has
necessarily 𝜖𝑡 = 𝜅𝑡. Next, fix 𝑖 < 𝑡 such that 𝜅red

𝑖
< 𝜅𝑖 , and assume that we have already settled that

𝜖𝑗 = 𝜅𝑗 for 𝑗 > 𝑖. By definition, since 𝜅red
𝑖

< 𝜅𝑖 , one has 𝜅𝑖+1 + 𝜆𝑖+1 = 𝜅𝑖 + 𝜆𝑖 . Since we want that
𝜆𝑖 + 𝜖𝑖 ⩾ 𝜆𝑖+1 + 𝜖𝑖+1 = 𝜆𝑖+1 + 𝜅𝑖+1, then necessarily 𝜖𝑖 = 𝜅𝑖 .
Finally, we show that any smaller shape 𝜿′ < 𝜿red is contained inside some 𝝐 < 𝜿 such that

𝝀 + 𝝐 is weakly decreasing. If 𝜅′𝑡 < 𝜅𝑡 = 𝜅red𝑡 , then 𝜿′ is contained inside

𝝐 = (min{𝜅1, 𝜅𝑡 − 1}, … ,min{𝜅𝑡−1, 𝜅𝑡 − 1}, 𝜅𝑡 − 1).

Next, fix 𝑖 < 𝑡 such that 𝜅red
𝑖

> 𝜅red
𝑖−1
, or 𝑖 = 1 and 𝜅1 > 0. By the definition of 𝜿red, this implies that

𝜅red
𝑖

= 𝜅𝑖 and 𝜅𝑖+1 + 𝜆𝑖+1 < 𝜅𝑖 + 𝜆𝑖 . Consider 𝜿′ defined as 𝜅′𝑖 = 𝜅red
𝑖

− 1, and 𝜅′
𝑗
= 𝜅red

𝑗
for 𝑗 ≠ 𝑖.

Then 𝜿′ is contained inside

𝝐 = (min{𝜅1, 𝜅𝑖 − 1}, … ,min{𝜅𝑖−1, 𝜅𝑖 − 1}, 𝜅𝑖 − 1, 𝜅𝑖+1, … , 𝜅𝑡).

The condition 𝜅𝑖+1 + 𝜆𝑖+1 < 𝜅𝑖 + 𝜆𝑖 guarantees that 𝝀 + 𝝐 is weakly decreasing. □

6.3 The motivic Hirzebruch class of𝛀𝝀

Proposition 6.4. With assumptions as in § 1.4, one has

(𝜋𝜄)∗ 𝑇𝑦(Ω𝝀) =
∑
𝜿⩾0

𝑑𝜿 𝜄∗ 𝑇𝑦
(
𝑊𝜿

𝝀

)
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where the sum is over 𝜿 = (0 ⩽ 𝜅1 ⩽ ⋯ ⩽ 𝜅𝑡) such that 𝝀 + 𝜿 is weakly decreasing and

𝑑𝜿 ∶=
∑

𝜿′=(𝜅′
1
⩽⋯⩽𝜅′𝑡)

𝜿red⩽𝜿′⩽𝜿

(−𝑦)|𝜿′|. (15)

Example 6.5. When 𝑦 = −1, the topological Euler characteristic of the fibers (14) of 𝜙 and con-
sequently the coefficients 𝑑𝜿 are computed as follows.
For 𝜿 = (0 ⩽ 𝜅1 ⩽ ⋯ ⩽ 𝜅𝑙), the topological Euler characteristic of the Schubert variety 𝑆𝜿𝑐 in

Gr(𝑙, ℂ𝑝) associated with the partition complementary to 𝜿 inside the 𝑙 × (𝑝 − 𝑙) rectangle can be
computed as

𝜒(𝑆𝜿𝑐 ) = 𝑝(𝜿) ∶=
|||||
(
𝜅𝑙+1−𝑗 + 𝑙 − 𝑖 + 1

1 + 𝑗 − 𝑖

)|||||1⩽,𝑖,𝑗⩽𝑙. (16)

Indeed,𝜒(𝑆𝜿𝑐 ) coincideswith the number of partitions inside (𝜅𝑙, … , 𝜅1), or equivalently, the num-
ber of shapes inside the shape 𝜿. This equals the number of non-intersecting lattice paths

from the points (0, 0), (1, 0), … , (𝑙 − 1, 0)

to the points (1, 𝜅𝑙 + 𝑙 − 1), (2, 𝜅𝑙−1 + 𝑙 − 2), … , (𝑙, 𝜅1)

(see, for example, [26]). From the Gessel–Viennot formula [23], this number equals the above
𝑝(𝜿), hence the first equality in (16).
By definition (15), when 𝑦 = −1 the coefficient 𝑑𝜿 counts the number of shapes inside the shape

𝜿 and containing the shape 𝜿red, that is, the number of shapes in 𝜿 ⧵ 𝜿red. Now Lemma 6.3 implies
that 𝜿 ⧵ 𝜿red is a disjoint union of shorter weakly increasing sequences, say 𝜿(1), 𝜿(2), … . The num-
ber of shapes in 𝜿 ⧵ 𝜿red is equal to the product of the number of shapes inside each 𝜿(𝑖). It follows
that 𝑑𝜿 can be computed as the product of the quantities 𝑝(𝜿(𝑖)).
For instance,when𝝀 = (4, 4, 1, 1) and𝜿 = (1, 1, 3, 3), one has𝜿red = (0, 1, 1, 3), hence𝜿 ⧵ 𝜿red is

the disjoint union of the length one sequences (1) and (2) (see also how thewhite tiles representing
𝜿 ⧵ 𝜿red are indeed union of disjoint shapes in Example 6.7) and indeed 𝑑𝜿 = 𝑝((1)) ⋅ 𝑝((2)) =
2 ⋅ 3 = 6.

Example 6.6. When 𝜆1 = ⋯ = 𝜆𝑡, one has necessarily 𝜅1 = ⋯ = 𝜅𝑡, hencewe have 𝜿 = (𝜅, … , 𝜅).
For 𝜿 = (𝜅, … , 𝜅) =∶ 𝜅𝑡, one has 𝜿red = (0, … , 0, 𝜅) and thus 𝜿 ⧵ 𝜿red ≅ 𝜅𝑡−1. For 𝑦 = −𝑡2, the
right-hand side of (15) is 𝑡2|𝜿red|𝑃(𝜅,𝑡−1+𝜅)(𝑡), hence we have

𝑑𝜿 = 𝑡2𝜅𝑃(𝜅,𝑡−1+𝜅)(𝑡),

where 𝑃(𝜅,𝑡−1+𝜅)(𝑡) is the Poincaré polynomial of the Grassmannian Gr(𝜅, ℂ𝑡−1+𝜅). Since
𝑃(𝜅,𝑡−1+𝜅)(𝑡) is given by the 𝑡2-binomial coefficient

𝑃(𝜅,𝑡−1+𝜅)(𝑡) =

[
𝑡 − 1 + 𝜅

𝜅

]
𝑡2
∶=

∏𝑡−1+𝜅
𝑖=1

(
1 − 𝑡2𝑖

)
∏𝜅

𝑖=1

(
1 − 𝑡2𝑖

)∏𝑡−1
𝑖=1

(
1 − 𝑡2𝑖

) ,
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we have

(𝜋𝜄)∗ 𝑇𝑦(Ω𝝀) =
∑
𝜅⩾0

(−𝑦)𝜅
[
𝑡 − 1 + 𝜅

𝜅

]
−𝑦

𝜄∗ 𝑇𝑦
(
𝑊𝜿

𝝀

)
,

where 𝜿 = 𝜅𝑡. For 𝑦 = −1, the coefficients in the sum specialize to the binomial coefficients(𝑡−1+𝜅
𝜅

)
.

Example 6.7. When 𝝀 = (4, 4, 1, 1), one has that (𝜋𝜄)∗ 𝑇𝑦(Ω𝝀) equals

Here for simplicity, the shape 𝜿 with 𝜅𝑖 boxes in the 𝑖th row stands for 𝜄∗ 𝑇𝑦(𝑊𝜿
𝝀
). Inside each 𝜿,

the shape 𝜿red is shaded. Note how the complement of 𝜿red in each 𝜿 is a disjoint union of shapes.

Proof of Proposition 6.4. Write

(𝜋𝜄)∗𝑇𝑦(Ω𝝀) =
∑
𝜿⩾0

𝑑𝜿 𝜄∗ 𝑇𝑦
(
𝑊𝜿

𝝀

)
for some coefficients 𝑑𝜿 . One has𝑊𝝐

𝝀
⊃ 𝑊𝜿

𝝀
exactly when 𝝐 is contained inside 𝜿, that is, 𝜖𝑖 ⩽ 𝜅𝑖

for all 𝑖. From §6.1, the fiber of 𝜙 over a general point in𝑊𝜿
𝝀
is the Schubert variety 𝑆𝜿𝑐 in Gr(𝑡, ℂ𝑝)

associated with the partition 𝜿𝑐 complementary to 𝜿 inside the 𝑡 × (𝑝 − 𝑡) rectangle. Hence from
Lemma 2.4, we have

𝑑𝜿 = 𝜒𝑦(𝑆𝜿𝑐 ) −
∑
𝝐<𝜿

𝑑𝝐

where the sum is over 𝝐 such that 𝝀 + 𝝐 is weakly decreasing, and 𝜖𝑖 ⩽ 𝜅𝑖 for all 𝑖, with at least one
strict inequality.
The Schubert variety 𝑆𝜿𝑐 is the union of the Schubert cells corresponding to (weakly decreasing)

partitions contained inside (𝜅𝑡, … , 𝜅1), or equivalently, shapes inside the shape 𝜿. The sum∑
𝝐<𝜿

𝑑𝝐
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is the sum of the Hirzebruch 𝜒𝑦-genera of Schubert cells corresponding to shapes contained
inside some 𝝐 < 𝜿 such that 𝝀 + 𝝐 is weakly decreasing. From Lemma 6.3, it follows that 𝑑𝜿
is the sum of the Hirzebruch 𝜒𝑦-genera of Schubert cells corresponding to shapes contained
inside 𝜿 and containing 𝜿red. Since a Schubert cell corresponding to a shape 𝜿′ is isomor-
phic to the affine space 𝔸|𝜿′|

ℂ
, its Hirzebruch 𝜒𝑦-genus is (−𝑦)|𝜿′| (Example 2.5). The statement

follows. □

7 POINTED BRILL-NOETHER VARIETIES

For a smooth pointed curve (𝐶, 𝑃) and a sequence 𝒂 ∶ 0 ⩽ 𝑎0 < ⋯ < 𝑎𝑟 ⩽ 𝑑, the pointed Brill–
Noether variety of line bundles𝑊𝒂

𝑑
(𝐶, 𝑃) is defined as

𝑊𝒂
𝑑
(𝐶, 𝑃) ∶=

{
𝐿 ∈ Pic𝑑(𝐶) |ℎ0(𝐶, 𝐿 ⊗ O𝐶(−𝑎𝑖𝑃)) ⩾ 𝑟 + 1 − 𝑖 for all 𝑖

}
.

The pointed Brill–Noether variety of linear series 𝐺𝒂
𝑑
(𝐶, 𝑃) is defined as

𝐺𝒂
𝑑
(𝐶, 𝑃) ∶=

{
(𝐿, 𝑉)

||| 𝐿 ∈ Pic𝑑(𝐶), 𝑉 ⊆ 𝐻0(𝐶, 𝐿), dim(𝑉) = 𝑟 + 1, and

dim
(
𝑉 ∩ 𝐻0(𝐶, 𝐿 ⊗ O𝐶(−𝑎𝑖𝑃))

)
⩾ 𝑟 + 1 − 𝑖 for all 𝑖

}
.

The variety 𝑊𝒂
𝑑
(𝐶, 𝑃) has the structure of a Grassmannian degeneracy locus in Pic𝑑(𝐶),

and the variety 𝐺𝒂
𝑑
(𝐶, 𝑃) is of type Ω𝝀, as in § 6. We briefly review this in § 7.1, we verify

the assumptions from § 1.4 in § 7.2, and apply Theorems 5.1 and 3.1 to compute the motivic
Hirzebruch class of pointed Brill–Noether varieties in § 7.3. Finally, we conclude with some
examples.

7.1 The construction

Choose a positive integer 𝑛 large enough so that line bundles of degree 𝑑 + 𝑛 are non-special, that
is, 𝑛 ⩾ 2g − 1 − 𝑑. Fix a Poincaré line bundleL on 𝐶 × Pic𝑑(𝐶), normalized so thatL |{𝑃}×Pic𝑑(𝐶)
is trivial. Consider the following vector bundles on Pic𝑑(𝐶):

E ∶= (𝜋2)∗
(
L ⊗𝜋∗1O𝐶(𝑛𝑃)

)
,

F𝑖 ∶= (𝜋2)∗

(
L ⊗𝜋∗1O(𝑛+𝑎𝑟+1−𝑖)𝑃

)
for 1 ⩽ 𝑖 ⩽ 𝑟 + 1.

Here 𝜋1 and 𝜋2 are the projections from 𝐶 × Pic𝑑(𝐶) to 𝐶 and Pic𝑑(𝐶), respectively. One com-
putes

𝑝 ∶= rank(E ) = 𝑑 + 𝑛 − g + 1,

𝑞𝑖 ∶= rank(F𝑖) = 𝑛 + 𝑎𝑟+1−𝑖 for 1 ⩽ 𝑖 ⩽ 𝑟 + 1.
(17)
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There are natural maps

E → F1 ↠ F2⋯ ↠ F𝑟+1

and 𝑊𝒂
𝑑
(𝐶, 𝑃) is the Grassmannian degeneracy locus with partition 𝝀 = (𝜆1, … , 𝜆𝑟+1) from § 1.2

equal to

𝜆𝑖 ∶= g − 𝑑 + 𝑟 + 𝑎𝑟+1−𝑖 − (𝑟 + 1 − 𝑖) for 1 ⩽ 𝑖 ⩽ 𝑟 + 1. (18)

One has 𝑐(F𝑖) = 0 for all 𝑖, and all classes 𝑐(𝑖) from § 1.3 are equal to 𝑐 = 𝑐(−E ) = e𝜃 in
𝐻∗(Pic𝑑(𝐶)), where 𝜃 is the cohomology class of the theta divisor [9, §VIII]. Finally, note that
𝑇𝑦(Pic

𝑑(𝐶)) = 1, as Abelian varieties have trivial tangent bundles.

7.2 Dimension and singular locus

The one-pointed Brill–Noether Theorem [15, §1] says that for a general smooth pointed curve
(𝐶, 𝑃): (i) the varieties𝑊𝒂

𝑑
(𝐶, 𝑃) and 𝐺𝒂

𝑑
(𝐶, 𝑃) are non-empty if and only if g ⩾

∑𝑟
𝑖=0 max{0, g −

𝑑 + 𝑟 + 𝑎𝑖 − 𝑖}, and (ii) when non-empty, 𝐺𝒂
𝑑
(𝐶, 𝑃) has dimension equal to the one-pointed

Brill-Noether number 𝜌(g , 𝑟, 𝑑, 𝒂) ∶= g −
∑𝑟

𝑖=0(g − 𝑑 + 𝑟 + 𝑎𝑖 − 𝑖) = g − |𝝀|; the same holds for
𝑊𝒂

𝑑
(𝐶, 𝑃) when 𝜌(g , 𝑟, 𝑑, 𝒂) ⩽ g .
The proof in [15] uses degenerations to singular curves. However, explicit examples of smooth

pointed curves of any genus verifying the one-pointed Brill–Noether Theorem and defined over
ℚ were provided in [16].
Furthermore, the one-pointed Gieseker–Petri Theorem [13] characterizes the smooth locus of

𝐺𝒂
𝑑
(𝐶, 𝑃) for a general smooth pointed curve (𝐶, 𝑃), and implies that the singular locus of𝐺𝒂

𝑑
(𝐶, 𝑃)

is contained in the locus of linear series with excess vanishing at 𝑃. Since for 𝜌(g , 𝑟, 𝑑, 𝒂) ⩽ g the
forgetful map 𝜋∶ 𝐺𝒂

𝑑
(𝐶, 𝑃) → 𝑊𝒂

𝑑
(𝐶, 𝑃) is an isomorphism when restricted over the locus

𝑊𝒂
𝑑
(𝐶, 𝑃)◦ ∶=

{
𝐿 ∈ Pic𝑑(𝐶) |ℎ0(𝐶, 𝐿 ⊗ O𝐶(−𝑎𝑖𝑃)) = 𝑟 + 1 − 𝑖 for all 𝑖

}
⊆ 𝑊𝒂

𝑑
(𝐶, 𝑃)

and the smooth locus of 𝐺𝒂
𝑑
(𝐶, 𝑃) as described in [13] includes 𝜋−1(𝑊𝒂

𝑑
(𝐶, 𝑃)◦), it follows that

𝑊𝒂
𝑑
(𝐶, 𝑃)◦ is smooth for a general (𝐶, 𝑃) and 𝜌(g , 𝑟, 𝑑, 𝒂) ⩽ g .
The stratification of𝑊𝒂

𝑑
(𝐶, 𝑃) from§ 5.1 consists of stratawhose closures are themselves pointed

Brill–Noether varieties of line bundles inside Pic𝑑(𝐶). Namely, the strata are

𝑊𝒂+

𝑑
(𝐶, 𝑃) ∶=

{
𝐿 ∈ Pic𝑑(𝐶) |ℎ0(𝐶, 𝐿 ⊗ O𝐶(−𝑎𝑖𝑃)) ⩾ 𝑘+

𝑟+1−𝑖
for all 𝑖

}
(19)

for 𝒌+ ⩾ 𝒌 = (1, … , 𝑟 + 1). (Note that some of the conditions defining𝑊𝒂+

𝑑
(𝐶, 𝑃) may be redun-

dant.)
In particular, 𝑊𝒂

𝑑
(𝐶, 𝑃) satisfies the transversality assumption from § 1.4 for a general (𝐶, 𝑃)

and 𝜌(g , 𝑟, 𝑑, 𝒂) ⩽ g .
While in this paper we only treat the one-pointed case, these results are also known more gen-

erally for two-pointed Brill–Noether varieties with appropriate changes, see [13, 15, 33].
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7.3 Motivic Hirzebruch class of pointed Brill-Noether varieties

For the pointed Brill–Noether variety 𝑊𝒂
𝑑
(𝐶, 𝑃) with 𝜌(g , 𝑟, 𝑑, 𝒂) ⩽ g , the (push-forward of the)

motivic Hirzebruch class of its resolution from Theorem 3.1 equals

𝐴𝝀 ∶=

𝑟+1∏
𝑖=1

∏𝑝

𝑘=1
𝑄𝑦(𝛼𝑘 + 𝑅𝑖)∏𝑖−1

𝑗=1 𝑄𝑦(𝑅𝑖 − 𝑅𝑗)

(
𝑄𝑦(𝑅𝑖)

)−𝑞𝑖 |||𝑐𝜆𝑖+𝑗−𝑖|||1⩽𝑖,𝑗⩽𝑟+1 (20)

where 𝛼1, … , 𝛼𝑝 are the Chern roots of the vector bundle E . These satisfy

𝑝∑
𝑘=1

𝛼𝑘 = −𝜃 and
𝑝∑

𝑘=1

𝛼𝑖
𝑘
= 0 for 𝑖 > 1 (21)

[9, p. 336]. The expression (20) is symmetric in the 𝛼𝑘, hence after expanding and using (21), can
be rewritten as a polynomial in 𝜃 with coefficients in𝐻∗(Pic𝑑(𝐶))[𝑦]. For instance, the first terms
of

∏𝑝

𝑘=1
𝑄𝑦(𝛼𝑘 + 𝑅𝑖) are

𝑄𝑦(𝑅𝑖)
𝑝 −

1 − 𝑦

2
𝜃 𝑄𝑦(𝑅𝑖)

𝑝−1 −
(1 + 𝑦)2

6
𝜃 𝑅𝑖 𝑄𝑦(𝑅𝑖)

𝑝−1 +
(1 − 𝑦)2

8
𝜃2 𝑄𝑦(𝑅𝑖)

𝑝−2 + … .

When 𝑦 = −1, the expression 𝐴𝝀 reduces as follows:

∏
𝑖>𝑗

1

1 + 𝑅𝑖 − 𝑅𝑗

||||||
(1 + 𝑅𝑖)

−𝜆𝑖+𝑖

e
𝜃

1+𝑅𝑖

𝑐𝜆𝑖+𝑗−𝑖

||||||1⩽𝑖,𝑗⩽𝑘𝑟+1 .
Theorems 5.1 and 3.1 imply:

Corollary 7.1. For a general smooth pointed curve (𝐶, 𝑃) of genus g and for a sequence𝒂 ∶ 0 ⩽ 𝑎0 <

⋯ < 𝑎𝑟 ⩽ 𝑑 such that 𝜌(g , 𝑟, 𝑑, 𝒂) ⩽ g , one has

𝐴𝝀 =
∑
𝒌+

(−𝑦)|𝒌+|−|𝒌| 𝜄∗ 𝑇𝑦(𝑊𝒂+

𝑑
(𝐶, 𝑃)

)
in𝐻∗

(
Pic𝑑(𝐶)

)
[𝑦],

where the sum is over the set of weakly increasing sequences 𝒌+ ⩾ 𝒌 = (1, … , 𝑟 + 1), and for a given
𝒌+, the locus𝑊𝒂+

𝑑
(𝐶, 𝑃) ⊆ 𝑊𝒂

𝑑
(𝐶, 𝑃) is as in (19).

By the inclusion–exclusion principle, this determines the class 𝜄∗ 𝑇𝑦(𝑊𝒂
𝑑
(𝐶, 𝑃)) in𝐻∗(Pic𝑑(𝐶))[𝑦]

in terms of classes of type 𝐴𝝀.

Similarly, Proposition 6.4 implies:

Corollary 7.2. For a general smooth pointed curve (𝐶, 𝑃) of genus g and for a sequence𝒂 ∶ 0 ⩽ 𝑎0 <

⋯ < 𝑎𝑟 ⩽ 𝑑 such that 𝜌(g , 𝑟, 𝑑, 𝒂) ⩽ g , one has

(𝜋𝜄)∗ 𝑇𝑦
(
𝐺𝒂
𝑑
(𝐶, 𝑃)

)
=

∑
𝜿⩾0

𝑑𝜿 𝜄∗ 𝑇𝑦

(
𝑊

𝒂(𝜿)

𝑑
(𝐶, 𝑃)

)
in𝐻∗

(
Pic𝑑(𝐶)

)
[𝑦],



MOTIVIC CLASSES OF DEGENERACY LOCI AND POINTED BRILL-NOETHER 1817

where the sum is over 𝜿 = (0 ⩽ 𝜅1 ⩽ ⋯ ⩽ 𝜅𝑟+1) such that 𝝀 + 𝜿 is weakly decreasing, the coefficients
𝑑𝜿 are as in (15), and 𝒂(𝜿) is the strictly increasing sequence

𝒂(𝜿) =
(
𝑎0, 𝑎0 + 1,… , 𝑎0 + 𝜅𝑟+1 − 𝜅𝑟, … , 𝑎𝑟, 𝑎𝑟 + 1,… , 𝑎𝑟 + 𝜅1

)
.

The expression for 𝒂(𝜿) is obtained from (18) using the partition 𝜆 assigned to𝑊𝒂(𝜿)

𝑑
(𝐶, 𝑃) as

in Remark 6.1. Examples are studied below.

7.4 The curve case

When (𝐶, 𝑃) is general of genus g ⩾ 1 and 𝑊𝒂
𝑑
(𝐶, 𝑃) is one-dimensional, the stratification from

§5.1 consists of only the stratum with 𝒌+ = (1, … , 𝑟 + 1). Hence the curve𝑊𝒂
𝑑
(𝐶, 𝑃) is necessarily

smooth. Expanding formula (20), one has that 𝑇𝑦(𝑊𝒂
𝑑
(𝐶, 𝑃)) is

(
1 +

1

2

(
(𝑟 + 1)𝜃 +

𝑟+1∑
𝑘=1

(𝜆𝑘 − 𝑟 − 2 + 𝑘)𝑇𝑘

)
(𝑦 − 1)

)|||𝑐𝜆𝑖+𝑗−𝑖|||1⩽𝑖,𝑗⩽𝑟+1. (22)

One computes

𝜃
|||𝑐𝜆𝑖+𝑗−𝑖|||1⩽𝑖,𝑗⩽𝑟+1 = g !

||||| 1

(𝜆𝑖 + 𝑗 − 𝑖)!

|||||1⩽𝑖,𝑗⩽𝑟+1,
𝑇𝑘

|||𝑐𝜆𝑖+𝑗−𝑖|||1⩽𝑖,𝑗⩽𝑟+1 = g !
||||| 1

(𝜆𝑖 + 𝛿𝑖,𝑘 + 𝑗 − 𝑖)!

|||||1⩽𝑖,𝑗⩽𝑟+1
where 𝛿𝑖,𝑘 is the Kronecker delta: 𝛿𝑖,𝑘 = 1 for 𝑖 = 𝑘, and 𝛿𝑖,𝑘 = 0 otherwise. The determinants can
be computed via the following application of the Vandermonde identity:

||||| 1

(𝑙𝑖 + 𝑗 − 𝑖)!

|||||1⩽𝑖,𝑗⩽𝑟+1 =
∏

1⩽𝑖<𝑗⩽𝑟+1(𝑙𝑖 − 𝑙𝑗 + 𝑗 − 𝑖)∏𝑟+1
𝑖=1 (𝑙𝑖 + 𝑟 + 1 − 𝑖)!

.

Using the combinatorial identity

(𝑟 + 1)
||||| 1

(𝜆𝑖 + 𝑗 − 𝑖)!

|||||1⩽𝑖,𝑗⩽𝑟+1 =
𝑟+1∑
𝑘=1

(𝜆𝑘 + 𝑟 + 2 − 𝑘)
||||| 1

(𝜆𝑖 + 𝛿𝑖,𝑘 + 𝑗 − 𝑖)!

|||||1⩽𝑖,𝑗⩽𝑟+1,
the top degree part in (22) gives

𝜒𝑦
(
𝑊𝒂

𝑑
(𝐶, 𝑃)

)
= (𝑦 − 1) g !

𝑟+1∑
𝑘=1

𝜆𝑘

||||| 1

(𝜆𝑖 + 𝛿𝑖,𝑘 + 𝑗 − 𝑖)!

|||||1⩽𝑖,𝑗⩽𝑟+1.
For the curve 𝐺𝒂

𝑑
(𝐶, 𝑃), the stratification in § 6.1 consists of a single non-empty stratum, thus

𝜒𝑦(𝐺
𝒂
𝑑
(𝐶, 𝑃)) = 𝜒𝑦(𝑊

𝒂
𝑑
(𝐶, 𝑃)). As a check, for 𝑦 = 0 one recovers the holomorphic Euler char-

acteristic computed in [6, §4.2].



1818 ANDERSON et al.

7.5 The surface case when 𝝀𝟏 = ⋯ = 𝝀𝒓+𝟏

Let us consider the surface case in the classical Brill–Noether setting, that is, with no special ram-
ification required at the marked point. Thus one has 𝑎𝑖 = 𝑖 for 0 ⩽ 𝑖 ⩽ 𝑟, and 𝜆1 = ⋯ = 𝜆𝑟+1 =

g − 𝑑 + 𝑟 =∶ 𝜆. In this case, one simplifies the notation as 𝑊𝑟
𝑑
(𝐶) ∶= 𝑊𝒂

𝑑
(𝐶, 𝑃), and similarly,

𝐺𝑟
𝑑
(𝐶) ∶= 𝐺𝒂

𝑑
(𝐶, 𝑃). The degree-two operators with non-zero action are:

𝑅21
|||𝑐𝜆+𝑗−𝑖|||1⩽𝑖,𝑗⩽𝑟+1 = (𝑟 + 1)(𝑟 + 2)

2(𝜆 + 𝑟 + 1)(𝜆 + 𝑟 + 2)
g !

𝑟∏
𝑖=0

𝑖!

(𝜆 + 𝑖)!
,

𝑅1𝑅2
|||𝑐𝜆+𝑗−𝑖|||1⩽𝑖,𝑗⩽𝑟+1 = 𝑟(𝑟 + 1)

2(𝜆 + 𝑟)(𝜆 + 𝑟 + 1)
g !

𝑟∏
𝑖=0

𝑖!

(𝜆 + 𝑖)!
,

𝑅22
|||𝑐𝜆+𝑗−𝑖|||1⩽𝑖,𝑗⩽𝑟+1 = −𝑅1𝑅2

|||𝑐𝜆+𝑗−𝑖|||1⩽𝑖,𝑗⩽𝑡,
𝜃 𝑅1

|||𝑐𝜆+𝑗−𝑖|||1⩽𝑖,𝑗⩽𝑟+1 = 𝑟 + 1

𝜆 + 𝑟 + 1
g !

𝑟∏
𝑖=0

𝑖!

(𝜆 + 𝑖)!
,

𝜃2
|||𝑐𝜆+𝑗−𝑖|||1⩽𝑖,𝑗⩽𝑟+1 = g !

𝑟∏
𝑖=0

𝑖!

(𝜆 + 𝑖)!
.

(23)

We are now ready to prove Corollary 4:

Proof of Corollary 4. The stratification from §5.1 consists of two strata: the full-dimensional stra-
tum with 𝒌+ = 𝒌 = (1, 2, … , 𝑟 + 1), and the codimension two stratum with 𝒌+ = (2, 2, … , 𝑟 + 1)

whose class is equal to 𝑅1𝑅2|𝑐𝜆+𝑗−𝑖|1⩽𝑖,𝑗⩽𝑟+1. From Corollary 7.1, the motivic Hirzebruch class is
given by

𝑇𝑦
(
𝑊𝑟

𝑑
(𝐶)

)
= 𝐴𝝀 − 𝜒𝑦

(
𝔸1
ℂ

)
𝑅1𝑅2

|||𝑐𝜆+𝑗−𝑖|||1⩽𝑖,𝑗⩽𝑟+1. (24)

As in the proof of Theorem 5.1, the affine space𝔸1
ℂ
here coincides with the maximal Schubert cell

inside the Schubert variety given by the generic fiber of Ω̃𝝉 over the codimension-two stratum in
𝑊𝑟

𝑑
(𝐶).
One has 𝜒𝑦(𝔸𝑛

ℂ
) = (−𝑦)𝑛 (Example 2.5). On a surface, the power series 𝑄𝑦(𝛼) restricts as

𝑄𝑦(𝛼) = 1 +
1

2
𝛼(1 − 𝑦) +

1

12
𝛼2(1 + 𝑦)2.

The resulting expansion of (24) is

𝑇𝑦
(
𝑊𝑟

𝑑
(𝐶)

)
=

(
1 +

1

2
((𝜆 − 𝑟 − 1)𝑅1 + (𝜆 − 𝑟)𝑅2 + (𝑟 + 1)𝜃)(𝑦 − 1)

+
1

24

(((
3(𝜆 − 𝑟)2 + 7𝑟 − 5𝜆 + 2

)
(𝑦 − 1)2

+ 8(1 − 𝑟 − 𝜆)𝑦
)
𝑅21
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+ 2
(
(3(𝜆 − 𝑟)(𝜆 − 𝑟 − 1) − 1)(𝑦 − 1)2 + 20𝑦

)
𝑅1𝑅2

+
(
3(𝜆 − 𝑟)2(𝑦 − 1)2 + (𝜆 + 𝑟 − 2)

(
(𝑦 − 1)2 − 8𝑦

))
𝑅22

+ 2
(
(3𝜆(𝑟 + 1) − 3𝑟(𝑟 + 2) − 2)(𝑦 − 1)2 − 8𝑦

)
𝜃𝑅1

+ 2
(
(3𝜆(𝑟 + 1) − 3𝑟(𝑟 + 1) + 1)(𝑦 − 1)2 − 8𝑦

)
𝜃𝑅2

+ 3(𝑟 + 1)2(𝑦 − 1)2𝜃2
))|||𝑐𝜆+𝑗−𝑖|||1⩽𝑖,𝑗⩽𝑟+1.

Using (23), this gives the statement.
For the surface𝐺𝑟

𝑑
(𝐶), as the stratification in § 6.1 consists of a single non-empty stratum, Corol-

lary 7.2 implies 𝜋∗ 𝑇𝑦(𝐺𝑟
𝑑
(𝐶)) = 𝑇𝑦(𝑊

𝑟
𝑑
(𝐶)), hence 𝜒𝑦(𝐺𝑟

𝑑
(𝐶)) = 𝜒𝑦(𝑊

𝑟
𝑑
(𝐶)). □

Remark 7.3. We emphasize how the stratification from §5.1 for𝑊𝑟
𝑑
(𝐶) is finer than the one con-

sidered in [34]. Indeed, for this example, we have two strata, while the stratification used in [34]
for the same locus consists of only one stratum, as𝑊𝑟

𝑑
(𝐶) is a smooth surface.

7.6 The surface case when 𝒓 = 𝟏

Here we consider the surface case when 𝑟 = 1. The case 𝜆1 = 𝜆2 being treated in § 7.5, we assume
here 𝜆1 > 𝜆2. The stratification from§5.1 consists of the single full-dimensional stratumwith𝒌+ =

(1, 2), contrary to the case 𝜆1 = 𝜆2. From Corollary 7.1, the motivic Hirzebruch class is given by

𝑇𝑦
(
𝑊𝒂

𝑑
(𝐶, 𝑃)

)
= 𝐴𝝀. (25)

Formula (20) gives

𝑇𝑦
(
𝑊𝒂

𝑑
(𝐶, 𝑃)

)
=

(
1 +

1

2
((𝜆1 − 2)𝑅1 + (𝜆2 − 1)𝑅2 + 2𝜃)(𝑦 − 1)

+
1

24

((
(3𝜆21 − 11𝜆1 + 12)(𝑦 − 1)2 − 8𝑦𝜆1

)
𝑅21

+ 2
(
(3(𝜆1 − 2)𝜆2 − 3𝜆1 + 5)(𝑦 − 1)2 + 8𝑦

)
𝑅1𝑅2

+ (𝜆2 − 1)
(
(3𝜆2 − 2)(𝑦 − 1)2 − 8𝑦

)
𝑅22

+ 2
(
(6𝜆1 − 11)(𝑦 − 1)2 − 8𝑦

)
𝜃𝑅1

+ 2
(
(6𝜆2 − 5)(𝑦 − 1)2 − 8𝑦

)
𝜃𝑅2

+ 12(𝑦 − 1)2𝜃2
))|||𝑐𝜆𝑖+𝑗−𝑖|||1⩽𝑖,𝑗⩽2.

The degree-two operators are

𝑅21
|||𝑐𝜆𝑖+𝑗−𝑖|||1⩽𝑖,𝑗⩽2 = g !

3 + 𝜆1 − 𝜆2

(𝜆1 + 3)!𝜆2!
,

𝑅1𝑅2
|||𝑐𝜆𝑖+𝑗−𝑖|||1⩽𝑖,𝑗⩽2 = g !

1 + 𝜆1 − 𝜆2

(𝜆1 + 2)!(𝜆2 + 1)!
,
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𝑅22
|||𝑐𝜆𝑖+𝑗−𝑖|||1⩽𝑖,𝑗⩽2 = g !

𝜆1 − 𝜆2 − 1

(𝜆1 + 1)!(𝜆2 + 2)!
,

𝜃 𝑅1
|||𝑐𝜆𝑖+𝑗−𝑖|||1⩽𝑖,𝑗⩽2 = g !

2 + 𝜆1 − 𝜆2

(𝜆1 + 2)!𝜆2!
,

𝜃 𝑅2
|||𝑐𝜆𝑖+𝑗−𝑖|||1⩽𝑖,𝑗⩽2 = g !

𝜆1 − 𝜆2

(𝜆1 + 1)!(𝜆2 + 1)!
,

𝜃2
|||𝑐𝜆𝑖+𝑗−𝑖|||1⩽𝑖,𝑗⩽2 = g !

1 + 𝜆1 − 𝜆2

(𝜆1 + 1)!𝜆2!
.

Using these, the motivic Hirzebruch class is

Corollary 7.4. Fix g ⩾ 2 and 𝒂 = (0 ⩽ 𝑎0 < 𝑎1 ⩽ 𝑑) with 𝜌(g , 1, 𝑑, 𝒂) = 2. For a general smooth
pointed curve (𝐶, 𝑃) of genus g , one has

𝑇𝑦
(
𝑊𝒂

𝑑
(𝐶, 𝑃)

)
=

1 + 𝜆1 − 𝜆2

(𝜆1 + 1)!𝜆2!
𝜃g−2

(
1 +

(
𝜆2
1
− (𝜆2 − 2)𝜆1 + 2

)
𝜆2

(𝜆1 + 2)(𝜆2 + 1)
(𝑦 − 1)𝜃

+

((
(2𝜆2(𝜆2 + 2) + 1)𝜆3

1
− (𝜆2 − 4)(2𝜆2(𝜆2 + 2) + 1)𝜆21

+ (𝜆2(10 − 𝜆2(6𝜆2 + 5)) + 3)𝜆1 − 3𝜆2(𝜆2 + 1)2
)
(𝑦 − 1)2

− (𝜆1 + 2)(𝜆2 + 1)
(
𝜆21 + 4𝜆1 − 𝜆22 − 2𝜆2 + 3

)
𝑦

)
1

(1 + 𝜆1 − 𝜆2)(𝜆1 + 2)(𝜆1 + 3)(𝜆2 + 1)(𝜆2 + 2)
𝜃2
)
.

We deduce the Hirzebruch 𝜒𝑦-genus:

Corollary 7.5. Fix g ⩾ 2 and 𝒂 = (0 ⩽ 𝑎0 < 𝑎1 ⩽ 𝑑) with 𝜌(g , 1, 𝑑, 𝒂) = 2. For a general smooth
pointed curve (𝐶, 𝑃) of genus g , one has

𝜒𝑦
(
𝑊𝒂

𝑑
(𝐶, 𝑃)

)
=

((
(2𝜆2(𝜆2 + 2) + 1)𝜆3

1
− (𝜆2 − 4)(2𝜆2(𝜆2 + 2) + 1)𝜆21

+ (𝜆2(10 − 𝜆2(6𝜆2 + 5)) + 3)𝜆1 − 3𝜆2(𝜆2 + 1)2
)
(𝑦 − 1)2

− (𝜆1 + 2)(𝜆2 + 1)
(
𝜆21 + 4𝜆1 − 𝜆22 − 2𝜆2 + 3

)
𝑦

)
g !

(𝜆1 + 3)!(𝜆2 + 2)!
.

The stratification in § 6.1 consists of a single non-empty stratum, hence 𝜒𝑦(𝐺
𝒂
𝑑
(𝐶, 𝑃)) =

𝜒𝑦(𝑊
𝒂
𝑑
(𝐶, 𝑃)).
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Remark 7.6. Interestingly, the above formula for𝜒𝑦(𝑊𝒂
𝑑
(𝐶, 𝑃)) in the case 𝜆1 > 𝜆2 (that is,𝑎1 > 𝑎0)

does not specialize to the formula for the case 𝜆1 = 𝜆2 from § 7.5, unless 𝑦 = 0.
The discrepancy arises from the fact that the stratification in the surface casewith 𝑟 = 1 consists

of two strata when 𝜆1 = 𝜆2, while there is only one stratum when 𝜆1 > 𝜆2. Indeed, the stratum
with𝒌+ = (2, 2) has codimension twowhen 𝜆1 = 𝜆2, while it has codimension at least three when
𝜆1 > 𝜆2, hence it is empty on surfaces. Consequently, the motivic Hirzebruch class 𝑇𝑦(𝑊𝒂

𝑑
(𝐶, 𝑃))

in the surface case with 𝑟 = 1 and 𝜆1 > 𝜆2 given by (24) does not specialize to the surface case
with 𝜆1 = 𝜆2 given by (25), unless 𝑦 = 0.
This is in contrast with the case 𝑦 = 0, corresponding to the holomorphic Euler characteristic

of a surface 𝑊𝒂
𝑑
(𝐶, 𝑃), which following [6], does specialize from the case 𝜆𝑖 > 𝜆𝑖+1 to the case

𝜆𝑖 = 𝜆𝑖+1, for any 𝑖. When 𝑟 = 1, this can be seen here since the second summand in (24) vanishes
for 𝑦 = 0.
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