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Abstract
US maize and soy production have increased rapidly since the mid-20th century. While global
warming has raised temperatures in most regions over this time period, trends in extreme heat
have been smaller over US croplands, reducing crop-damaging high temperatures and benefiting
maize and soy yields. Here we show that agricultural intensification has created a crop-climate
feedback in which increased crop production cools local climate, further raising crop yields. We
find that maize and soy production trends have driven cooling effects approximately as large as
greenhouse gas induced warming trends in extreme heat over the central US and substantially
reduced them over the southern US, benefiting crops in all regions. This reduced warming has
boosted maize and soy yields by 3.3 (2.7–3.9; 13.7%–20.0%) and 0.6 (0.4–0.7; 7.5%–13.7%)
bu/ac/decade, respectively, between 1981 and 2019. Our results suggest that if maize and soy
production growth were to stagnate, the ability of the crop-climate feedback to mask warming
would fade, exposing US crops to more harmful heat extremes.

1. Introduction

The production of US maize and soy is concen-
trated in the Upper Midwest (figure 1(a); SI figure
1 available online at stacks.iop.org/ERL/17/024012/
mmedia) and has increased by approximately ∼2–10
million bu/decade (10%–25%/decade) between 1981
and 2019 (figure 1(b)). This production growth has
been driven by agricultural intensification, which
describes all of the technological changes that have
improved agricultural yields, including improve-
ments in seed genetics, fertilizer and irrigation avail-
ability, pest control, and farming practices [1–4].
Maize and soy benefit from warm growing sea-
son temperatures, measured as growing degree days
(GDD, figure 1(c)), but are harmed by hot tem-
peratures, measured as killing degree days (KDD,
figure 1(e)) [5, 6]. Global warming is increasing the
occurrence of hot growing season temperatures in
most global regions [7, 8]. Increased hot growing
season temperatures—which often coincide with dry
soils [9–11]—are expected to severely harm yields in

the future [12–18], though this damagemay be some-
what offset by CO2 fertilization [19, 20] and farmer
adaptation [21].

Despite global warming, damaging heat has
not increased over the northern Midwest, home
to the most productive US maize and soy crop-
lands [6, 22–24]. KDD trends inversely covary with
yield trends over maize- and soy-growing regions
in the US, with areas of strong yield growth hav-
ing less warming (or cooling) of hot extremes [22,
23] (cf figures 1(a)–(f); SI figure 15). Reduced
warming trends over croplands have been shown
to benefit yields and to be most pronounced on
the hottest days of the growing season [6, 24, 25].
At the same time, GDDs have increased across the
entire US (figures 1(c) and (d) and SI figure 2),
lengthening the growing season, benefiting maize
and soy. Thus, the effects of climate change have
been unexpectedly beneficial in recent decades:
increased warmth (measured by GDDs) without
an increase in damaging heat [6] (measured by
KDDs).
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Figure 1. Production and climate trends for US maize and soy-growing counties. (a) Mean maize and soy production between
1981 and 2019. (b) Linear trends in maize and soy production over 1981–2019. In (a) and (b), counties inside of the red outline
are included in the analysis. All other counties do not meet our inclusion criteria (see section 2) or have non-significant
production coefficients (see equation (1)). (c) Mean number of GDDs in each included county during the local maize and soy
growing season. (d) Linear trend in GDDs in each included county. (e) Mean number of KDDs in each included county during
the local maize and soy growing season. (f) Linear trend in KDDs in each included county.

Crops affect local climate by modifying soil mois-
ture, albedo, and turbulent fluxes, which shape the
surface energy budget [26]. Increased crop growth—
whether due to rising yields or expanding cropped
area—increases evapotranspiration (ET) given a con-
stant water use efficiency, a stable growing season,
and sufficient moisture availability. This ET growth
increases latent heating and reduces sensible heating,
cooling local air temperatures, a process which has
been demonstrated in modeling studies [27–31].

However, the extent to which US crops are
influenced by climate trends arising from agricul-
tural intensification itself rather than other climate
drivers like aerosols, greenhouse gasses, or ocean-
atmosphere variability [32], is uncertain. Here we
show that maize and soy production trends can
explain nearly all of the local cooling across the US
Midwest. We demonstrate the magnitude and spa-
tial variability of a crop-climate feedback, a positive
(negative) feedback whereby increased (decreased)
crop production enhances (reduces) latent heating,
reduces (increases) sensible heating, and reduces
(increases) damaging heat, further increasing (redu-
cing) crop production. This feedback has occurred
as the result of rising yields driven by technological

change over predominantly rainfed croplands, des-
pite little growth in harvested area (see SI figure 1(b)).
Our quantification of this feedback allows us to assess
how agricultural intensification has interacted with
climate variability and change to shape yields over the
past four decades in the US. Most importantly, our
methodology provides an understanding of whether
recent crop-favorable climate trends should be expec-
ted to continue, or whether potential future yield
stagnation [1, 33] or moisture limitation could res-
ult in diminished local cooling, exposing the back-
ground warming trend and resulting in production
losses begetting further production losses.

2. Data andmethods

We calculate growing season mean precipitation,
sensible heat flux, latent heat flux, net radiation, and
wind speed by extracting monthly mean values from
the ERA5-Land [34] reanalysis for months within the
growing season as defined by a location-specific crop
calendar for the primary maize growing season [35]
(growing seasons for soy are very similar to those of
maize, see SI figure 12).Multiple cropping is not com-
mon in the US Midwest [36]. We average monthly
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values across the local growing season.We also extract
the same data from the Global Land Data Assimila-
tion System (GLDAS)-V2-Noah and GLDAS-V2-Vic
products [37], average them together, and repeat
the analysis as a robustness check of our results
(SI figure 4). We calculate GDDs and KDDs using
daily maximum and daily minimum 2 m temperat-
ure data from ERA5-Land. While ERA5-Land does

not represent land cover change, it does include the
effects of agricultural intensification by assimilating
temperature, humidity, and other observations that
are influenced by crops. In our robustness check using
GLDAS, we calculate GDDs and KDDs using daily
temperature data from the Climate Prediction Cen-
ter (CPC) [38]. GDDs and KDDs are calculated using
the following formulas:

GDD=
∑

growing season

{ Tmax +Tmin

2
− 9 ◦C, Tmin ⩾ 9 ◦C and Tmax < 29 ◦C

0, Tmin < 9 ◦C or Tmax ⩾ 29 ◦C

KDD=
∑

growing season

{
Tmax − 29 ◦C, Tmax ⩾ 29 ◦C

0, Tmax < 29 ◦C
.

Other definitions of GDDs and KDDs are used in
agronomic literature, but the definitions we use here
have been used in recent crop-climate studies [6].
GDDs and KDDs are not intrinsic drivers of crop
growth, but instead capture sunlight, instantaneous
temperature exposure, and moisture availability, and
are predictive of crop yields [6]. We obtain county-
scale, annual maize and soy yields, along with their
harvested areas, for 1981–2019 from the USDANASS
QuickStats [39] tool. The gridded climate data is up-
scaled to county resolution by spatially averaging grid
cells falling within each county. We calculate total
maize and soy production using the following for-
mula:

Productionmaize+soy = Ymaize ×HAmaize

+Ysoy ×HAsoy

where Y is county yield and HA is county harvested
area. We calculate linear trends for climate and crop
quantities using an ordinary least-squares fit. We cal-
culate the fraction of each county’s maize and soy that
are irrigated using an irrigated area map provided by
the Food and Agriculture Organization [40]:

Irrfrac =
Irrarea

HAmaize +HAsoy
.

For each county, we linearly detrend production and
climate data and subtract each variable’s mean value.
We also repeat the analysis using singular spectrum
analysis to detrend the production and climate data
and find no change in the results: estimates of the
crop-climate feedback’s effect onmaize and soy yields
are not significantly different (K–S test, p = 0.99) as
compared to results using linear detrending. Between
1981 and 2019, maize and soy production has grown
linearly at a rate of 113 M bu yr−1 (see SI figure 11).

We estimate how latent heating varies with maize
and soy production using the following regression in
each county:

LH∼ βProduction
(
Productionmaize+soy

)
+βPr−LHPr

+βRnet−LHRnet +βWind−LHW+ ϵ (1)

where maize and soy production are detrended
anomalies, and LH, Pr, Rnet, and W are detrended
anomalies of growing season mean latent heating,
precipitation, net radiation, and surface wind speed,
respectively (see SI figures 3(a)–(d) for regression
coefficient magnitudes). This equation considers the
primary factors controlling ET and thus latent heat-
ing [41]. Across counties, the median R2 is 0.78,
indicating that these predictors account for most of
the interannual variance in LH. Because precipitation
and KDDs are negatively correlated (r = −0.6), the
precipitation term in the regression partially captures
the response of LH to high temperatures.

We exclude counties which fail to meet any of the
following criteria:

(a) At least 30 consecutive years of yield and harves-
ted area data are available for maize and soy.

(b) The combined harvested area of maize and soy
is >30% of the county area (though results are
robust to varying harvested area thresholds; see
SI figure 5(b)).

(c) The combined maize and soy production trend
from 1981 to 2019 is positive.

Across the US, 398 counties meet these criteria,
most in the central US where maize and soy cul-
tivation is most intense, and 375 of these counties
have significant (p< 0.05) coefficients on production.
We then exclude counties with non-significant coef-
ficients on production. Included counties account
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for 59% of national maize and soy production, and
the median interannual Pearson correlation coeffi-
cient between maize and soy yields is 0.69. Produc-
tion is minimally colinear with climate variables:
the absolute value of Pearson correlation coefficients
between production and precipitation, net radiation,
and wind are all less than 0.2. In counties with
low harvested fractions, βProduction becomes relatively
large (>1Wm−2 per million bu), potentially because
of the influence of non-crop vegetation on latent
heating. However, maize and soy production is highly
concentrated, with 80% of production occurring in
counties with more than 50% of their area harves-
ted,meaning that the counties that contributemost to
crop production have the least non-crop vegetation.
We find that crop-driven LH declines with harves-
ted fraction, showing that our regressions are unlikely
to be strongly influenced by non-crop vegetation (SI
figure 5).

Using the fitted coefficients from equation (1),
we estimate the time series of growing season lat-
ent heating anomalies produced by recorded produc-
tion anomalies, denoted LHag-int. For each county, we
insert the time series of maize and soy production
anomalies (relative to the intercept after fitting a lin-
ear trend to county production) into the regression.
Unlike the production data used to fit the regression,
this production time series is not detrended to cap-
ture agricultural intensification over time. We con-
trol for variability in precipitation, net radiation, and
wind by setting those anomalies to zero in the regres-
sion. Because production has an upward trend and
βProduction is positive inmost counties, LHag-int also has
a positive trend in most counties ranging from 0.5 to
3 W m−2 per decade.

To relate latent heating variability to sensible heat-
ing (SH) variability, we regress detrended growing
season mean SH anomalies against detrended grow-
ing seasonmean LH andRnet anomalies between 1981
and 2019 (see SI figures 3(e)–(f) for regression coef-
ficient magnitudes):

SH∼ βLH−SHLH+βRnet−SHRnet + ϵ. (2)

LH andRnet almost entirely predict SH: themedianR2

value across counties is 0.99. PartitioningRnet into SH
and LH using equation (2) is equivalent to calculating
the Bowen ratio

(
SH
LH

)
and using this to partition Rnet

into the turbulent fluxes. This partitioning is done for
each county separately to take into account variations
in energy partitioning due to albedo, cropped area,
natural vegetation type, and other factors.We use this
regression to estimate the sensible heating anomaly
frommaize and soy production, SHag-int, by inserting
the LHag-int time series into the regression and setting
Rnet to zero. In all counties, the estimated SHag-int time
series is nearly equal to LHag-int, but with an opposite
sign: trends range from−0.5 to−3 Wm−2.

Next, we fit regressions to estimate howdetrended
growing seasonmean GDD and KDD anomalies vary
with detrended growing season mean SH anomalies
for each county (see SI figures 3(g) and (h) for regres-
sion coefficient magnitudes):

KDD∼ βSH−KDDSH+ ϵ (3)

GDD∼ βSH−GDDSH+ ϵ. (4)

Coefficient magnitudes are positive and significant
in all counties for both KDDs and GDDs, indicat-
ing that growing seasons with higher mean SH have
more KDDs and GDDs. Because KDDs and GDDs
are daily-scale temperaturemetrics, however, they are
only partially correlated with growing season scale
SH: we find median R2 values across counties of 0.56
and 0.28 for KDDs and GDDs, respectively. We use
regression to estimate SH effects onGDDs andKDDs,
rather than the exact GDD and KDD functions,
because the seasonal-scale effects of production on
SH cannot be disaggregated to a daily scale. Then, we
estimate the time series of KDD and GDD anomalies
resulting from the time series of production-related
SH anomalies by inserting SHag-int into equations (3)
and (4). We denote these time series as KDDag-int and
GDDag-int, and we find that they have negative trends
in most counties, indicating that agricultural intensi-
fication has cooled local temperatures.

We estimate the effects of climate trends onmaize
and soy yields using a statistical yield model fit
over 1981–2019 detrended data for growing season
total GDD, KDD, and mean precipitation for each
county:

Yield∼ βGDD−YGDD+βKDD−YKDD+βPr−YPr+ ϵ.
(5)

We fit this model independently for maize and soy
(see SI figures 3(i)–(n) for regression coefficient mag-
nitudes). For both maize and soy, βGDD is positive,
βKDD is negative, andβPr is near zero inmost counties.
GDD, KDD, and precipitation coefficients are signi-
ficant (p < 0.05) in most counties. The near-zero pre-
cipitation coefficients are consistent with other pub-
lished results and likely reflect the strong correlation
between precipitation and temperature and poten-
tially also the differing impact of rainfall intensity on
yields [42]. The regression R2 and the coefficient on
KDDsdonot substantially changewhenusing a quad-
ratic precipitation term. The median R2 value across
counties is 0.49 for maize and 0.37 for soy, which are
similar to other studies [43] and indicate that GDDs,
KDDs, and precipitation substantially predict inter-
annual yield variability.

We assess uncertainty by bootstrapping each
regression estimate by sampling the input data
with replacement 100 times. We also sample each
coefficient estimate 100 times from a student’s t-
distribution defined by the mean coefficient estimate
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and its standard error, giving 10 000 estimates of the
feedback. We propagate uncertainty via the following
steps:

(a) We bootstrap each regression estimate 100 times
by sampling the input data with replacement.

(b) For each regression, we fit a student’s t-
distribution with mean equal to the coefficient
estimate and standard deviation equal to the
coefficient standard error.

(c) We select 100 random values from this coeffi-
cient distribution.

(d) Using each randomly selected value, we estimate
the production-driven LH (or SH, GDD, KDD,
or yield for later regressions).

(e) For the following regression, we randomly select
a coefficient for the current step, and randomly
select one of the coefficients from the previous
step and use that estimate of LH, SH, GDD, or
KDD.

This method produces 10 000 estimates of the
crop-climate feedback (100 frombootstrapping times
100 from random coefficient selection). It both
samples uncertainty in the regression estimates and
propagates uncertainty through the regression chain.
All results are presented as the mean value and the
5th–95th percentile across the 10 000 estimates.

We use equation (5) to estimate the effects of
observed GDD (GDDobs), KDD (KDDobs), and pre-
cipitation trends on maize and soy yields between
1981 and 2019. These climate-driven yield trends are
denoted as Yieldobs. Next, we estimate GDD andKDD
trends in a counterfactual world with no agricultural
intensification:

KDDno-ag-int = KDDobs −KDDag-int

GDDno-ag-int = GDDobs −GDDag-int.

We then insert KDDno-ag-int, GDDno-ag-int, and
observed precipitation trends into equation (5) for
maize and soy to estimate the impacts of climate
trends on maize and soy yields in the counter-
factual world with no agricultural intensification.
These counterfactual yield impacts are denoted as
Yieldno-ag-int. Using these results, the yield impact
from climate altered by agricultural intensification is
calculated as:

Yieldag-int = Yieldobs −Yieldno-ag-int.

The agricultural-intensification component of the
yield trend is shown as a fraction of the total yield
trend for each county:

Yieldag-int-fraction =
∆
(
Yieldag-int

)
∆t

/∆(Yieldobs)

∆t

where ∆t is the 1981–2019 period. The additional
production associated with agricultural intensifica-
tion is calculated as:

Productionag-int = Yieldmaize-ag-int ×HAmaize

+Yieldsoy-ag-int ×HAsoy

where HA is the mean county harvested area. We use
bushels per acre (bu/ac) as our unit of yield and pro-
duction measurement. A bu/ac of maize is equival-
ent to 63 kg ha−1 and a bu/ac of soy is equivalent to
67 kg ha−1.

While a regression framework such as this can
only show association and not causation, each regres-
sion step is grounded in physical mechanisms: our
methodology and conclusions draw on both correl-
ation and physical inference.

3. Results and discussion

Analysis of observations for 375 US counties shows
that rising maize and soy production has increased
regional ET, which has modified the surface energy
budget by increasing latent heating (LH) and redu-
cing sensible heating (SH) (see figures 2(a)–(d)).
Reduced SH from crop production growth has led
to fewer KDDs, which has benefitted maize and soy
yields (figures 2(e)–(k)). These results come from
a set of empirical estimates at each stage of the
crop-climate feedback (figure 2; see SI figure 3 for
coefficient magnitudes). We estimate the effect of
interannual maize and soy production variability on
the latent heat flux at county scale by regressing total
maize and soy production on growing season mean
latent heating, precipitation, net surface radiation,
and surface wind speed (see section 2, SI figures 1–3).
While weather and disease drive short term yield vari-
ation and technological and climate change drive long
term yield trends, higher crop production produces
more ET, allowing us to estimate production-LH rela-
tionships from interannual variability. We present
results using the ERA5-Land [34] reanalysis, although
our findings are robust when alternative datasets are
used (see SI figure 4). Results are also robust to data
detrending methodologies (see section 2). We focus
on maize and soy because they are the predominant
crops grown in the central US, have similar grow-
ing seasons, and have yields that are highly correlated
in space and time (see section 2). While rates of ET
for maize and soy are different for biophysical reas-
ons [44–46], we analyze the sum of maize and soy ET
together in our regression framework because it is this
total latent heat flux that influences the surface energy
budget. More discussion of this analytical choice is in
extended data table 2.

Maize and soy production has a positive (mean
coefficient of 0.77 W m−2 million−1 bu; standard-
ized coefficient shown in figure 2(a)) and signific-
ant (p < 0.05) effect on LH in 90% of counties that
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Figure 2. The crop-climate feedback. (a), (c), (e), (h), (j) National median standardized coefficients on regression equations
(1)–(5) (see section 2) used to estimate LH, SH, KDD, GDD, and yield effects, respectively, of agricultural intensification.
Coefficients are estimated for each included maize- and soy-growing county separately. Coefficients that are significant (p < 0.05)
in at least 75% of included counties (see section 2) are denoted with three asterisks. Error bars show one standard deviation in
coefficient magnitude across all counties. Green bars denote quantities shown to be modified by production variability [27, 31]
(figures (b)–(k)). Changes in LH, SH, KDD, GDD, and yield, respectively, associated with agricultural intensification as estimated
by equations (1)–(5). LH, SH, KDD, GDD were evaluated over the growing season, and all counties that met inclusion criteria are
shown (see section 2).

meet our inclusion criteria (see section 2; figure 2,
SI figure 4(a)), indicating that years with higher
levels of production have more growing season mean
latent heating. We restrict our analysis to counties
with significant production coefficients. Counties
with a positive and significant coefficient on pro-
duction account for 60% of national maize and soy
production. Counties that irrigate at least 10% of
their harvested maize and soy (14% of all included
counties) have a mean production coefficient of
0.89 W m−2 million−1 bu, higher than the mean
across all included counties. The estimated coeffi-
cients on precipitation and net radiation are also pos-
itive and significant in nearly all counties, as both
moisture and energy availability strongly contrib-
ute to the latent heat flux. The estimated LH from
production increases with county harvested fraction
(SI figure 5(a)).

Using county-specific regressions, we estimate
the LH trend resulting from each county’s pro-
duction trend from 1981 to 2019 (figure 2(b); see
section 2). Rising production has increased LH in
almost all included counties by a mean of 2.2
(5th–95th percentile: 0.8–3.6) W m−2 decade−1,
with the largest increases occurring in counties with
strong production growth. This production-driven
LH trend is large compared to total LH trends
of −1 to 2 W m−2 decade−1 across the central US

(SI figure 2(c)), representing the substantial influence
that crops have on the surface energy balance in
intensely cultivated regions.

An increasing share of incoming radiation parti-
tioned into LH by growing crops should reduce the
remaining energy available for SH. We estimate how
this production-driven LH trend has modified SH
(figures 2(c) and (d)) by regressing SH against LH
and net radiation at the county scale (figure 2(c)).
We find mean production-driven reductions in SH
across counties of −2.2 (5th–95th percentile: −2.3
to −2.0) W m−2 decade−1, though many counties
still have overall upward SH trends driven by rising
net radiation associated with global warming (see
SI figure 2(d)). Reduced SH is associated with
reduced temperatures and therefore decreased GDDs
and KDDs (see SI figure 6), though we find that
KDDs vary ∼5 times more strongly with SH than
do GDDs (figure 2(e), standardized coefficients of
1.5 for KDDs, 0.3 for GDDs). Propagating these
production-based changes in energy partitioning into
heat accumulation indices leads to mean reduc-
tions in KDD and GDD trends of −15.5 (5th–95th
percentile: −28.8% to −2.7%) KDDs/season/decade
(−25.0% to −2.3%/decade) and −23.2 (5th–95th
percentile: −58.6–11.1) GDDs/season/decade (−3%
to 0.5%/decade) (figures 2(f) and (g)), respectively,
counteracting greenhouse gas warming.
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Figure 3. Crop-climate feedback effects on maize and soy yield trends. (a), (d) Observed trends in maize (a) and soy (d) yields
since 1981. (b), (e) Estimated maize (b) and soy (e) yield trends driven by observed trends in KDDs, GDDs, and precipitation
since 1981. (c), (f) Estimated maize (c) and soy (f) yield trends driven by KDD, GDD, and precipitation trends in a counterfactual
world with no climate benefits from agricultural intensification since 1981 (see section 2, SI figure 7).

We find that these effects of agricultural intensi-
fication on the local surface energy balance have pro-
duced a yield bonus across much of the US. Slower
increases (or even decreases) in KDDs benefit maize
and soy yields, while slower increases in GDDs harm
them (figures 2(h)–(j)). However, the KDD trends
dominate due to the high sensitivity of yields to
extreme heat, andwe estimate that production-driven
changes in KDD and GDD trends have boostedmaize
and soy yield trends in nearly all counties by a national
mean of 3.3 (2.7–3.9) and 0.6 (0.4–0.7) bu/ac/decade
(figures 2(i)–(k)), respectively. These results do not
substantially differ for only rainfed counties, indic-
ating that the crop-climate feedback is not a con-
sequence of irrigation [30, 47] (see SI figure 8).

Without the cooling driven bymaize and soy pro-
duction growth, KDDs would have increased every-
where, including in the Upper Midwest, and GDDs
would have risen by a larger amount than was
observed (see SI figure 7). Using our estimate of
the crop-climate feedback, we show that if agricul-
tural intensification had not occurred since 1981,
climate trends would have caused a decline in US
maize and soy yields. We compare the yield trends
caused by observed climate trends (figures 3(b)–(e));
our estimates of recent climate-driven maize yield
trends are similar to other studies [6, 25] since 1981
with an estimated counterfactual world in which
climate was not altered by agricultural intensific-
ation (figures 3(c)–(f)). Observed climate trends
changed national mean maize and soy yields by 0.2
(5th–95th percentile: −0.1 to 0.4) and 0.4 (5th–95th
percentile: 0.3–0.4) bu/ac/decade, respectively, since

1981 (figures 3(b)–(e)). Without the climate bene-
fits of agricultural intensification, we estimate that
additional climate warming would have instead
changed national mean maize and soy yields by
−3.1 (5th–95th percentile: −3.9 to −2.5) and −0.2
(5th–95th percentile: −0.4 to −0.0) bu/ac/decade,
respectively, since 1981 (figures 3(c)–(f)).

The crop-climate feedback has buffered the harm-
ful effects of greenhouse gas warming and enhanced
national mean maize and soy yields since 1981
(figures 4(a) and (b)). We estimate that observed cli-
mate trends have had a slightly positive effect on
US maize (mean change of 0.4%, relative to mean
1981–2019 yields) and soy (mean change of 3.1%,
relative to mean 1981–2019 yields) yields. However,
without agricultural intensification, we estimate that
the national mean effect of climate trends on maize
and soy yields would have been −7.3% and −0.7%,
respectively. Aggregated over the 1981–2019 period,
the yield benefit from agricultural intensification has
boosted total US maize production in our included
counties by approximately 514 M bu, comparable
to Canada’s annual maize production. Similarly, soy
production has been boosted by approximately 76 M
bu, more than South Africa’s annual production.

The positive climate effects of agricultural intensi-
fication on yields have occurred in nearly every maize
and soy-growing county, with the size of the effect
dependent on the magnitude of production-driven
KDD change (figures 4(c) and (d)). This benefit has
occurred even in counties with rising overall KDD
trends: without the reduction in KDDs from agricul-
tural intensification, the KDD increase would have
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Figure 4. Crop-climate feedback contribution to US maize and soy yields. (a), (b) Effects of KDD, GDD, and precipitation change
on maize (a) and soy (b) yields with (green) and without (red) agricultural intensification. Histograms formed from estimated
total yield changes between 1981 and 2019 across all maize- and soy-growing counties meeting criteria for inclusion and having a
significant effect of production on LH (see section 2, equation (1)). Yield changes shown as a percentage of 1981–2019 county
mean yield. Distributions with and without agricultural intensification are significantly different for both maize and soy
(K–S test, p < 0.01). (c), (d) County-specific effect of agricultural intensification on climate-driven maize (c) and soy (d) yield
change. Colors show estimated KDD change associated with agricultural intensification. One-to-one line shown in solid black.
Dashed red lines show fit across counties. Percentage changes in yield are relative to 1981–2019 mean yields with the percentage of
counties in each quadrant shown. (e), (f) Contribution of climate-driven maize (e) and soy (f) yield changes associated with
agricultural intensification to the total 1981–2019 maize and soy yield trends.

been greater. The counties that have had the most
yield damage from recent climate trends have had the
greatest relative benefit from the crop-climate feed-
back (figures 4(c) and (d)); red dashed lines have
slopes less than one, indicating that a larger fraction
of recent production trends can be attributed to the
crop-climate feedback in counties with more negat-
ive climate-driven yield change. In 41% of maize-
growing counties and 29% of soy-growing counties,
the crop-climate feedback reversed the sign of the
climate-driven yield effect from negative (reduced
yields) to positive (increased yields). We find that the
crop-climate feedback contributed a national mean
16.8% (5th–95th percentile: 13.7%–20.1%) of total

county-level maize yield trends between 1981 and
2019 (figure 4(e)). For soy, the crop-climate feed-
back contributed a nationalmean of 10.5% (5th–95th
percentile: 7.5%–13.7%) of total county-level yield
trends (figure 4(f)). The contribution of the crop-
climate feedback to yields is dependent on non
climate-driven yield trends, the differential sensitivity
of crops to GDDs and KDDs, maize and soy cultivars,
fertilizer use, and other farming practices [5].

Our results suggest that the crop-climate feed-
back provides the most benefit to regions with the
most concentrated crop production (SI figure 5(b)).
We show that the crop-climate feedback has contrib-
uted to production growth over the past four decades
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in the central US, but it has also likely boosted pro-
duction in other major agricultural zones across the
world [23]. While substantial global land area is ded-
icated to agriculture, few places have yields as high as
in the central US. Accordingly, crop production—and
production-driven LH—is less spatially concentrated
inmost global regions, meaning that the crop-climate
feedback will have a smaller beneficial impact on
yields. This implies that while extremely productive
US croplands have been somewhat shielded from det-
rimental global warming over the past 40 years, many
low-yielding agricultural regions have been harmed
by it, a result highlighted in recent work [25, 48].
Thus, the crop-climate feedback may have increased
the gap in yields between high- and low-yielding agri-
cultural regions, contributing to global warming’s
effect on economic inequality [49].

The crop-climate feedback likely acts to increase
interannual maize and soy yield variability: in
years with poor yields or a smaller harvested area,
production-driven LH, cooling, and thus yield bene-
fits are smaller, depressing yields. This effect could
play a role in recent increases in drought sensitivity
across US croplands [18, 50] by effectively making
drought years hotter and drier. In contrast, for years
with excellent yields or a larger harvested area, LH and
cooling are more robust, increasing yields further.

Several limitations of our study may affect our
estimation of the strength of the crop-climate feed-
back. While the counties included in our analysis
are intensely cultivated, some land area is covered
with natural vegetation, crops other than maize or
soy, or urban development. This non-harvested land
may affect the estimation of latent heating attribut-
able to maize and soy. This correlation could lead
to either an overestimation or an underestimation
of production-driven LH, as ET from other veget-
ation is captured in our coefficient on production
(see equation (1) in section 2). However, maize and
soy production is heavily concentrated in counties
with the highest harvested fractions, meaning that
the counties with the most production-driven lat-
ent heating also have the least non-crop vegetation.
Indeed, we find that the crop-climate feedback’s yield
effect increases with harvested fraction, implying that
the influence of non-crop vegetation should be lim-
ited in our results (see SI figure 5(b)). We also do
not consider the effect of crop sensitivity to GDD and
KDD timing on yields. While such timing is import-
ant, it does not change the sign of the yield impact
from GDDs and KDDs [5, 6]. Furthermore, the cool-
ing effect from production-driven LH affects KDDs
muchmore strongly than GDDs, and recent work has
found that KDD timing changes have had minimal
influence on maize yield trends [6].

While we show that the crop-climate feedback
has played an important role in historical maize and
soy production trends, its future effect is uncertain.

Global warming is increasing net radiation, pushing
temperatures and, by extension, KDDs and GDDs
upwards. Unless continued increases in crop produc-
tion intensify the crop-climate feedback, this warm-
ing trend will further raise KDDs in the south-
ern US and will likely reverse the cooling trend
that has occurred over the Upper Midwest, harm-
ing yields. The potential for continued maize and
soy production growth in the central US is uncer-
tain. In many counties, most or all productive
land is already cultivated. Additionally, yield growth
may slow due to biophysical limitations, insufficient
water, or slower technological change [1, 3, 33, 51].
Together, these challenges suggest that in the com-
ing decades, the ability of the crop-climate feed-
back to mask some of the global warming trend
may fade, exposing crops to more harmful climate
conditions.
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