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ABSTRACT: Convective quasi-equilibrium (QE) and weak temperature gradient (WTG) balances are frequently
employed to study the tropical atmosphere. This study uses linearized equatorial beta-plane solutions to examine the
relevant regimes for these balances. Wave solutions are characterized by moisture-temperature ratio (¢-7 ratio) and
dominant thermodynamic balances. An empirically constrained precipitation closure assigns different sensitivities of
convection to temperature (g,;) and moisture (g,). Longwave equatorial Kelvin and Rossby waves tend toward the QE
balance with ¢-T ratios of &;:¢, that can be ~1-3. Departures from strict QE, essential to both precipitation and wave
dynamics, grow with wavenumber. The propagating QE modes have reduced phase speeds because of the effective gross
moist stability meg, with a further reduction when &, > 0. Moisture modes obeying the WTG balance and with large g—T
ratios (>10) emerge in the shortwave regime; these modes exist with both Kelvin and Rossby wave meridional structures. In
the v = 0 case, long propagating gravity waves are absent and only emerge beyond a cutoff wavenumber. Two bifurcations in
the wave solutions are identified and used to locate the spatial scales for QE-WTG transition and gravity wave emergence.
These scales are governed by the competition between the convection and gravity wave adjustment times and are modulated
by mg. Near-zero values of migg shift the QE-WTG transition wavenumber toward zero. Continuous transitions replace the
bifurcations when m.g < 0 or moisture advection/WISHE mechanisms are included, but the wavenumber-dependent QE
and WTG balances remain qualitatively unaltered. Rapidly decaying convective/gravity wave modes adjust to the slowly
evolving QE/WTG state in the longwave/shortwave regimes, respectively.
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1. Introduction hereinafter YN94), with an adjustment-based convective pa-
rameterization (Betts 1986; Betts and Miller 1986). In their

Theoretical inquiries into tropical wave dynamics often begin model, NY94 and YN94 highlighted two solutions of interest:

with linearized models on the equatorial beta plane. The sim-
plest version of these models (Matsuno 1966; Holton and
Lindzen 1968)—without convective coupling—still yields modes
that qualitatively resemble the observed equatorial waves in
meridional structure (Kiladis et al. 2009). Quantitative dif-
ferences do exist between observed and theoretical wave
phase speeds, but these differences can be mitigated with the
inclusion of a convective heat source (Emanuel et al. 1994).
The early beta-plane models lack an analogous solution to the
Madden-Julian oscillation (MJO; Madden and Julian 1971,
1994; Zhang 2005; Wang 2012) and also lack a time-varying
water vapor equation.

Introducing a time-varying water vapor equation into the
beta-plane wave alters the solutions in interesting ways. A
prototype of this class of models was examined in Neelin and
Yu (1994, hereinafter NY94) and Yu and Neelin (1994,
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(i) a longwave, eastward-propagating mode with a phase speed
of ~15ms™!, which they termed the “propagating deep con-
vective mode” and (ii) a shortwave stationary mode charac-
terized by a large humidity signal, which they termed the
“moisture mode.”

The NY94 propagating deep convective mode elicited con-
nections to the MJO because of its planetary scale and east-
ward propagation with a reduced phase speed (relative to dry
gravity waves). The slow phase speed of this mode is governed
by the gross moist stability: a parameter that had previously
been introduced to study the tropical steady-state precipitation
distribution and intraseasonal variability [Neelin and Held
(1987), Neelin et al. (1987), and also see Raymond et al. (2009)
for a review]. The propagating deep convective mode is thus
convectively coupled; the dominant effect of this coupling is to
damp the mode by convective adjustment (Emanuel 1993;
Emanuel et al. 1994). However, this mode can be destabilized
with the inclusion of wind-induced surface heat exchange
(WISHE; Emanuel 1987; Neelin et al. 1987; Yano and Emanuel
1991). Notably, the connections between the NY94 propagating
deep convective mode and the MJO have been revived in recent
theoretical efforts (Fuchs and Raymond 2017; Raymond and
Fuchs 2018) that have reemphasized the role of WISHE in MJO
dynamics.

The stationary moisture mode (first highlighted in YN94)
has also received much scrutiny since. Several studies (Fuchs

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright

Policy (www.ametsoc.org/PUBSReuseLicenses).

Unauthenticated | Downloaded 04/05/22 06:36 PM UTC


https://doi.org/10.1175/JAS-D-20-0184.s1
https://doi.org/10.1175/JAS-D-20-0184.s1
mailto:fiaz@ucla.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses

210

and Raymond 2002, 2005, 2007; Raymond and Fuchs 2007)
have shown that WISHE allows the otherwise stationary
moisture mode to propagate, and that if the gross moist stability
is negative, the otherwise damped moisture mode is unstable
(Raymond and Fuchs 2009). A separate class of models (Sobel
et al. 2001; Sobel 2002; Sobel and Bretherton 2003) impose the
weak temperature gradient approximation (WTG) a priori, which
makes moisture the only prognostic thermodynamic variable. In
these WTG models, moisture modes emerge even at planetary
scales, in contrast to the moisture modes in the NY94 model. The
moisture modes also propagate as a result of background
moisture gradients—a feature that was used to subse-
quently develop moisture-mode based theories of the MJO
(Sobel and Maloney 2012, 2013; Adames and Kim 2016).

Despite a robust theoretical presence, the relationship between
moisture modes and the observed modes of tropical variability
remains ambiguous. Observation-based evidence (Roundy and
Frank 2004; Yasunaga and Mapes 2012; Ahmed and Schumacher
2018; Yasunaga et al. 2019; Inoue et al. 2020) suggests that tropical
waves can be broadly categorized into two groups: one dominated
by moisture variability (e.g., the MJO and equatorial Rossby
waves), and the other dominated by temperature variability (e.g.,
the convectively coupled Kelvin wave and the inertio-gravity
waves). At face value, this distinction seems to suggest that
moisture-dominated waves are related to moisture modes.

More recently, Adames et al. (2019) used the above dis-
tinction to suggest that a continuum of wave classes separate
purely moisture-dominated modes from purely temperature-
dominated modes. They argued—using scale analysis—that a
single nondimensional number Ny,0q4. can quantify the relative
importance of moisture versus temperature to any wave type
and thereby place it on the continuum. In constructing their
continuum, Adames et al. (2019) implicitly assumed that slow,
large-scale modes of variability with large apparent humidity
signatures, such as the MJO over the Indo-Pacific Warm Pool,
correspond to moisture modes. However, Fuchs and Raymond
(2017) argue otherwise, and suggest that the MJO—despite its
large humidity signature—is a mode in which the temperature
perturbations are essential to the dynamics.

These arguments exemplify the uncertainties surrounding
moisture modes, which we aim to address in this study. As a
first step in this process, we recognize a set of geophysically
important modes that occur in complementary length scale
regimes to moisture modes. These modes are adjusted by
convection to a state of convective quasi equilibrium (QE;
Arakawa and Schubert 1974) and are accordingly termed QE
modes. Although the term QE has several interpretations
(Neelin et al. 2008; Yano and Plant 2012) in this study we use
the term to indicate a state of zero buoyancy, established by the
consumption of buoyancy anomalies by convection. With these
QE modes as foil, we now advance three conditions to identify
moisture modes:

(C1) The mode must exhibit a large humidity signature. A useful
diagnostic to measure humidity signals is the ratio of
moisture to temperature perturbations (the g—7 ratio y,7;
see section 2d). In a moisture mode, this ratio must
greatly exceed the g—T ratio in a state of QE (yog), i.e.,
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Yor > YoE- We use a subjective g—T ratio threshold of
Yor = 37YqE, that is, roughly vy, =10, to express this
condition.

(C2) The mode must obey the WTG balance at the leading order
in its temperature budget; that is, the dominant balance must
be between adiabatic cooling and diabatic heating, and the
temperature tendency must be a higher-order term.

(C3) Prognostic thermodynamic variations in the mode must be
dominated by moisture. In perturbation expansions, this
condition is expressed as a requirement that the temper-
ature tendency term must appear at a higher order than
the moisture tendency term.

The conditions C1, C2, and C3 unify pieces of previously
identified features of moisture modes (YN94; Sugiyama 2009;
Sobel and Maloney 2012; Wolding et al. 2016; Adames et al.
2019). For instance, C2 makes it clear that moisture modes
must obey the WTG balance at leading order (Sugiyama 2009),
while C3 necessitates a prognostic moisture equation for the
existence of moisture modes (Sobel and Maloney 2012; Sobel
et al. 2014) and ensures identification of the dominant eigen-
mode with the moisture equation (YN94). In this study, we will
employ these conditions to pursue clear theoretical identifiers
for moisture and QE modes. We work with a simple model that
has previously been used to study these modes: the equatorial
beta-plane model of NY94. Informed by conditions C1, C2, and
C3, we will characterize the modes in this model by their g-T'
ratios and dominant balances in the thermodynamic budgets.
In the process, we will also closely examine the boundaries
between QE and WTG regimes in the model.

We will utilize an observationally constrained convective
closure developed from the empirical relationship between
tropical precipitation and a lower-tropospheric buoyancy mea-
sure (Ahmed and Neelin 2018; Schiro et al. 2018). Figure 1 il-
lustrates this relationship using TRMM 3B42 precipitation
(Huffman et al. 2007) conditionally averaged by a buoyancy
measure B; that depends on lower tropospheric temperature
and moisture profiles. The precipitation-B,, relationship in
Fig. 1 subsumes other documented relationships that precipi-
tation shares with column-integrated humidity (Bretherton
et al. 2004; Peters and Neelin 2006; Ahmed and Schumacher
2015) and column-averaged temperature (Neelin et al. 2009;
Kuo et al. 2018). Ahmed et al. (2020, hereinafter AAN)
derived a precipitation closure using the empirical relationship
in Fig. 1. Specifically, they derived estimates for the sensitivity
of precipitation to both moisture and temperature fluctuations
using the slope of the linear range in Fig. 1. In this study, we will
employ the AAN precipitation closure to parameterize convection
within the simple model. Wherever possible, we will also employ
analytic approximations derived using perturbation expan-
sions [as in NY94 and Sugiyama (2009)] to illuminate the
physics distinguishing QE modes from moisture modes.

2. Model setup
a. Momentum, hydrostatic, and continuity equations

As in NY94, we begin with a system of inviscid, linearized
equations on a beta-plane with vertical pressure coordinate, p:
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FIG. 1. Precipitation conditionally averaged by a measure of
lower-tropospheric buoyancy B, (in blue scatter). The gray shad-
ing denotes the nonprecipitating regime. A straight-line fit (red
scatter) in the precipitating regime was used to derive a simple
empirical precipitation closure in AAN. The figure is adapted from
Fig. 2 of AAN.

0.0

du—pByv+a d=0, 6]
v+ Byu+ 6y¢=0, 2)
R

o ¢p=—-4T, and 3)
dutiov=—9 . 4)

Here u, v, and o are the linearized zonal, meridional, and
vertical pressure velocities, respectively, and ¢ and T are
the linearized geopotential height and temperature, re-
spectively. The horizontal momentum equations are in (1)
and (2), (3) is the hydrostatic balance, and (4) is the con-
tinuity equation. The constants 8 and R, are the meridi-
onal gradient of the Coriolis parameter and the dry air gas
constant, respectively. A standard set of assumptions (NY94;
Neelin and Zeng 2000) including a single deep vertical struc-
ture for temperature and the rigid lid approximation are used
to separate the horizontal and vertical variations in velocity
and temperature such that w4, vy, w1, and 77 contain the hori-
zontal variations in u, v, w, and T, respectively. These hori-
zontal variables are then assumed to follow the complex
exponential representation: u; (x, y) = ét;(y) exp(At + ikx), and
similarly for vy, w1, and 7. Here, k is the zonal wavenumber
and A is the frequency. A detailed explanation of these re-
duction procedures, including a plot of the vertical structures
(Fig. S1), is provided in the online supplemental material. For
now, we note that using these procedures (1)-(4) can be sim-
plified to yield

Au, — Byv, +ikR,T, =0, )
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Av, +Byu, + R0, T, =0, and (6)
iku, +o v, = —o,. ™

The use of a single, deep vertical structure has precedence
in several simple models of tropical dynamics (NY94;
Neelin and Zeng 2000; Sobel et al. 2001; Adames and Kim
2016; Adames et al. 2019). Although its formal justification
works best in the QE limit (N'Y94), we retain its use here for
the relative simplicity of the analytic approximations. The
inclusion of additional vertical structures representing
shallow and stratiform cloud types (Mapes 2000; Majda and
Shefter 2001; Khouider and Majda 2006; Kuang 2008;
Stechmann and Hottovy 2017) can induce departures from
the convectively damped QE state (e.g., Lin et al. 2015;
Khouider and Leclerc 2019). However, these departures
can be incorporated into our analysis with the inclusion of
multiple vertical profiles in the reduction procedures that
yield (5)—(7) from (1)—(4).

b. Thermodynamic equations
The budgets for vertically integrated temperature 7 and
moisture g are

M —oM —Q (1+r)=0 and )

AG—ou +o M, +0, =0 )
In (9), the specific humidity is scaled by the latent heat of va-
porization and divided by the specific heat capacity, such that
g and T have the same units (Kkgm™2). We have also as-
sumed that § is expressible by complex exponentials, so
AT and A§ are the temperature and moisture tendency
terms. The quantity 0, is the column-integrated convective
heating—assumed equivalent to the column-integrated mois-
ture sink. The online supplemental material contains a full
derivation of (8) and (9). The radiative feedback parameter
(Fuchs and Raymond 2002; Su and Neelin 2002; Lin and
Mapes 2004; Kim et al. 2015) is r, such that the term Q.(1 + r)
in (8) is the diabatic heat source to the column. The gross
dry stability M and the gross moisture stratification M,
are—as in Yu et al. (1998)—positive quantities with units of
kilograms per meter squared. The terms w; M;—in (8)—and
o M,—in (9)—represent the vertical advection of the
background dry static energy and moisture, respectively, by
perturbations in vertical velocity.

The cumulative effects of moisture advection (Adames and
Kim 2016; Adames et al. 2019) and WISHE are represented by
o,u;. The parameter o, incorporates the effects of both the
background surface wind and the moisture gradients (see the
online supplemental material). Note that o, > 0 for mean
easterlies/positive zonal moisture gradient. The basic state
zonal moisture gradient is assumed constant on the scale of the
local wavenumber k, so caveats apply at the planetary scale
with cyclic boundary conditions.

We now introduce the relative gross moist stability m:

M -M,
m=——r,

M

s
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so M, = (1 — m)M,. The dry gravity wave speed c can be ex-
pressed in terms of M,, R; and the temperature vertical
structure (as in Sugiyama 2009; Adames and Kim 2016):

2 _ Rd]v{s T, )
T

c (10)
Here, ¢, M, M,, and m all implicitly contain the vertical
structure information. When v = 0, (5), (7), and (10) can be
combined to give

2T

Radiative damping on temperature, moisture-radiative effects,
and damping effects of evaporation on moisture are all easily
introduced (Zeng et al. 2000), but they are omitted here to
focus on the interaction with convection.

c¢. Precipitation closure

Our empirically informed precipitation closure is

Qc:sq(j—atT, (12)
where g, and &, measure of the sensitivity of buoyancy to lower
tropospheric moisture and temperature perturbations, re-
spectively (AAN). The closure in (12) is similar to the
adjustment-based Betts-Miller scheme (Betts 1986; Betts and
Miller 1986). Betts—Miller type schemes are based on two
separate postulates for moisture and temperature adjustment,
whereas (12) emerges from a single postulate about buoyancy
adjustment, with empirically constrained parameters. The de-
pendence of precipitation on lower tropospheric temperature
variations (Mapes 2000; Raymond et al. 2003; Raymond and
Fuchs 2007; Kuang 2008) and moisture variations due to dilu-
tion effects are both accounted for in (12). The use of (12)
implies that the base state of linearization must have B, > 0;
that is, it must lie within the linear regime in Fig. 1. In strict
terms, this is equivalent to assuming a precipitating basic state;
in practice, the background precipitation can be assumed to be
arbitrarily close to zero.

Using the closure in (12) along with the definition of m in the
thermodynamic budgets (8) and (9) yields

(13)
(14)

A+e(1+nNT-woM - (1+r)G=0 and
t 17 q
A+ sq)q —ou +o(l1-mM - stf’= 0.

We now obtain a combined thermodynamic equation after
eliminating ¢ from (13) and (14):
A+ )T = A +mye Mo, —e (1+r)(ou)=0.  (15)

In (15), we have introduced the effective convective adjust-
ment time scale,

£, =g, +e,(l+7),

that combines the cloud-radiative feedbacks along with the
moisture and temperature sensitivities of precipitation. When
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r = 0, g, is the convective adjustment time scale derived in
AAN. In this system, g, can be viewed as the nominal con-
vective adjustment time scale. We have also introduced the
effective gross moist stability (Su and Neelin 2002): meg =
m(l+r)—r.

Note the two independent time scales in the system asso-
ciated with precipitation (e,) and dry gravity wave propa-
gation (ck). As will be shown later, combinations of these
time scales yield important nondimensional parameters that
govern interactions between convection and wave dynamics
in this model.

d. Moisture—temperature ratios

A measure that will prove useful in distinguishing between
QE modes and moisture modes is the g—7 ratio. An expression
for this ratio can be obtained by rearranging (13) and (14):

gm g +A(m—1)
A+ &My

U.vul
T(A + sqmeff)

_4q
qu - ? (16)

The first term on the right-hand side of (16) contains the de-
pendence from the convective sensitivities to moisture and
temperature, while the second term introduces a dependence
due to WISHE/zonal moisture advection. Note that both terms
can be complex, yielding a moisture-temperature zonal phase
relationship that depends on the eigenvalue A.

While detailed expressions for vy, are derived in section 3, a
simple limit of (16) can already be used to introduce a char-
acteristic property of low-frequency modes in the system.
Consider motions such that |\| < &, g, Also assume that
WISHE/zonal-moisture-advection effects are negligible; that
is, o, = 0. Under these conditions, (16) yields

Yor = st/sq = YoE- 17)

This ratio is simply a statement of strict QE balance, as de-
scribed in AAN. The expression in (17) suggests that the g-T'
ratios in low-frequency modes are predominantly set by a
measure of convection’s sensitivity to temperature versus
moisture perturbations, which is termed ygg. For the assumed
values of ¢, and g, in Table 1, yog = 3. These low-frequency
modes have a significant humidity signal relative to tempera-
ture, but they are convectively coupled modes in QE balance,
and are therefore termed QF modes. This generalizes previous
terminology, including propagating deep convective mode
(NY94; YNO94), since nonpropagating modes also exist with the
same essential properties (e.g., for negative m.g).

We now rewrite the precipitation closure (12) to incorpo-

rate y,7t
A - er ~ Y,
O, =eT|=—1)=¢q(1-2%).
’YQE qu

From (18), if y,7 = yoE exactly, then 0, =0; that is, a low-
frequency disturbance with no driving away from pure QE
cannot generate precipitation. The precipitation in these dis-
turbances is produced by departures from QE—if convective
adjustment times are fast, large precipitation can be produced
by modest departures. From (16) it can also be inferred that,

(18)
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TABLE 1. Parameter values used in numerical solutions.

Parameter Description Value Units

c Dry gravity wave speed 50 ms!
g4 Moisture sensitivity 6! h!

g Temperature sensitivity 27! ht

r Cloud-radiative feedback parameter 0.2 —

oy WISHE/zonal-moisture-advection parameter 1%x1073 Kkgm™
M, Gross dry stability 3.12 x 10* Kkgm 2
Ry Gas constant of dry air 287.06 Jkg 1K1
B Meridional gradient of the Coriolis parameter 228 x 107 m 's!

whenA — —ggmeg, yor — ; thatis, the mode is characterized
by a humidity signature so large that temperature perturba-
tions are negligible. Incidentally, previous studies (Sobel et al.
2001; Sugiyama 2009; Adames et al. 2019) have indeed docu-
mented that A ~ —g mcg for moisture modes.

An alternative form for vy, that will also prove useful is
obtained by combining (11) and (13):

A2+ k2

Yor =Yor F g (14 (19)
If explicit expressions for A are available, the y,7metric can be
evaluated using either (16) or (19). The value of y,r can then
be used to characterize wave solutions by checking if they
satisfy condition C1, with QE modes having modest departures
from yog and moisture modes greatly exceeding this value. An
explicit expression for v, can also be used in (18) to evaluate
conditions C2 and C3. We will seek explicit analytic approxi-
mations for A that are available in certain limiting regimes. We
first work with the simpler v = 0 model, since analytic ex-
pressions are easier to obtain and verify for this case, and later
comment on qualitatively similar results for the v # 0 case.

3. Analytic approximations, g-T ratios, and dominant
balances for the v = 0 case

We insert v = 0 into the reduced zonal momentum and
continuity equations [(5) and (7)], and use them with the
combined thermodynamic equation in (15) to obtain the fol-
lowing dispersion relationship:

N+ A%, + Ak + sqmé“czk2 + isq(l + r)]%‘kc2 =0, (20)

The expression in (20) is a well-known cubic dispersion relation-
ship (N'Y94; Fuchs and Raymond 2002; Sugiyama 2009; Fuchs and
Raymond 2017; Adames et al. 2019) with documented numerical
solutions. Perturbation expansions (NY94; Sugiyama 2009), will
however, allow us to determine analytic approximations for A in
limiting cases. These approximations will allow us to fully illus-
trate the properties of QE and moisture modes, including the
differing roles of convective adjustment in both modes.

a. Analytic approximations

We nondimensionalize A = A*ck, where A* is a dimensionless
frequency. While we use the gravity wave time scale ck for

nondimensionalization, we note that other choices such as the
convective time scales (g, or g;) do not change our ensuing
analytic approximations. We also introduce two additional
dimensionless parameters:

6= d 21
€ Mg o @)
eEm

m =1 (22)
&

Here, 6 is a key nondimensional parameter that tracks the
wavenumber k by comparing the relative time scales of dry
gravity wave and moisture adjustment by convection—similar
to Nmode in Adames et al. (2019). The parameter m, incorpo-
rates m.g and the different convective sensitivities to moisture
and temperature. Since g, > g4, m, < mcg; therefore, m, can be
interpreted as a reduced gross moist stability. This additional
reduction due to the moisture and temperature sensitivities of
convection proves important, so the variants of the gross moist
stability and other derived parameters are summarized in
Table 2.

In nondimensionalized form, the cubic dispersion relation-
ship (20) is now

1 AP .
/\*‘8+W+)\*8+1+l§:0,

r

(23)

where we have defined a parameter associated with WISHE/zonal
moisture advection &:

(24)

Note that ¢ is not independent of £ and, in fact, has a singularity
at k = 0. It is nevertheless convenient to retain the k depen-
dence in &, because realistic values of the WISHE/zonal-
moisture-advection parameter o, (Table 1) are such that & ~
O(1) for planetary wavenumber k, ~ 1 (defining k, = ak,
where a is the radius of Earth). Figure S2 of the online sup-
plemental material illustrates the k dependence of &. In the
shortwave limit, we will use

&= ‘f‘smgﬁ

as the relevant nondimensional parameter to capture the ef-
fects of WISHE/zonal moisture advection. We now investigate
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TABLE 2. Key derived parameters, with values based on Table 1 or maximum range considered, with a being the equatorial
radius of Earth.

Parameter Description Value or range Units
g,=g(l +r)+ g Effective convective adjustment time scale 1.307! h™!
YoE = &leg Moisture—temperature ratio in strict QE 3 —
m = (M; — M,)IM; Relative gross moist stability from 0 to 1 —
Megg =m(l +r)—r Effective gross moist stability from —0.2to 1 —
m, = (g4/€,)Mes Reduced gross moist stability from —0.043 to 0.22 —
& = cklegmeg Parameter for perturbation expansion from 0 to « —
g4lea = [yQE(l +r)+1]! Ratio governing m, 4671 —
£,a(2¢) ! Gravity wave emergence wavenumber (at mqg = 0) 13.6 —
2ea8q) Pac™imR2 QE-WTG transition wavenumber (g < 0.51) 25.4 X ml —

the analytic approximations for the solutions of (20) under
different wavenumber limits.

1) LONGWAVE/FAST ADJUSTMENT BALANCES

For a fixed m.g, consider the limit of small 8. This can occur
by small k or large ¢,. For realistic parameters, a combination
of both factors aids the accuracy of the analytic solution rela-
tive to numerical results. For brevity we refer to this as the
longwave regime hereinafter. We look for solutions in this limit
by expanding A* in a perturbation series with & as the small
parameter:

XE=ACDSTE L A0 L)) 1 820 1 82O ... (25)

Here )\(71), )\(O), )\(]), and so on are nondimensional variables
of O(1) that must be solved for in order to reconstruct A*. Note
that both NY94 and Sugiyama (2009) employed similar per-
turbation expansions to derive solutions in limiting regimes.
Substituting (25) in (23), grouping by order of growth, and
neglecting terms smaller than O(8%), we get two eastward-
propagating solutions (A and A,). We also obtain a westward-
propagating solution, which we neglect because it does not
decay away from the equator. The full derivation involving
perturbation expansions is included in the online supplement
material, and we only present the solutions in the main text.
‘We now examine A; and A,:

= —zck\/—\/fjl——lv —2k2 [ _28’(1 *if)] +O0(k*) and
a (26)
Ay =—¢g, +E[1 m (1 +i€)] + O(k*). 27)

a

The mode, A, is damped at the nominal convective adjustment
time scale, g,, so we infer that the convective adjustment in the
longwave regime is primarily accomplished through this mode.
This mode is weakly propagating due to the WISHE/zonal-
moisture-advection term, £. For instance, this mode has phase
speeds of approximately less than 2ms ™" for k, <5.

The mode A, is the “propagating deep convective mode”
from N'Y94 and the “WISHE moisture mode” from Fuchs and
Raymond (2017). Dynamically, this mode shares properties
with the convectively coupled Kelvin wave, in that it propagates

due to temperature variations. We shall therefore refer to this
mode as a long Kelvin wave, even though it must be recognized
that its properties are modified by the presence of both WISHE
and zonal moisture advection, and by the coupling to convec-
tion. The quantity m,(1 + i¢) in (26) suggests itself as another
variant of the gross moist stability that includes the effects of
WISHE/zonal moisture advection as well as the reduced static
stability.

To obtain the phase speeds and growth rates for Ay, we
now write

V1+ié=A +sign($)iB, (28)
where
1 2
A(k)=\/§< 1+ € +1) and (29)
1 2
B(k) = \/_(\/\/l-kf —1>. (30)

Here, &, A, and B are real, positive, and dependent on k: they
vary as O(k ') for k < 1 with a singularity at k = 0, and as O(1)
for k > 1 (see Fig. S2 in the online supplemental material). We
already see from (26) and (28) that this mode has a positive
contribution to the growth rate if the £ > 0. The growth rates
and phase speed in (26) can be explicitly extracted after ne-
glecting terms of O(k>):

Re()\l)=ck\/nTrsign(§)B—%s_m and (31)
B H EOSY AR N

R
2¢2

where we have used (24)—the definition for {&—in (32), which
eliminates the k dependence from the second right hand side
term of (32). From (31), we see that this mode has positive
growth rates for small k£ when & > 0. With increasing wave-
numbers the O(k?) term surpasses the O(k) term, and this
mode experiences scale-selective damping.

From (32), we see that this mode propagates eastward for
small wavenumbers with a phase speed that is dependent on m,
and A. It evident that this mode travels slower than dry gravity
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waves by a factor of (m,)"?A. For k, ~ 1, A ~ 1 such that the
primary influence on the slow phase speeds is from the term
(m,)". The retarding effects on convectively coupled waves
due to a reduced effective static stability are well known
(NY94; Emanuel et al. 1994; Tian and Ramanathan 2003;
Frierson 2007; Raymond et al. 2009). However, (32) shows that
there is additional reduction in the effective static stability
because of convection’s sensitivity to both temperature (g,)
and moisture (g,) perturbations. The parameter values from
Table 1 yield ¢; ~ 8ms~! for k, = 2. With this additional
mechanism of wave retardation, convectively coupled QE
modes appear to travel at speeds closer to observed MJO
phase speeds. For an alternate set of vertical structure as-
sumptions used in AAN (s, =4h; &' =3h), this mode is
faster, with ¢; ~ 13 ms™ L.

We now examine the moisture—temperature ratio of this
mode by using (26) in the expression for y,7 (19) to get

1-m(@é+1

Yor1 = Yor T 18\/“ {(1 - r)i/ifT)} +0@%). (33)
At the leading order, as 6 — 0, the ¢g—T ratio of this mode
approaches ygg, so this mode can be characterized as a QE
mode. Note that a substantial portion of the humidity variations
in this mode are expended in maintaining the leading-order QE
state. The departures from yqg, including the WISHE/zonal-
moisture-advection effects enter at O(8) and grow with in-
creasing wavenumber. These departures could potentially
endow this mode with a significant humidity signature even at
planetary scales, but the O(8) departures from yog in (33) do
not satisfy condition C1, which demands that y,7 > yqg. To
test if this mode satisfies C2 and C3, we first compute the
leading-order convective heating using (33) in the precipita-
tion closure (12):

m (i§ +1)
=ie, T, {(1 FOVETT

The convective heating enters at O(§), since the heating in
the leading-order QE state is zero. With (34), we examine the
dominant balances in the temperature budget after using the
expressions for w;—[(11)]—and A;—[(26)]—in the general
temperature budget (8):

}5 + 0(8%). (34)

—ickm (1+i&)T + ickT — =ickT[l—m(iE+1)] .

diabatic heating

T tendency adiabatic cooling

(35)

The moisture budget is similarly obtained after using (11) and
(26) in (9):

—ickyq Tm (1 + i) —ckT§ off —ick(1—m)T

WISHE/zonal moisture
advection

g tendency moisture convergence

1—m (i€ + 1)] . 36)

=—zckT{ T+r

precipitation
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For the mode A4, the temperature budget in (35) and the
moisture budget in (36) have full balances at O(k). More
importantly, the temperature tendency is a leading-order
term (for nonzero m,). This mode therefore fails to satisfy
C2 and C3. Despite having a potentially large g—7 ratio due
the WISHE/zonal-moisture-advection effects in (36), and a
prognostic moisture equation, this QE mode is not a mois-
ture mode because of strong time-varying temperature
perturbations. Moreover, the temperature budget (35) im-
plies that this mode would not exist if the WT'G approximation
is imposed a priori on the system, that is, if the temperature
tendency is neglected.

2) SHORTWAVE BALANCES

In the shortwave limit, that is, when k — o, the parameter
5 — . In this limit, £ ~ O(k™'), so we rewrite the non-
dimensionalized cubic dispersion relationship (23):
é’*
+A*S+ 1+ 15 3

r Mg

A#2
AFE+— =0, (37)
where &* = £m?; is now O(1). From (37), it is clear that
the WISHE/zonal-moisture-advection effects are weak—of
O(8~1)—in this shortwave limit. We now expand A* in the
small parameter, § :

A= AQ £ 57IAD L 572A@ 4 573G (38)

Here the nondimensional variables A©, A(l), A(z), and so on,
are analogous to /\(O), /\(1), /\(2), and so on, in the longwave re-
gime. Perturbation expansion again yield two valid solutions,
Az and Ay4:

e —&m
Ay=— (%) —ick+ O(8) and 39)

— 1+ 0(57%).

eff

g e

= (40)
The mode Aj travels at the dry gravity wave speed but is damped
by the coupling to convection. Following the terminology of Fuchs
and Raymond (2002), we will refer to this mode as a gravity wave.
This mode could also just as easily be termed a short Kelvin
wave, since the dispersion curves for both inertio-gravity
and Kelvin waves converge in the shortwave limit (Matsuno
1966). This mode is heavily damped and will play a role in
the adjustment process in this shortwave regime.

The mode A4 is convectively damped at the leading order (if
meg > 0) and is weakly propagating because of the WISHE/zonal-
moisture-advection term at O(6~ ). We now compute the g—T
ratio for A4 by using (40) in the expression for y,7, (19):

(32 +1)

- 51
’qu4 - ’YQE Cff (1 + ) + ( ) (41)
We now see that the g—T ratio for this mode grows qua-
dratically with 6 and therefore with wavenumber. Since
dis alarge parameter, it follows that y,7>> yqg. Clearly this
mode has a large g—7 ratio and satisfies C1. To verify the domi-

nant balances in the thermodynamic budgets, we first obtain the
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leading-order convective heating term after using (41) in the re-
written expression for the precipitation closure, (18):

s L (87+ 1)
Qc4f—qu

Mg aA+r ~e,q, (42)
where we have used the fact that y,74 > yqE (for large 8) to
obtain the last equality. The last term on the right hand side
of (42) is the moisture-only precipitation closure often em-
ployed in simple models of tropical disturbances (Sobel and
Maloney 2012, 2013; Sukhatme 2014; Adames and Kim
2016; Wang et al. 2016; Stechmann and Hottovy 2017). It is
clear that the neglect of the temperature fluctuations to
precipitation is formally justified in the shortwave regime,
for this particular mode.

With the convective heating in (42), we now obtain the
leading-order temperature and moisture budgets for A, using
(40) in the general temperature and moisture budgets: (8) and
(9), and the expression for w; in (11):

2,2 7T 2 A — P22 2.2
emyT —KT =-T(CK +emy) and (43)
T tendency adiabatic cooling diabatic heating
(- )i + .g*sémgfh e a(1—
aqmeff q L ck q eqq( meff)
— —
g tendency WISHE/zonal moisture moisture convergence
advection
= ¢4 + O®K") (44)
N—— —

precipitation higher order terms

In (43), the dominant balance—at O(k*)— is between the
adiabatic cooling and the diabatic heating terms, while the
temperature tendency is only of O(1). This mode therefore
satisfies C2. The WISHE/zonal-moisture-advection term in
(44) is not a leading-order term and is instead balanced by
higher-order terms at O(k~ ). From (41), (43), and (44), we
clearly see that the moisture tendency term is larger than
the temperature tendency term by O(8%); this mode there-
fore satisfies C3. This mode satisfies all three conditions
outlined in section 1 and can now justifiably be termed a
moisture mode. A consequence of the small temperature
perturbations in the moisture mode is that the precipitation
can be discerned solely from the moisture perturbations, as
implied by (42).

Note that Sugiyama (2009) also used perturbation ex-
pansions to derive a similar dispersion relationship to (40).
This relationship can also be derived by imposing the WTG
approximation a priori on the system (Sobel et al. 2001;
Adames and Kim 2016; Fuchs and Raymond 2017). The re-
sults of this section clearly show that the WTG balance in
(43) only emerges in the shortwave limit—when mey >
0—for one particular mode, 4. One way to allow WTG
moisture modes to emerge even at planetary scales (with
finite me.g) is to take ¢ — oo, that is, assume infinite dry
gravity wave speeds. From the definition of § in (21), it can
be seen that this limit of infinite gravity wave speed—which
implies 6 — o—will yield the WTG moisture mode solution
for all length scales. The finiteness of the dry gravity speed
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therefore places an upper bound on the length scale of the
WTG moisture mode.

At this juncture, it is worth pointing out the similarities be-
tween 8 and the nondimensional number N,,qq4. introduced in
Adames et al. (2019), which can be written as

s ).
meffck

Note that, since A = A(k), Npode is not formally a parameter.
With expressions for A from perturbation expansions, Nmode
can be expressed in terms of the nondimensional parameter 6.
Adames et al. (2019) showed that taking the different limits of
Nmode yield the dispersion relationships characterizing low
frequency convectively coupled waves (when Nyogqe — ) and
moisture modes (when Np,oq. — 0). It can be verified from (45)
that these limits correspond to the longwave (6 — 0 ) and
shortwave (8§ — ) limits, respectively, when m is fixed.

e A
" _

c2k?

(45)

mode

3) SMALL GROSS MOIST STABILITY

The preceding analyses assumed fixed values for mg. It is
also important to consider the case of when mg — 0 for a fixed
wavenumber. This case can be handled with small modifica-
tions to (37):

A8+ AR5 ass 11+ = 0. 46
ck "5 (46)
For a fixed wavenumber, § — % as meg — 0. This large & limit

is the similar to the shortwave limit. The valid solutions to (46)
from perturbation expansions in this limit are

A= <ea *+ /€2 — 4c?k?

5 ) +O(m,,) and 47)

2m?

Ao = —8 Mgy — qc—keff<i§* + %’C) +0(my). (48)
Here, A5 represents a damped mode that is stationary for k <
£4/(2¢) and propagating for k > g,/(2¢). In the limit of small k,
this mode is damped at the convective adjustment time scale g,
similar to the weakly propagating mode in (27). In the limit of
large k, this mode propagates at the dry gravity wave speed,
similar to (39). The dominant adjustment process in this limit
of small m.g is therefore wavenumber dependent and can be
accomplished by either convection or gravity waves. The per-
tinent threshold wavenumber that separates the regimes of
convective and gravity wave adjustment is given by &,/(2¢).

The mode represented by A¢ is the same as the WTG
moisture mode (A4) to the leading order. Since m.¢ — 0, we see
from (48) that this mode is nearly neutral and stationary. This
mode shares other properties with the WTG moisture mode,
including the large g—T ratio from (41), the convective heating
from (42), and the leading-order thermodynamic balances
from (43) and (44). This mode clearly satisfies C1 and C2. We
see from (44) that dominant balance in the moisture budget is
simply between precipitation and moisture convergence, with
the moisture tendency a higher-order term in the moisture
budget. However, the temperature tendency is still smaller
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TABLE 3. Results of the moisture mode test outlined in section 1 for important modes under three different regimes.

Condition 1: Condition 2: WTG Condition
Large temperature 3: Prognostic
Regime q-T ratio balance moisture Dominant adjustment Verdict
Small k& No (v,r = Yor) No No Convection Fail; a QE mode
Large k Yes (Y41 > YoE) Yes Yes Gravity waves Pass
Megg — 0 Yes (Y41 > YoE) Yes Yes Convection: if k = g,/(2¢); Pass, but in a narrow

Gravity waves: if k > &,/(2c) range of meg

than the moisture tendency by O(mi.g), so this mode also sat-
isfies C3 and can be termed a moisture mode.

The moisture mode can therefore arise at any length in the
limit of vanishing m.g, but a few key differences from the
shortwave moisture mode in (40) must be noted. The dominant
adjustment in the k — o case is performed by the gravity
waves, A3 in (39). In contrast, the dominant adjustment in the
mege — 0 case can be performed either by convection or by
gravity waves, depending on the threshold wavenumber, £,/(2c).
When the length scale of the mode is such that k = ¢,/(2¢),
small departures of m.g away from zero can rapidly change the
limit from 6 — % to § — 0 and yield QE modes, as in the
expression for A, in (26). For length scales such that k < &,/(2¢),
the perturbations to m.g away from zero do not greatly perturb
the & — oo limit, such that the mode remains a moisture mode.
The planetary-scale, low my moisture mode therefore only
exists in a narrow range of mig values close to zero. This
narrow-range sensitivity of this mode will be further high-
lighted with numerical solutions in the section 4. Table 3
summarizes the conditions satisfied by the different modes in
the v = 0 beta-plane model, and the dominant adjustment
processes, under the different limits considered in this section.

b. Adjustment to QF and WTG

In AAN, a convectively driven system without wave dynamics
was shown to adjust to a state of QE. This state in the moisture—
temperature phase space (the g-T space) can be identified as the
set of points that have y,7 = yqg. It is now instructive to examine
how this convective adjustment process is altered in the presence
of wave dynamics. For this exercise, vy, values for the different
modes are interpreted as eigenvectors in the g—7 space with the
respective eigenvalues given by the analytic expressions for A. A
propagator matrix is then constructed from these eigenvalue—
eigenvector pairs to represent the evolution of § and 7" in g-T
space. Since the propagator for the wind field is not included, the
matrix does not fully capture the evolution in phase space.
However, the dynamics are implicitly present in the eigenvalue—
eigenvector pairs used to construct the matrix (see the online
supplemental material for more details). We emphasize that this
propagator matrix is utilized as a conceptual tool to highlight the
mechanics of adjustment, similar to Fig. 4 in AAN.

Since we wish to depict the adjustment process, only stable
solutions are considered by using a positive value of m.g (=0.1)
and turning off WISHE/zonal-moisture-advection effects (£ =
0). We consider two fixed wavenumbers in the longwave (k, =
2) and shortwave (k, = 20) regimes. The parameter values
from Table 1 are plugged into the analytic approximations for

Ygr and A to numerically evaluate the eigenvalues and eigen-
vectors. The propagator matrix is then used to evolve five ar-
bitrary initial perturbations in the G-T plane. The ensuing
evolution of the in-phase components (real parts) of § and T
are depicted in Fig. 2.

Perturbations in the longwave regime (Fig. 2a) are rapidly
adjusted close to the QE line by the heavily damped mode in
(27). This fast adjustment process is similar to the convective
adjustment depicted in Fig. 4 of AAN, i.e., the evolution dic-
tated by the precipitation closure in (12) with negligible
modification by dynamics brings the system close to the QE
line. The slower adjustment by the damped QE mode, i.e., (26)
with ¢ = 0, proceeds toward the base state of linearization, until
both the 7" and § perturbations are erased. Since all the modes
are damped, the base state of linearization is an attractor. The
slope of the slow adjustment direction is close to the slope of
the QE line (where y,7 = 7yqg). This slope is wavenumber
dependent and approaches yog as k — 0.

In the short wavelength regime (Fig. 2b), perturbations are
rapidly adjusted by the gravity waves in (39). The slow adjust-
ment direction in this regime is marked by a near invariance in
the 7" direction. The slope of the slow adjustment direction, like
in the longwave regime, is also wavenumber dependent and
approaches the WTG line (the vertical) as k — .

Reintroducing WISHE/zonal moisture advection yields an
unstable solution in the longwave regime, while using a negative
value of m. yields an unstable solution in both the longwave and
shortwave regimes. The phase diagrams in the presence of these
unstable solutions show amplification—instead of decay—along
the slow eigenvector direction, and the base state of linearization
morphs into a saddle point (not shown).

The phase diagram in Fig. 2 illustrates the dichotomy be-
tween the longwave QE modes and the shortwave WTG
moisture modes. Figure 2 also suggests that the slow adjust-
ment direction transitions from the QE direction toward the
WTG direction, as the wavenumber increases. The nature of
this transition (e.g., continuous vs discontinuous) is unknown
at this point. To further examine the details of this transition,
we now turn to numerical solutions.

4. Numerical solutions to dispersion curves

a. Growth rates and frequency

The cubic dispersion relationship in (20) is numerically
solved using a root solver with the parameter values in Table 1.
The resulting growth rates and frequencies for the valid (sta-
tionary or eastward propagating) solutions are displayed in
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(a) QE adjustment for k, =2 (b) WTG adjustment for k, = 20
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FIG. 2. Schematic illustrating the adjustment process in the § — 7" plane for the (a) QE and (b) WTG moisture
mode regimes, for fixed planetary wavenumbers (k, = ka). The bases of the different colored arrows indicate five
different initial conditions from which the solutions are allowed to evolve, with longer arrows indicating faster
adjustment. The star symbol marks the base state of linearization. The solid black line is the QE line, and the dashed
gray line denotes the slow direction of adjustment. Both ¢ and T are normalized by an arbitrary tropospheric
pressure depth of 850 hPa so that they have units in kelvins.

Fig. 3, for cases with (Figs. 3a,b) and without (Figs. 3c,d)
WISHE/zonal moisture advection. Note that similar numerical
solutions are also found in previous studies (YN94; Fuchs and
Raymond 2002, 2017; Adames et al. 2019), who primarily fo-
cused on the stability and phase speeds of the solutions. Our
focus here will lie on the transition between longwave QE
modes and the shortwave WTG moisture modes.

In Fig. 3, the analytic approximations track the numerical
solutions quite closely for a long range of wavenumbers. In
Fig. 3a, the QE mode solution in the longwave regime—from
(26)—tracks the numerical solution from k,, = 0 to k, ~ 2.5 for
megs = —0.1 and to k, ~ 5 for meg = 0.1. The WTG moisture
mode in the shortwave regime—from (40)—extends to k,, ~ 10
from k, — . More importantly, the QE and the WTG mois-
ture modes in Fig. 3a appear to lie on the same solution branch.
In other words, the QFE mode continuously transitions to the
WTG moisture mode as k varies from 0 to ©. A cusp in the
growth rates appears to separate the QE mode solutions from
the WTG moisture mode solutions; this cusp is particularly
noticeable for mqy = 0.3 and mq = 0.5. The location of this
cusp can therefore be interpreted as the wavenumber that
marks the transition between the QE mode and the WTG
moisture mode. In Fig. 3a, this QE-WTG transition wave-
number appears to increase with m.g.

In Fig. 3b, the phase speed of the QE mode rapidly reduces
away from the singularity at k,, = 0 toward the reduced gravity
wave speed [c(m,)"?] at k, ~ 1. The frequency of the QE so-
lution branch (inset in Fig. 3b) resembles the observed MJO
wavenumber—frequency relationship (Wheeler and Kiladis
1999; Kiladis et al. 2009) for mey = 0.1. For larger values of
Mmegr, the phase speeds increase [as (meff)m], such that the

wavenumber—frequency relationship resembles the observed
Kelvin wave spectrum. The QE mode is clearly dispersive, but
the dispersive character (denoted by the maxima in frequency)
is only evident for wavenumbers close to the QE-WTG tran-
sition wavenumber.

From Fig. 3b, it can be seen that the propagating QE modes
gradually transition to the near-stationary WTG moisture
modes for wavenumbers larger than the apparent QE-WTG
transition wavenumber. Figure 3b also highlights the emer-
gence of propagating modes for k, = 15, which then asymptote
to the dry gravity speed. In this system, gravity waves only exist
for waves shorter than this wavenumber cutoff. This wave-
number cutoff for gravity wave emergence also exhibits a de-
pendence on m.g. Interestingly, Fuchs and Raymond (2002)
and Fuchs and Raymond (2005) also noted the emergence of
gravity waves in their numerical solutions, but found that their
transition wavenumber was smaller than k, = 1. This result is
due to their choice of the convective adjustment time scale, as
we will see in the next section. Relatedly, YN94 also encoun-
tered multiple gravity wave transitions corresponding to dif-
ferent vertical structures.

Solutions in the absence of WISHE/zonal moisture advec-
tion (Figs. 3c,d) are obtained by setting o, = 0 into (20) for
numerical solutions and ¢ = 0 for analytical solutions. Without
WISHE/zonal moisture advection, when mg > 0, the transi-
tion from propagating longwave QE modes to the stationary
shortwave WTG moisture modes occurs at distinct points
along the solution branches. As the wavenumber is increased
from zero, the propagating QE solution bifurcates at an in-
termediate wavenumber into two stationary solutions: one of
which is the WTG moisture mode. For instance, for m.g = 0.1,
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(b) Phase speed (ms™1);
with WISHE/zonal g advection
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(c) Growth Rate (per hour);
no WISHE/zonal q advection

(d) Phase speed (ms™1);
no WISHE/zonal q advection
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FIG. 3. Numerical solutions of the (left) growth rates and (right) phase speeds for valid modes of the v = 0 system
(a),(b) with and (c),(d) without WISHE/zonal moisture advection. The colored lines indicate different values of the
effective gross moist stability .. The black dashed lines in (a) and (c) are analytic approximations in the longwave
regime from (26) and the shortwave regime from (40)—for meg = 0.1 and meg =—0.1. The inset in (a) zooms in
closer to the longwave regime. The black dashed lines in (b) and (d) are the analytic approximations to the phase
speed in the longwave limit. The inset figure in (b) shows the frequency of the slowly propagating mode as a function

of wavenumber. The dotted lines in (c) denote the stationary solutions.

this bifurcation happens at k,, ~ 7, where the two dotted orange
stationary solutions meet the solid orange propagating solu-
tion. For m.g < 0 the solution branches remain continuous.
However, knowledge of where this bifurcation occurs for
mege > 0 can give insight into the wavenumber of QE-WTG
transition for other cases.

The phase speeds in Fig. 3d also clearly display the cutoff
wavenumber for gravity wave emergence, as in Fig. 3b. The
location of this cutoff wavenumber appears to coincide with a
secondary bifurcation in Fig. 3c, where two stationary solutions
merge into a propagating solution. Note that only one of these
stationary solutions is shown in Fig. 3c; the other stationary
solution can be seen in Fig. S3 of the online supplemental
material. From Fig. 3d, it is also seen that the QE modes no
longer display the singularity at k = 0 in the absence of
WISHE/zonal moisture advection and are instead nondisper-
sive with phase speeds near the longwave limit given by
c(m)'2.

Two transition wavenumbers were identified from the nu-
merical solutions in Fig. 3. The first of these marks the QE—
WTG transition. The second wavenumber is associated with
the transition between the slowly propagating mode in (27) and

the gravity waves in (39). In the solutions without WISHE/zonal
moisture advection (Fig. 3c) and with mey; > 0, both these
transitions are marked by bifurcations between propagating
and stationary solutions, making the transition in behavior
particularly clear. The schematic in Fig. 4 isolates the disper-
sion curve for meg = 0.1 and summarizes key features of the
QE-WTG transition and gravity wave emergence for cases
with and without WISHE/zonal moisture advection. The
smooth transitions in the former case are related to the bifur-
cations in the latter. In this figure, the wavenumbers that mark
the QE-WTG transition and the emergence of gravity waves
are termed kqw and kg, respectively. In the v = 0 model, the
wavenumbers kqow and k, can be interpreted as upper bounds
for the spatial scales of moisture modes and gravity waves,
respectively. A detailed analysis of the factors affecting kow
and kg is pursued in section 5.

b. Moisture—temperature ratios

The numerically computed roots of (20) are plugged into
(19) to numerically evaluate vy, 7 values. Figure 5 compares the
absolute value of the computed vy, for the QE mode and the
WTG moisture mode. Solutions are presented for cases both
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FIG. 4. A schematic summarizing the regimes and transitions in the v = 0 model for fixed
mege = 0.1. The y axes indicate the growth rates. Shown are solutions in the (top) absence and
(bottom) presence of WISHE/zonal moisture advection. The solid lines denote propagating
solutions, and the dotted lines denote stationary solutions. Two bifurcations between sta-
tionary and propagating solutions are present in the top panel. The first of these bifurcations
marks the transition wavenumber between the QE mode (red) and the WTG moisture mode
(blue). The second bifurcation marks the emergence of gravity/short Kelvin waves damped by
convection (green). The corresponding transitions persist in the WISHE/zonal-moisture-

advection case but are smooth.

with and without WISHE/zonal moisture advection. For small
wavenumbers, |y,7| ~ vqE, as predicted by the g-T ratio ex-
pression for the QE mode in (33). As the wavenumber is in-
creased, |y, 7| grows rapidly; the rate of growth is quadratic, as
predicted by the g-T ratio expression for the WTG mode in
(41). The magnitudes of |y,7| clearly highlight the distinction
between longwave QE modes and the shortwave WTG mois-
ture modes as depicted in Fig. 4. The QE mode can have a large
humidity signature—with vy, slightly greater than yqg for
precipitation to occur—but also has a nonnegligible tempera-
ture signal. The WTG moisture mode, on the other hand, has a
humidity signature that dominates temperature by more than
an order of magnitude.

When meg < 0, |v,7| commences its departure from yqg at
k, = 0. When m.g > 0, the departures of |y, 7| from yqg begin
at positive wavenumbers that increase with m.g. For instance,
when meg = 0.3 and meg = 0.5, |7y, 7] increases away from yor
for k, ~ 12 and k, ~ 15, respectively. The transition appears
smoother when meg = 0.1, with |y, 7| increasing gradually away
from yqg for k, = 7 and then increasing rapidly beyond k,, ~ 7.
These wavenumbers that mark the rapid increase in |y, 7| ap-
pear to coincide with the QE-WTG transition wavenumber
inferred from Figs. 3a and 3c.

The presence of WISHE/zonal moisture advection only
has a quantitative effect on |y, 7|. For instance, when mg =
0.1, the departures from yog grow faster in the presence of
WISHE/zonal moisture advection than without. In the

,{[— 010 0.30
10 0.10 0.50
102'5
10!
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100 T T

0 10 20 30 40 50
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FIG. 5. Absolute values of the ¢g-T ratio for the QE mode and

WTG moisture mode with (solid lines) and without (dotted lines)

WISHE/zonal moisture advection. The strict QE ratio yog is indicated
by the dashed horizontal line. The colors denote different values of m1..
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FIG. 6. Left axis: absolute values of vy, (dots) for small magni-
tudes of m. and planetary wavenumber fixed at k,, = 2. Right axis:
the corresponding ratio between moisture tendency and moisture
convergence (dashed line). The horizontal dashed black line de-
notes yoE for the left axis.

presence of WISHE/zonal moisture advection, |y,7| in-
creases along a continuous curve that leads from the QE
mode to the WTG moisture mode. In the absence of
WISHE/zonal moisture advection, there can be a discon-
tinuity in the slope of |y,7| as a function of k due to the
primary bifurcation that marks the QE-WTG transition, as
pointed out in Figs. 3c and 4.

Figure 6 shows how |y, 7| for the small m. moisture mode
represented by (48) varies as meg approaches 0, with wave-
number fixed at k, = 2. The absolute value of the ratio between
the moisture tendency and moisture convergence computed
from (44) is also displayed. The |y,7| values increase rapidly as
mege — 0 from both positive and negative directions, with a
singularity at meg = 0. These large values of |y, ]| are consistent
with the expectations from the analytic solutions that this mode
satisfies C2. Figure 6 also highlights the sensitive nature of the
mode to perturbations in mg: as meg departs from zero, the
|'vq7| ratios rapidly decrease to much smaller values closer to
YoE- On the positive- m.g side, the zone with large |y, 7] is very
narrow, roughly m.g < 0.01. The magnitude of moisture ten-
dency relative to moisture convergence also diminishes with
decreasing m.g and vanishes at me = 0.

5. The QE-WTG transition and gravity wave emergence

In this section, we will examine the factors that control the
transition between QE and WTG (at k = kow) and the
emergence of gravity waves (at k = k). For positive m¢ and
without WISHE, kow and k, coincide with bifurcations
pointed out in Fig. 4, so they can be identified by locating these
bifurcation wavenumbers. The physical balances found this
way can then be used to inform extension to negative meg Or
WISHE cases. To this end, we first inspect the discriminant of
the cubic equation in (20). For solutions without WISHE/zonal
moisture advection, i.e., o, = 0, the cubic discriminant is

A=4c'k" — e2(1 +18m —2Tm2)*k* + deim . (49)
The bifurcations occur when A passes through zero, so the
roots of A = 0 should yield kqow and k. Since (49) is quadratic
in ¢?k?, we can solve for the zeros of A to get
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=20 (14 18m, — 27md) |1+ [1-— |
8¢ (1+18m, —27m2)
(50)

Solutions to (50) that yield real k give the transition wave-
numbers. When m, (or m.g) is small, the term inside the square
root in (50) is close to 1, so we have

2e P
kow =~ T“ /m_ = 27, /m_ and (51)
€
kg = 27(:7 (52)

for meg > 0. When m.; is close to 0, the QE-WTG transition
occurs for small &, as seen from (51), but increases rapidly as
(meg)'?, reaching k, = 8 near meg; = 0.1. Gravity waves only
emerge for modes with wavenumbers larger than the threshold
wavenumber given in (52), which is a simple combination ¢,
and c. This formulation in (52) is consistent with the threshold
wavenumber inferred for the mode A5 in (47), which separates
convectively adjusted modes from gravity wave adjusted
modes in the limit of small m.¢. The formula (52) also gives insight
into the bifurcations of multiple gravity wave branches (YN94)
when more vertical degrees of freedom are included—the dry
phase speeds associated with different vertical modes yield dif-
ferent values of k.. In Fig. 4, the transitions are displayed for
meg = 0.1, 50 kqw ~ 8 using (51), and k, ~ 14 using (52).

As m, increases, it reaches a value where these two roots (kg
and kqw) merge. This occurs where the term inside the square
root in (50) is 0 at m, = 1/9:

(53)

that is, the merger occurs at approximately m.y = 0.51 and
k, ~ 16 for values in Table 1. The approximate expression (51)
for kow has only ~14% error at the merger point.

A physical interpretation of these analytic results is that the
competition between the time scales for convective adjustment
(e,) and gravity/Kelvin wave adjustment (ck) governs both the
small length scales for QE modes and large length scales for
gravity waves. This competition sets the scale of the gravity
wave transition near where the ratio of the convective adjust-
ment time scale g, and gravity wave frequency ck is order 1. For
the QE mode and the moisture mode, the interaction is further
moderated by mi.g, which can be viewed on the one hand as a
reduction in dry static stability by convective heating (Emanuel
et al. 1994), and on the other as the efficiency with which
convection dries the column (Inoue and Back 2017). Small
values of meg reduce the efficacy of convective adjustment, as
seen in the moisture mode decay rate, and reduce the QE mode
propagation speed. This competition results in the QE-WTG
transition near where the ratio of the moisture adjustment time
scale g;m. and the QE mode frequency (aqmsff/sa)l/zck is
order 1. Similar balances hold in the case of negative mi.g for
the QE mode growth rate.

Figure 7 shows kqw and k, directly computed using (50) for
the range of m.g values over which real roots occur. The rapid
change of the QE-WTG transition kqw as m.g increases from
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FI1G. 7. Planetary wavenumbers for QE-WTG transition (kow;
blue dots) and gravity wave emergence (k,; gray dots) as a function
of meg. The star markers denote the different approximate solu-
tions to kqw and k. The red star marks the approximate k, value at
small my computed using (52). The orange stars mark approxi-
mate kow values for meg = 0 computed using (51), and the green
stars are the approximate kqw values for m.y < 0 computed using
(54). The magenta star denotes the k, and kqw values at the merger
point, computed using (53).

zero is well approximated by (51). The gravity wave transition
kg increases less rapidly with mcg, as expected since the
gravity wave dynamics is less dependent on the moist sta-
bility. The case m.s = 0.5 in Figs. 3c and 3d shows the be-
havior where the QE-WTG transition has almost reached
the merger with the gravity wave transition, corresponding
to meg just slightly less than the value marked by the cyan
star in Fig. 7. With increased mi.g, the WTG mode decay rate
has increased such that the dip at the QE-WTG merger cusp
is close to the decay rate of the gravity waves, and the region
with no propagating mode between the two transitions has
become very small. For me¢ > 0.51, the QE mode transitions
continuously to the gravity wave branch and the moisture
mode decay rate changes rapidly near k = £,/(3%c) to con-
nect to a strongly damped mode at low wavenumbers (Fig. S3
of the online supplemental material).

The bifurcations identified by A = 0 in (50) move off the real
k axis when o, # 0, so there are no longer singular mergers with
degenerate eigenvalues at particular real k values and—as
shown in Fig. 4—the QE and WTG eigenvalues lie on the same
solution branch. However, closely related behavior with simi-
lar physical balances still arises in some neighborhood of the
o, = 0 bifurcations. This may be seen in the correspondence
between slightly smoothed extrema of growth rates in Fig. 3a
and the location of bifurcations in Fig. 3c, and in the similarities
in phase speed transitions between Figs. 3b and 3d.

When mg < 0, changes in regime are not marked by dra-
matic bifurcations. However, the changes in dominant bal-
ances similar to the m.g > 0 case still occur as a function of k.
To identify a characteristic k scale where the QE-WTG
crossover occurs for me; < 0, we can seek an approximate
match between small-k approximation for the QE mode (26)
and the large-k approximation for the WT'G moisture mode
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(40). To leading order (26) gives A = ck(g,/e,)"|mes|"* and
(40) gives A = g4|mcg|. Equating these yields

k _ /qua |m ‘
Qw c \/ eff I~

This has the same scale and mi.; dependence as (51) in the
positive mey case, but is smaller by a factor of /2. In Fig. 7, this
is seen as an asymmetry in the kow transition for positive and
negative meg; in contrast, k, crosses smoothly to negative meg;.
The approximation (54) is also consistent with the my; = —0.1
case in Figs. 3a and 3c, which suggests that the analytic ex-
pression for the moisture mode is not valid until k,, ~ 7.

For this m. < 0 case, one can also ask for what wavenumber
the g—T ratio becomes much larger than yog, a signature of the
moisture mode as outlined in C1. Using the leading-order term
from (26) in (19), and m, < 1 yields:

& &€
k> ?’(1 +r)\/8::,/|mcff|.

This has the same m.¢ dependence as (54); the scaling factor is
similar but with g,(1 + r) in place of g,, so it is smaller by a
factor of 0.78 for standard parameters.

Previous studies (Fuchs and Raymond 2002, 2005) have
documented the gravity wave emergence, but noted that this
emergence occurs at unrealistically long wavelengths, larger
than Earth’s circumference (k, < 1). This result can be ex-
plained by considering the expression for k, in (52) for dif-
ferent values of ¢,. For the parameter values in Table 1,
&, ! = 1.3h, which yields k, ~ 13.6. Fuchs and Raymond (2002,
2005) employ a longer convective adjustment time scale
~1day. Using ;! =24 hin (52) yields k, ~ 0.7, which is indeed
an unrealistically large length scale for gravity waves. The
wavenumber of gravity wave emergence is therefore sensitive
to the choice of convective adjustment time scale.

(54)

(55)

6. The v # 0 case

A complete treatment of the v # 0 case can be pursued by
deriving the dispersion relationship from the governing
equations in (5)—(9). In this section, we only pursue the
simply extendable properties from the v = 0 solutions to the
v # () case. Specifically, we seek to verify if the QF and WTG
balances characterize the longwave and shortwave regimes
whenv # 0, like they do in the v = 0 case. For this purpose, we
only require the leading-order term in the solution to the
dispersion relationship in the large-k and small-k regimes.
For simplicity, we neglect WISHE/zonal moisture advection,
i.e.,set&=0.

a. Long Rossby waves

Solutions to Equatorial Rossby waves in the small-k re-
gime are analogous to the long Kelvin wave solutions—in
(26)—through the equatorial longwave approximation (Gill
1982; Boyd 2018). At the leading order and after neglecting
WISHE/zonal moisture advection, these modes have the
following solutions:
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2n+1

A= Vi, + oK), (56)
where 7 is a nonnegative integer. The moisture-temperature
ratio for the long Rossby wave is obtained after using (56) in

the expression for g-T ratio (19):

r

_ s \/mr i 2
Yor = Yor ~ 1 n+1s, +0(5). (57)

@n+1P%-m
1+r

From (57) it is evident that as 6 — 0 and y,7 — Yog. The long
Rossby waves, when coupled to convection, tend toward the
QE balance like the long Kelvin waves. The convective heating
for this mode is calculated by using (57) in the precipitation
closure expression (18):

8+ 0(8%).

Oro =~ 3 1| 147 (58)

S [(Zn +1)7% —m,

From (56) and (58) it is evident that the tendency terms in the
thermodynamic budgets (8) and (9) are of the same order:
O(k). To estimate the magnitude of the adiabatic cooling/
moisture convergence term, it is sufficient to estimate the scale
of the divergence. Following standard nondimensional proce-
dures for the equatorial beta plane (Matsuno 1966), we scale y
by the equatorial Rossby radius Lg:

y=y*L, =y*\/cIB,

where y* is a nondimensional length scale. We also use c as the
scale for the horizontal velocities:

(59)

(60)

(ul,vl) = (u*c,v*c).
With these scales, the leading-order balance in the divergence
equation, (7), is

w, = ck (iu* + a*v*i) . (61)

Y7 Lpk
For planetary scales, the coefficient of d5v* is O(1), so the di-
vergence is of O(k), and both the thermodynamic budgets re-
tain full balances, similar to the budgets for the long Kelvin
wave from (35) and (36). The convectively coupled long
Rossby wave is therefore a QE mode.

b. Short Rossby waves

The primary governing equation for Rossby waves is the
potential vorticity equation (Gill 1982), which we now use to
extract the shortwave solutions. Equations (5) and (6) are first
cast in vorticity-divergence form. The divergence is then
eliminated by using (7) and (15) to get

WO +e,) = +mye YEVIAL + Bu,)

£ A0+ e, BV =0, (62)
where { is the vorticity:
{=ikv —au = -V, (63)
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with ¢ being the streamfunction that characterizes the non-
divergent flow. Similar to the quasigeostrophic approximation,
we neglect divergent flow in the planetary vorticity advec-
tion term:

v, B~ —ikyB, (64)

but retain the effects of divergence in temperature and mois-
ture equations where they are leading-order terms, so gravity
waves still exist in this system. Inserting (63) and (64) in (62)
yields the potential vorticity equation:

{VA +e,) = O +mye )V]IAV +ikp)

+AA +e,)BY Vi =0. (65)

When considering motions with rapid zonal variations and
spatially broad meridional structures, a perturbation expan-
sion of (65) yields four roots—see the online supplemental
material for a full derivation. The leading-order solutions are

Ay ==& My, (66)
Ay =iBlk, and (67)
. em 1-— m,
My hyy) = izck—"Teff(T>. (68)

It is sufficient to compare (66) with (40) and conclude that Ag
is a WTG moisture mode. This mode has the same properties
as its counterpart in the v = 0 model and satisfies conditions C1,
C2, and C3. Since this mode is derived out of the v # 0 case, it
will possess a different meridional structure than the v = 0
moisture mode. It is noteworthy that the WTG moisture mode
does not possess a unique meridional structure. This result ex-
plains why the moisture mode solution of Adames and Kim
(2016), which is a superposition of Kelvin and Rossby wave
structures, is nearly identical to the dispersion relation for the
shortwave v = 0 moisture mode in (40).

The solution in (67) is the shortwave limit of the dry Rossby
wave (Matsuno 1966). It can be verified that y,r for this mode
tends to yog, such that it is nonprecipitating at the leading
order. However, it should be noted that this mode will not
play a prominent role in the thermodynamic adjustment pro-
cess because it is not damped by convection at leading order.
The two solutions in (68) are gravity waves that perform the
fast adjustment on to the WTG line, like in Fig. 2.

The QE and WTG balances therefore characterize the long
and short wave regimes even in the v # 0 model. The details of
the QE-WTG transitions can, however, only be pursued with
numerical solutions of the full dispersion relationship (e.g.,
Emanuel 1993; Fuchs and Raymond 2005; Fuchs-Stone et al.
2019; Emanuel 2020). These details are currently under ex-
amination and will feature in future work.

7. Summary and discussion
a. Summary

Analytic approximations are used to solve the dispersion
relationship from an equatorial beta plane model with an
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empirical precipitation closure under limiting regimes. These
approximations are used to compute moisture—temperature
ratios and illustrate the dominant balances that characterize
the modes of the system. The empirical precipitation closure
has different time scales associated with temperature versus
moisture sensitivities. The ratio of these sensitivities (yoE)
governs important properties of the model. The planetary-
scale Kelvin and Rossby waves are primarily adjusted by
convection, so they have leading-order moisture-temperature
ratios close to yor (some departure is required for precipita-
tion to occur). These modes are accordingly characterized as
QE modes. The phase speeds of these QE modes is also de-
pendent on yog, in addition to the effective gross moist sta-
bility. Gravity waves are absent in the longwave limit, and the
fast adjustment in this limit instead occurs at the convective
adjustment time scale. Three specific conditions are introduced
to identify moisture modes and distinguish them from QE
modes: a large moisture-temperature ratio (y,7>> Yok ), large
prognostic moisture variations, and the loss of the temperature
tendency term. Moisture modes primarily emerge at large
wavenumbers because fast adjustment to WTG occurs by
gravity waves; but they can extend to lower wavenumbers for
near-zero values of the effective gross moist stability. The
moisture modes can exist with both Kelvin and Rossby wave
meridional structures. Ways to similarly identify moisture
modes in observations are discussed in section 7d.

Numerical solutions for the v = 0 case identify two wave-
number cutoffs: one that separates the QE and WTG moisture
modes, and another above which gravity waves emerge in the
system. For the solutions without WISHE/zonal moisture ad-
vection, these transitions are marked by bifurcations between
stationary and propagating solution. The bifurcations are used
to analytically estimate the wavenumber cutoffs, which turn
out to be simple combinations of the convective adjustment
time scale and the gravity wave speed. The inclusion of
WISHE/zonal moisture advection alters the nature of the QE-
WTG transition and emergence of gravity waves from abrupt
bifurcations to smooth transitions.

b. Tropical wave speeds

The departure of the observed convectively coupled wave
speeds from the dry wave speeds has two general sets of ex-
planations: (i) a reduced gross moist stability (Neelin and Held
1987; Emanuel et al. 1994) or (ii) multiple baroclinic modes
(Mapes 2000; Majda and Shefter 2001; Majda et al. 2004;
Khouider and Majda 2006, 2008; Kuang 2008). The analytic
solutions in this study show that the wave speeds are also
sensitive to details of the convective coupling. Even with a
single baroclinic mode, introducing a different temperature
dependence relative to the moisture dependence for precipi-
tation alters the wave phase speeds by a factor that depends on
voE. With empirically informed values for yqg, the QE modes
propagate at speeds substantially slower than implied by the
gross moist stability alone, and much slower than the dry
Matsuno modes. Differences in the moisture-temperature
dependence of precipitation therefore supplies an alternate
hypothesis for the slow observed phase speeds of convectively
coupled waves.
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c¢. Critical wavenumber for convective coupling

In this study, convectively coupled QE modes only exist for
wavenumbers smaller than the QE-WTG transition wave-
number (kqw), above which they transition to moisture modes.
Gravity waves emerge only for wavenumbers greater than the
wavenumber for gravity wave emergence (k,). The values of
kow and k, are simple combinations of the convective ad-
justment time scale, the dry gravity wave speed and the ef-
fective gross moist stability. The apparent critical wavenumber
for gravity wave emergence is also seen in models with higher-
order vertical structures: e.g., see Fig. 3 in YN94, Fig. 3 in
Khouider and Majda (2006), and Fig. 4 in Kuang (2018), sug-
gesting generality that extends beyond the v = 0 case with a
single baroclinic mode. It is therefore worth considering if
these wavenumber cutoffs have observational relevance. For a
typical value of effective gross moist stability, the QE-WTG
transition wavenumber occurs close to planetary wavenumber
8. In the observed intraseasonal power spectrum (Wheeler and
Kiladis 1999; Kiladis et al. 2009), the power corresponding to
convectively coupled Kelvin waves does not extend beyond
planetary wavenumber ~10. The QE-WTG transition might
therefore explain the smallest length scale up to which Kelvin
waves are convectively coupled, i.e., where the dominant
thermodynamic adjustment is due to convection and not
gravity waves.

d. Moisture mode variety

The WTG moisture mode has been used as a prototype to
study the planetary-scale MJO (Sobel and Maloney 2012, 2013;
Adames and Kim 2016). This study highlights that moisture
modes are more prevalent at shorter length scales or under
conditions in which mey — 0. These modes also do not
possess a fixed meridional structure, and can assume any form
imposed by the dynamical constraints—both Kelvin wave and
Rossby wave meridional structures in the case of this study.
This would suggest that observational analogs of the moisture
mode are likely to be found as shortwave, near-stationary
modes with respect to the mean flow with large moisture—
temperature ratios but that specific conditions would have to
apply for the moisture mode to be a good analog to observed
planetary scale variance. Two possibilities consistent with re-
sults here are considered in turn below.

Imposing the WTG approximation—tantamount to assum-
ing an infinite gravity wave speed—will eliminate the QE mode
and allow moisture modes to extend to planetary scales. For
finite gravity wave speeds and nonzero m.g values, pure WTG
moisture modes cannot exist at planetary scales. However,
there exist transition zones in which planetary-scale distur-
bances can exist as intermediate modes with properties of both
QE and WTG moisture modes. In the v = 0 case, these inter-
mediate modes are evocative of ‘“‘mixed-moisture gravity
waves” from Adames et al. (2019). The small gross moist sta-
bility regime is posited to exist within the MJO and long
equatorial Rossby wave wavenumber—frequency bands (Inoue
et al. 2020; Benedict et al. 2020), suggesting that these distur-
bances are also likely to exist as intermediate modes between
QE and WTG.
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Moisture modes can extend to the planetary length scale if
the gross moist stability approaches zero (although the range of
validity of the small-m.g moisture modes is limited to a narrow
range of m.g values). It is suggested that planetary scale
disturbances that satisfy the WTG temperature balance
(e.g., Wolding et al. 2016) are likely to be small-m.y mois-
ture modes. In the idealized modeling world, the phenom-
enon of convective self-aggregation (Bretherton et al. 2005;
Muller and Held 2012; Wing and Emanuel 2014; Wing et al.
2018) can also be viewed as a moisture mode (as recognized
in Sugiyama 2009; Raymond and Fuchs 2009; Kuang 2018).
The strongly feedback-dominated nature of self-aggregated
clusters (Ahmed and Neelin 2019) suggests that this mode
likely exists in the small or negative gross moist stability
regimes.

Observed tropical intraseasonal disturbances—including
equatorial waves, African easterly waves, and monsoon low-
pressure systems—can be placed the QE-WTG continuum
by verifying how they satisfy conditions C1-C3. Such an
exercise would help address questions surrounding the
moisture mode character of disturbances such as the MJO
(Fuchs and Raymond 2017; Adames et al. 2019). For in-
stance, an initial examination (not shown) of the ¢-T ratio
for the MJO using regression analysis—as in Ahmed and
Schumacher (2018)—yields values ~5-6. Though this result
is preliminary, it suggests that the MJO lies in the transition
zone between QE and moisture modes. A more thorough
examination would isolate the different vertical structures
in these disturbances, display the ratios in wavenumber—
frequency space and account for phase shifts between tem-
perature and moisture perturbations (e.g., as in Yasunaga
et al. 2019; Inoue et al. 2020). These examinations will be
considered in a future observational study.

e. Connections to models with higher-order vertical
structures

It is worth commenting on whether the results from this
study are extendable to related models with different treat-
ments for vertical structures. This treatment can either include
two baroclinic modes for the convective heating (Mapes 2000;
Majda and Shefter 2001; Majda et al. 2004; Khouider and
Majda 2006, 2008; Kuang 2008; Andersen and Kuang 2008;
Stechmann and Hottovy 2017) or a single baroclinic mode with
radiation upper-boundary conditions (Yano and Emanuel
1991; Raymond and Fuchs 2007; Fuchs et al. 2012). Stationary
moisture modes appear to exist in both classes of models
(Khouider and Majda 2006; Raymond and Fuchs 2007, 2009;
Kuang 2018). A wavenumber-dependent transition to QE at
small wavenumbers can occur under convective adjustment
(YN94) but whether or how it extends to other parameteriza-
tions within these solutions is worth examining. These models
also contain solutions not found with the use of a single baro-
clinic mode: unstable, convectively coupled Kelvin waves that
extend to planetary scales in a few cases (e.g., Khouider and
Majda 2006; Fuchs and Raymond 2007; Raymond and Fuchs
2007), but not in others (Kuang 2018). It would be interesting
to examine the dominant balances and wavenumber-dependent
transitions in these solutions. This set of questions can be
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addressed within the framework of this study by incorporating
higher-order vertical structures in the governing equations.
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