A Study of Database Performance Sensitivity to Experiment
Settings

Yang Wang
The Ohio State University
wang.7564@osu.edu

Fang Zhou
The Ohio State University
zhou.1250@buckeyemail.osu.edu

Xueyuan Ren
The Ohio State University
ren.450@buckeyemail.osu.edu

ABSTRACT

To allow performance comparison across different systems, our
community has developed multiple benchmarks, such as TPC-C
and YCSB, which are widely used. However, despite such effort,
interpreting and comparing performance numbers is still a chal-
lenging task, because one can tune benchmark parameters, system
features, and hardware settings, which can lead to very different
system behaviors. Such tuning creates a long-standing question of
whether the conclusion of a work can hold under different settings.
This work tries to shed light on this question by reproducing
11 works evaluated under TPC-C and YCSB, measuring their per-
formance under a wider range of settings, and investigating the
reasons for the change of performance numbers. By doing so, this
paper tries to motivate the discussion about whether and how we
should address this problem. While this paper does not give a com-
plete solution—this is beyond the scope of a single paper, it proposes
concrete suggestions we can take to improve the state of the art.

PVLDB Reference Format:

Yang Wang, Miao Yu, Yujie Hui, Fang Zhou, Yuyang Huang, Rui Zhu,
Xueyuan Ren, Tianxi Li, and Xiaoyi Lu. A Study of Database Performance
Sensitivity to Experiment Settings. PVLDB, 15(7): 1439 - 1452, 2022.
doi:10.14778/3523210.3523221

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/sam1016yu/DB-Exp-Sensitivity.

1 INTRODUCTION

This paper targets a long-standing problem in evaluating research
prototypes: how sensitive are their evaluation results to experiment
settings and will their conclusions hold under a different setting?
While we believe this problem is known in our community, this
paper, through quantitative measurement, tries to illustrate the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 7 ISSN 2150-8097.
doi:10.14778/3523210.3523221

Miao Yu
The Ohio State University
yu.3053@buckeyemail.osu.edu

Yuyang Huang
The Ohio State University
huang.2928@buckeyemail.osu.edu

Tianxi Li
The Ohio State University
1i.9443@buckeyemail.osu.edu

Yujie Hui
The Ohio State University
hui.82@buckeyemail.osu.edu

Rui Zhu
The Ohio State University
zhu.2455@buckeyemail.osu.edu

Xiaoyi Lu
University of California, Merced
xiaoyi.lu@ucmerced.edu

extent of this problem and open the discussion whether and how
we should address this problem.

To allow a fair performance comparison across different systems,
our community has developed multiple benchmarks, such as TPC-
C [84] and YCSB [20], which are widely used to evaluate numerous
works [14, 43, 49, 50, 53, 54, 60, 79, 86, 89, 94].

However, despite such effort, we observe interpreting and com-
paring performance numbers under the same benchmark is still a
challenging task: a benchmark often has multiple tunable parame-
ters, whose values could have a drastic impact on the behavior of
the benchmark; the target system often has its own tunable param-
eters or features, which could interact with benchmark parameters
in complicated ways; with many tunable parameters, measuring all
possible settings is time-consuming, and presenting all results could
take a lot of space in an article. As a result, many articles compare
to prior works under certain settings, and we sometimes wonder
whether their conclusions can still hold under other settings.

This work tries to shed light on this question with the follow-
ing methodology: we choose TPC-C and YCSB, two of the most
widely used benchmarks; we have reproduced 11 works (Table 1)
evaluated under these two benchmarks; we then tune benchmark
parameters and system features to see how such tuning can change
the performance of these works; finally we analyze the reasons
when we see a significant change in performance numbers.

We highlight our key findings and contributions:

o We find the conclusions of many works are indeed sensitive to
experiment settings. For example, we observe that the contention
level of TPC-C has a critical impact, and it often happens that a
work can significantly outperform others under one contention
level but has less or no improvement under another level.

e We analyze how experiment settings can affect evaluation results.
For example, we observe, in TPC-C, introducing wait time makes
the experiments I/O intensive; removing wait time makes the ex-
periments CPU/memory intensive; further reducing the number
of warehouses makes the experiments contention intensive. In
summary, we find TPC-C and YCSB can be tuned to stress test
almost every key component of a computer system: while such
versatility is helpful to measure a variety of systems, it brings
challenges to how to fairly compare different systems.

https://doi.org/10.14778/3523210.3523221
https://github.com/sam1016yu/DB-Exp-Sensitivity
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3523210.3523221

Table 1: Overview of the systems we investigate in this paper: * means the feature is discussed in the original article but
not used in our reproduction, either because the feature is not implemented in the prototype or we failed to reproduce it.
2PC=Two-phase commit [37]; 2PL=Two-phase locking [11]; OCC=Optimistic Concurrency Control [67].

Name Network Sharding Replication Persistence API Competitors
Calvin [72, 78, 79] TCP Yes Primacy-backup” Yes* Customized 2PC
Silo [74, 86] No No No Yes* Txn-KV PartitionedStore [77]
HERD [41, 43] RDMA Yes No No KV FaRM [27], Pilaf [59]
Memcached [57], MemC3 [31],
MICA [49, 58] DPDK No No No KV Masstree [55], RAMCloud [65]
DrTM [28, 89] RDMA Yes No No Txn-KV Calvin
TAPIR [93, 94] UDP Yes Paxos-like No Txn-KV 2PL, OCC
Janus [42, 60] TCP Yes Paxos-like No Txn-KV 2PL, OCC, TAPIR
Silo, TicToc [92], FOEDUS [45],
Cicada [17, 50] No No No No Txn-KV MOCC [88], ERMIA [44], Heka-
ton [24, 48], 2PL
GAM [14, 35] RDMA Yes No No Txn-KV FaRM [27], L-Store [51], Tell [52]
Star [54, 76] TCP Yes Primacy-backup Yes* Txn-KV 2PL, OCC, Calvin
Aria [9, 53] TCP* Yes™ Yes* No Txn-KV BOHM [30], PWV [29], Calvin

e Based on these findings, we discuss possible solutions and raise
open questions in the following two directions: first, we could
encourage researchers to perform experiments extensively, but
whether this will be too time-consuming and how to present
results remains open questions; second, we could encourage
researchers to use some “realistic” settings, probably from the
study of industrial system, but this approach may discourage
research in new directions that do not target existing settings.
While we don’t have complete answers to these questions, we
propose concrete suggestions to improve the state of the art.

e We discuss several other questions motivated by our study, like
how to mitigate the weakness of TPC-C when testing concur-
rency control mechanisms and potential new research directions.

2 METHODOLOGY

We surveyed research papers published in top system and database
venues (i.e., VLDB, SIGMOD, OSDI, SOSP, etc) in the last decade,
and found TPC-C and YCSB are the most popular benchmarks. Then
among the works that use these two benchmarks, we selected those
that are 1) open-source and 2) do not require special hardware that
is not available to us. Then we tried to reproduce the results of these
works and we succeeded in reproducing 11 of them, as listed in
Table 1. Since our hardware is not exactly the same as those used by
these works, we consider “success” as 1) our reproduced numbers
are reasonably close to those in the corresponding article or have an
explainable deviation, and 2) the conclusion of the article still holds.
Note that Table 1 is by no means a complete list of re-producible
works: we chose these works since they cover a variety of design
choices, and given more time, we probably can reproduce more.

We then tune benchmark parameters and system features to see
how they affect the performance of these works; finally we analyze
the reasons when we see a significant change of performance.

In this paper, we mainly focus on the throughputs of these works.
And we mainly focus on significant factors that can cause at least
several times of difference in throughput.

Overview of reproduced works. Silo [86] and Cicada [50] mainly
focus on building efficient in-memory transaction processing en-
gines. In particular, Cicada tries to outperform or match prior en-
gines under a variety of workloads.

Calvin [72, 79], DrTM [89], Star [54], and Aria [53] focus on
distributed transactions. To avoid the expensive two-phase commit
(2PC) protocol, Calvin builds a deterministic scheduler to sched-
ule the operations of different transactions. Star runs multi-shard
transactions on a replica that holds all data, and runs single-shard
transactions on other partial replicas. To address the limitation that
deterministic schedulers like Calvin need to know the read/write
set of transactions before execution, Aria builds a deterministic and
serializable transaction processing engine. Dr'TM accelerates dis-
tributed transactions by utilizing transactional memory and RDMA.

TAPIR [94] and Janus [60] focus on geo-distributed databases
which replicate data with Paxos-like protocols [46, 47]. TAPIR ob-
serves that 2PC and Paxos are redundant to some extent and thus
proposes a protocol to merge 2PC and Paxos. Janus reduces the
number of round trips with a fast-path protocol and reduces the
abort rate by building a global dependency graph and re-ordering
transactions that violate serializability.

GAM [14] builds a share-memory engine based on RDMA. Based
on this engine, it can treat distributed transactions in the same way
as a local transaction.

MICA [49] and HERD [43] focus on building efficient key-value
stores by utilizing DPDK and RDMA respectively.

In our experiments, we use the source codes from the original
authors and have slightly modified these source codes to either fix
a bug or change a fixed parameter. We have published our modified
source codes on our artifact website [21].

Testbed and results. We run our experiments on CloudLab [18]
and Ohio Supercomputer Center [15]. We try to use hardware
settings that are close to the ones used by the original articles. Due
to space limitations, we document our hardware settings and the
ones used by original works in our artifact website [22].

For Aria, Cicada, Silo YCSB, Calvin, Star, and HERD, our repro-
duced numbers are within the 75% to 125% range of the original
numbers. For Silo TPC-C, Janus, TAPIR, and DrTM, our reproduced
numbers are about 1.5x to 2.5x better than the original numbers,
mainly because our CPUs or NICs are better. In particular, original
experiments of TAPIR and Janus were carried out on Google Com-
pute Engine and Amazon Web Services (AWS) respectively, and our
experiments were carried out on CloudLab bare-metal machines.
For GAM, our reproduced numbers are about 30% to 50% of the
original numbers, because our CPUs are less powerful. For MICA,
our reproduced numbers are 15% of the original numbers, since the
original experiments utilize eight connections while ours only has
one. In all cases, we observe the deviation is explainable and the
shapes of our reproduced figures are similar to the original ones.

Due to space limitations, this paper will only show part of the
results. When presenting results in figures, we try to use a format
that is close to the one used in the original article: this makes the
figures’ formats inconsistent across this paper, but we believe this
is helpful to show how the conclusions of the original articles can
change. Due to this choice and the nature of this work, some of
our figures look similar to the figures in the original articles,
but all numbers are from our reproduced experiments.

3 ANALYSIS OF TPC-C RESULTS

To help the understanding of TPC-C numbers, we first present the
design of TPC-C. In particular, we highlight the parameters that
are often tuned by different works.

TPC-C simulates the database of a wholesale company. It in-
cludes a number of warehouses, each maintaining stocks for 100,000
items and covering 10 districts with 3,000 customers in each. It con-
sists of nine tables (WAREHOUSE, DISTRICT, CUSTOMER, HIS-
TORY, ORDER, NEW-ORDER, ORDER-LINE, STOCK, and ITEM)
and five types of transactions:

o New-Order: it simulates the procedure of entering an order. It
randomly selects a district from a warehouse, randomly selects
5 to 15 items, and randomly selects a quantity of one to ten for
each item. For each item, it has 1% chance to order from another
warehouse. This means, with an average of 10 items per order,
about 9.5% of the orders need to access remote warehouses.
This transaction retrieves and increments aD_NEXT O_ID value
(i.e, the next available order number) from the DISTRICT table,
uses the value to create an order, and inserts a row in both the
NEW-ORDER and ORDER table. Then for each item in the order,
it retrieves the price from the ITEM table and updates the count
in the STOCK table. Finally it inserts a new row for each item
in the ORDER-LINE table. There is a 1% chance that the item
is not found or its count is not sufficient, which will cause this
transaction to rollback. The D_NEXT_O_ID value is a major
contention point, since all New-Order transactions of the
same district needs to update the same D_NEXT_O_ID.

e Payment: it updates the customer’s balance and reflects the pay-
ment on the district and warehouse sales statistics. It randomly
selects a district from a warehouse, randomly selects a customer
from the district, and updates the balance and payment values
in the corresponding tables. There is a 15% chance that the
customer’s resident warehouse is a remote warehouse.

o Order-Status: it queries a customer’s last order. It randomly se-
lects a district from a warehouse, randomly selects a customer
from the district, and selects the customer’s order with the largest
order ID in the ORDER table. Then it selects matching rows from
the ORDER-LINE table.

e Delivery: given a district, it selects the oldest order from the NEW-

ORDER table, deletes this row, retrieves detailed information

from the ORDER table, and then updates the ORDER-LINE table.

It finally updates the balance in the CUSTOMER table.

Stock-Level: it finds the recently sold items that have a stock level

below a specified threshold. Given a district, it first retrieves the

D _NEXT_O_ID from the DISTRICT table and then selects order

lines whose order IDs are greater than or equal to D_NEXT_O_ID

- 20 from the ORDER-LINE table. For each item in these order

lines, this transaction checks whether its quantity in the STOCK

table is less than a threshold.

The TPC-C specification further specifies the distribution of
these five types of transactions: New-Order 45%, Payment 43%,
Order-Status 4%, Delivery 4%, and Stock-Level 4%. Because of ran-
domness in the workload, a small deviation from such distribution
is allowed.

TPC-C adds a wait time, including a keying time and a think
time, before each transaction to simulate the user’s behavior of
typing keyboard and thinking before making a decision. Each
warehouse has ten terminals, one for each district, which means
each warehouse can have at most ten concurrent transactions.

Note that vanilla TPC-C does not allow tuning of these param-
eters, except the number of warehouses. However, research pro-
totypes often tune some of them and we analyze the reasons and
effects of such tuning in this section.

3.1 Questions Raised by Reported Numbers

Table 2 shows the TPC-C setting and reported throughput of the
works we have reproduced. It further shows the related informa-
tion of OceanBase and Oracle, two commercial database systems
which reported the top 2 highest throughput numbers by the end of
2021 [83]. We further measure H2 [38], an open-source in-memory
database, and MySQL [61], with the TPC-C implementation in
OLTPBench [25, 63].

As one can see in this table, the settings and the reported through-
put of different systems vary drastically. This may raise many ques-
tions. For example,

e Considering commercial systems are tested with “wait time” and
research prototypes are not, how much difference does it make?

o Comparing to commercial systems, most research prototypes are
tested with a small number of warehouses. What is the impact
of the number of warehouses?

o Different prototypes are evaluated under different degrees of
concurrency. Will their conclusions still hold under a different
degree of concurrency?

e What is the difference between running transactions as stored
procedures and running them as interactive SQL transactions?

o Considering some research prototypes only run two types of
transactions (i.e. New-Order and Payment), what is the impact of
the remaining three types?

The rest of this section will try to answer these questions.

Table 2: TPC-C results reported by different works: SP=Stored Procedure; WH=warehouses; concurrency is defined as the
maximal number of concurrent transactions per warehouse: if a worker thread blocks when contention happens, concurrency

is computed as #m; if a worker thread switches to another client when contention happens, concurrency is computed
as #clients .
#warehouses
Name SP Wait #Txn-Types #WH Concurrency Cross-WH (%) #Servers Throughput (trans/sec)
Research
Calvin Yes No 2 20*#Servers 1:20 0-100% 8 70K-120K
Silo Yes No 5 1-32 1:1 0-100% 1 0.1M-0.8M
DrTM Yes No 5 8*#Servers 1:1 0-100% 6-24 1.3M - 5.3M
Janus Yes No 5 6 1:6-10K:6 Default 9 100-10K
Cicada Yes No 5 1-28 1:4-28:1 Default 1 0.1M-6.5M
GAM Yes No 2 4*#Servers 1:1 0-100% 8 50K - 420K
Star Yes No 2 12*#Servers 1:1 0-100% 4 700K-1.6M
Aria Yes No 2 1-180 1:1 0-100% 1-8 20K-1.8M
Commercial
OceanBase [7] Yes Yes 5 56M 10:1 Default 1557 26.2M
Oracle [64] Yes Yes 5 2.43M 10:1 Default 27 1.1M
Open-source
H2-Mem [38] No No 5 50 2.5:1 Default 1 5180
MySQL-Disk [61] No No 5 8 2.5:1 Default 1 363

3.2 Impact of Wait Time

As discussed previously, vanilla TPC-C adds a wait time (i.e., keying
and think time), which is at the level of several to tens of seconds,
before each transaction. The existence of wait time, combined with
the restriction that each warehouse can have only ten concurrent
users, means that the maximal throughput we can achieve on each
warehouse is limited.

To be precise, we compute the maximal throughput per ware-
house as follows: given the distribution of the five types of trans-
actions and the average keying and think time for each type of
transaction (i.e., Section 5.2.5.7 in the TPC-C specification version
5.11.0 [82]), we can compute the average wait time per transaction
as (18+12) X45%+ (3+12) X43%+ (2+10) X 4%+ (2+5) X 4%+ (2+
5) X 4% ~ 21 seconds. This means the average throughput per user
is about 21—1 ~ 0.048 transactions/second. Considering we can have
10 concurrent users per warehouse, we can achieve a throughput of
0.48 transactions/second per warehouse. One can see this number is
consistent with the numbers reported by OceanBase (2565\24 ~ 0.47)

and Oracle (% ~ 0.45).

This very low limitation on the throughput per warehouse means
that to get a higher throughput, an experimenter must use many
warehouses: that’s why OceanBase and Oracle use millions of ware-
houses. For such a workload, which stores a large amount of data
but has low throughput requirement per GB of data, storing data in
SSDs can meet the throughput requirement and is much cheaper
than storing all data in DRAM, and this is consistent with the the
hardware configuration of OceanBase and Oracle.

As a result, vanilla TPC-C is essentially an I/O intensive bench-
mark with a low contention level: because of the long wait time and
the restriction that each warehouse can have only 10 concurrent
users, a warehouse is idle in most of the time, which results in a low
probability of multiple transactions accessing the same warehouse
at the same time.

On the other hand, most research works in Table 2 focus on
addressing contentions. To evaluate their effectiveness, they have
to remove the wait time so that they can gain a high throughput per
warehouse and, as a result, a high contention level. For the same
reason, they cannot use many warehouses, since more warehouses
will reduce the chance that two transactions contend.

It is not the purpose of this paper to determine which setting
is more important or realistic. At the very least, as shown in the
above analysis, TPC-C numbers with and without wait time
are not comparable, since they may be stress testing different
components in the system.

3.3 Impact of Contention Level

Since many works focus on handling contentions, this section fur-
ther discusses how different TPC-C settings can affect the con-
tention level and the performance.

In TPC-C, the contention level can be determined by two fac-
tors. First, the number of concurrent users per warehouse has an
obvious impact on the contention level and we call this number
“concurrency degree”. We observe some systems let a worker thread
block if it cannot acquire a lock: in this case, we use %,ﬁ;’;gs
to represent its concurrency degree; some systems let a worker
thread switch to another transaction if it cannot acquire a lock: in
this case, we use ﬁ% to represent its concurrency degree.
Table 2 shows the concurrency degree used by different works.

Second, the New-Order transaction and the Payment transac-
tion have a chance to access remote warehouses (called “cross-
warehouse transactions” in many articles). Compared to single-
warehouse transactions, cross-warehouse transactions access more
warehouses and thus have a higher chance to contend with another
transaction. Therefore, increasing the ratio of cross-warehouse
transactions will increase the chance of contention as well.

500k

2.5M [—— PartitionedStore-32WH
) Ao MemSiogawis oo e 3 & 10000
3 MemSilo-160WH (new) 2 400k)
~ ~ f=
g g 3
£ £ 300k 5 1000
2 2 g
< £ 200k =) L
(=2} (=2} >
3 3 |) < 100
<] <] 100k I —+— Aria = 2PL-6WH
< IS —— Bohm [= 2PL-12WH (new)
= = Calvin —+— Janus-6WH

0.0 0 Pwv 10 —=&— Janus-12WH (new)
0 10 20 30 40 50 60 70 80 90100 0 20 40 60 80 100120140160180 1 10 100 1000
% cross warehouse transactions Number of warehouses Number of clients
(a) Silo (32 worker threads). (b) Aria (12 worker threads and default cross- (c) Janus (default cross-warehouse rate). Note
warehouse rate). that y-axis is in log scale.

2.5M —+— Cicada(#WH=4"#worker) (new) 1.4M —+— 48 warehouses 240.0k —+— 32 warehouses (10%)
= i giﬁf(ige\(ltiv—v;;&mrker) (new) = ' \\ 96 warehouses (new) = 32 warehouses (new)
3 2.0M [“ar Sl 3 1.2M —»— 192 warehouses (new) & 200.0k —— 64 warehouses (new)
K% —%— MOCC(#WH=4*#worker) (new) K 4~ 240 warehouses (new) @0 128 warehouses (new)
< 15M —e— MOCC(#WH=1) < 1.0M S 160.0k
5 5 800.0k % S 120.0k
£ 1.0M £ 600.0k \\ﬂ =
2 g & s S 80.0k
<] 500.0k o 400.0k <]
= ' F 200.0k F 400k

0.0

5 10
Number of worker threads

15 20 25 30

(d) Cicada (default cross-warehouse rate).

0
0 10 20 30 40 50 60 70 80 90100
% cross warehouse transactions

(e) Star (12 worker threads per node).

0
0 10 20 30 40 50 60 70 80 90100
% cross warehouse transactions

(f) GAM (4 worker threads per node).

Figure 1: Changing the number of warehouses, the percentage of cross warehouse transactions, and the number of workers/-
clients for different systems. Lines with (new) tags are those not existed in the original articles.

We tune the number of warehouses, the number of worker
threads or concurrent users, and the percentage of cross-warehouse
transactions for different systems and show part of results in Fig-
ure 1. Since many systems assume data can fit into DRAM, we make
sure all warehouses can fit into DRAM when increasing the number
of warehouses. We make two observations:

On the one hand, for experiments in which contention is the
bottleneck—this is usually represented by underutilized CPUs dur-
ing the experiments, increasing the number of warehouses will
increase their throughputs, due to the fact that more warehouses
will reduce contention level and thus improve CPU utilization. For
example, for PartitionedStore (Figure 1a), which is a system to sim-
ulate H-Store/VoltDB [77] by assigning a lock to each warehouse,
using 160 warehouses can improve its throughput by up to three
times compared to using 32 warehouses. For Aria (Figure 1b), using
180 warehouses can improve its throughput by two times compared
to using 32 warehouses. For 2PL (Figure 1c), using 12 warehouses
can almost double the throughput compared to using 6 warehouses.
For Cicada and its competitors (Figure 1d), using four warehouses
per thread can significantly improve the throughputs of all systems
compared to using a total of one warehouse. Note that we do not
use an exceptionally large number of warehouses, considering all
data can fit into the DRAM of an inexpensive commodity server.

On the other hand, for experiments in which contention is not the
bottleneck, increasing the number of warehouses will not help and
may even decrease their throughputs due to various reasons. For
example, as shown in Figure 1a, Silo’s throughput slightly decreases

when increasing the number of warehouses from 32 to 160 and we
observe a similar slight decrease for DrTM’s throughput when
increasing the number of warehouses per node from 8 to 32. And
we observe a moderate decrease of Star’s throughput (Figure 1e) and
a quite significant decrease of GAM’s throughput (Figure 1f). We
use perf [68] to profile GAM and find, with more warehouses, GAM
spends more time fetching data from remote machines, because its
caching mechanism becomes less efficient.

As a result, many works’ conclusions are highly sensitive
to these parameters. For example, as shown in Figure 1a, Silo has
an advantage over PartitionedStore when concurrency degree is
close to 1 but such advantage diminishes when concurrency degree
decreases. Similarly, as shown in Figure 1d, Cicada is 3.8 times as
fast as Mostly-Optimistic Concurrency Control (MOCC) [88] when
concurrency degree is 28 (i.e., one warehouse and 28 threads) but is
17% slower than MOCC when concurrency degree is 0.25 (i.e., 112
warehouses and 28 threads). On the contrary, as shown in Figure 1b,
Aria has a clear advantage over Calvin when concurrency degree
is lower than 0.2, since their throughput numbers are similar but
Aria does not require to know the read/write set of transactions as
Calvin does; with a higher concurrency degree (e.g., 1), however,
Calvin outperforms Aria significantly, which makes the comparison
unclear. On the other extreme, Janus shines over its competitors
when the concurrency degree is above 1,000.

Again, this observation is not completely new: some of the works
mentioned above, such as Cicada [50] and Aria [53], have measured
and reported their sensitivity to these contention related parameters.

Lock Unlock and commit

T [ee|[w0 |[ee][wo |\ a 2Pc+2PL
T2 Wait for lock
Lock Unlock Lock Unlock Commit
T ‘ exec ‘ l /10 H exec ‘\l 110 ‘ b. Smar.t
scheduling
T2 ‘ exec H 1/0 ‘ ‘ exec H 110 ‘
Lock Unlock Commit
T ‘ exec ‘ l 110 H exec \l 110 ‘ C. Separate
1/Os from
T2 Wait for lock execution

Figure 2: Reducing I/Os during a critical section.

However, by showing the prevalence of such sensitivity across
a variety of systems, this paper hopes that it can motivate the
discussion of whether and how we should address this problem,
which is discussed in detail in Section 5.

3.4 Impact of Network and Disk I/Os

A fully-featured database system may need to incorporate network
1/Os to perform protocols like 2PC and data replication (e.g. primary-
backup [12, 13] or Paxos [46, 47]), and incorporate disk I/Os to
persist data. Since a number of works do not incorporate these I/Os,
it is a natural question to ask how much impact it would have to add
these I/Os. Among the works we studied, Silo quotes the Masstree
work, which reports that networked clients reduced throughput
by 23% [55]. However, our investigation shows the impact is much
more complicated, depending on design details.

First, we measure the network throughput on our testbeds: when
using TCP over 10 Gbps Ethernet, the maximal throughput is about
1.5M-5M packets/sec with 8B packets and the round trip latency
is about 50us; when using RDMA over 56 Gbps InfiniBand, the
maximal throughput can reach 26M packets/sec and the round
trip latency can drop to 3us. Of course these numbers may change
depending on hardware and implementation so they should be
viewed as a rough estimate. As one can see, if the system only
needs to send one packet to start one TPC-C transaction, then
TCP may be enough to support millions of transactions per second,
though it will still slow down the system since processing packets
consumes CPUs. However, if we further include 2PC, replication,
and interactive transactions (see Section 3.5) into consideration,
then the number of packets per transaction will significantly grow.
For example, if we apply standard Paxos to replicate data to three
replicas, the system needs to send at least four packets for each
transaction. In this case, the TCP stack may not be able to support
the high transaction rate of those in-memory engines and thus the
TCP stack will become the bottleneck.

Second, network and/or disk latency may have a significant im-
pact on the throughput of a contended workload: in this case, since
the execution of a transaction will block contended transactions,
the length of executing a transaction will be inversely proportional

to the throughput of the system. Therefore, if the length of a
critical section includes network or disk latencies, the max
throughput will be limited and of course longer I/O latency will
have a larger impact. Figure 2.a depicts this phenomenon: if a trans-
action performs I/Os while holding a lock, the system will be idle
during these I/Os since it cannot execute a contented transaction.
Note that if we allow many warehouses, this phenomenon will not
limit throughput since we can add more warehouses to utilize idle
CPUs; if we limit the number of warehouses, however, we cannot
do that. Also note that OCC does not address this problem: in Fig-
ure 2.a, OCC will allow T2 to start executing earlier, but eventually
it may abort T2 due to T2 conflicting with T1.

In summary, performing I/Os while holding a lock is particularly
problematic for contended workload. Multiple works have tried to
address this problem:

e Faster I/Os. Dr'TM uses RDMA for network communication,
which can reduce the round trip latency by an order of mag-
nitude. TAPIR and Janus merge 2PC and Paxos to reduce the
total number of round trips to execute a transaction. Star executes
multi-shard transactions on a replica with all data, completely
avoiding 2PC. By reducing or eliminating I/Os, these works can
naturally improve throughput.

e Smart scheduling. To achieve serializability, a classic implemen-
tation is to hold a write lock to the end of a transaction, which
sometimes is unnecessary. Calvin uses a scheduler to determine
when an operation can release the lock. Janus uses a dependency
graph to determine whether transactions can commit. As shown
in Figure 2.b, these methods can decouple I/Os from critical sec-
tions, and thus reduce the impact of network or disk latencies.

e Separate I/Os from transaction execution. Calvin and Aria repli-
cate and persist transactions before executing them, so that the
length of critical sections will not include I/O latency. This ap-
proach requires a deterministic concurrency control mechanism.
Silo and Star replicate and/or persist the effects of transactions
after executing them: in this case, they unlock the data items
before performing replication and persistence, but hold the reply
until the replication or persistence operations are complete (Fig-
ure 2.c). Both methods can decouple I/Os from critical sections.

However, we observe that none of these solutions are perfect. For
example, RDMA requires more expensive hardware, more sophisti-
cated software code, and does not help much in a geo-distributed
setting; smart scheduling needs to know the read/write set of trans-
actions before executing them; and while we can separate repli-
cation or persistence related I/Os from transaction execution, we
don’t know any work that can separate 2PC related I/Os.

We quantitatively measure the impact of I/O latency by injecting
network latency into existing systems with netem [40]. Figure 3
shows the results of Janus and 2PL with 10ms and 100ms extra
network latency, which has confirmed the above analysis: Janus’
maximal throughput does not drop when adding extra latency
because its smart scheduling technique decouples I/O latency from
the critical section, though with extra latency, Janus needs more
clients to fill the pipeline; 2PL, however, has significantly lower max
throughput when adding extra latency, because its critical section
includes I/Os.

100000 2PL-10ms (new)
_ 3PL-1910$ (nr?m)
£ 10000 e e Oores (new,
>
= 1000
>
2
o> 100
>
e 4
< 10

1 10 100 1000 10000
Number of clients

Figure 3: Throughputs of Janus and 2PL with extra network
latencies (6 warehouses and default cross-warehouse rate).
Note that y-axis is in log scale. Lines with (new) tags are those
not existed in the original articles.

3.5 Impact of Not Using Stored Procedure

All research prototypes we investigated define a transaction as
a piece of C code fully executed at the server side, so that there
will be no interaction between the client and the server during the
execution of a transaction (i.e., stored procedure mode). In practice,
however, many applications embed SQL statements into application
code, and the application needs to send each statement individually
to the database server (i.e., interactive mode) [66].

Using interactive SQL transactions introduces at least three
challenges to existing works. First, interactive transactions make
it harder, if not impossible, to infer the read/write set of a trans-
action before executing it, which will break the assumptions of
several works. Second, interactive transactions will add a round
trip of network I/Os to each statement. For example, a sample New-
Order transaction in the TPC-C specification v5.11.0 (page 108 -
page 109) includes 5+4*#items statements (i.e., 45 statements on
average), excluding error handling and commit statements. As dis-
cussed in Section 3.4, it will not only incur an overhead to the
network stack, but also exacerbate the “I/O latency within critical
sections” problem: smart scheduling does not work with interactive
transactions since it requires to know the read/write set; we don’t
know a way to move such I/Os out of the critical section. Finally,
parsing SQL statements also incurs additional overhead.

To quantitatively measure the overhead, we compare the through-
put of TPC-C with interactive transactions and that with stored
procedures on the H2 database. Since the TPC-C implementation
provided by OLTPBench does not provide stored procedure mode,
we port its implementation to H2 as stored procedures.

As shown in Figure 4, with one warehouse, the stored proce-
dure mode is about four times faster than the interactive mode,
mainly because interactive transactions suffer from the “I/O latency
within critical sections” problem since they all contend on the same
warehouse. With 50 warehouses, however, the gap becomes much
smaller, because multiple interactive transactions can execute in
parallel on different warehouses, hiding their long I/O latencies. In

[©2]
=

Interactive Transaction
mmmm Stored Procedure

A O
~ X

\S]
=

Throughput (txn/s)
w
=

—_
=

1 WH 50 WHs

Figure 4: TPC-C throughputs of H2 with interactive transac-
tions and stored procedures (WH=Warehouses).

this case, our profiling shows that Java Garbage Collection (GC)
becomes the main bottleneck.

This set of experiments is an example of how benchmark and
system parameters can affect conclusions together: under a high
contention level (i.e., one warehouse), the difference between in-
teractive transactions and stored procedures is significant; under a
low contention level (i.e., 50 warehouses), their difference becomes
much smaller, since the bottleneck has moved to somewhere else
(e.g., GC in H2); with a highly efficient transaction engine like Silo,
the gap between stored procedure mode and interactive mode may
become large again since the overhead of processing packets will
become relatively large compared to transaction processing.

While accelerating SQL connectors with RDMA is possible [32],
it only addresses part of the challenges: it is still hard to predict the
read/write set of interactive transactions; while RDMA can improve
the throughput of SQL connectors, it can improve the throughput
of the database engines as well, so the relative slowdown caused
by interactive transactions still exists. To fully address these chal-
lenges, it might be an interesting direction to investigate whether
it is possible to analyze application source code to extract SQL
statements and convert them into stored procedures.

3.6 Impact of Transaction Types

Since many works are only evaluated with two types of transactions
(i.e., New-Order and Payment), we investigate whether missing three
types of transactions will have a significant impact on performance.

Our method is as follows: we choose works that are evaluated
with all five types and then change the percentage of Order-Status,
Delivery, and Stock-Level to zero; we adjust the percentage of New-
Order and Payment accordingly.

As shown in Figure 5, removing three types has different
levels of impacts on different systems: on Silo, we observe a
significant increase in throughput if using only two types of transac-
tions (Figure 5a); Cicada reports a similar trend for other in-memory
database engines as well (Figure 5b); however, we observe no signif-
icant change for Janus’ throughput and its competitors (Figure 5c).
The reason is as follows: comparing to New-Order and Payment,
the other three types of transaction are relatively heavier (TPC-C
specification describes Payment as “light-weight”, New-Order as
“mid-weight”, but Stock-Level as “heavy-weight”). Therefore, if the

2.4M 5.6M

—+— 5types —+— Cicada-5

«g 2.0M —%— 2types (new) /g 4.8M —e— %lcc?gs:g E 10000

©0 K% 4.0M TicToc-2 [

g 16M g Hekaton 3 % 1000

= = 3.2M =

5 12m El E !

2 2 2am g 0

g’ 800.0k g’ 1.6M g’ 2PL-2 (new)

<] <] : / (] 10 | 0cG5

£ 400.0k £ 800.0k = A e

0.0 P 0.0 1 Janus-2 (new) —a—

4 8 12 16 20 24 28 32 4 8 16 20 24 28 1 10 100 1000

Number of worker threads

(a) Silo (#warehouse=#worker and no cross-
warehouse transactions).

Number of worker threads

(b) Cicada (#warehouse=#worker and de-
fault cross-warehouse rate).

Number of clients

(c) Janus (6 warehouses and default cross-
warehouse rate).

Figure 5: TPC-C throughput numbers with two and five types of transactions. Lines with (new) tags are those not existed in the

original articles.

bottleneck of the database is the CPU, which is the case for those
highly-optimized in-memory engines, then adding those relatively
heavier transactions will have a significant impact since they con-
sume more CPUs on average; if the bottleneck is not the CPU, which
is the case for those distributed protocols in Janus, adding those
heavier transactions has less impact since the system still has free
CPU cycles. Furthermore, since both New-Order and Payment may
be cross-warehouse, and the other three types don’t, New-Order
and Payment become relatively heavier in a distributed setting,
which reduces the relative impacts of the remaining three types.
We don’t observe a change of conclusion in existing works when
removing three types because these works mainly compare to other
works of the same category (i.e., in-memory vs in-memory; dis-
tributed vs distributed), which is reasonable. However, the risk of
inaccuracy may increase when we perform a broader comparison.
Furthermore, note that some systems cannot support all five
types: for example, Aria states “the other three transactions require
range scans, which are currently not supported in our system.”
Adding such support may need a re-design of these systems.

3.7 Summary of Tuning TPC-C

This section summarizes how the settings of TPC-C, the target
system, and hardware affects experiment results.

At a high level, more warehouses, fewer cross-warehouse trans-
actions, fewer workers/users per warehouse, adding wait time, and
short or no I/Os within a critical section will reduce the contention
level. Under a low-contention setting, the throughput of the target
system is usually limited by the slowest component in the sys-
tem: when data are larger than DRAM size, disk I/O is usually the
bottleneck; when data can be kept in DRAM, network I/Os could
become the bottleneck if the system uses traditional TCP stack; for
in-memory engines without a network stack or for systems with
RDMA network stack, CPU or DRAM speed could become the bot-
tleneck. Furthermore, systems that use centralized sequencers or
global dependency graphs may introduce a scalability bottleneck.

On the contrary, fewer warehouses, more cross-warehouse trans-
actions, more workers/users per warehouse, no wait time, and long
1/Os with a critical section will increase the contention level. Under
a high-contention setting, the throughput of the target system will

be determined by the concurrency control mechanism of the tar-
get system: systems which can release locks earlier or reduce the
number of aborts will have advantages in such a setting.

Using interactive transactions or running protocols like 2PC or
Paxos will bring significant overhead to both settings: for the low-
contention setting, they will incur many network messages, which
will slow down the system if the network stack is the bottleneck; for
the high-contention setting, they may add multiple round trips of
network latency into a critical section, exacerbating the “I/O latency
within critical sections” problem. For the latter case, systems that
can move those I/Os out of the critical sections will have advantages.

As a result, the throughput numbers of different systems under
different settings can vary drastically: in Table 2, on one extreme,
MySQL stores data on hard drives and can only reach 363 transac-
tions per second; on the other extreme, a single-node in-memory
engine can reach millions of transactions per second; other systems
can lie somewhere in the middle depending on their settings.

In summary, we can tune TPC-C to test pretty much every key
component: we could use it to test disk throughput if we ensure
data does not fit into DRAM; we could use it to test network stack
if we run interactive transactions, 2PC, Paxos, etc and choose the
number of warehouses so that they can fit into DRAM but do not
cause a high contention; we could use it to test CPU speed or
DRAM bandwidth if we don’t test with the network stack; finally
we could use it to test concurrency control if we incorporate a
high contention level as discussed above. While such versatility
is helpful to evaluate a variety of systems, it creates challenges to
interpret performance numbers and compare different systems.

4 THE ANALYSIS OF YCSB RESULTS

Yahoo! Cloud Serving Benchmark (YCSB) is a benchmark primarily
targeting systems with key-value like interface [20]. It first popu-
lates the target system with key-value pairs and then measures the
system with Insert, Update, Read, and Scan operations.

YCSB defines five classes of workloads: YCSB-A uses 50% Read
and 50% Update and uses Zipfian distribution to generate the keys
to access; YCSB-B uses 95% Read and 5% Update with a Zipfian
distribution; YCSB-C uses 100% Read with a Zipfian distribution;
YCSB-D uses 95% Read and 5% Insert, in which Read always gets the
latest record; YCSB-E uses 95% Scan and 5% Insert, in which Scan

Table 3: YCSB results reported by different works. For throughput marked as AxB, it means the system uses YCSB+T to
encapsulate B operations in one transaction and achieve A transactions per second.

Name Batching #KV pairs KV size R/W ratio Distribution #Servers Throughput
Star No 2.4M 8B/100B 90:10 Uniform 4 (1.2M-3.6M) x 10
Silo No 160M 8B/100B 80:20 Uniform 1 1M-16M
.2M-5.5M) X 16; (3M-
Cicada No 10M 8B/100B 95:5/50:50 Zipfian 1 (02M55M) x16; (3
55M) X 1
HERD No 430M 16B/(4B - 1KB) 50:50 Uniform/Zipfian 13 5M - 25M
MICA Yes 192M 8B-128B/8B-1KB 95:5/50:50 Uniform/Zipfian 1 8.6M-76.9M
TAPIR No 1M 8B/1KB 50:50 Zipfian 85K x 1

uses the Zipfian distribution to choose the first key and uses the
uniform distribution to choose the number of keys to scan. Zipfian
distribution can let a large percentage of requests focus on a small
number of keys and it has a parameter to tune such skewness.

Since YCSB only touches a single KV in each operation except
Scan, it is not suitable to measure systems that support transactions.
To address this problem, later works build YCSB+T [23], by encap-
sulating a number of YCSB operations into a single transaction.

Table 3 records the YCSB numbers reported by different systems.
Again, it raises several questions:

o Since some systems have network stacks and some do not, how
does network stack affect the result?

e How does the skewness of keys in the workload affect the result?

e How do the number and size of KV pairs affect the result?

o How does the read/write ratio affect the result?

4.1 Impact of Network Stack

Our overall observation is not surprising: for system processing
large KVs, the bottleneck is likely to be network bandwidth; for sys-
tem processing small KVs, the bottleneck is likely to be the CPU to
process network packets. However, for the latter case, we can batch
multiple small KVs in a single request: in this case, the bottleneck
is either the network bandwidth or the in-memory engine.

We quantitatively measure the throughput of network stacks of
different systems, by removing their internal data processing. We
particularly focus on HERD, which uses RDMA as its network stack,
and MICA, which uses DPDK as its network stack; it’s well-known
that the classic TCP or UDP stack is less efficient than these two.

Our experiments show that the throughput of HERD’s network
stack is almost identical to the throughput of HERD, which means
the network stack is the bottleneck. As shown in Figure 6d (this
figure includes data processing but disabling data processing gen-
erates a similar figure), the maximal throughput is around 26M
ops/sec and starts to decrease when the KV size is larger than 128
bytes; for large KVs, read throughput is slightly lower than write
throughput since write is mainly performed by the clients with
RDMA WRITE over the Unreliable Connection protocol and read
must be processed and responded with RDMA SEND over the Un-
reliable Datagram protocol by the server. Our profiling confirms
that RDMA SEND in the server responding path is the bottleneck
of YCSB read experiments. MICA’s network stack is slower, unless
with batching. Since MICA and HERD share the same key-value
engine, the rest of this section only presents the results of HERD.

The overhead of processing packets per request can briefly clas-
sify different works: TAPIR has the lowest throughput since it uses
only one thread per machine, uses the relatively slow UDP stack,
and needs to send multiple packets per transaction; Star uses the
slow TCP stack, but it uses multiple threads and does not need to
send packets for 2PC, and thus can get much higher throughput per
node. MICA and HERD further improve throughput with efficient
network stacks.

4.2 Impact of Skewness

High skewness will cause YCSB to frequently access a small number
of hot keys, creating a high level of contention. In practice, however,
its impact on throughput varies, depending on system design
and implementation.

For systems like Silo and Cicada, which allow any thread to ac-
cess any KVs and use lock or versioning to perform concurrency
control, skewness has a significant impact on throughput as shown
in Figure 6a to Figure 6¢. For HERD, if we compare Figure 6d and
Figure 6e, we can see skewness does not have a significant impact
on throughput. The reason is as follows: a HERD server starts mul-
tiple processes and lets each process be responsible for a number of
key ranges; a client will send a request to the HERD process that is
responsible for the key of the request. In this way, HERD actually
avoids concurrency control. Under such a design, more skewness in
the workload will not cause more contention but instead will cause
more load imbalance among different processes [70]. However, such
load imbalance does not cause a significant performance degrada-
tion due to the following reason: by default a HERD server starts
six processes and we find using one process can achieve about 25%
of the throughput of using six processes, which means each process
has some extra processing capability to handle load imbalance.

Although the latter design (i.e., tie key ranges to threads or
processes) provides better performance than the former (i.e., use
concurrency control) under a skewed workload, it’s unclear how
the latter design can support transactions that may access multiple
keys, which can be supported by the former design.

4.3 Impact of Number of KVs

In theory, contention level may be affected by the number of KVs. In
practice, however, we find such impact is not significant: as shown
in Figure 6d and Figure 6e, HERD’s throughput is not very sensitive
to the number of KVs, since HERD does not have contentions in the
first place (Section 4.2); more interestingly, comparing Figure 6a

4.0M
3.5M
3.0M 1|
2.5M |
2.0M

1
1

Throughput (txn/sec)

500.0k

.5M
.0M

—+— Cicada ERMIA
—— TicToc FOEDUS
Silo —e— MOCC

0.0
0

04 0.6 0.8 0.9 0.950.99
Zipfian skewness

(a) Cicada with 50% reads and 10M KVs.

28M
o 24M
]
= 20M
x
16M
12M
8M
4M

Throughput (t

0
1

L

e

——

—+— 32B (95:5) (new)
32B (50:50) (new)

128B (95:5) (new)
1288 (50:50) (new)

28k

M 2M 4M 8M
Number of KVs

(d) HERD with uniform distribution

4.0M -++— Cicada(new) ERMIA (new) 5.6M —+— Cicada ERMIA
— 3.5M T TicToc (new) FOEDUS (new) —_— . —*— TicToc FOEDUS
8 Silo (new) —e— MOCC (new) 8 4.8M Silo —e— MOCC
©» 3.0M 1 ® ' _.,/4/'\‘\,\‘
£ 25M g 40M
§_ 2.0M §_ 3.2M
S 15M 5 24M
3 1.oM g 16M
F 500.0k E 800.0k
0.0 0.0

0 04 06 08 0.9 0.950.99

Zipfian skewness

(b) Cicada with 50% reads and 40M KVs.

0 04 06 08 0.9 0.950.99
Zipfian skewness

(c) Cicada with 95% reads and 10M KVs.

28M 24k Page migration disabled

§24M N B § 22k new) /

< 20M <c 20k

X X (new) new)

= 16M = 18k (original

5 3 origina

S12Mm 2 16k

3 S 14k

2 ol T Emm £

F 4aM 1285((95:5; }22&% F 12k (new
0 128B (50:50) (new) 10k
128k iM 2M 4M 8M 0 i0M 20M 30M 40M

Number of KVs
(e) HERD with Zipfian (0.99)

Number of KVs
(f) TAPIR with 50% read and Zipfian (0.99).

Figure 6: YCSB throughput numbers of different systems under different settings. Lines or points with (new) tags are those not

existed in the original articles.

45%
40% .

%
*g): 35%
2 30% -
9__’ 25%
g 20%
% 15%
2 10%
5%
0%
10k

Hottest 1 key
— - - Hottest 32 keys

100k M 10M
Number of KVs

100M

Figure 7: Contention level of different number of KVs with
Zipfian distribution 0.99.

and Figure 6b , one can see Cicada’s throughput is not very sensitive
to the number of KVs as well, despite that Cicada’s throughput is
actually sensitive to contention level. The reason is as follows:
For workload with low skewness (e.g., uniform distribution),
since the experiments we ran use at least 128K KVs, the contention
level is very low. Therefore, although changing the number of KVs
will change the contention level significantly, the contention level
will not reach a level that matters to throughput, unless we use,
say, tens of KVs. For highly skewed workload (e.g. Zipfian 0.99), the
contention level is high, but it does not change proportionally with
the number of KVs. Figure 7 shows how the frequency to access
hot keys changes with the total number of KVs: changing from one
million KVs to 100 million KVs will only decrease the frequency to

access the hottest key from 6.5% to 4.8% and decrease the frequency
to access the hottest 32 keys from 27% to 20%.

Therefore, in both cases, the change of contention level caused
by the change of the number of KVs usually has no significant
impact on performance.

On the other hand, similar as in TPC-C, the number of KVs may
have other impacts: for example, for TAPIR, as shown in Figure 6f,
we observe a quite significant drop in throughput when adding
more KVs, and perf shows it is caused by page migration in Linux
kernel. After disabling page migration, the throughput increases
significantly, though still slightly lower than the one with a small
number of KVs. Similarly, we observe Silo and Star experience
modest throughput degradation when adding more key-value pairs.

4.4 Impact of Read/Write Ratio

For a skewed workload, Read/Write ratio has an impact on con-
tention level since Read operations on the same key can execute
concurrently. Its actual impact is similar as described in Section 4.2:
for HERD, the impact is small (i.e., comparing Figure 6d and Fig-
ure 6e), because HERD does not have concurrency control; for
systems with concurrency control, the impact is larger (e.g., com-
paring Figure 6a and Figure 6c).

The Read/Write ratio may have other impacts as well. For ex-
ample, for Star, the 90%-read workload can achieve about 2.8M
ops/second but the 50%-read workload can achieve only 0.8M op-
s/second, since Star needs to replicate Writes; for the same reason,
TAPIR’s throughput under the 50%-read workload (20K ops/second)
is lower than that under the 95%-read workload (25K ops/second).

4.5 Summary of Tuning YCSB

Similar to TPC-C, we can tune YCSB to test almost every key com-
ponent: if we use large KVs, the bottleneck is likely to be network
bandwidth; if we use small KVs, the bottleneck is likely to be the
packet rate of the network stack; batching requests or increasing
contention level will move the bottleneck to the in-memory engine
but in different ways: batching with low contention is likely to
stress test key lookup, DRAM speed, etc; high contention is likely
to stress test concurrency control. This work did not test any per-
sistent KV stores, and it is possible that storage I/Os are bottlenecks
for persistent KV stores under YCSB.

If either network bandwidth or packet rate is the bottleneck, a
higher write ratio will incur more packets if the system needs to
replicate writes but has no significant impact if the system does
not replicate writes.

If contention is the bottleneck, a higher write ratio or a higher
skewness will incur a higher contention. Unlike the number of
warehouses in TPC-C, the number of KVs does not have a significant
impact here, as shown in the prior analysis.

In addition, the design choice of whether to use concurrency
control or to tie key ranges to processes/threads has a significant
impact. As discussed in Section 4.2, the latter performs better under
a highly skewed workload, and its throughput can exceed the speed
of even RDMA or DPDK stacks, making these stacks the bottleneck;
the former has a significant performance degradation under a highly
skewed workload, in which case its throughput may be lower than
the RDMA or DPDK stacks. However, it’s unclear whether the latter
design can support transactions accessing multiple KVs.

5 OPEN QUESTIONS AND SUGGESTIONS
5.1 What settings shall we use?

As shown in the previous sections, one can tune TPC-C and YCSB
to test almost every key component in a computer system, and
they can interact with system features and hardware settings in
complicated ways. As a result, perhaps not surprisingly, experiment
settings do have a strong impact on evaluation results and even the
conclusions in some cases, which creates a well-known risk that
the conclusion of a work may not hold under different settings.
We observe two major directions to alleviate this problem: the
first is to encourage extensive experiments under a variety of set-
tings; the second is to limit the values of experiment parameters.
However, neither is perfect and in the rest of this section, we discuss
each approach in detail and propose concrete suggestions to move
forward. Finally we discuss improvement we can achieve in the
short term as well. While they don’t fully address the problem, we
hope that they can motivate a broad discussion in our community.

Extensive testing. Encouraging researchers to run experiments
under a variety of settings is a natural idea to address the problem.
However, it has its own questions:

First, so far, our community has no consensus about what pa-
rameters and what values to use in these standard benchmarks.
If we want to encourage extensive testing, a discussion about
which parameters should be tuned and what values should
be tested is perhaps necessary.

Second, the experiment time and cost could grow high if the
experiment has many tunable parameters. That said, this may be
the necessary cost for a good research. To alleviate this problem, it
may be valuable to develop methods to identify “important” points
in the parameter space to avoid a full blind scan.

Finally, in our experience, we observe an obstacle to extensive
testing is that many systems cannot work properly under a setting
that is not reported in their corresponding articles. Therefore, mak-
ing our implementation reliable under different settings is a
concrete step we can take to improve the situation. Note that
today many communities have emphasized reproducibility through
artifact evaluation [1-4], but so far it only focuses on reproducing
results reported in an article and has nothing to do with other set-
tings: to encourage extensive testing, it may be helpful to introduce
a badge of “supporting extensive testing” in artifact evaluation.

Restricting parameter values. On the other hand, a number
of impactful benchmarks, such as vanilla TPC series, SortBench-
mark [5], and HPL [69], have strict specifications about how to
choose the parameter values. While restricting parameter values
certainly makes it easier to run experiments and compare different
works, it may discourage research in new areas or new applications,
whose settings may be different from these default settings.

Nevertheless, we believe knowing realistic parameter values in
production systems is valuable and such study should be carried out
periodically since these values may change over time. We have seen
multiple studies about workloads in key-value stores [10, 62, 91],
which studied read/write ratio, the distribution of data size, data
skewness, etc: such information can be integrated into YCSB seam-
lessly. However, we also observe a pity in such studies since they
miss the parameter about degree of batching, which, as shown in
our YCSB study, can largely determine whether the bottleneck is
the network stack or the in-memory engine: two of the studies
mentioned above [10, 91] do not report this parameter at all and
the remaining one [62] reports this parameter at the client side,
which leaves to the readers to infer how a client-side batch may be
distributed to multiple servers. Therefore, we suggest our com-
munity to more explicitly clarify “what parameters matter”,
so that future studies will not miss them. On the other hand,
these studies have revealed several parameters that are not included
in YCSB, such as cache miss rate and temporal change of data object
size, which may help us to improve YCSB-like benchmarks.

Besides, we are not aware of any similar studies about trans-
action processing systems, which should be of great value
to our community. The only relevant work we are aware of is
Pavlo’s survey and keynote [66], which is helpful but lacks detailed
information like contention level, etc.

Better explanation of experiments settings. Apart from the
two long-term efforts discussed above, we believe there are con-
crete improvements we can do in the short term: 1) Instead of just
documenting experiment settings (e.g., our experiments use 8 ware-
houses and 32 threads), an article may provide an explicit explana-
tion about the implication of these settings, e.g., what components
they stress. This would be particularly helpful for non-expert read-
ers. In addition, it would be helpful for our communities to create
“tutorials” for popular benchmarks to explain the implications of

different settings. 2) An article should be precise and explicit about
the conditions of its major conclusions. For example, “A is 10 times
faster than B when data can fit into DRAM and the contention level
is higher than 8” is more precise than “A is up to 10 times faster
than B”. A precise condition would help readers to understand the
scope of an article and compare different works. 3) When not using
a standard setting, the authors may present a justification about
the setting.

5.2 Other questions

In addition, our study has raised some other related open questions:

Shall we continue using TPC-C to testing concurrency con-
trol? As discussed previously, vanilla TPC-C, with its wait time, is
essentially an I/O benchmark and thus is not suitable for testing
concurrency control mechanisms. Tuning TPC-C to remove wait
time and use a small number of warehouses can introduce a high
contention, but introduces other problems like data set size is too
small or there is no locality. Therefore, though popular, TPC-C is
perhaps not the ideal benchmark to test concurrency control.

TPC-E [81] has addressed some of these issues: it introduces a
realistic data skew; it introduces a higher contention assuming all
data can be kept in DRAM (otherwise it is still an I/O intensive
benchmark), but its adoption is slow probably due to its complex-
ity [16, 80]. For example, in TPC-E, 10 out of 12 types of transac-
tions involve lookups and scans through non-primary indexes [80],
which will pose challenges to systems that do not support scans or
require the prediction of read/write set.

Again, we consider this as an open question: ultimately we will
need studies from production systems to answer this question. In
the short term, we propose a temporary solution by combining the
ideas of TPC-C and YCSB: we can use Zipfian distribution to create
a few hot warehouses in TPC-C; we don’t have evidence that it
represents any realistic workload, but at least it should allow us to
create a high contention and a hotspot within a large dataset.

Are we emphasizing too much on a specific setting? As shown
in Table 2, most works we studied focus on a specific parame-
ter space—running transactions as stored procedures with a high
degree of contention. While this scenario is certainly interesting,
focusing too much on it is concerning especially since we lack
any studies to confirm that this is the dominant scenario: actually
Pavlo’s survey [66] indicates the opposite by showing stored pro-
cedures are not frequently used for various reasons. At least we
argue we should not overlook other scenarios.

6 RELATED WORK

Benchmarks. Different communities have proposed many well-
received benchmarks to measure different systems, including the
TPC series [85] and the SmallBank benchmark [8] to test database
systems, the YCSB [20] benchmark to test NoSQL systems, the fio
tool [33] to test file systems, the SPEC series [75] to test architec-
ture, HPC, cloud and storage systems, the HPL [69], HPCG [26],
and Graph500 [36] benchmarks to test supercomputer systems, the
MLPerf [56, 71] and DAWNBench [19] benchmarks to test Al sys-
tems, etc. While this work focuses on TPC-C and YCSB, it would
be interesting to perform a similar study on other benchmarks.

Reproducibility. In recent years, our community started paying
much attention to the reproducibility of research papers. For in-
stance, many major conferences in our field, like VLDB [4], SIG-
MOD [1], OSDI [3], SOSP [6], and EuroSys [2], have strong com-
mitments to the reproducibility of research. In the meantime, many
research studies focused on reproducing existing studies and expos-
ing the reasons behind the performance variability. For example,
a recent study [87] assessed the impact of network variability on
cloud-based Big Data workloads and provided guidelines to re-
duce the volatility of performance. Fursin shared his experience of
reproducing 150+ research papers and potential solutions about re-
producibility [34]. Ursprung [73] presented a provenance collection
system to improve the reproducibility of data science workloads.

Compared to these efforts, our work does have a strong compo-
nent in reproducing prior results, but we mainly focus on comparing
works under a variety of settings, some of which are beyond the
ones used in the original articles. As discussed in Section 5, to sup-
port such extensive comparison, we suggest to introduce the idea
of “supporting extensive testing” into artifact evaluation.

Extensive study. A number of works did extensive experiments to
understand the impact of different concurrency control features [39,
90]. Since they also use TPC-C and YCSB, their observations overlap
with ours to some extent (e.g., contention level matters). However,
because they have a different goal compared to this work, there
are a few key differences: first, for an apple-to-apple comparison,
they re-implement different concurrency control features under the
same framework; this work, instead, tries to understand whether
changing experiment settings will change the conclusion of the
original work and thus has to re-produce original works. Second,
they focus more on tuning concurrency control features but less
on tuning benchmark parameters and our work has the opposite
focus. Finally, our work covers additional systems which explore
different designs (e.g. Janus, HERD, etc). Among the works we
studied, Cicada [50] did an extensive comparison, but only on in-
memory database engines.

7 CONCLUSION

This paper studies how sensitive are evaluation results to experi-
ment settings, by reproducing 11 systems under TPC-C and YCSB,
measuring them under different settings, and analyzing the rea-
sons for the change of performance numbers. By quantitatively
illustrating the extent of this long-standing problem, this paper
tries to motivate a broader discussion about whether and how we
should address this problem. Though this paper does not propose a
complete solution to this problem, it proposes concrete suggestions
we can take to improve the state of the art.

ACKNOWLEDGMENTS

We thank all reviewers for their insightful comments and Spyros
Blanas for his suggestions on early versions of this work. We thank
Shuai Mu, Yi Lu, Xingda Wei, and Tinggang Wang for their help to
reproduce prior works. This material is based in part upon work
supported by the National Science Foundation under Grant Num-
bers CNS-1908020, CCF-2118745, and CCF-2132049.

REFERENCES

[11]
[12]

[13]

[20

[21]
[22]

[23]

™
=t

[25

[26]

[27]

[28]

ACM SIGMOD Reproducibility. https://reproducibility.sigmod.org/.

EuroSys Call for Artifacts. https://sysartifacts.github.io/eurosys2021/.

OSDI Call for Artifacts. https://www.usenix.org/conference/osdi21/call-for-
artifacts.

PVLDB Reproducibility. http://vldb.org/pvldb/reproducibility/.
SortBenchmark. http://sortbenchmark.org/.

SOSP Call for Artifacts. https://sysartifacts.github.io/sosp2021/call html.
Alibaba-Cloud. TPC-C Result (Alibaba Cloud Elastic Compute Service Cluster).
http://www.tpc.org/tpec/results/tpec_result_detail.asp?id=120051701.
Mohammad Alomari, Michael J. Cahill, Alan D. Fekete, and Uwe Rohm. The
Cost of Serializability on Platforms that Use Snapshot Isolation. In Gustavo
Alonso, José A. Blakeley, and Arbee L. P. Chen, editors, Proceedings of the 24th
International Conference on Data Engineering, ICDE 2008, April 7-12, 2008, Canctin,
Mexico, pages 576-585. IEEE Computer Society, 2008.

] Aria Source Code. https://github.com/luyi0619/aria.
] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

Workload Analysis of a Large-scale Key-value Store. In Peter G. Harrison,
Martin F. Arlitt, and Giuliano Casale, editors, ACM SIGMETRICS/PERFORMANCE
Joint International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’12, London, United Kingdom, June 11-15, 2012, pages 53-64. ACM,
2012.

Philip A Bernstein and Nathan Goodman. Concurrency Control in Distributed
Database Systems. ACM Computing Surveys (CSUR), 13(2):185-221, 1981.

N. Budhijara, K. Marzullo, F. Schneider, and S. Toueg. The Primary-backup
Approach. In S. Mullender, editor, Distributed Systems. Addison-Wesley, 2nd
edition, 1993.

Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. Primary-
Backup Protocols: Lower Bounds and Optimal Implementations. In CDCCA,
1992.

Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang Chen,
Beng Chin Ooi, Kian-Lee Tan, Yong Meng Teo, and Sheng Wang. Efficient
Distributed Memory Management with RDMA and Caching. Proc. VLDB Endow.,
11(11):1604-1617, July 2018.

Ohio Supercomputer Center. Ohio Supercomputer Center, 1987.

Shimin Chen, Anastasia Ailamaki, Manos Athanassoulis, Phillip B. Gibbons, Ryan
Johnson, Ippokratis Pandis, and Radu Stoica. Tpc-e vs. tpc-c: Characterizing the
new tpc-e benchmark via an i/o comparison study. SIGMOD Rec., 39(3):5-10,
February 2011.

Cicada Source Code. https://github.com/efficient/cicada-exp-sigmod2017.
Cloudlab. https://www.cloudlab.us/.

Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang,
Luigi Nardi, Peter Bailis, Kunle Olukotun, Chris Re, and Matei Zaharia.
DAWNBench: An End-to-End Deep Learning Benchmark and Competition.
https://cs.stanford.edu/ deepakn/assets/papers/dawnbench-sosp17.pdf, 2017.
Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking Cloud Serving Systems with YCSB. In Joseph M. Hellerstein,
Surajit Chaudhuri, and Mendel Rosenblum, editors, Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA, June
10-11, 2010, pages 143-154. ACM, 2010.

Artifacts of this Work. https://github.com/sam1016yu/DB-Exp-Sensitivity.
Hardware Settings Used in this Work. https://github.com/sam1016yu/DB-Exp-
Sensitivity/blob/main/hardware_config.md.

Akon Dey, Alan D. Fekete, Raghunath Nambiar, and Uwe Réhm. YCSB+T:
Benchmarking Web-scale Transactional Databases. In Workshops Proceedings
of the 30th International Conference on Data Engineering Workshops, ICDE 2014,
Chicago, IL, USA, March 31 - April 4, 2014, pages 223-230. IEEE Computer Society,
2014.

Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton: SQL Server’s
Memory-optimized OLTP Engine. In Kenneth A. Ross, Divesh Srivastava, and
Dimitris Papadias, editors, Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013,
pages 1243-1254. ACM, 2013.

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. OLTP-Bench: An Extensible Testbed for Benchmarking Relational
Databases. Proc. VLDB Endow., 7(4):277-288, December 2013.

Jack Dongarra, Michael A Heroux, and Piotr Luszczek. High-performance
Conjugate-gradient Benchmark: A New Metric for Ranking High-performance
Computing Systems. The International Journal of High Performance Computing
Applications, 30(1):3-10, 2016.

Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and Orion Hod-
son. FaRM: Fast Remote Memory. In Ratul Mahajan and Ion Stoica, editors,
Proceedings of the 11th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2014, Seattle, WA, USA, April 2-4, 2014, pages 401-414.
USENIX Association, 2014.

DrTM Source Code. https://github.com/SJTU-IPADS/drtm.

[29

(30]

(31]

[44]

[46

[47

(48]

[49]

[50

(51]

Jose M Faleiro and Daniel] Abadi. Rethinking Serializable Multiversion Concur-
rency Control. Proc. VLDB Endow, 8(11), 2015.

Jose M Faleiro, Daniel J Abadi, and Joseph M Hellerstein. High Performance
Transactions via Early Write Visibility. Proc. VLDB Endow, 10(5), 2017.

Bin Fan, David G. Andersen, and Michael Kaminsky. MemC3: Compact and
Concurrent MemCache with Dumber Caching and Smarter Hashing. In Nick
Feamster and Jeffrey C. Mogul, editors, Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2013, Lombard, IL, USA,
April 2-5, 2013, pages 371-384. USENIX Association, 2013.

Philipp Fent, Alexander van Renen, Andreas Kipf, Viktor Leis, Thomas Neumann,
and Alfons Kemper. Low-Latency Communication for Fast DBMS Using RDMA
and Shared Memory. In 36th IEEE International Conference on Data Engineering,
ICDE 2020, Dallas, TX, USA, April 20-24, 2020, pages 1477-1488. IEEE, 2020.

fio - flexible i/o tester. https://github.com/axboe/fio.

Fursin, Grigori. Reproducing 150 Research Papers and Testing Them in the Real
World: Challenges and Solutions. https://learning.acm.org/binaries/content/
assets/leaning- center/webinar-slides/2021/grigorifursin_techtalk_slides.pdf,
2021.

GAM Source Code. https://github.com/o0oibc88/gam.

Graph500 Committee. Graph500 benchmark. http://graph500.org.

James N Gray. Notes on Data Base Operating Systems. In Operating Systems,
pages 393-481. Springer, 1978.

H2. The H2 Home Page. http://www.h2database.com.

Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker.
An Evaluation of Distributed Concurrency Control. Proc. VLDB Endow.,
10(5):553-564, January 2017.

Stephen Hemminger et al. Network Emulation with NetEm. In Linux conf au,
volume 5, page 2005. Citeseer, 2005.

HERD Source Code. https://github.com/efficient/HERD.

Janus Source Code. https://github.com/NYU-NEWS/janus.

Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using RDMA Efficiently
for Key-Value Services. In Fabian E. Bustamante, Y. Charlie Hu, Arvind Kr-
ishnamurthy, and Sylvia Ratnasamy, editors, ACM SIGCOMM 2014 Conference,
SIGCOMM’14, Chicago, IL, USA, August 17-22, 2014, pages 295-306. ACM, 2014.
Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. ERMIA:
Fast Memory-optimized Database System for Heterogeneous Workloads. In
Fatma Ozcan, Georgia Koutrika, and Sam Madden, editors, Proceedings of the
2016 International Conference on Management of Data, SSIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016, pages 1675-1687. ACM, 2016.
Hideaki Kimura. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM. In
Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives, editors, Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, pages 691-706. ACM, 2015.

Leslie Lamport. The Part-time Parliament. ACM Transactions on Computer
Systems, 16(2):133-169, May 1998.

Leslie Lamport. Paxos Made Simple. ACM SIGACT News (Distributed Computing
Column), 32(4):51-58, December 2001.

Per-Ake Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M
Patel, and Mike Zwilling. High-performance Concurrency Control Mechanisms
for Main-memory Databases. Proc. VLDB Endow, 5(4):298-309, 2011.
Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. MICA:
A Holistic Approach to Fast In-Memory Key-Value Storage. In Ratul Mahajan
and Ion Stoica, editors, Proceedings of the 11th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2014, Seattle, WA, USA, April 2-4, 2014,
pages 429-444. USENIX Association, 2014.

Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. Cicada: Depend-
ably Fast Multi-Core In-Memory Transactions. In Semih Salihoglu, Wenchao
Zhou, Rada Chirkova, Jun Yang, and Dan Suciu, editors, Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, pages 21-35. ACM, 2017.

Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and
Zhengkui Wang. Towards a Non-2pc Transaction Management in Distributed
Database Systems. In Fatma Ozcan, Georgia Koutrika, and Sam Madden, editors,
Proceedings of the 2016 International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 1659-1674.
ACM, 2016.

Simon Loesing, Markus Pilman, Thomas Etter, and Donald Kossmann. On the
Design and Scalability of Distributed Shared-data Databases. In Timos K. Sellis,
Susan B. Davidson, and Zachary G. Ives, editors, Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015, pages 663-676. ACM, 2015.

Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. Aria: A Fast and Practical
Deterministic OLTP Database. Proc. VLDB Endow., 13(12):2047-2060, July 2020.
Yi Lu, Xiangyao Yu, and Samuel Madden. STAR: Scaling Transactions through
Asymmetric Replication. Proc. VLDB Endow., 12(11):1316-1329, July 2019.
Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache Craftiness for
Fast Multicore Key-Value Storage. In European Conference on Computer Systems,
Proceedings of the Seventh EuroSys Conference 2012, EuroSys '12, Bern, Switzerland,
April 10-13, 2012, pages 183-196. ACM, 2012.

https://reproducibility.sigmod.org/
https://sysartifacts.github.io/eurosys2021/
https://www.usenix.org/conference/osdi21/call-for-artifacts
https://www.usenix.org/conference/osdi21/call-for-artifacts
http://vldb.org/pvldb/reproducibility/
http://sortbenchmark.org/
https://sysartifacts.github.io/sosp2021/call.html
http://www.tpc.org/tpcc/results/tpcc_result_detail.asp?id=120051701
https://github.com/luyi0619/aria
https://github.com/efficient/cicada-exp-sigmod2017
https://www.cloudlab.us/
https://github.com/sam1016yu/DB-Exp-Sensitivity
https://github.com/sam1016yu/DB-Exp-Sensitivity/blob/main/hardware_config.md
https://github.com/sam1016yu/DB-Exp-Sensitivity/blob/main/hardware_config.md
https://github.com/SJTU-IPADS/drtm
https://github.com/axboe/fio
https://learning.acm.org/binaries/content/assets/leaning-center/webinar-slides/2021/grigorifursin_techtalk_slides.pdf
https://learning.acm.org/binaries/content/assets/leaning-center/webinar-slides/2021/grigorifursin_techtalk_slides.pdf
https://github.com/ooibc88/gam
https://github.com/efficient/HERD
https://github.com/NYU-NEWS/janus

(56

[61]
[62]

[63]

[65]

[66]

[67

[68]
[69

[70]

[71]

[72]

[73]

Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micike-
vicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf,
David Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta, Kim Hazelwood, An-
drew Hock, Xinyuan Huang, Atsushi Ike, Bill Jia, Daniel Kang, David Kanter,
Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak Narayanan, Tayo Oguntebi, Gen-
nady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St.
John, Tsuguchika Tabaru, Carole-Jean Wu, Lingjie Xu, Masafumi Yamazaki, Cliff
Young, and Matei Zaharia. MLPerf Training Benchmark, 2020.

Memcached. http://memcached.org.

MICA Source Code. https://github.com/efficient/mica.

Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store. In Andrew Birrell and
Emin Gin Sirer, editors, 2013 USENIX Annual Technical Conference, San Jose, CA,
USA, June 26-28, 2013, pages 103-114. USENIX Association, 2013.

Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. Consolidating Concur-
rency Control and Consensus for Commits under Conflicts. In Kimberly Keeton
and Timothy Roscoe, editors, 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016,
pages 517-532. USENIX Association, 2016.

MySQL. http://www.mysql.com.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scaling Memcache at Facebook.
In Proceedings of the 10th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2013, Lombard, IL, USA, April 2-5, 2013, pages 385-398.
USENIX Association, 2013.

OLTPBench. https://github.com/oltpbenchmark/oltpbench.

Oracle. TPC-C Result (SPARC SuperCluster with T3-4 Servers). http://www.tpc.
org/tpec/results/tpec_result_detail.asp?id=110120201.

John Ousterhout, Parag Agrawal, David Erickfson, Christos Kozyrakis, Jacob
Leverich, David Maziéres, Subhasish Mitra, Aravind Narayanan, Diego Ongaro,
Guru Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann, and
Ryan Stutsman. The Case for RAMCloud. Commun. ACM, 54(7):121-130, July
2011.

Andrew Pavlo. What Are We Doing With Our Lives? Nobody Cares About Our
Concurrency Control Research. In SIGMOD 17, page 3, 2017.

Daniel Peng and Frank Dabek. Large-scale Incremental Processing using Dis-
tributed Transactions and Notifications. In 9th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver, BC,
Canada, Proceedings, pages 251-264. USENIX Association, 2010.

perf: Linux Profiling with Performance Counters. https://perf.wiki.kernel.org.
Petitet, A. and Whaley, R. C. and Dongarra, Jack and Cleary, A. HPL - A Portable
Implementation of the High-Performance Linpack Benchmark for Distributed-
Memory Computers. https://www.netlib.org/benchmark/hpl/.

Dai Qin, Angela Demke Brown, and Ashvin Goel. Caracal: Contention Manage-
ment with Deterministic Concurrency Control. In SOSP "21: ACM SIGOPS 28th
Symposium on Operating Systems Principles, Virtual Event / Koblenz, Germany,
October 26-29, 2021, pages 180-194. ACM, 2021.

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan
Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin
Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jef-
fery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius,
Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip
Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei,
Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong,
Peizhao Zhang, and Yuchen Zhou. MLPerf Inference Benchmark. In Proceedings
of the ACM/IEEE 47th Annual International Symposium on Computer Architecture,
ISCA ’20, page 446-459. IEEE Press, 2020.

Kun Ren, Alexander Thomson, and Daniel J Abadi. An Evaluation of the Advan-
tages and Disadvantages of Deterministic Database Systems. Proc. VLDB Endow,
7(10):821-832, 2014.

Lukas Rupprecht, James C. Davis, Constantine Arnold, Yaniv Gur, and Deep-
avali Bhagwat. Improving Reproducibility of Data Science Pipelines through

(87

(88

%
0,

[90

[91

[92]

[94

Transparent Provenance Capture. Proc. VLDB Endow., 13(12):3354-3368, August
2020.

Silo Source Code. https://github.com/stephentu/silo.

Standard Performance Evaluation Corporation. Standard performance evaluation
corporation. https://www.spec.org/.

Star Source Code. https://github.com/luyi0619/star.

Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland. The End of an Architectural Era: (It’s Time for
a Complete Rewrite). In Proceedings of the 33rd International Conference on Very
Large Data Bases, VLDB *07, pages 1150-1160. VLDB Endowment, 2007.
Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,

and Daniel J. Abadi. Calvin Code Repository. https://github.com/yaledb/calvin.
Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip

Shao, and Daniel J. Abadi. Calvin: Fast Distributed Transactions for Partitioned
Database Systems. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012,
pages 1-12. ACM, 2012.

Pmar Téziin, Ippokratis Pandis, Cansu Kaynak, Djordje Jevdjic, and Anastasia
Ailamaki. From A to E: Analyzing TPC’s OLTP Benchmarks: The Obsolete, the
Ubiquitous, the Unexplored. In Joint 2013 EDBT/ICDT Conferences, EDBT ’13
Proceedings, Genoa, Italy, March 18-22, 2013, pages 17-28. ACM, 2013.
Transaction Processing Performance Council. ~ The TPC-E home page.
http://www.tpc.org/tpce/.

Transaction Processing Performance Council. TPC Benchmark C Standard Spec-
ification Revision 5.11. http://tpc.org/tpc_documents_current_versions/pdf/tpc-
¢_v5.11.0.pdf.

Transaction Processing Performance Council. TPC-C - All Results - Sorted by
Performance. http://tpc.org/tpce/results/tpce_results5.asp.

Transaction Processing Performance Council. ~ The TPC-C home page.
http://www.tpc.org/tpec/.

Transaction Processing Performance
http://www.tpc.org.

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
Speedy Transactions in Multicore In-memory Databases. In ACM SIGOPS 24th
Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA,
November 3-6, 2013, pages 18-32. ACM, 2013.

Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan Reller-
meyer, Carlos Maltzahn, Robert Ricci, and Alexandru Iosup. Is Big Data Perfor-
mance Reproducible in Modern Cloud Networks? . In 17th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2020, Santa Clara, CA,
USA, February 25-27, 2020, pages 513-527. USENIX Association, 2020.
Tianzheng Wang and Hideaki Kimura. Mostly-optimistic Concurrency Control
for Highly Contended Dynamic Workloads on a Thousand Cores. Proc. VLDB
Endow, 10(2):49-60, 2016.

Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. Fast In-
memory Transaction Processing Using RDMA and HTM. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA, USA,
October 4-7, 2015, pages 87-104. ACM, 2015.

Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An Empirical
Evaluation of In-Memory Multi-Version Concurrency Control. Proc. VLDB Endow.,
10(7):781-792, March 2017.

Juncheng Yang, Yao Yue, and K. V. Rashmi. A Large Scale Analysis of Hundreds of
In-memory Cache Clusters at Twitter. In 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2020, Virtual Event, November 4-6, 2020,
pages 191-208. USENIX Association, 2020.

Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. Tictoc:
Time Traveling Optimistic Concurrency Control. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages 1629-1642. ACM, 2016.

Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and
Dan R. K. Ports. Tapir Code Repository. https://github.com/UWSysLab/tapir.
Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and
Dan R. K. Ports. Building Consistent Transactions with Inconsistent Replication.
In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015, pages 263-278. ACM, 2015.

Council. Tpc-homepage.

http://memcached.org
https://github.com/efficient/mica
http://www.mysql.com
https://github.com/oltpbenchmark/oltpbench
http://www.tpc.org/tpcc/results/tpcc_result_detail.asp?id=110120201
http://www.tpc.org/tpcc/results/tpcc_result_detail.asp?id=110120201
https://perf.wiki.kernel.org
https://github.com/stephentu/silo
https://github.com/luyi0619/star
https://github.com/yaledb/calvin
http://tpc.org/tpcc/results/tpcc_results5.asp
https://github.com/UWSysLab/tapir

	Abstract
	1 Introduction
	2 Methodology
	3 Analysis of TPC-C Results
	3.1 Questions Raised by Reported Numbers
	3.2 Impact of Wait Time
	3.3 Impact of Contention Level
	3.4 Impact of Network and Disk I/Os
	3.5 Impact of Not Using Stored Procedure
	3.6 Impact of Transaction Types
	3.7 Summary of Tuning TPC-C

	4 The Analysis of YCSB Results
	4.1 Impact of Network Stack
	4.2 Impact of Skewness
	4.3 Impact of Number of KVs
	4.4 Impact of Read/Write Ratio
	4.5 Summary of Tuning YCSB

	5 Open Questions and Suggestions
	5.1 What settings shall we use?
	5.2 Other questions

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

