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A B S T R A C T   

Metal oxide (MOx) gas sensors are a popular choice for many applications, due to their tunable sensitivity, space 
efficiency and low cost. Publicly available sensor datasets are particularly valuable for the research community 
as they accelerate the development and evaluation of novel algorithms for gas sensor data analysis. A dataset 
published in 2013 by Vergara and colleagues contains recordings from MOx gas sensor arrays in a wind tunnel. It 
has since become a standard benchmark in the field. Here we report a latent property of this dataset that limits its 
suitability for gas classification studies. Measurement timestamps show that gases were recorded in separate, 
temporally clustered batches. Sensor baseline response before gas exposure were strongly correlated with the 
recording batch, to the extent that baseline response was largely sufficient to infer the gas used in a given trial. 
Zero-offset baseline compensation did not resolve the issue, since residual short-term drift still contained enough 
information for gas/trial identification using a machine learning classifier. A subset of the data recorded within a 
short period of time was minimally affected by drift and suitable for gas classification benchmarking after offset- 
compensation, but with much reduced classification performance compared to the full dataset. We found 18 
publications where this dataset was used without precautions against the circumstances we describe, thus 
potentially overestimating the accuracy of gas classification algorithms. These observations highlight potential 
pitfalls in using previously recorded gas sensor data, which may have distorted widely reported results.   

1. Introduction 

Over the last 50 years, artificial olfaction has evolved from an almost 
niche field of study into a thriving interdisciplinary research area. Many 
use cases have been addressed, for example the detection of hazardous 
gases or pollutants [1], spoilage localization [2], mobile olfactory ro
botics [3], health monitoring [4] and medical screening [5]; and arti
ficial olfaction is expected to address many more use cases in the future 
[6]. A key challenge in artificial olfaction is to identify a range of 
odorants at high specificity. One way to achieve this is to use an array of 
multiple gas sensors, each with a rather large selectivity and low spec
ificity, and extract the identity of the presented odor using pattern 
recognition. Metal oxide (MOx) gas sensors are widely used for such 
sensor arrays. Their sensing layer can be tuned to different analyte 
classes and they require little electronic periphery, which simplifies 

sensor design, reduces cost and saves space. One big drawback of MOx 
sensors is their susceptibility to sensor drift—the gradual and unpre
dictable variation of signal response over time when exposed to identical 
analytes under the same conditions [7]. Drift is mostly due to chemical 
and physical interactions on the sensor site, such as sensor ageing 
(reorganization of the sensor surface over time) and sensor poisoning 
(irreversible or slowly reversible binding of previously measured gases 
or other contamination). Environmental effects such as changes in hu
midity, temperature or pressure also affect the sensor response. The 
impact of sensor drift can be reduced by careful experimental design that 
avoids any correlation between gas identity and drift, for example by 
randomizing the order of analytes presented. Where this is not possible 
or not desired, it is essential to be aware of the presence of drift and 
design analysis algorithms accordingly. 

Setting up an electronic olfaction system still requires custom design 

* Corresponding author. 
E-mail address: m.schmuker@herts.ac.uk (M. Schmuker).  

Contents lists available at ScienceDirect 

Sensors and Actuators: B. Chemical 

journal homepage: www.elsevier.com/locate/snb 

https://doi.org/10.1016/j.snb.2022.131668 
Received 20 August 2021; Received in revised form 12 January 2022; Accepted 4 March 2022   

mailto:m.schmuker@herts.ac.uk
www.sciencedirect.com/science/journal/09254005
https://www.elsevier.com/locate/snb
https://doi.org/10.1016/j.snb.2022.131668
https://doi.org/10.1016/j.snb.2022.131668
https://doi.org/10.1016/j.snb.2022.131668
http://crossmark.crossref.org/dialog/?doi=10.1016/j.snb.2022.131668&domain=pdf


Sensors and Actuators: B. Chemical 361 (2022) 131668

2

of electronics and data analysis procedures. These designs and algo
rithms must be based on reliable data. There are many parameters that 
can affect MOx sensor recordings; e.g. environmental conditions like 
temperature and humidity, technical constraints like wind tunnel 
design/construction, flow control of analytes, turbulent dispersal, gas 
availability and associated safety requirements, among others. Previ
ously recorded datasets from reputable sources are therefore popular in 
the Artificial Olfaction/Mobile Robot Olfaction (AO/MRO) community, 
since they reduce the need for recording data in the initial design stages. 
A number of datasets are publicly available, covering a range of tasks 
and use cases [8–16]. 

One of the most popular datasets contains MOx sensor data sampled 
in a wind tunnel, for different gases and different experimental param
eters, over a time of 16 months [9] (downloadable at [17]). This pub
lication has been cited more than 100 times.1 The dataset has been used 
as a benchmark for gas classification algorithms in at least 18 publica
tions [18–35]. It has also been used for gas source location estimation 
[36–39] and other applications [40–45]. 

Here, we reveal a fundamental limitation of the dataset published in 
[9]. First, we observed that gases were not presented in random order, 
but in distinct batches, sometimes recorded weeks or months apart. In 
consequence, the sensor recordings were contaminated by slow baseline 
drift effects that are characteristic for the time of recording. We show 
that since both gas identity and sensor baseline correlate with time, it is 
possible to identify trials using a specific gas only by looking at the 
baseline response, before any gas has been released. In addition, we 
show that even after correcting for slow drift by subtracting the average 
of the first few sensor readings of each experimental trial, residual 
short-term drift effects are characteristic enough to identify trials where 
specific gases have been used, using the baseline alone. Moreover, when 
further minimizing the impact of drift by selecting the least-affected 
subset of recordings and compensating for drift as much as possible, 
the gas classification performance is far inferior to the numbers we ob
tained when using the full dataset. Therefore we conclude that this 
dataset is only of limited use for gas classification benchmarking, and 
that previously reported classification results based on this dataset are 
likely overestimating the true accuracy of gas recognition. Finally, we 
give a perspective on how the measurement protocol could be improved 
to mitigate this problem, and elaborate on what tasks the dataset can be 
appropriately used for, i.e., tasks that are not affected by the drift 
contamination. 

2. Dataset 

The dataset in question [9] consists of 18000 time-series measure
ments recorded over a period of 16 months from a 72 MOx gas sensor 
array-based chemical detection platform exposed to 10 different analyte 
gases (Acetone, Acetaldehyde, Ammonia, Butanol, Ethylene, Methane, 
Methanol, Carbon monoxide, Benzene, and Toluene). The sensor plat
form consisted of nine modules, each equipped with eight MOx sensors 
(see Table 1 for sensor types). It was placed in a 2.5 m × 1.2 m × 0.4 m 

flat-bed wind tunnel, at six different distances from the gas inlet, 
perpendicular to the wind direction (see Fig. 1a for a schematic). Each 
sensor module was integrated with a sensor controller, which enabled 
data collection at 12-bit resolution and a sampling rate of 100 Hz. Gas 
flow was adjusted by computer-supervised mass flow controllers. A 
multiple-step motor-driven exhaust fan controlled the wind speed. 

Different experimental conditions were tested, namely three 
different wind speeds set by the fan (0.1 m s−1, 0.21 m s−1, 0.34 m s−1) 
and five different sensor operating voltages (4.0 V, 4.5 V, 5.0 V, 5.5 V, 
6.0 V). Before each measurement, a combination of the experimental 
parameters gas, location, wind speed, operating voltage was selected, until 
each combination was repeated 20 times. Each measurement lasted for 
260 s, where gas was released between t = 20 s and t = 200 s. Before 
and after each experiment, the wind tunnel was ventilated at the 
maximum speed (0.34 m s−1) for two minutes to assert the reestablish
ment of sensor response baseline. 

The data is deposited as raw sensor data with one file per trial and 
parameter combination. The time of recording of individual measure
ments was encoded as part of the name of the file containing the time- 
series, alongside the parameters used in that recording and the trial 
sequence. 

For our analysis, we interpolated and re-sampled the data for dealing 
with missing data points, and further converted the sensor voltage 
readings Vsensor given in the dataset to sensor resistance values Rsensor, 
according to Eq. (1), 

Rsensor = 10 kΩ ×
3.11V − Vsensor

Vsensor
. (1)  

The readings of sensor 1 for all boards were discarded due to excessive 
sensor noise. Fig. 1b shows the responses of a sensor board to one gas in 
a typical trial. Unless stated otherwise, we used the wind tunnel location 
P4 B5 (wind-downstream from the gas source, see Fig. 1a for wind 
tunnel schematics), as we expected a high gas exposure at that location. 

3. Results 

3.1. Non-random order of gas measurements 

We extracted the times of recording from the filenames to analyse the 
temporal order of measurements. Fig. 1c shows when each the 18000 
measurements have been made, arranged by gas identity and sensor 
position. It is evident that gases have not been measured in random 
order, but in separate batches that cluster in time. Only rarely do mea
surements of different gases overlap in time (as for Ammonia, CO and 
Toluene); more often, measurement batches are several weeks apart (e. 
g., Toluene and Methane). In no case have gases been alternated on a 
per-trial basis. In addition, we observed that also other experimental 
parameters like distance-to-source, wind speed, sensor temperature 
were selected in a sequential fashion rather than in random order (not 
shown). 

The batched arrangement of gas identity and parameter settings is 
not evident from the description of the dataset provided by the authors, 
neither in the original paper, nor in the documentation contained in the 
UCI repository [17]. Describing the experimental protocol, it was stated 
that (quote) "This measurement procedure was reproduced exactly for each 
gas category exposure, landmark location in the wind tunnel, operating 
temperature, and airflow velocity in a random order and up until all pairs 
were covered." [9]. This could be read as to imply that all experimental 
parameters that define an experiment were selected randomly before 
each trial, including which gas to release—which would mitigate, to a 
large extent, the detrimental effect of baseline drift on gas identification 
benchmarks—which is not the case, as we show here. 

Table 1 
Metal oxide (MOx) sensors included in each 8-sensor array. All sensors were 
manufactured by Figaro USA, Inc [46].  

Col. no. Sensor model  Col. no. Sensor model  

1 TGS 2611   5 TGS 2600  
2 TGS 2612   6 TGS 2600  
3 TGS 2610   7 TGS 2620  
4 TGS 2602   8 TGS 2620  

1 According to Google Scholar as of December 2021. 
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3.2. Drift in baseline over time 

We investigated the sensor baseline across trials, where here we 
defined baseline as the sensor readings measured before gas is released 
into the wind tunnel. Fig. 2a shows the trial-wise average of sensor 
baseline values at times t < trelease = 20 s, for a fixed sensor board 
location, operating temperature and airflow velocity, versus the date of 
recording. We observed that baseline varies significantly over time. 
Long-term drift can be observed as significant discontinuities between 
recording sessions. Since gas presentations were batched, the baseline 
pattern often correlated with gas identity. In addition, substantial 
baseline drift could be observed within some recording sessions. 

3.3. Spatial distribution of baseline variations 

By design, the gas plume does not distribute homogeneously across 
the wind tunnel, but disperses in a turbulent manner. Consequently, the 
total gas exposure at different sensor sites could vary, which may alter 
each sensor’s response differently. Here we investigated how variations 
in the baseline response were distributed across the wind tunnel and the 
sensor board, as a proxy for sensor drift effects. To quantify the varia
tions, we calculated the coefficient of variation (cv) of the baseline, for 

each sensor and each board location. cv is given by the fraction between 
the standard deviation σ and the mean μ (Eq. (2)), 

cv =
σ
μ. (2)  

We discriminated between long-term baseline variations over the whole 
duration of the experiment, and short-term drift within single trials. To 
quantify long-term variations, σ and μ were computed from the distri
bution of trial-wise averages of sensor baseline values, thus cv described 
the variation of the baseline across the whole experimental duration. For 
short-term variations, cv was taken as the average of the within-trial 
σ-to-μ ratios. We observed a distinct spatial pattern in the distribution 
of long-term baseline variations across the wind tunnel (Fig. 2b). The 
long-term drift effects were strongest in sensor boards close to the center 
line of the wind tunnel, where gas concentration was expected to be 
highest. This observation suggests that long-term drift could be caused 
by exposure to the sample gas. Long-term drift affected all sensors, 
although sensor 4 was affected most strongly (Fig. 2c. This sensor is a 
Figaro TGS 2602, which is targeted towards “Air pollutants (VOCs, 
ammonia, H2S)” according to Figaro’s website. 

The values for within-trial short-term coefficients of variation were 

Fig. 1. Experimental procedure of Vergara et al. [9] a) Sensor boards with 8 MOx sensors each are placed at different locations in a wind tunnel. Air gets sucked in by 
a fan, and a gas source can be opened or closed. b) Measured sensor resistance for all sensors on one sensor board (location P4, module 5, Acetaldehyde, 0.21 m s−1 

airflow velocity, 6 V operating voltage, trial 1). The shaded portion denotes the period during which the analyte was injected into the wind tunnel. c) Event-plot of 
timestamps for different gas trials. Each vertical line represents 300 trials, which were performed too close to each other for them to be visually distinguishable in this 
representation. The row name indicates the measured gas and its concentration in parts-per-million (ppm). CO at 1000 ppm was removed from further analysis since 
significantly fewer trials were performed than for the other analytes. 
a) Adapted from [9]. 
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naturally lower in magnitude but exhibited a similar pattern as observed 
for long-term variations, both spatially and per-sensor (Figs. 2d and 2e). 
This indicates that also within-trial drift was highest for those sensors 
that were exposed to the highest gas concentrations. 

3.4. Gas clustering and classification 

Since both the baseline drift and the identity of the gas used in a trial 
correlate with time, we tested how much information about the gas 
could be obtained from the baseline signal alone. Fig. 3a shows a Prin
cipal Components Analysis (PCA) plot of the raw baseline values for 
each gas, at a range of times after the start of trials. Each plot presents a 
snapshot of a 100 ms time window, within which the time-series data of 
the sensor responses was averaged and used for the PCA. The PCA was 
computed using all trials in all windows, thus each snapshot is a pro
jection of the data into this shared PC space. Distinct gas-specific clusters 
could be observed already at t = 0 s, before any gas was released into the 
tunnel at trelease = 20 s. The clusters change slightly between 30 and 40 s, 
which we assume is when the gas had reached the sensors. 

Next, we attempted to compensate for long-term drift effects by 

subtracting the average of the first 100 ms window, i.e. for t ∈ [0.0 s, 
0.1 s). The data then only contains the difference of the sensor response 
relative to the start of a trial. This is a standard procedure when dealing 
with MOx-sensor data. For Fig. 3b we computed a PCA on the data 
compensated for long-term drift and used the same windows as before to 
visualize the evolution of sensor responses. By design, at t = 0 s there 
are no visible clusters. Interestingly, although the zero-baseline has been 
subtracted, we still observe the formation of clusters before the release 
of the gas. We interpret this observation as the manifestation of short- 
term drift within trials (cf. Figs. 2d and 2e). It indicates that short- 
term drift also changed over time, in a way that correlated with gas 
identity. 

These observations were confirmed using a time-windowed super
vised classification approach with a soft-margin Support Vector Machine 
(SVM) classifier. We used a linear kernel with regularization parameter 
C = 1.0. The classifier was trained and tested separately for each time 
window, using the same features as for the PCA (time-series data of the 
sensor responses). We used a 4-to-1 random training to test split, i.e. 
training on 80% of the trials in each window and testing using the 
remaining 20%, repeated 10 times with different 4-to-1 random splits. 

Fig. 2. Drift analysis of Vergara et al. dataset [9]. a) Baseline for each sensor and experimental trial. Dots represent the mean sensor resistance during the time before 
gas release (20 s). Top row indicates the gas and its concentration (in ppm) used in the corresponding sessions. b)–e) Local baseline variation analysis using the 
coefficient of variation, for spatial wind tunnel location (b) and c)) and sensor board (d) and e)). b) and d) display the long-term baseline variation across the whole 
experimental duration (16 months), where c) and e) display the averaged within-trial, short-term baseline variation. Data shown here was obtained with wind flow 
speed 0.21 m s−1 and hotplate voltage 6 V. All ten gases and sensors 2–8 were considered. For a), only location 4 and board 5 were considered (see Fig. 1a for wind 
tunnel schematics). 

N. Dennler et al.                                                                                                                                                                                                                                



Sensors and Actuators: B. Chemical 361 (2022) 131668

5

Fig. 3c shows the classifier performance. As expected, the classifier 
yielded near-perfect gas recognition performance on the raw data (i.e., 
without compensation for long-term drift), with an average accuracy of 
94.3% already on the first time window of a trial, for t ∈ [0.0 s, 0.1 s). 
Test accuracy increased slightly for later time windows. From t = 40 s 
on it converged at 100%. We assume that this is when the sensor board 
was maximally exposed to the gas. 

Compensating for baseline offset did not rectify these classification 
artefacts. While test accuracy was random for the time window at 
t = 0 s, it was clearly above random already at t = 5 s (Fig. 3c, green 
line). It increased further to around 80% at t = 35 s, before making a 
step to near 100% at t = 40 s. 

Taken together, we observed that the time window before gas 
exposure contained enough information to identify the gas used in a 
particular trial, even before the gas has been released into the wind 
tunnel. Baseline compensation for long-term drift reduced the extent of 
the problem, but there was still sufficient information contained in the 
short-term drift dynamics that allowed identification of the gas used in a 
given trial far above chance level. Noteworthy here is that even gases 
that are measured in close temporal proximity (such as CO at 4000 ppm 
and Ammonia) separated well in PC space. We suspect that not only 
time-related sensor ageing, but also the slow recovery phase after gas 

exposure and permanent sensor poisoning could play a role in causing 
the baseline drift effects we observed here. 

3.5. Restricted data subset 

Based on our findings in Section 3.1–3.4, we selected a subset of the 
data that would be least affected by the drift effects we observed. We 
selected this subset by three constraints. First, only Methanol, Ethylene 
and Butanol were considered, since they have been measured within 
close temporal proximity (see Figs. 1c and 2a). Second, we removed 
Sensor 4 from the analysis, as it appears to be particularly affected by 
drift (see Figs. 2c & 2e). Third, we used data from sensor board 3 rather 
than sensor board 5, since our analysis suggested that it was, on average, 
less affected by drift (see Figs. 2b & 2d). 

We repeated the SVM classification task in this, according to our 
analysis, less compromised subset. The results are displayed in Fig. 3d. 
The classification accuracy for the raw signal is initially still well above 
chance level at around 75%, without changing significantly after gas 
release. This indicates that long-term drift effects are pronounced 
enough to enable trial identification even in the restricted dataset. 
Moreover, classification accuracy increased only very slightly after gas 
onset. This indicates, paradoxically, that actual gas exposure made little 

Fig. 3. PCA analysis and SVM gas classification of Vergara et al. dataset [9]. a) and b) Principal Component Analysis (PCA) of samples within a 100 ms time window, 
at different starting times. Each color and shape corresponds to a different gas. For a), the raw resistance signal was considered, where for b), the zero-offset was 
removed by subtracting the mean resistance in the first 100 ms for each sensor. c) and d) Classification results using a Linear Support Vector Machine classifier. The 
trials for each gas were randomly split in training and validation datasets with a ratio of 80–20. Black corresponds to the raw resistance signal, whereas green 
corresponds to the zero-offset subtracted signal. For all experiments shown here, the wind flow speed was fixed at 0.21 m s−1, and the hotplate voltage was set to 6 V. 
For a)–c), all ten gases and sensors 2–8 have been considered, at location 4 and board 5 (see Fig. 1a for wind tunnel schematics). For d), the gases Methanol, Ethylene 
and Butanol have been considered, measured with sensors 2–3 and 5–8, at location 4 and board 3. 
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difference for “gas” recognition in the restricted dataset. 
The picture changed after compensating for long-term drift by sub

tracting the baseline offset at t = 0 s. Classification accuracy was only 
slightly above the chance level of 33.3% until gas release. After gas 
release, accuracy slowly increased to slightly above 60%. Therefore, we 
conclude that the restricted dataset is suitable as a gas classification 
benchmark when compensating for baseline offset. It should be noted 
though that a gas recognition accuracy of 60% is much lower than what 
we and others have reported for the original dataset. On the other hand, 
the sensor board we selected was located slightly lateral to the down
wind axis from the source, therefore likely not as strongly exposed to the 
gas plume, which potentially affects classification performance nega
tively (but also apparently reduces sensor drift). 

4. Discussion and conclusion 

In our analysis, we have shown that the different gases have been 
measured in time-separated batches and not in random order, which 
makes the data susceptible to sensor drift effects. We have shown that 
the sensor response baseline correlates with the time and order of 
measurement, consistent with long-term drift behaviour. We have also 
shown that the sensor response baseline alone is enough for ‘accurate’ 
gas classification, even after compensating for long-term drift by 
removing the offset at t = 0 s. This means that the dataset cannot be 
used for gas classification benchmarks without further precautions. 

In an attempt to alleviate this limitation, we identified a subset of the 
dataset, which, under certain conditions, could be used for gas classifi
cation benchmarking. The subset contains three gases that have been 
measured in close temporal proximity, at a location that appears to be 
less affected by drift, while disregarding one most affected sensor. After 
applying long-term drift compensation to this subset, we observed what 
would be expected from a clean experiment: Gas identification accuracy 
was near chance level at the beginning of a trial and rose only after the 
gas has reached the sensor. However, gas classification performance 
under those conditions was much lower than when using the full dataset, 
in spire of the reduced complexity of the task due to the smaller number 
of gases. 

We therefore conclude that there is substantial information about the 
gas identity in the baseline. It must be assumed that this information will 
also interfere with actual gas sensor response. Therefore, the classifi
cation accuracy of a benchmark will overestimate the accuracy that 
could be obtained without the drift effect. These findings suggest that 
many, if not all, of the previous studies using this dataset overestimated 
the performance of their gas recognition algorithms. In fact, previous 
studies have acknowledged the exceptionally high classification accu
racy obtained on this dataset, compared to others [23,25]. 

We identified 18 publications that are potentially affected [18–35]. 
At least one study reported a classification accuracy of 100% [29]. None 
of those 18 studies described subtracting the baseline or other attempts 
that could address the detrimental effects of drift. Only four studies 
described data normalisation efforts [18,19,28,30] that would remove 
the absolute scaling of the data, which should be a standard procedure 
when dealing with MOx sensor data. Since the different studies use 
different subsets of the dataset, and only a small fraction of the teams 
provided their analysis code [20,25], a thorough numerical comparison 
of their algorithmic performance is beyond the scope of this work. 

Due to the popularity of this dataset as a benchmarks for electronic 
olfaction, the overestimation of accuracy that could be obtained may 
have distorted the state-of-the-art in gas recognition. The uncritical use 
of this dataset may have impeded progress in the field to a considerable 
extent, for example by casting unjustified doubt on other datasets where 
classification scores were lower (but possibly more relevant). We hope 
that the analysis presented here may enable a more realistic assessment 
of gas classification algorithms, and further encourage the collection and 
sharing of novel gas sensor datasets. 

It should be noted that this dataset, despite its limitations, is an 

excellent example of how datasets should be shared. It contains the raw 
measurement data and all timestamps of the recordings. This is unfor
tunately not common practice in the field—often, only derived features 
are shared. We expressly acknowledge the effort Vergara et al. have 
made to share the data as accurately as possible. Only through their 
diligence and attention to detail was it possible to identify the under
lying limitations. The dataset still has unique features which make it a 
tremendous resource for machine olfaction research. It is one of the very 
few available datasets which have been recorded with a very high 
temporal resolution in a wind tunnel. Therefore, it includes temporal 
dynamics of odor concentration which are due to turbulent dispersal. 
This feature of the dataset has given rise to a study demonstrating that 
information about source proximity can reliably be extracted from tur
bulent plumes using metal oxide sensors [36], which has been replicated 
independently [39] and confirmed using newly recorded data [38]. Such 
studies are not affected by the adverse effects discussed in the present 
study, since they do not attempt to identify odorants, but focus only on 
the temporal dynamics of odorant concentration induced by turbulence, 
which is largely independent of odorant identity. 

Our study highlights that it is still difficult to obtain clean and reli
able data for gas recognition benchmarks. Besides the challenges in 
designing and manufacturing a gas sensor setup, planning a recording 
campaign robust against drift could hold its own pitfalls that may not be 
evident from the outset, and even go undetected for years after publi
cation, even for highly cited datasets. Our findings highlight once more 
the importance of thoroughly checking the validity of third-party 
datasets before using it as a basis to develop algorithms for gas sensing. 

A few recommendations emerge from our analysis towards best 
practices for designing MOx gas sensor datasets and sharing them. First 
and foremost, it is imperative to use a reference gas at short time in
tervals that will allow the identification and quantification of deviations 
in sensor response. Second, individual gases or mixtures should ideally 
be presented in a pseudo-randomized order, as should any varied 
parameter (e.g. wind speed, hotplate voltage). If a randomized presen
tation order is not feasible, one should record multiple batches for the 
same set of parameters at separate points in time. Training and testing 
data splits should then be selected from batches that were time- 
separated (as in [47]), which would allow for a more realistic perfor
mance evaluation. Finally, external parameters that could affect sensor 
behavior should be measured and reported, e.g. ambient temperature 
and humidity, and the exact time of the recording. Some MOx gas sensor 
datasets that implemented such principles are openly available [12,13, 
15]. 

Reliable data is the foundation for progress in the development of 
algorithms for gas sensing. The large number of citations of the original 
publication of the dataset analyzed here indicates that such data is much 
sought after and of high value for the community. It underlines the 
requirement for future efforts to record and publicly share gas sensing 
data for the progress of the field as a whole. 
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[23] J.G. Monroy, E.J. Palomo, E. López-Rubio, J. Gonzalez-Jimenez, Continuous 
chemical classification in uncontrolled environments with sliding windows, 
Chemom. Intell. Lab. Syst. 158 (2016) 117–129, https://doi.org/10.1016/j. 
chemolab.2016.08.011. 

[24] H. Fan, V.H. Bennetts, E. Schaffernicht, A.J. Lilienthal, A cluster analysis approach 
based on exploiting density peaks for gas discrimination with electronic noses in 
open environments, Sens. Actuators B: Chem. 259 (2018) 183–203, https://doi. 
org/10.1016/j.snb.2017.10.063. 

[25] J.C.R. Gamboa, A.J. daSilva, I.C.S. Araujo, ESAE, CMDA, Validation of the rapid 
detection approach for enhancing the electronic nose systems performance, using 
different deep learning models and support vector machines, Sens. Actuators B: 
Chem. 327 (2021), 128921, https://doi.org/10.1016/j.snb.2020.128921. 

[26] P. Zhou, Y.-D. Shen, L. Du, F. Ye, Incremental multi-view support vector machine, 
in: Proceedings of the 2019 SIAM International Conference on Data Mining, Society 
for Industrial and Applied Mathematics, 2019, pp. 1–9. 〈https://doi.org/10.113 
7/1.9781611975673.1〉. 

[27] T.G. Kolda, D. Hong, Stochastic gradients for large-scale tensor decomposition, 
SIAM J. Math. Data Sci. 2 (4) (2020) 1066–1095, https://doi.org/10.1137/ 
19m1266265. 

[28] A. Mishra, N.S. Rajput, D. Singh, Performance evaluation of normalized difference 
based classifier for efficient discrimination of volatile organic compounds, Mater. 
Res. Express 5 (9) (2018), 095901, https://doi.org/10.1088/2053-1591/aad3dd. 

[29] I. Araujo, J. Gamboa, A. Silva, Deep learning models for classification of gases 
detected by sensor arrays of artificial nose, in: Anais do XVI Encontro Nacional de 
Inteligência Artificial e Computacional, SBC, Porto Alegre, RS, Brasil, 2019, pp. 
844–55. 〈https://doi.org/10.5753/eniac.2019.9339〉. 

[30] N. Vervliet, Compressed Sensing Approaches to Large-scale Tensor Decompositions 
(Ph.D. thesis), KU Leuven, 2018. 〈https://lirias.kuleuven.be/1741494?limo=0〉. 
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