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Abstract. Wildfire smoke is one of the most significant
concerns of human and environmental health, associated
with its substantial impacts on air quality, weather, and cli-
mate. However, biomass burning emissions and smoke re-
main among the largest sources of uncertainties in air qual-
ity forecasts. In this study, we evaluate the smoke emissions
and plume forecasts from 12 state-of-the-art air quality fore-
casting systems during the Williams Flats fire in Washington
State, US, August 2019, which was intensively observed dur-
ing the Fire Influence on Regional to Global Environments
and Air Quality (FIREX-AQ) field campaign. Model fore-

casts with lead times within 1 d are intercompared under the
same framework based on observations from multiple plat-
forms to reveal their performance regarding fire emissions,
aerosol optical depth (AOD), surface PM; 5, plume injection,
and surface PMj 5 to AOD ratio. The comparison of smoke
organic carbon (OC) emissions suggests a large range of
daily totals among the models, with a factor of 20 to 50. Lim-
ited representations of the diurnal patterns and day-to-day
variations of emissions highlight the need to incorporate new
methodologies to predict the temporal evolution and reduce
uncertainty of smoke emission estimates. The evaluation of
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smoke AOD (sAOD) forecasts suggests overall underpredic-
tions in both the magnitude and smoke plume area for nearly
all models, although the high-resolution models have a better
representation of the fine-scale structures of smoke plumes.
The models driven by fire radiative power (FRP)-based fire
emissions or assimilating satellite AOD data generally out-
perform the others. Additionally, limitations of the persis-
tence assumption used when predicting smoke emissions are
revealed by substantial underpredictions of sSAOD on 8 Au-
gust 2019, mainly over the transported smoke plumes, ow-
ing to the underestimated emissions on 7 August. In contrast,
the surface smoke PM; 5 (sPM3 5) forecasts show both posi-
tive and negative overall biases for these models, with most
members presenting more considerable diurnal variations of
sPMj 5. Overpredictions of sPM; 5 are found for the models
driven by FRP-based emissions during nighttime, suggesting
the necessity to improve vertical emission allocation within
and above the planetary boundary layer (PBL). Smoke in-
jection heights are further evaluated using the NASA Lan-
gley Research Center’s Differential Absorption High Spec-
tral Resolution Lidar (DIAL-HSRL) data collected during
the flight observations. As the fire became stronger over 3—
8 August, the plume height became deeper, with a day-to-
day range of about 2-9 km a.g.l. However, narrower ranges
are found for all models, with a tendency of overpredicting
the plume heights for the shallower injection transects and
underpredicting for the days showing deeper injections. The
misrepresented plume injection heights lead to inaccurate
vertical plume allocations along the transects corresponding
to transported smoke that is 1 d old. Discrepancies in model
performance for surface PM» 5 and AOD are further sug-
gested by the evaluation of their ratio, which cannot be com-
pensated for by solely adjusting the smoke emissions but are
more attributable to model representations of plume injec-
tions, besides other possible factors including the evolution
of PBL depths and aerosol optical property assumptions. By
consolidating multiple forecast systems, these results provide
strategic insight on pathways to improve smoke forecasts.

1 Introduction

Wildfire is a natural ecological process that is necessary to
maintain ecosystem structure and function (He et al., 2019;
Pausas and Keeley, 2019) but also a crucial concern of public
health, environment, and climate (Field et al., 2009; Jacob-
son, 2014; Kanda et al., 2002; Page et al., 2002; Reid et al.,
2016). Smoke produced by fires is composed of considerable
quantities of aerosols and trace gases originating from emis-
sions of biomass combustion, including primary air pollu-
tants such as particulate matter (PM), nitrogen oxides (NO,),
carbon monoxide (CO), and ammonia (NH3), as well as trace
metals and volatile organic compounds (VOCs). Composi-
tion of fire smoke evolves over time and space through com-
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plex chemical transformations, aerosol processes, and in-
teractions with other atmospheric components (Sokolik et
al., 2019), which lead to formation of secondary air pollu-
tants such as O3 and secondary aerosols (Baker et al., 2016).
Air pollutants associated with smoke plumes, especially fine
aerosol particles, can be transported over long distances and
lead to degradation of local to regional air quality and harm-
ful exposures over large areas (Colarco et al., 2004; Larsen et
al., 2018). In recent decades, the risks posed by wildfires on
human health and property have been costly and increasing
in North America (McClure and Jaffe, 2018; Rappold et al.,
2017), associated especially with the increases in the sever-
ity and frequency of large wildfires and development of the
urban—wildland interface over the western US (Westerling,
2006; Williams et al., 2019) and owing mostly to anthro-
pogenic climate change (Abatzoglou and Williams, 2016).
Numerical models of atmospheric chemistry and transport
play an important role in advancing our understanding of the
diverse impacts of wildfire smoke on air quality and the cli-
mate system, interpreting observed smoke plume character-
istics, as well as providing valuable information on regula-
tory and health advisory purposes for decision-making dur-
ing smoke events. Biomass burning emissions have been in-
corporated into many modeling systems to account for wild-
fire impacts in global operational or near-real-time (NRT) air
quality forecasts (e.g., Inness et al., 2019; Pierce et al., 2007;
Randles et al., 2017). Additionally, multiple regional air
quality prediction systems across different regions in North
America have also included smoke predictions (Ahmadov et
al., 2017; Chen et al., 2019; Herron-Thorpe et al., 2014; Lee
et al., 2017; Pavlovic et al., 2016). Effective performance of
these air quality forecasting systems has been reported dur-
ing fire seasons (e.g., Chen et al., 2019; Pan et al., 2020a;
Yuchi et al., 2016). However, many of the investigations that
evaluate simulations of wildfire smoke are implemented in a
retrospective way with the proxies for fire emissions already
known, and only a few of them were aimed at demonstrating
predictive skill and using different evaluation metrics. Also,
most evaluations were performed for a single model or dif-
ferent versions of a similar system. Therefore, a multi-model
intercomparison of fire smoke predictions by current model-
ing systems under a common framework is lacking.
Although advances have been made in a number of fore-
casting systems, biomass burning emissions and smoke are
still within the greatest sources of uncertainties in air quality
predictions (Carter et al., 2020; Kaiser et al., 2012; Pan et al.,
2020b), relating to many challenges that remain unresolved.
Firstly, wildfires occur sporadically in many places; thus
the emissions are inherently unpredictable. Biomass burn-
ing emissions within a forecasting window are usually es-
timated by persistence, which means that the emissions esti-
mated based on the latest satellite observations are assumed
to persist in the forecasting window. However, emissions
from wildfires depend on many factors, including meteorol-
ogy, fuel conditions, combustion stage, and fire containment
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activities, and thus can undergo substantial daily and diur-
nal variability (Saide et al., 2015). This limits the potential
of smoke forecasts, especially for large wildfires with drastic
day-to-day changes in their behavior.

In addition to the assumption of persistence, the detection
of fire activity and quantification of emissions are also chal-
lenging and highly uncertain (Darmenov and da Silva, 2013;
Kaiser et al., 2012). This is associated with limitations of the
spatiotemporal coverage and resolution of satellite measure-
ments, as well as the complexity of fuels and combustion
processes. Satellite-based fire emission estimates are primar-
ily derived from satellite observations of burned area, ac-
tive fire counts, and/or fire radiative power, with constraints
from satellite retrievals of aerosol optical depth (AOD), CO,
or CO, (Wiedinmyer et al., 2011; Kaiser et al., 2012; Dar-
menov and da Silva, 2013; Li et al., 2019). While advances
have been made in fire emission estimation with both top-
down and bottom-up approaches, considerable uncertainties
in fire emission inventories are reported in the literature. For
instance, emissions of biomass burning aerosols differ by a
factor of 4 to 7 over North America across inventories, driven
mostly by dry-matter differences (Carter et al., 2020). Sen-
sitivity studies have shown substantial emission-related un-
certainty in smoke forecasts and the radiative effect of car-
bonaceous aerosols, contributed by different spatiotemporal
distributions and magnitudes of fire emissions (Carter et al.,
2020; Garcia-Menendez et al., 2014). This can substantially
limit the accuracy of fire smoke forecasts and the potential of
air quality models.

Parameterization of plume injection height is another es-
sential factor in the simulation and forecast of smoke trans-
port, lifetime, and chemistry (Paugam et al., 2016). Plume
injection heights are defined as the altitudes at which fire
emissions are entrained into the boundary layer, the free tro-
posphere, and even the lower stratosphere, resulting from the
updrafts generated by heat and buoyancy above fires (Fre-
itas et al., 2007). Profound impact of plume injection height
on transport of smoke constituents has been proven, as emis-
sions injected into the free stable troposphere can be trans-
ported over long distances owing to stronger winds and fewer
scavenging processes (Ansmann et al., 2018; Dirksen et al.,
2009; Val Martin et al., 2006); on the other hand, plumes in-
jected into the planetary boundary layer (PBL) are expected
to have a much stronger effect on local air quality. The smoke
plume injection processes are dependent on meteorological
conditions and fire characteristics, which are both highly dy-
namic and make the representation of injection heights chal-
lenging. A variety of plume rise models have been developed
and implemented in chemical transport models to parame-
terize the vertical distribution of fire emissions by taking
fire buoyancy and atmospheric conditions into account, in-
cluding empirical-statistical approaches such as adapted for-
mulations of stacks injections (Briggs, 1975, 1965; Pavlovic
et al., 2016; Raffuse et al., 2012), methods considering mi-
crophysics and entrainment (Freitas et al., 2007) and fire-
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energy thermodynamics (Anderson et al., 2011; Chen et al.,
2019; Sofiev et al., 2012), and integrated systems that fully
resolve plume dynamics (Mandel et al., 2014). Other ap-
proaches have simply considered arbitrary vertical distribu-
tions of fire emissions, such as a uniform vertical distribution
below the modeled mixed layer height, or specified altitudes
determined empirically (Val Martin et al., 2012). Previous
studies have evaluated performance of these approaches. For
example, the Briggs approach gives mostly injection heights
below the PBL height (Mallia et al., 2018) and makes com-
parisons at lower heights than the Multi-angle Imaging Spec-
troRadiometer (MISR) plume heights because of the differ-
ent processes controlling the uplift of wildfire plumes com-
pared to the plume rise of stacks (Raffuse et al., 2012; Sofiev
et al., 2012). Former studies are generally performed for ret-
rospective cases or offline comparisons against satellite mea-
surement of plume heights, and the performance of diverse
plume injection parameterizations deployed in smoke fore-
casts is yet to be intercompared.

Air quality and smoke forecasting data from multiple mod-
eling systems were collected during the NOAA/NASA Fire
Influence on Regional to Global Environments and Air Qual-
ity (FIREX-AQ) field campaign, which provides a unique op-
portunity to extensively understand the status and prospects
on wildfire smoke forecasting. The FIREX-AQ field cam-
paign (https://www.esrl.noaa.gov/csd/projects/firex-aq/, last
access: 10 March 2021) took place in the late summer of
2019 from 21 July to 5 September. This comprehensive field
investigation provided detailed airborne and ground-based
observations of the chemistry, composition, fuel, and meteo-
rology for smoke from wildfires and agricultural fires across
the continental US, which provides an opportunity to validate
and improve real-time smoke forecasts. The air quality fore-
casting data from multiple systems were used to support the
flight planning, including centralized collection and archival
of information from major groups providing smoke forecasts
covering the continental US. More importantly, a variety of
observation platforms were involved, including four instru-
mented research aircraft, satellites, and ground-based sta-
tionary and mobile laboratories. Particularly, the NASA DC-
8 aircraft flying laboratory was deployed to Boise, ID, and
Salina, KS, from 17 July to 5 September 2019 and collected
in situ and remote sensing measurements from multiple fires.
The Differential Absorption Lidar-High Spectral Resolution
Lidar (DIAL-HSRL) (Hair et al., 2018) on board the DC-8
collected observations of aerosol optical properties’ profiles,
which constitute a valuable dataset to validate model predic-
tions of plume structure and injection.

In this paper, we present the evaluation and intercom-
parison of the forecasts of fire emissions and smoke plume
from 12 global and regional air quality forecasting systems
that represent the state of the art, with the aim of enhanc-
ing our knowledge about the main factors controlling their
performance. The evaluation is carried out focusing on the
Williams Flats fire that occurred in August 2019, Washing-
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Figure 1. Map of forecast domains for all regional models included
in this study. The horizontal grid spacings of the models are la-
beled in white (see also Table 1). Note that the domains of the three

global forecasting systems, GEOS-FP, CAMS, and RAQMS, are not
shown.

ton State, US, to demonstrate the forecasting performance in
multiple dimensions, including fire emissions, total column
and surface aerosol loading, and plume injections. In Sect. 2,
we describe the modeling systems with a brief overview of
their primary differences. Section 3 provides the analysis of
how the model forecasts perform by comparisons to satellite-
derived AOD, surface observations of PM» 5 concentrations,
and airborne observations of vertical plume structures and
plume heights. We also investigate the joint performance for
surface PM> 5 and total column smoke aerosols, as indicated
by AOD. The summary and conclusions are presented in
Sect. 4, along with discussions on pathways to improve the
accuracy and tackle the challenges in smoke forecasting.

2 Descriptions of forecast models

A total of 12 forecast systems that provide fire smoke predic-
tions are incorporated within the following intercomparison,
including three global and nine regional systems. A summary
of the model descriptions can be found in Table 1, and the
domains of the models are shown in Fig. 1. The evaluation
here is restricted to an area between 44.0-50.0° N and 110.0—
122.0° W, focusing on the smoke plumes from the Williams
Flats fire. Description of the fire event is given in Sect. 3.
Although some of these forecast systems produce multiple
forecasting cycles a day, only one cycle a day was used in
this study, as denoted by the initial time in Table 1. In the fol-
lowing, the forecast systems are described separately in brief
(Sect. 2.1), along with a summary of main differences in their
numerical methodology, especially regarding biomass burn-
ing emissions and plume rise parameterizations (Sect. 2.2).
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2.1 Forecast models
2.1.1 CAMS

The Copernicus Atmosphere Monitoring Service (CAMS)
is operated by the European Centre for Medium-Range
Weather Forecasts (ECMWF) on behalf of the European
Commission and provides global atmospheric composition
forecasts using the ECMWF Integrated Forecast System
(IFS) (Benedetti et al., 2009; Flemming et al., 2015; Inness et
al., 2019; Rémy et al., 2019), which provides 5 d forecasts of
atmospheric composition including reactive gases, aerosols,
and greenhouse gases (http://atmosphere.copernicus.eu/, last
access: 10 September 2019) at an effective horizontal res-
olution of 0.4°. Emissions from global anthropogenic ac-
tivities are provided by the CAMS_GLOB_ANT v2.1 in-
ventory (Granier et al., 2019). Emissions of organic mat-
ter (OM), black carbon (BC), and SO, from fires are ob-
tained using the Global Fire Assimilation System (GFAS)
v1.2 based on the Moderate Resolution Imaging Spectro-
radiometer (MODIS) observations of fire radiative power
(FRP) (Kaiser et al., 2012). Plume injection height is param-
eterized with a method derived from MISR fire plume ob-
servations (Sofiev et al., 2012). The diagnostics of total and
fine-mode AOD use bulk optical properties for each aerosol
species that have been pre-computed with a standard code
for Mie scattering (Bozzo et al., 2020; Wiscombe, 1980).
Specifically, the smoke OM aerosol properties are based on
the “continental” mixtures and BC properties are based on
soot model described in the Optical Properties of Aerosols
and Clouds (OPAC) database (Bozzo et al., 2020; Hess et
al., 1998). For the hydrophilic types, the optical properties
change with the relative humidity (RH) for the refractive in-
dex and density based on Koepke et al. (1997), and the size
distribution is modified by applying growth factors (Table A2
in Bozzo et al., 2020) to the mode radius. MODIS AOD data
(550 nm) with a variational bias correction applied (Dee and
Uppala, 2009) are routinely assimilated in a 4D-Var frame-
work using aerosol total mixing ratio as the control variable
(Benedetti et al., 2009). Retrievals of reactive gases are also
assimilated, including ozone, carbon monoxide, formalde-
hyde, and nitrogen dioxide (Inness et al., 2015, 2019).

2.1.2 GEOS-FP

GEOS-FP (GEOS “Forward Processing”) is a near-real-time
(NRT) forecast system led by the NASA Global Modeling
and Assimilation Office (GMAO). It provides NRT fore-
casts of meteorological fields, aerosols, and tracers globally
and twice a day for a period of 120h, with a grid resolu-
tion of about 25km (0.25° in latitude and 0.3125° in lon-
gitude). GEOS-FP uses the same modeling configuration as
the Modern-Era Retrospective Analysis for Research and
Applications, version 2 (MERRA-2) (Randles et al., 2017).
GEOS-FP uses the Goddard Chemistry Aerosol Radiation
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and Transport (GOCART) aerosol model (Chin et al., 2002;
Colarco et al., 2010), which includes simplified sulfur chem-
istry and tracks the aerosol mass mixing ratio of dust, sea salt,
hydrophobic and hydrophilic types of BC and organic car-
bon (OC), and sulfate. Biomass burning emissions are from
the Quick Fire Emission Dataset (QFED) v2.4 (Koster et al.,
2015). By employing the FRP observations from MODIS,
QFED uses FRP-to-emission coefficients adjusted to im-
prove model agreement with AOD estimates. Smoke emis-
sions are distributed within the PBL. While dust and sea-
salt emissions are wind-driven (Randles et al., 2017), an-
thropogenic aerosol emissions are obtained from annually
varying global datasets (Diehl et al., 2012). Aerosols are as-
sumed to be externally mixed in modes of fixed mean di-
ameter and standard deviation (Colarco et al., 2014; Randles
et al., 2017). The AOD is diagnosed by integrating the ex-
tinction over the column and aerosol species. The species-
specific mass extinction coefficients are derived from Mie
theory for spherical particles (Wiscombe, 1980) or the T-
matrix approach using the updated optics for nonspherical
dust as described in Meng et al. (2010). The extinction coeffi-
cients for sulfate and hydrophilic carbonaceous aerosol are a
function of RH following Chin et al. (2002). RH affects both
the index of refraction and the size distribution. Assumed op-
tical properties are primarily from the Optical Properties of
Aerosols and Clouds (OPAC) dataset (Hess et al., 1998) with
updated dust optical properties that incorporate nonspheric-
ity (Meng et al. 2010; Colarco et al. 2014). GEOS-FP also
includes data assimilation of satellite AOD retrievals cor-
responding to bias-corrected AOD estimates using MODIS
radiances and a neural-network framework (Albayrak et al.,
2013).

2.1.3 RAQMS

The Realtime Air Quality Modeling System (RAQMS) is a
forecast system that provides global prediction of aerosol and
reactive gases at 1° resolution (Pierce et al., 2007, 2009). It
uses EDGAR anthropogenic emissions, and biomass burning
emissions are estimated using gridded carbon fuel consump-
tion databases, MODIS fire detections, fire weather severity
index, and published emission ratios (Petrenko et al., 2012;
Soja et al., 2004). RAQMS forecasts are initialized with as-
similation of OMI and MLS ozone and MODIS AOD re-
trievals using a statistical digital filter (Pierce et al., 2007).
The same settings for aerosol optical properties and AOD
calculation as used in WISC WRF-Chem are employed in
this model (see Sect. 2.1.5).

2.1.4 HRRR-Smoke
The High-Resolution Rapid Refresh coupled with smoke
(HRRR-Smoke) is an operational smoke forecasting system

run by NOAA/NWS. It is based on NOAA’s weather fore-
casting model HRRR (https://rapidrefresh.noaa.gov/hrrr, last
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access: 10 September 2019) and a coupled meteorology—
chemistry model WRF-Chem (Grell et al., 2005). HRRR-
Smoke simulates primary aerosols from wildland fires in real
time on a 3 km resolution grid over the entirety of the conti-
nental US (Ahmadov et al., 2017). It ingests FRP data from
the MODIS sensor on Terra and Aqua satellites and the Vis-
ible Infrared Imaging Radiometer Suite (VIIRS) sensor on
the Suomi National Polar-orbiting Partnership (S-NPP) and
NOAA-20 to calculate fire size, heat flux, and fire emissions.
Fire smoke is treated as a chemically inert tracer, and no
other aerosol sources are included in this model. Both dry
and wet deposition processes of the smoke tracer are repre-
sented. The model also includes direct feedback of the smoke
aerosol on radiation. The AOD at 550 nm is diagnosed using
the mass extinction coefficient of 4.5 m? g~!. In addition, fire
size and heat flux determined by FRP data is used to calculate
plume injection heights for the flaming emissions using con-
currently simulated meteorological fields by the model (Fre-
itas et al., 2007; Grell and Baklanov, 2011; Paugam et al.,
2015). The RAP-Smoke model (13.5 km resolution), which
covers the entirety of North America, provides lateral bound-
ary conditions (LBCs) of smoke concentrations to HRRR-
Smoke (Ahmadov et al., 2019).

2.1.5 WISC WRF-Chem

WISC WREF-Chem is an experimental regional forecast sys-
tem led by University of Wisconsin, which runs in near-
real time with its 8 km grid-resolution domain nested into
RAQMS. The Goddard Chemistry GOCART is used as the
aerosol scheme (Chin et al., 2002). The AOD at 550 nm is
computed by vertical integration of the aerosol extinction.
Changes in the optical properties of OC associated with hy-
groscopic growth are accounted for, with the mole fraction
and density values being used from lookup tables and as
a function of RH (OC mole fraction values range from 1
to 0.01 for RH values of 1% to 99 % respectively). Ex-
tinction efficiencies are used as a function of mole frac-
tion, with values ranging from 1.37 to 2.18 for mole frac-
tion values of 0.01 to 1. The initial and boundary condi-
tions for aerosols are provided by the RAQMS (Pierce et
al., 2007). Meteorological initial and boundary conditions
are provided by the NOAA Global Forecast System (GFS)
V15 release, which uses the Finite-Volume Cubed-Sphere
(FV3) dynamic core. The AOD assimilation is not performed
within the model but is included through the RAQMS initial
conditions. Smoke emissions were estimated using the geo-
stationary fire detections from the GEOS-15 and the Brazil-
ian Biomass Burning Model (3BEM), which is a bottom-up
biomass burning emission estimation approach included in
the PREP_CHEM_SRC emissions preprocessor (Freitas et
al., 2011; Pierce et al., 2009).
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2.1.6 UCLA WRF-Chem

UCLA WRF-Chem provided experimental forecasts dur-
ing the FIREX-AQ field campaign at a spatial resolution
of 4km over the western US. The model is based on the
WREF-Chem v3.6.1 (https://ruc.noaa.gov/wrf/wrf-chem, last
access: 10 March 2021) and configured with a simpli-
fied aerosol-aware microphysics scheme (Saide et al., 2016;
Thompson and Eidhammer, 2014) to reduce computational
costs compared to full-chemistry runs. The system was de-
ployed successfully in a previous NASA field campaign tar-
geting smoke from fires (Redemann et al., 2021). The mete-
orological initial and boundary conditions are acquired from
the 12km North American Model (NAM) Nonhydrostatic
Multiscale Model (Janjic and Gall, 2012). Two categories of
aerosols are considered, i.e., water- and ice-friendly aerosols,
which are non-reactive and only undergo wet deposition.
The smoke aerosols are considered to be fully contained
in the water-friendly aerosols. Ambient aerosol extinction
and AOD at 550 nm are computed based on the two aerosol
tracers (water- and ice-friendly aerosols) using fixed RH-
dependent mass extinction efficiencies to consider aerosol
hygroscopic growth. Dry extinction is computed using RH
of 20 %, and it is used to estimate PMj 5 concentrations (us-
ing the mass extinction efficiency of 3.5m? g !).

Smoke emissions at 0.1° resolution are obtained
from QFED v2.4 and processed using the fire_emiss
preprocessor (https://www2.acom.ucar.edu/wrf-chem/
wrf-chem-tools-community, last access: 10 Septem-
ber 2019). Each grid cell from which the fire smoke is
released is assigned a burned area of 0.25km? in the plume
rise parameterization scheme (Freitas et al., 2007, 2010).
The same scheme was used in NCAR WRF-Chem, UIOWA
WRF-Chem, and WISC WRF-Chem. In addition, this model
ingests MODIS AOD observations on Terra and Aqua
satellites to provide constraints on fire emissions in near-real
time using a inversion modeling framework (Saide et al.,
2015, 2016). The inversion scheme optimizes emissions for
six fire complexes, with the largest average emissions over
the last 4 d.

2.1.7 UIOWA WRF-Chem

The University of Iowa provided air quality forecasts
based on WRF-Chem v3.9.1 (UIOWA WRF-Chem) (http:
//bio.cgrer.uiowa.edu/FIREX- AQ/model_info.html, last ac-
cess: 10 September 2019) using the Model for Ozone and
Related Tracers-4 (MOZART-4) (Emmons et al., 2010) with
aqueous chemistry as the chemistry scheme and the Model
for Simulating Aerosol Interactions and Chemistry (MO-
SAIC) (Fast et al., 2006; Gao et al., 2016; Zaveri et al.,
2008) for aerosols. MOSAIC uses a sectional representa-
tion of aerosol size distribution, with detailed aerosol in-
teractions with radiation and clouds described by Chapman
et al. (2009). The aerosol size distributions are described in
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eight size bins, and the chemical constituents of the aerosol
are assumed to be internally mixed within each bin and ex-
ternally mixed between bins. The optical properties of each
bin are calculated using the Mie code (Toon and Ackerman,
1981), then their summations over all bins give the bulk op-
tical properties of the aerosol population (Fast et al., 2006;
Barnard et al., 2010). Aerosol hygroscopicity is considered
by calculating aerosol water content using the Zdanovskii—
Stokes—Robinson (ZSR) method (Zdanovskii, 1948; Stokes
and Robinson, 1966). The model included tracers with no
lifetime for understanding the impact of processes such as
smoke plume rise. The GFS data were used for the meteoro-
logical initial and boundary conditions and the Whole Atmo-
sphere Community Climate Model (WACCM) (Marsh et al.,
2013) forecasts for chemical species and aerosols. Biomass
burning emissions are also obtained from the QFED v2.4,
and the plume rise was also parameterized using the method
of Freitas et al. (2007, 2010).

2.1.8 NCAR WRF-Chem

The NCAR WRF-Chem is a regional forecast system (https:
/lwww.acom.ucar.edu/firex-aq/, last access: 10 Septem-
ber 2019) led by NCAR Atmospheric Chemistry Observa-
tions and Modeling (ACOM) using WRF-Chem v3.9.1 (Ku-
mar et al., 2021). The meteorological initial and boundary
conditions are provided by the GFS model. Biomass burn-
ing emissions are produced each day using the near-real-
time Fire Inventory from NCAR (FINN) based on MODIS
Rapid Response fire counts (Wiedinmyer et al., 2011). Plume
rise by Freitas et al. (2007, 2010) is used to distribute the
fire emissions vertically. The model uses MOZART for gas-
phase chemistry and GOCART for aerosol processes, with
the chemical initial and boundary conditions coming from
the WACCM forecasts. The aerosol optical properties are cal-
culated using the parameterized Mie theory (Ghan and Za-
veri, 2007), with a hygroscopicity parameter of OC of 0.14.

2.1.9 NAQFC

The National Air Quality Forecasting Capability (NAQFC)
model is developed by NOAA/Air Resources Laboratory
(ARL) and National Centers for Environmental Prediction
(NCEP) to provide operational 48h air quality prediction
over the US (Lee et al., 2017; Pan et al., 2020a) at 12km
resolution. It is based on the US Environmental Protec-
tion Agency (EPA) Community Multi-scale Air Quality
(CMAQ) v5.02 (Byun and Schere, 2006) modeling system
and is offline-driven by the 12km North American Model
(NAM) Nonhydrostatic Multiscale Model (Janjic and Gall,
2012). It uses the US EPA National Emission Inventory
(NEI) 2014v2 and correction factors based on satellites to
account for trends in NO, emissions (Tong et al., 2015).
Wildfire emissions, thermal, and speciation characteristics
are determined in near-real time by the US Forest Service
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BlueSky smoke emission package (Larkin et al., 2009) and
the NOAA/NESDIS Hazard Mapping System (HMS) for fire
location and strength (Ruminski and Kondragunta, 2006).
The BlueSky wildfire heat flux was used in the Briggs equa-
tion (Briggs, 1975) to determine smoke plume injection
heights. Monthly averaged concentrations for 36 gaseous and
aerosol species obtained from GEOS-Chem were used as lat-
eral boundary conditions below 7 km altitude, and a clean-air
scenario static condition was used between 7 km and model
top. NAQFC used the Carbon-Bond 2005 (CBO0S5) (Yarwood
et al., 2005) for gas-phase mechanisms and followed largely
the EPA’s AERO4 module for aerosol processes (Binkowski
and Roselle, 2003) with the related emission and removal
processes in CMAQ v4.6. The AERO4 represents particle
size as three modes. The processes of coagulation, particle
growth, and new particle formation are included. Extinction
of aerosols is represented using a parametric approximation
to Mie extinction (Binkowski and Roselle, 2003; Byun and
Ching, 1999; Evans and Fournier, 1990). Then the AOD is
derived by integrating the Mie extinction coefficients over
the column.

2.1.10 AIRPACT

The Air Information Report for Public Awareness and Com-
munity Tracking (AIRPACT) v5 is an air quality predic-
tion system primarily for Idaho, Oregon, and Washing-
ton (Herron-Thorpe et al., 2014). Meteorology fields pre-
dicted by the University of Washington WRF (Skamarock
et al., 2008) model at 4km resolution are used to drive
CMAQ v5.02, which accounts for the chemical and physi-
cal processes of air components, including emissions, trans-
port, vertical mixing, dilution, rainout, and deposition. The
CMAQ model includes the CB05 and AERO6 chemical and
aerosol mechanisms. Aerosol extinction at 550 nm is esti-
mated using the approximation of the Mie extinction ef-
ficiency (Binkowski and Roselle, 2003; Byun and Ching,
1999), with the reference refractive indices of aerosols based
on the OPAC database (Hess et al., 1998). The model as-
sumes that organics influence neither the water content nor
the ionic strength of the aerosol particles; only the equilib-
rium of the sulfate, nitrate, ammonium and water system
is considered (Binkowski and Roselle, 2003). The chemi-
cal boundary conditions are derived from the WACCM to
account for long-range transport of pollutants from outside
the domain. The WACCM simulations incorporate fire emis-
sions from the FINN data (Wiedinmyer et al., 2011). Fire
emissions in AIRPACT are derived from the BlueSky frame-
work, with fire locations determined by the Satellite Mapping
Automated Reanalysis Tool for Fire Incident Reconciliation
(SMARTFIRE) v2. Plume rise is represented using a modi-
fied WRAP DEASCO3 method (Mavko and Morris, 2013).
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2.1.11 FireWork

Environment and Climate Change Canada (ECCC) operates
the Regional Air Quality Deterministic Prediction System
(RAQDPS), which uses the Global Environmental Multi-
scale — Modelling Air quality and CHemistry (GEM-MACH)
model (Moran et al., 2010) v5.0 with full description of at-
mospheric chemistry and meteorological processes to pro-
vide 48h forecasts at 10km resolution. The Forest Fire
Smoke Model (FireWork) operational system is run as an
additional version of the RAQDPS by including smoke
emissions (Chen et al., 2019; Pavlovic et al., 2016). Gas-
phase chemistry is accounted for using the Young and Boris
scheme, and aerosol processes are represented by the Cana-
dian Aerosol Module (CAM) (Gong et al., 2003) with two
bins. Aerosol optical properties within the model are de-
coupled from the meteorological model components — the
model’s radiative transfer routines make use of climatologi-
cal aerosol radiative properties in its radiative transfer pro-
cesses. AODs from the FireWork forecast were generated
using post-processing of the model outputs. The operational
2-bin model output was first mapped to a 12-bin representa-
tion based on an assumed fixed size distribution, then optical
properties were calculated based on speciated PM; 5 (for ni-
trate, sulfate, OC, BC, dust, and sea salt) using formula from
IMPROVE. Biomass burning emissions are computed by the
Canadian Forest Fire Emission Prediction System (CFFEPS)
v2.03 (Chen et al., 2019), which is a bottom-up system linked
to the Canadian Wildland Fire Information System (CWFIS)
(Lee et al., 2002), with the hourly changes in biomass fuel
consumption parameterized considering forecasted meteo-
rology at fire locations. The fire-activity information is based
on initial NRT fire hotspot data from three satellite sensors,
including the Advanced Very High Resolution Radiometer
(AVHRR), MODIS, and the Visible Infrared Imaging Ra-
diometer Suite (VIIRS). Smoke emissions and the energy
generated from wildfires are a product of burned area with di-
urnally adjusted fire growth rates (Lawson et al., 1996), fuel
consumed per unit area calculated considering meteorology,
combustion stages and burn durations, and emission factors
following the literature (Urbanski, 2014). The forecasts ini-
tialized at 12:00 UTC are used in the evaluation, which in-
gested the most recent data of the current day’s hotspot by the
initialization time. A plume rise parameterization based on
fire-energy thermodynamics is used to define the smoke in-
jection height and the vertical distribution of emissions (An-
derson et al., 2011; Chen et al., 2019).

2.1.12 ARQI

An experimental version of GEM-MACH at 2.5 km resolu-
tion is maintained by the Air Quality Modelling and Inte-
gration (ARQI) group within ECCC (Makar et al., 2021).
This domain is nested within the 10 km operational FireWork
domain to generate forecasts for Alberta and Saskatchewan,
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Canada, continuously since 2012 and has been used during
several field campaigns. In support of the FIREX-AQ, the
experimental forecast system was set up by ECCC with the
domain covering the northwest US and southwest Canada
to track smoke flows from and towards Canada. In order to
make these forecasts available during the forecasting window
used in FIREX-AQ, ARQI was initialized at 12:00 UTC on
the previous day to the forecast day, using the previous day
03:00 UTC update of CFFEPS emissions. Thus, these fore-
casts had smoke emissions that were nearly behind by 1d
compared to the rest of the forecasting systems, and this may
account for some of the discrepancies between the ARQI
and FireWork forecasts, both of which used the same for-
est fire emissions processing framework. The KPP model
with Rodas3 solver is used for gas-phase chemistry. Aerosol
processes are also depicted by the CAM module with 12
bins. AOD is generated using an online Mie scattering ap-
proach assuming homogeneous spherical aerosols (Bohren
and Huffman, 1983). Similarly to FireWork, the biomass
burning emissions are estimated by the CFFEPS v4.0 follow-
ing Chen et al. (2019) but with some modifications: (1) plume
rise is calculated using the full GEM-MACH vertical resolu-
tion of temperature for radiative balance; (2) a 24 h offline
simulation using an a priori GEM forecast is used to create
spin-up conditions for the GEM-MACH 2.5 km simulation,
but the forest fire emissions used in the model were calcu-
lated by CFFEPSv4.0 online within GEM-MACH. This al-
lowed the forest fire emissions of particulate matter to modify
the weather within the simulation, in turn modifying the for-
est fire plume rise behavior on subsequent time steps. A more
detailed description of the ARQI model and these feedback
effects may be found in Makar et al. (2021).

2.2 Main differences of the forecast systems

The modeling systems included in this work represent a con-
siderable diversity in forecasts accounting for fire smoke over
the western US. Besides the spatial coverages, resolutions,
and the driving meteorology, they differ in several major as-
pects:

1. Biomass burning emission input. Diverse approaches
of quantifying emissions are involved, which can be
broadly categorized into top-down estimates based on
satellite FRP and FRP-to-emission coefficients and
bottom-up estimates based on fire detections (hotspots
reflecting burned area), fuel categories, and emission
factors.

2. Plume injection. Smoke emissions are distributed
within the PBL for GEOS-FP and RAQMS (severity
dependent), while plume rise parameterizations are em-
ployed in the other models. All the WRF-Chem simu-
lations used the default version of the plume rise pa-
rameterization within WRF-Chem (Freitas et al., 2007,
2010), and HRRR-Smoke and CAMS used satellite FRP
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observations in their parameterizations, while ARQI
(Makar et al., 2021) and FireWork (Chen et al., 2019)
used hourly calculated fire energy and thermodynamic
(temperature) profiles at hotspot locations.

3. Diurnal cycle of smoke emissions. Diverse patterns are

adopted in the systems from nearly flat profiles to strong
diurnal variations, which will be shown in the compar-
ison. Most models use fixed diurnal profiles, except for
UCLA WRF-Chem, for which the pattern can be modi-
fied by the inverse modeling of fire emissions.

. Initialization time. The forecasts considered here were

mostly initialized at 00:00 UTC or 12:00 UTC, which
leads to a different time of validity for satellite observa-
tions and thus fire emissions in the models, depending
on the latency of data by initialization times.

. Complexity of chemical mechanisms. Smoke chem-

istry is treated in different ways, ranging from tracers
in HRRR-Smoke and UCLA WRF-Chem, simplified
GOCART (Chin et al., 2002) chemistry in GEOS-FP,
NCAR WRF-Chem, and WISC WRF-Chem, and full
chemistry by other models that may have differences in
their treatment of organic aerosol (e.g., ARQI and Fire-
Work).

6. Assimilation of satellite AOD data. All three global

operational forecasting systems incorporated assimi-
lation of satellite AOD data. For the regional mod-
els, WISC WRF-Chem was initialized with assimilated
aerosol fields from RAMQS, and UCLA WRF-Chem
used AOD retrievals to constrain fire emissions. Other
models did not make use of chemical data assimilation
in their systems.

. Treatment of aerosol processes and assumptions of

aerosol physical and chemical properties. These are rel-
evant to aerosol optical properties’ calculation. The di-
rect aerosol feedbacks linked to radiative forcing are
considered in many models (CAMS, GEOS-FP, ARQI,
HRRR-Smoke, UCLA WRF-Chem, UIOWA WRF-
Chem, WISC WRF-Chem, ARQI, and NCAR WRF-
Chem), while the indirect feedbacks are enabled in three
models (UIOWA WRE-Chem, UCLA WRF-Chem, and
ARQI). Regarding the diagnosis of AOD, UCLA WRF-
Chem, HRRR-Smoke, WISC WRF-Chem, RAQMS,
and GEOS-FP used mass-concentration-based aerosol
extinction, while CAMS, UIOWA WRF-Chem, NCAR
WRF-Chem, NAQFC, AIRPACT, and ARQI used the
Mie theory, and FireWork used a diagnostic post-
processing calculation to estimate AOD from model-
generated aerosols. The uncertainty of AOD calcula-
tions owing to the different methods and assumptions
about the mixing state, density, refractive index, and
hygroscopic growth of aerosols has been estimated as

Atmos. Chem. Phys., 21, 14427-14469, 2021



14436 X. Ye et al

30 %-35 % (Curci et al., 2015), with the general ten-
dency for the different AOD methods to result in nega-
tive biases relative to satellite observations. This uncer-
tainty introduced by these factors is not treated explic-
itly in this work.

8. Boundary conditions of chemical compositions. The
chemical LBCs are critical to the representation of com-
ponents transported from outside the forecasting do-
main. UIOWA WRF-Chem, WISC WRF-Chem, NCAR
WRF-Chem, and AIRPACT use LBCs from global fore-
casts, while monthly climatological fields are used for
FireWork, ARQI, NAQFC, and UCLA WRF-Chem.
HRRR-Smoke takes chemical LBCs from another re-
gional model, i.e., RAP-Smoke.

3 Evaluation of smoke forecasts for the Williams Flats
fire

The Williams Flats fire was the largest wildfire event sam-
pled during the FIREX-AQ field campaign. In this paper, we
focus the model evaluations on this event. First reported at
about 03:23 PDT (Pacific daylight time, or UTC—7) on 2 Au-
gust 2019, the fire was ignited by various lightning strikes re-
lated to an early morning thunderstorm in the Colville Reser-
vation, Washington State, located about 8 km to the southeast
of Keller, WA, and 80km to the northwest of Spokane, WA.
The high-pressure system over the fire area produced above-
normal temperature and low humidity, which in combination
with the wind pattern resulted in spreading of the blaze to the
north bank of the Columbia River. The fire event led to nu-
merous evacuation orders in the area. Fuel burned in the fire
event included short grass, timber, and tall brush. Contain-
ment efforts were somewhat hampered by steep terrain, lim-
ited access, and primitive road conditions near the fire. The
storm that occurred on 9-10 August brought large amounts
of rain over the fire, which caused localized flash flooding,
washing out several roads. Although the storms caused chal-
lenges for firefighting efforts, the cooler temperature and rain
dramatically moderated the fire behavior, and the percentage
of containment reached 65 % on 13 August (https://inciweb.
nwcg.gov/incident/6493/, last access: 10 September 2019).
According to the final Incident Status Report (ICS-209), pre-
pared by the Bureau of Indian Affairs for the Williams Flats
fire, the unit burned a total of 44 446 acres (179.87 km?).
The burned area measurements from the USDA Forest
Service National Infrared Operations (NIROPS) Unit with
airborne thermal infrared (IR) imaging are used to present
the evolution of this event. As shown in Fig. 2, a slightly in-
creasing trend in the daily burned area growth can be seen on
4-6 August, and on 7 August the fire expanded abruptly, with
the daily increment of burned area being almost triple of that
on 6 August. Therefore, the predicted burned area growth by
assuming persistence, namely maintaining the same burned
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Figure 2. Time series of burned area from the NIROPS IR obser-
vations for the Williams Flats fire on 2—17 August 2019 (a) and
day-to-day increment of burned area on 4-9 August (b). The obser-
vation hour and day are shown in PDT (UTC—7) in “hhZdd” (hour
and day). Daily increments of burned area based on the assumption
of persistent fire activity are shown by the open orange bar in the
lower panel; they are equal to the observed value on the previous
day.

area growth on the previous day, may lead to significant un-
derprediction of the fire expansion on 7 August and overes-
timation on 8 August. Considering the temporal evolution of
this event, the 7d period of 3-9 August 2019 is of interest
in this evaluation, as it corresponds to the actively expand-
ing stage of the fire with intense emissions and abundant ob-
servations. Evaluation of the models’ performance is carried
out from multiple perspectives, including (1) fire emissions
and their diurnal variation pattern, (2) total column aerosol
loading via comparisons against satellite AOD retrievals,
(3) surface air quality impact via comparisons against in situ
PM; s measurements, and (4) vertical plume structure and
fire plume injection compared against airborne lidar obser-
vations. Additionally, further discussion is presented on the
surface PM> 5 to AOD ratio and possible ways to reduce the
discrepancies in performance between the two terms.

3.1 Comparison of fire emissions

In this section, the biomass burning (BB) emissions from
the Williams Flats fire that are used in models are inter-
compared in terms of the evolution of daily emissions and
diurnal variation patterns. Figure 3 shows the comparison
of daily total BB organic carbon (OC) emissions for eight
models. Due to data availability, not all models could be
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Figure 3. Time series of daily total biomass burning OC emissions
from the Williams Flats fire predicted in different models. Models
using FRP-based emissions are shown with solid lines, and those
using hotspot-based emissions are shown with dashed—dotted lines.
The solid black line with dots stands for Fuel2Fire emissions anal-
ysis. Grey bars represent factors between the maximum and mini-
mum for all models.

included. Emissions from each forecasting system are de-
rived by aggregating emissions at grid pixels representing the
Williams Flats fire from 00:00 to 23:00 PDT per day, with
the value for each hour derived from the latest forecast cy-
cle. An illustration of the grid pixels on the emission dis-
tribution maps is included in Fig. S1. Moreover, the emis-
sion estimates derived by a detailed analysis developed by
the FIREX-AQ Fuel2Fire group (https://www-air.larc.nasa.
gov/missions/firex-ag/index.html, last access: 4 July 2020)
are also shown in Fig. 3. As a bottom-up emission dataset,
the BB emissions are derived using Fuel Characteristic Clas-
sification System (FCCS) fuelbeds, VIIRS, Geostationary
Operational Environmental Satellite (GOES), MODIS, and
ground-based intelligence (Soja et al., 2004) and provided
at a temporal resolution of 1s for both flaming and smol-
dering conditions. We converted the total carbon emissions
into carbonaceous aerosol emissions (OC and BC) using a
fixed percentage of 2 % (Soja et al., 2004) and then extracted
the partition of OC emissions following an up-to-date rela-
tionship between the ratio of OC and BC emission factors
(EFoc / EFpc) and modified combustion efficiency (MCE)
for western US wildland fuels (Jen et al., 2019), with the
MCE assumed to be 0.84 and 0.95 for smoldering and flam-
ing emissions, respectively.

The result indicates a large spread of the daily total BB
OC emissions within forecasting systems, with the differ-
ences in these estimates ranging from a factor of about 20
to 50 on 5-9 August (Fig. 3). The factors on the days be-
fore and after are even higher, owing to the different pace of
the models ingesting satellite fire detections. Meanwhile, the
FRP-based emissions that were used by UCLA WRF-Chem,
UIOWA WREF-Chem, GEOS-FP, HRRR-Smoke, and CAMS
tend to be overall higher than the hotspot-based emissions
by a mean factor of 5.6. This is especially the case for the
QFED emissions used by UCLA and UIOWA WRF-Chem
and GEOS-FP, which are on average 6.4 times higher than
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the hotspot-based emissions. The Fuel2Fire emissions are
within these two categories. The emission estimates tend to
show an increasing trend throughout the days, which is con-
sistent with typical fire behavior and Fuel2Fire emissions.
The large spread in the emission estimates could be due to
multiple factors, including differences in the identification
of ecosystems or fuel load, land cover classification, type of
satellite fire detections used (e.g., different sensors and pixel
sizes), and the method and timing of ingesting satellite ob-
servations. Future work needs to be performed to understand
the large spread between the smoke emissions and to reduce
their uncertainty.

Diurnal factors of the smoke emissions are evaluated
against the observed patterns derived by the GOES-17 Wild-
fire Automated Biomass Burning Algorithm (WFABBA)
FRP product generated by the Cooperative Institute for Me-
teorological Satellite Studies (CIMSS) at the University of
Wisconsin, Madison. As shown in Fig. 4, the FRP data ex-
hibit discernable diurnal fire activities, which peaked towards
late afternoon (14:00-19:00 PDT), with a substantial day-to-
day variability. By contrast, most models assumed fixed di-
urnal profiles. A variety of patterns are found for the mod-
els, which show relatively smaller variations, e.g., GEOS-FP,
RAQMS, and AIRPACT, and more pronounced peaks for the
other models. Overall, NCAR WRF-Chem peaked the ear-
liest (14:00 PDT), and ARQI peaked the latest (17:00 PDT).
However, most model patterns deviate from the FRP observa-
tions. The day-to-day variation and bimodal patterns on some
of the days were not captured by any of the models. UCLA
WRF-Chem incorporated an inversion technique to constrain
fire emissions, which allowed the emissions to be pushed
later, resulting in a better agreement with the FRP data. But
the coarse time resolution of the scaling factors (8 h) greatly
limited how much the diurnal profile could be modified. Ad-
ditionally, the nighttime fire activity was not well described
on the nights of 2-3 and 7-8 August by most models, except
for ARQI, due to its later peaks. Note that FireWork used
similar diurnal factors to ARQI, but it is not shown in Fig. 4.

Multiple ways to improve the representation of diurnal
emission variations can be drawn from these results. First,
forecasts would likely benefit from including diurnal cycles
based on geostationary FRP, coinciding with recent litera-
ture (Wiggins et al., 2020). For doing this, at least 1d of
spin-up would have to be performed or using near-real-time
incorporation of data. A modeling system for this goal has
been reported, which adopts a strategy of hourly sequen-
tial warm-start runs with FLEXPART-WRF (Solomos et al.,
2015, 2019), which allows the emissions to be updated every
hour using METEOSAT geostationary observations. How-
ever, due to large day-to-day variability in diurnal cycles, it
still does not guarantee that the persistence of the latest di-
urnal pattern into the forecasting window will provide bet-
ter results. One possibility is to utilize fire weather forecasts,
which are currently used to predict fire danger. Thus, future
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Figure 4. Diurnal variation factors of biomass burning emissions
from the Williams Flats fire on 2-10 August 2019 scaled by daily
average value. The colored lines with markers represent different
models. The grey lines with dots represent the scaled GOES-17 fire
radiative power (FRP). The lines for NCAR WRF-Chem overlap
with UIOWA WRF-Chem.

work is needed to investigate methods to forecast diurnal be-
havior of fires.

3.2 Evaluation of smoke AOD forecasts against satellite
data

3.2.1 Data and statistical metrics

The AOD at 550 nm from the MCD19A2 Version 6 prod-
uct (Lyapustin and Wang, 2018) is used for the evaluation.
It is a MODIS Terra and Aqua satellites combined Level 2
product based on the Multi-Angle Implementation of Atmo-
spheric Correction (MAIAC) algorithm producing AOD data
at 1km pixel resolution (https://Ipdaac.usgs.gov/products/
mcd19a2v006/, last access: 10 January 2020). Compared to
other algorithms, the MAIAC algorithm provides more avail-
able AOD data over smoke plumes with its capability to ac-
curately classify thick smoke, which is frequently identified
as clouds by other methods (Lyapustin et al., 2018). With
Terra and Aqua’s sun-synchronous low earth orbit, the MA-
IAC data have a higher nominal resolution than geostation-
ary data but at lower temporal refresh rates. The equatorial
crossing time for the MODIS Terra is 10:30 and 22:30LST
and 01:30 and 13:30LST for the MODIS Aqua. Locations in
low latitudes and midlatitudes are scanned twice per day by
each of the satellites. Higher latitudes can receive more fre-
quent data coverage, with up to six orbits per day in Alaska
and northern Canada. As the MATIAC AOD is retrieved from
visible-band (470 nm) measurements, only daytime data are
available. The AOD accuracy is evaluated as £ (0.05+ 15 %)
or even better &= (0.05 + 10 %) in a global validation (Lya-
pustin et al., 2018). A recent assessment over North America
against ground-based observations at the AErosol RObotic
NETwork (AERONET) sites indicates that MAIAC performs
well for this region over a wide range of surface conditions,
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with a bias of 0.015 and an RMSE of 0.062 over western
North America (Jethva et al., 2019). MAIAC also shows ex-
tended coverage over the continent US compared to the VI-
IRS product or other MODIS algorithms, owing to its pixel
selection process and ability to retrieve aerosol information
over brighter surfaces (Jethva et al., 2019; Superczynski et
al., 2017). For post-processing, the data were filtered accord-
ing to the quality assessment flags, keeping the retrievals with
cloud masks indicating “clear” or “possibly cloudy” and ad-
jacency flags of “clear” or “adjacent to a single cloudy pixel”.
The tiles of retrievals were concatenated to produce hourly
snapshots, with the overpassing time rounded to full hours.
The filtered AOD data were spatially mapped onto the grid
corresponding to each model’s resolution for consistency.
There were 14 hourly scenes in total on 4-8 August 2019
(two to three snapshots per day). The evaluation was also
performed at four specific grid resolutions (0.1, 0.2, 0.5, and
1.0°) to examine the model performance at different spatial
re-gridding resolutions.

To evaluate the AOD retrievals during the Williams Flats
fire over our region of analysis, we compared the MA-
IAC data against the AERONET sun photometer data (Ver-
sion 3, Level 2.0, cloud-cleared and quality-assured) (Giles
et al., 2019). During FIREX-AQ, multiple temporary NASA
AERONET platforms — Distributed Regional Aerosol Grid-
ded Observation Networks (DRAGON) — were deployed to
collect sun photometer measurements (Holben et al., 1998,
2018). Fixed DRAGON sites operated in Missoula, Tay-
lor Ranch, and McCall (https://aeronet.gsfc.nasa.gov/new_
web/DRAGON-FIREX-AQ_2019.html, last access: 8 Au-
gust 2020). Along with the permanent AERONET sites, the
AOD retrievals are available at 27 ground sites (Fig. S2). As
MODIS MAIAC AOD data at 550 nm are used in model eval-
uation, for consistency, the AERONET AOD at 500 nm is
converted to 550 nm using the ;\ngstrém exponent retrieved
for 440-675 nm. Following the collocation strategy reported
in Jethva et al. (2019), we used two sets of spatiotemporal
averaging windows to get the AOD matchups. The MAIAC
data are re-gridded onto a 0.1° (0.4°) resolution grid and
then bilinearly interpolated onto the locations of the sites;
the AERONET data are averaged within 0.5 h (1 h) time win-
dows centered at the overpass time of MAIAC. To avoid val-
ues after re-gridding driven by very sparse MAIAC pixels
contained in the respective grid boxes, the minimum num-
ber of 1 km satellite observations contained in each grid cell
is required to be larger than 20 % of the maximum possible
1 km pixels contained in a grid box. Figure 5a and c show
the scatterplots constructed by using the matchups between
AERONET and MAIAC. The MAIAC AOD is highly corre-
lated (r ~ 0.84 and 0.89) with AERONET and shows small
positive biases. As expected, the larger spatial and tempo-
ral averaging intervals yield a larger number of data pairs.
The dependence of MAIAC bias on the magnitude of AOD
is examined, and the result for the bins with the number of
matchups larger than five is shown (Fig. 5b, d). The me-
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Figure 5. Scatterplots (a, ¢) of the relationship between AERONET
AOD and MAIAC during 3-8 August 2019. Results are shown for
two sets of data collocation methods. The dotted line represents the
1:1 line, and the solid line represents the linear regression model
provided in the figure. The box-and-whisker plots (b, d) show the
dependence of MAIAC biases compared against AERONET. Miss-
ing boxes are due to the lack of matchups (<5) in that AOD bin. The
edges of boxes and the red line represent 25th and 75th percentiles
and the median. The whiskers represent 5th and 95th percentiles.
The numbers at the top of (b) and (d) are the numbers of matchups
in each bin of AERONET AOD.

dian error is less than 0.015, and an increasing trend towards
higher aerosol loading is notable for AOD bins, with their
center values larger than 0.1. The spread of the errors be-
comes greater as AOD increases. This result demonstrates
acceptable accuracy of the MAIAC AOD during this wildfire
event. It also suggests a tendency of slightly larger positive
bias and increased variability in the retrieval errors over the
areas with significant smoke impacts.

Regarding the model forecasts, coincident predictions at
the closest hour relative to observations were derived from
the most recent forecast cycle (initialized within 24 h) ex-
cluding the spin-up period. For consistency with AOD mea-
surements, the forecasts are also filtered to exclude cloudy
conditions based on the cloud water mixing ratio or cloud
fraction, depending on data availability. Specifically, for
HRRR-Smoke, UCLA WRF-Chem, AIRPACT, ARQI, and
NCAR WRF-Chem, the grid cells with total column cloud
water >10"%kgm~2 were filtered out. For GEOS-FP, the
grid cells with low cloud fraction or middle cloud fraction
>10 % were masked. For UIOWA WRF-Chem, grid columns
with more than five vertical layers with clouds were ex-
cluded. Although no cloud filter was implemented for the
other models as cloud variables were not archived, the grid
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cells with clouds can be mostly masked when filtering to-
gether with the observations. After the cloud screening, the
temporally and spatially collocated prediction and observa-
tion data were kept for the comparisons.

Three sets of evaluations are presented here, focusing
on standard statistical measures, the magnitude of smoke
AOD (sAOD) enhancements, and spatial coverage of smoke
plumes. The sAOD was derived by subtracting a background
AOD, represented by the average of the lowest 20 % values
within the entire region of comparison, for each modeled and
observed distribution map. The statistical metrics used in the
evaluation include correlation coefficient (), ratio, mean bias
(MB), normalized mean bias (NMB), root-mean-square error
(RMSE), and normalized mean error (NME), which are cal-
culated as follows:

1
MB:;Zl_(mi—oi) 1)

_ 1 2
RMSE = nZ#mt 0;) (2)

_ > (mi—o;)

i0i

NME = =Mzl a0, 4)

i0i

. >.i[(mj —m) x (0; —0)]
X =) x Y01 — 0

. 1 m;
ratio = — —. (6)
n L o;

NMB x 100% 3)

®)

Here the subscript i represents the pairing of N observations
(0) and model predictions (m) by spatial location and time.
Overbars indicate averages over location and/or time. These
metrics were also used for comparison of surface PM; 5 fore-
casts against ground-based observations in Sect. 3.5.

In addition to standard statistical measures, the spatial ex-
tent of the smoke plume is evaluated based on how well the
predicted location of the plume compares with the actual
smoke plume detected by MODIS AOD. For each observa-
tion scene, observed and modeled plume coverages are com-
pared by producing the figure of merit in space (FMS) and
false alarm rate (FAR) (Boybeyi et al., 2001; Mosca et al.,
1998; Rolph et al., 2009), defined as

FMS = x 100 %, 7)

a+b+c

b
FAR = —— x 100%. (8)

a

These two categorical scores are calculated by counting
the grid cells for model predictions and observations with
SAOD > 0.05 that fall into the four categories listed in Ta-
ble 2. FMS / 100 is equivalent to the threat score or critical
success index (CSI) in verifying meteorological forecasts; it
is defined as the ratio of the intersection to the union of the

Atmos. Chem. Phys., 21, 14427-14469, 2021



14440 X. Ye et al.: Evaluation and intercomparison of wildfire smoke forecasts
Table 2. Definition of categories for a binary event. ARQI
HRRR-Smoke
. > A > AIRPACT
Category Observed 9 o1 2 «, UCLA WRE-Chem
Yes No 0 5 5» st UIOWA WRF-Chem
[a)] L anm “;.,.“(!: > A WISC WRF-Chem
a b 2 2 3 > P Firework
Forecasted — , ¢ naorc
d g 0.05 ] NCAR WRF-Chem
g b ®  GEOSFP
:’J' i. '.% ; A cavs
. > raoms
plume areas. FMS ranges from 0% to 100 %, with a high 0 . . 11
value indicating a good model performance. It should be 0 0.05 0.1

noted that, since missing AOD retrievals exist due to cloud
contaminations, the filtered data do not always indicate the
exact coverage and outline of smoke plumes. Therefore, a
small value of FMS does not necessarily suggest poor model
performance. Although an imperfect metric, the FMS is use-
ful for revealing model performance on a per-snapshot basis
(Rolph et al., 2009).

3.2.2 Model performance statistics of smoke AOD
(sAOD)

In this section, the evaluation results of sAOD forecasts
are presented. The time period for evaluation was 4-8 Au-
gust 2019, since there were multiple models that had not in-
cluded emissions from the Williams Flats fire on 3 August,
and on 9 August showers and cloudy weather resulted in very
few AOD observations. It should be noted that because of
the different setups for the chemical LBCs as summarized in
Sect. 2.2, there may be systematic discrepancies in their AOD
predictions. Additionally, HRRR-Smoke does not consider
non-smoke sources; the models using simplified chemistry
can struggle to represent background aerosols arising from
secondary formation that is not resolved within the mech-
anism. Figure 6 shows the comparison of the background
AOQD estimated from MAIAC data and model forecasts per
hourly scene. While the observed background ranges be-
tween 0.06-0.14, the modeled counterparts show less vari-
ability, except for RAQMS. Most models have smaller back-
ground AOD than the observations, and systematic discrep-
ancies can be seen among the models. Thus, these discrepan-
cies are excluded in the following comparison by subtracting
the background values from the total AOD.

Figure 7 shows the map of MAIAC sAOD from Terra
MODIS at about 20:00 UTC 5 August 2019, along with the
forecasts by the 12 models. Comparison of sAOD distri-
butions for the other times is provided in the Supplement
(Figs. S3-S15). As seen in Fig. 7, the observed areas with
SAOD > 0.05 can largely represent the smoke plume, and
this threshold is used to evaluate the spatial extents of smoke
plumes in the following Sect. 3.2.3. The smoke plume for
this day can be separated into three categories: (1) the fresh
intense plume nearby the fire blowing east, with the peak
SsAOD reaching above 1.0; (2) an older plume in the vicin-
ity of the fire (over Washington State, Oregon, and Idaho)
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MAIAC AOD bkg.

Figure 6. Scatter plot of background AOD values derived from
MODIS MAIAC AOD data and modeled results per hourly scene
during 4-8 August 2019. Note that the background of HRRR-
Smoke is clean since it does not include non-smoke emissions.

from emissions earlier in the day or the previous day that is
likely within the boundary layer; and (3) smoke transported
further away from the fire (i.e., the band of high sAOD ex-
tending over northern Montana and southern Canada) associ-
ated with emissions from the previous days that was injected
into the free troposphere. Note that the scattered enhance-
ments over the southeast of the region in Fig. 7 are due to a
small fire located in Idaho and also the scattered low clouds,
as elevated satellite AOD retrievals have been seen around
the rim of clouds (Ignatov et al., 2004; Kondragunta et al.,
2008), owing to a high relative humidity environment near
clouds and thus the hygroscopic growth of some particles.
Overall, the high-resolution regional models tend to be more
effective in depicting the fine structure of the plume trans-
port but also show a higher risk of displacing the narrow
plumes. All models represented the fresh plume but with a
significant variability in the spatial coverage and magnitude,
with the FRP-driven emissions resulting in higher sAOD than
hotspot-driven emissions, in consistency with their relative
emissions magnitudes shown in Sect. 3.1. Most models also
show a representation of the nearby aged plume, but again the
magnitude is highly variable, and the locations of the smoke
differ substantially, likely related to the diurnal emission pro-
files and model resolution, as well as the driving meteorol-
ogy. The misrepresented spatial pattern could also be due to
the observed diurnal pattern on 4 August having a double-
peak structure, differing from any of the diurnal patterns as-
sumed by the forecasts (Fig. 4). Conversely, the band of en-
hanced sAOD related to plume injection on the previous day
seems to be only shown by a few models (HRRR-Smoke,
UCLA WRF-Chem, and FireWork; Fig. 7), but there is still
a large variability in the magnitudes. The representation of
plume injection is further evaluated in Sect. 3.4. While this
analysis is for a single overpass, the overall model perfor-
mance follows a similar pattern, and the result can be gener-
alized for most days (Figs. S3-S15).
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Figure 7. Map of observed smoke AOD enhancements (sAOD) by MODIS MAIAC data and the model forecasts for 20:00 UTC 5 Au-
gust 2019. The valid time of forecast is shown on each panel (with the lead time in parenthesis, e.g., 008 h for 8 h forecast after the model
initialization). The dashed red box on the observation map represents the area of interest for the evaluation of sAOD magnitude and spatial

extent of the smoke plume.

The quantitative evaluation of modeled sAOD during 4-
8 August is summarized in Table 3, with the corresponding
scatter plots shown in Fig. S16. In order to examine model
performance in the vicinity of the fire and over transported
smoke, the same statistical metrics are calculated over the
fresh-plume-impacted (Fp) areas and other (Ot) areas sepa-
rately, and the fresh-plume area boundaries are defined by
examining satellite visible images (see Fig. 11). The total
number of points included within the comparison was from
610 to 622 623 for the entire analysis region, depending on
the grid resolutions. Overall, although some of the models
show nearly unbiased predictions (UIOWA WRF-Chem and
CAMS), negative biases in sAOD are seen for all models,
with the MB ranging between —0.070 and —0.004 and NMB
between —4.3 % and —87.4 %. The underpredictions are also
seen over the Ot and Fp areas, except for CAMS and UIOWA
WRF-Chem over the Fp areas, owing to likely the overpre-
dicted emissions prior to times of the satellite overpasses.
The absolute deviations of modeled sAOD against observa-
tions are large, with the NME of 61.4 % to 90.2 %, the RMSE
of 0.11 and 0.17, and the correlation coefficients () < 0.50.
These results suggest that the spatial distribution patterns of
sAOD were not well represented, which has been indicated
by the discrepancies in the plume locations and spatial pat-
terns shown in the map comparisons.

Although the characteristics of the models differ in a va-
riety of dimensions, it is noteworthy that the models in-
corporating assimilation of satellite observations, includ-
ing GEOS-FP, CAMS, RAQMS, UCLA WRF-Chem, and
WISC WRF-Chem, are within the six models showing
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less underprediction of SAOD (NMB > —51 %). Meanwhile,
the five models ingesting FRP-based fire emissions, which
are UIOWA WRF-Chem, GEOS-FP, CAMS, UCLA WRF-
Chem, and HRRR-Smoke, rank within the seven models with
comparably less bias (NMB > —52.9 %). While improve-
ments in 1 d AOD forecasts when assimilating AOD are ex-
pected (e.g., Kumar et al., 2019; Saide et al., 2013), FRP-
based emission inventories generally use AOD to tune the
conversion of FRP to emissions (Ichoku and Ellison, 2014;
Kaiser et al., 2012; Koster et al., 2015), which can explain
these results. Future work could explore this topic by per-
forming sensitivity simulations to determine the major fac-
tors of the AOD forecast errors.

Besides the characteristics of model settings, the hori-
zontal resolution used for re-gridding of model and ob-
servation data may also influence the performance statis-
tics. In order to isolate the impact of grid resolution, the
data were mapped onto four grid resolutions (0.1, 0.2, 0.5,
and 1.0°) and examined the models’ performance accord-
ingly. As shown in Fig. 8, although the spatial resolution
changes, the SAOD statistics for the 12 models remain within
ranges of about 0.05-0.55 for correlation coefficient (r)
(with r2<0.3), —90 %—20 % for NMB, and 60 %-95 % for
NME. The ranges are slightly larger compared to the statis-
tics shown for the original horizontal resolutions. However,
the forecast performance is still poor in terms of 72 (<0.3)
and NME (>60 %), even when comparing at a resolution
of 1.0°. Regarding variations in the statistics against the
re-gridding resolution, the NMB does not have distinctive
changes, which is expected because the spatial smoothing

Atmos. Chem. Phys., 21, 14427-14469, 2021
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Figure 8. Model performance statistics for smoke AOD enhance-
ments (SAOD) compared to MODIS MAIAC retrievals on 4-8 Au-
gust 2019 at different horizontal re-gridding resolutions: (a) nor-
malized mean bias (NMB); (b) normalized mean error (NME); and
(c) correlation coefficient (). The x axes are shown in log scale.
Each line represents one model (see the legends for model names,
and the models are ranked by horizontal grid resolution). The mark-
ers with black edges indicate the results for the original model grid
resolutions.

could not yield much improvement in the mean bias against
observations. For the NME, most models present decreas-
ing trends when the re-gridding resolution gets coarser, ex-
cept for NCAR WRF-Chem and UIOWA WRF-Chem, which
show slight increases or mixed trends. In contrast to this, the
variations of r values are more complex. With the re-gridding
resolution getting coarser, we may expect an increased r due
to some extreme outliers in SAOD distributions maybe get-
ting smoothed out, but only 4 among the 12 models, namely
ARQI, AIRPACT, UCLA WRF-Chem, and NAQFC, show
the increasing trends. For the other models, mixed trends in r
are shown when the re-gridding resolution becomes coarser.
Overall, the relative ranking of the models’ statistical per-
formance does not vary significantly, and the horizontal grid
resolution does not seem to be a decisive factor for models’
performance. Thus, in the following section, the evaluations
were performed based on model data at their original hori-
zontal resolutions (i.e., without horizontal re-gridding).

3.2.3 Smoke AOD magnitude, temporal evolution, and
spatial matching of plumes

In addition to the point-to-point comparisons, in this section
the predictions are evaluated in perspective of the temporal
evolution of SAOD magnitude and spatial extent of the smoke
plumes. An sAOD threshold (SAOD >0.05) has been applied
to filter sSAOD representing the areas with pronounced smoke
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impact. This threshold is qualitative and chosen by visually
examining the observation maps of SAOD and satellite vis-
ible images. Meanwhile, to exclude the grid cells signifi-
cantly impacted by other smaller fires, only the data within
a smaller area indicated by the dashed red box in Fig. 7 (see
the MODIS sAOD map) were filtered for the analysis in this
section.

The temporal evolution of the SAOD magnitude is shown
in Fig. 9. In consistency with the statistical results, the over-
estimations of SAOD magnitudes occurred for some over-
passes for the fresh-plume areas, particularly for the mod-
els driven by FRP-based emissions. Temporal variability in
the model performance is noticeable, which is closely asso-
ciated with the limitation of forecasted fire emissions based
on the assumption of persistence. For example, on 4 Au-
gust, nearly all the models show underestimations in SAOD
over the fresh-plume area mostly resulting from the under-
predicted emissions, due to delayed ingestion of emission
information from satellite observations. An additional rea-
son is that 4 August was the first day when the Williams
Flats fire became active in most models, except for HRRR-
Smoke and FireWork that already included it on 3 August.
In comparison, on 5 and 6 August the burned area increased
steadily without dramatic elevation (see the day-to-day incre-
ment of burned area in Fig. 2). Accordingly, the models show
some skill, since the assumption of persistence managed to
produce comparable emissions against the actual fire activ-
ity. However, the stronger burning activity was observed on
7 August (Fig. 2), leading to underestimations of the emis-
sions. As the last overpass time of the Aqua-MODIS was
about 14:00 PST, well before the peaking hour of FRP at
about 17:00 PST on 7 August (Fig. 4), the impact of un-
derestimated fire emissions was not shown by the modeled
sAOD over the fresh-plume areas. However, this change in
fire behavior generated a large underprediction on 8 Au-
gust over other areas (Fig. 9). As indicated by the observed
sAOD distribution at 19:00 UTC on 8 August (Fig. S14), the
elevated SAOD was mostly contributed by the transported
smoke aerosols resulting from the enhanced fire emissions
late afternoon on 7 August. These results show that the as-
sumption of persistence of smoke emissions degraded the
forecasts. Future work needs to be performed to find strate-
gies to predict changes in the smoke emissions over the fore-
casting window. Additionally, the representation of plume in-
jection plays a critical role in the forecasted SAOD for the
transported smoke plumes on 7 August, which is discussed
further in Sect. 3.4.

Consistency of the modeled and forecasted spatial cover-
age of smoke plume is also examined. As shown in Fig. 9,
the models underpredicted the total number of grid cells with
SAOD > 0.05 for most of the snapshots, suggesting underes-
timation in the area of the smoke plumes. The accuracy of the
predicted smoke areas is evaluated by the metrics of FAR and
FMS for each MODIS snapshot during 4-8 August. These
two metrics are derived at the original grid resolutions of dif-
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ferent models (Fig. 10) and at fixed grid resolutions (0.1, 0.2,
0.5, and 1.0°) as well (Fig. S17), and the results show similar
features. The maximum FMS can reach as high as 80 %, with
the medians for the models ranging from 10 % to 70 %. The
FAR scores are generally low, and the median values are be-
low 45 %. There is a noticeable group of models showing rel-
atively better performance with lower FAR and higher FMS
score, which include CAMS, RAQMS, GEOS-FP, UCLA
WRF-Chem, and UIOWA WRF-Chem. As analyzed previ-
ously, these models also show better performance for the
statistics of SAOD and the total number of grid cells with
SAOD > 0.05. These models used FRP-based emissions (ex-
cept for RAQMS) and incorporated assimilations of satellite
AOD observations (except for UIOWA WRF-Chem). Other
factors such as complexity of chemical mechanisms, chemi-
cal LBCs, horizontal resolution, initial time of forecast, and
dynamic core used to drive the meteorological dispersion and
transport do not seem to be determining for these metrics.

3.3 Evaluation of surface PM; s forecasts
3.3.1 Data and statistical metrics

The model forecasts of surface PM, 5 mass concentrations
during 4-9 August 2019 are evaluated against the hourly
measurements collected from the AirNow (https://www.
airnow.gov/, last access: 15 June 2020) network. The ob-
servations were accessed from the OpenAQ Platform (https:
/lopenag.org, last access: 15 June 2020) and were originally
collected by state, local, or tribal monitoring agencies us-
ing federal reference or equivalent monitoring methods ap-
proved by the US Environmental Protection Agency (EPA).
As noted by AirNow, although the preliminary data quality
assessments are performed, the data were not fully verified
and validated through the quality assurance procedures that
the monitoring organizations used to officially submit and
certify data on the US EPA Air Quality System (AQS). Com-
pared to the AQS data that are used for regulatory purposes,
such as determining attainment of the National Ambient Air
Quality Standards (NAAQS), the observations from AirNow
are used to report the Air Quality Index (AQI) to the pub-
lic, and they have a better completeness during extraordi-
nary air pollution events such as wildfires. Additionally, the
AirNow data have also been compared with the US EPA’s
Air Data (https://www.epa.gov/outdoor-air-quality-data, last
access: 16 October 2020) to check the consistency. The miss-
ing data in AirNow were filled in by combining these two
datasets. The locations of the 86 monitoring stations within
the domain of analysis are shown in Fig. 11. By exam-
ining the visible images based on the GOES-17 data and
MODIS MAIAC AOD maps, 14 sites are selected as “fresh-
plume stations” (Fp) that show immediate impact by the fresh
smoke from the Williams Flats fire on 4-7 August, i.e., the
stations located within the fresh-plume borders on any of the
days, as denoted by the red dots in Fig. 11.
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The PM; 5 observations are hourly averages reported at
the end of each hour, namely centered on the half hour. For
the modeled counterparts, surface PMj 5 values are derived
by bilinearly interpolating the modeled 2-D forecasts at the
lowest model level onto the latitude and longitude coordi-
nates of each monitoring station. The inconsistency in spa-
tiotemporal representations of the model forecasts and obser-
vations could be a source of model-observation differences.
It should also be noted that most model data are provided as
hourly files, while some of them come as 3-hourly snapshots
(see Table 1). Thus, the limitation in output frequency could
contribute to errors compared to PM> s observations for some
models.

The comparison is restricted to the 83 sites that have fore-
casts from all the 12 models; thus three stations (no. 1, 18,
and 29 in Fig. 11) are omitted since they are not covered
by all models. The common statistical measures as used for
SAOD (described in Sect. 3.2.1) are used for the hourly PM; 5
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forecasts at all the 83 stations, as well as separately over
the stations categorized as “fresh-plume sites” (Fp) and all
the other sites (Ot) (Fig. 11). Similar to the comparisons for
sAOD, the surface PM, 5 mass concentration enhancements
(surface smoke PM» s, sSPM» 5) are derived, with the back-
ground represented by the average of the lowest 20 % values
for the model forecasts over the entire region of analysis and
10 % over the observation stations. Note that a lower percent-
age is used for the observations due to the sparseness of sta-
tions. Three sets of comparisons are presented, which focus
on (1) the overall statistical measures and their spatial pat-
terns, (2) diurnal forecast performance, and (3) day-to-day
performance.

3.3.2 Results

Table 4 gives the statistical comparison results of the hourly
surface sPM, 5 from the 12 models and measurements over

https://doi.org/10.5194/acp-21-14427-2021



X. Ye et al.: Evaluation and intercomparison of wildfire smoke forecasts

90
b ARQI

80 B HRRR-Smoke
) A AIRPACT
X
S 0L o T " UCLA WRF-Chem
[0) > 'y UIOWA WRF-Chem
]

>la A WISC WRF-Chem
8 60 %o 4, N ) FireWork
v . | ¢ NAQFC
S50} #° =1 > B NCAR WRF-Chem
= ° » ©® GEOs-FP
c ° > A cCAMS
40 > 9»
= - > p  RAQMS
>

S 30 e
CI’_) pA® ) °
3520t ” > *
= ry »
[ ¢ 4 >

10 + * 4 o

0 f ! N 4+ B
0 20 40 60 80 100

False alarm ratio [%]

Figure 10. FMS and FAR scores for fire smoke AOD exceedance
events (SAOD > 0.05) forecasted by models compared against
MODIS MAIAC AOD retrievals per hourly snapshot during 4—
8 August 2019. The scores are derived using re-gridded satellite
data at the original grid resolutions of models. For each model, the
markers with black edges represent median values, and the horizon-
tal and vertical black bars are the 25th to 75th percentiles.

all 83 monitors. Also included are the statistical measures
for the 14 stations in the category of “fresh-plume areas” (re-
ferred to as Fp) and the other 69 stations (referred to as Ot),
respectively. The scatter plots of all pairs of prediction and
observation data and for the Fp and Ot stations separately are
shown in Figs. S18-520. Maps in Figs. S21-S23 show statis-
tical results by station. Overall, FireWork and NAQFC gen-
erally rank within the best four for all the statistical metrics
used here. It is interesting to note that these models are the
two operational forecasts for predicting air quality in Canada
and the US, where performance against surface monitoring
stations is generally the primary metric for model evalua-
tion. As revealed by the results for all stations, half of the
models give positively biased sPM, s predictions. Specifi-
cally, there are three models, i.e., FireWork, NAQFC, and
RAQMS, showing nearly unbiased predictions with NMB of
—4.00 %, 0.30 %, and —5.50 %, and the ratios of predictions
versus observations are between 0.95 and 1.00. However, in
terms of the correlation coefficients and absolute errors, all
the models show low performance, with r<0.35 (r2<0.13),
RMSE > 9.8 uygm~3, and NME > 70 %, which is similar to
the results for SAOD. It is worth mentioning that there is a
discrepancy when comparing between the ranking of the best
models for sPM» s and sAOD. However, as the spatial and
temporal representations of the observed surface PM» 5 and
AOD incorporated into the above statistics are very different,
the statistics are not exactly comparable. Thus, the discrepan-
cies in statistics for AOD and surface PM; 5 are further dis-
cussed in Sect. 3.5 using coincident data. The statistical mea-
sures indicate that the sSPM; 5 errors can barely be recovered
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through simple bias corrections, suggesting the mismatch in
spatial distributions of surface smoke aerosols.

In terms of the comparison over different groups of sta-
tions, the correlation coefficients for the Fp stations are larger
compared to the Ot stations for most models, except for
UCLA WRF-Chem and UIOWA WRF-Chem, although the
values are all less than 0.3 (r2<0.09, Table 4). By contrast,
for the other five statistical measures, most models tend to
show reduced performance for the Fp stations compared to
the Ot stations, especially for RMSE, which can also be seen
in the RMSE distributions (Fig. S22). It is likely because the
model performance over the Fp stations is more closely im-
pacted by errors in fire emissions, and RMSE is more driven
by large absolute values of the model-observation differ-
ences compared to the other statistical metrics. These results
suggest that the spatial structures of sPM» 5 from the fresh
smoke plumes appears to be slightly better captured by fore-
casts compared to the outer areas; however, considerable bi-
ases still contribute to the larger RMSE in fresh smoke than
the outer areas. It is also noteworthy that there are five fore-
casts (HRRR-Smoke, UCLA WRF-Chem, UIOWA WRF-
Chem, GEOS-FP, and CAMS) showing large overpredictions
for the Fp stations, with NME > 40 % and MB > 6 ug m~3,
which are all driven by FRP-based fire emissions and have
shown relatively fewer negative biases of SAOD. As dis-
cussed later in this section, the overpredictions in sPMj 5
by these models mostly happened in the evening through
early morning. Among these five models, CAMS shows even
larger NMB for the Ot sites compared to the Fp sites, likely
due to model processes besides fire emissions. Another no-
table feature is that some models give different signs of bi-
ases over the Fp and Ot sites. For example, HRRR-Smoke
and FireWork show positive biases for Fp sites and negative
biases for Ot sites, and the opposite is seen for WISC WREF-
Chem, NAQFC, and RAQMS. For models showing the same
sign, the magnitudes of NMBs between Fp and Ot sites can
be quite different. This points to discrepancies in the model
performance for the fresh versus aged smoke, which could be
generated due to multiple reasons, including issues in plume
injection, downwind chemical evolution, and transport of fire
smoke.

As the fire activity, plume injection, and vertical mixing
change significantly from daytime to nighttime, it is use-
ful to compare the diurnal feature of forecast performance.
The predicted and observed sPMj 5 are compared diurnally
(from 00:00 to 23:00 PDT) for the two categories of stations
(Fp and Ot) respectively. Figure 12a and b show observed
sPMj 5 statistics. The mean sPM; 5 over the Fp sites is about
3 times larger than the values for the Ot sites, as they are im-
pacted by smoke more directly. Also, there is a more promi-
nent diurnal variability in sSPM» s for the Fp sites, with over-
all higher values in nighttime than in daytime. The peak-to-
valley difference of the means is about 8.5 ugm=3 (76 % of
the minimum) for the Fp sites and about 2.0 ugm= (35 %
of the minimum) for the Ot sites. For the Fp sites, the means
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and MODIS MAIAC AOD. The red dots stand for “fresh-plume stations” located within the fresh plume areas, and the blue dots stand for

all the other stations.

have an early afternoon peak (13:00 PDT), which seems to
be observed at a small portion of the sites depending on the
episodical fire emissions and wind directions. The increase
that occurred around 18:00 to 20:00 PDT can be attributed
to the fresh smoke emitted during the peak hours of the fire
activity reaching the sites. Also, the boundary layer collapse
along with the transition of the convective boundary layer
into a stable boundary layer during the early evening and the
continued burning on some of the days during these hours
can also play a role. By contrast, a decreasing trend is seen
from 00:00 to 10:00 PDT, which is mostly related to the re-
duced emissions later in the night, the spatial dispersion of
the smoke, and the PBL growth that leads to vertical dilution
in the morning. For the Ot sites, there is a peak in the early
morning (08:00 PDT), possibly due to anthropogenic activ-
ity. While the upper decile and quartile follow a similar trend
than the mean for the Fp sites, the lower decile, lower quar-
tile, and median show relatively flat diurnal profiles, likely
due to the fresh plume not impacting all sites simultaneously.
For Ot sites, the behavior of all statistics is similar. We thus
focus on comparing the mean of the models.

Comparisons of the modeled diurnal means of sPMj s
against the observations are given in Fig. 12c and d. The
corresponding diurnal variations of the model statistical mea-
sures are included in Figs. S25 and S26. For models, the fore-
casted diurnal variability of the means is mostly stronger than
the observations, and the peak-to-valley differences range
from 4.6-45.3 ugm=> (36 %—474 % of the minimum) over
the Fp sites and 1.0-6.4ugm™3 (37 %—113 %) over the Ot
sites. For the Fp sites, the early afternoon peak is captured
by FireWork and HRRR-Smoke, although there are differ-
ences in timing, width, and magnitude. Also, most models
capture the early morning decrease related to development
of daytime PBL and dilution, and RAQMS, UIOWA WREF-
Chem, and CAMS show the decrease 3-5h later than ob-
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served. Another important feature is the timing and mag-
nitude of evening buildup that are quite different among
the models. UCLA WRF-Chem, UIOWA WRF-Chem, and
GEOS-FP show the buildup 1-2h earlier than observed with
much higher concentrations; while FireWork, WISC WRF-
Chem, NAQFC, and RAQMS show it 2-3h later, and the
nighttime concentrations are overall lower than the observa-
tions. CAMS captured the daytime trends and late-afternoon
buildup well; however, it shows overpredictions during night-
time to early morning. The overpredictions during the late
afternoon to early morning by UCLA WRF-Chem, UIOWA
WRF-Chem, GEOS-FP, HRRR-Smoke, and CAMS seem to
dominate the large positive biases and NMB for the Fp sites.
This helps to explain the discrepancy between the perfor-
mance for SAOD and sPMj 5. Overall, these differences in
the evening and nighttime evolutions can be attributed to the
model uncertainties in diurnal pattern of emissions, the larger
proportion of emissions allocated within the PBL, and under-
estimated nighttime PBL heights as well. The timing of col-
lapse of PBL may also play a significant role, as the models
produce emissions at the surface rather than injected above
after that, which could subsequently lead to more enhanced
surface PMj 5 when the fire emissions continue.

The diurnal variation of the average sPMj s for the Ot
sites also shows patterns deviating from the observations.
Most models (except for UCLA WRF-Chem, NCAR WRF-
Chem, and HRRR-Smoke) show a common feature of a val-
ley in the afternoon; however it is not seen for the obser-
vations. It could be a joint consequence of the larger dis-
persion volume owing to a higher PBL depth than reality
and/or issues with other sources, e.g., anthropogenic activ-
ities. The early-morning peak is captured by NAQFC, AIR-
PACT, and ARQ], earlier by about 1 h than the observations
(except for ARQI). Similar to the result over the Fp sites,
stronger overpredictions are seen during the evening to early

https://doi.org/10.5194/acp-21-14427-2021



X. Ye et al.: Evaluation and intercomparison of wildfire smoke forecasts

60 — T T
Fresh-plume sites

20

Other sites

14447

ARQI
HRRR-Smoke
AIRPACT
J UCLA WRF-Chem
——®—— UIOWA WRF-Chem
A WISC WRF-Chem
1 —»— Firework
—4&—— NAQFC
——#— NCAR WRF-Chem
| —®— GEOS-FP

ee--- mean e<%--- mean
,_50' (@) ++-© - median —_ (b) ++-© .- median
@ ™
£ e
o 40T o
= =
£ 30} J‘ ‘_5-10_
5 I 5 ~ |
K
0 20k ‘ ‘ ‘ ,‘, ok el [ 2 \ ™ 1 1‘,‘ JMAME x}.l*‘;“x" x~x.Jx,*‘x
+ % .

% o 1 gt L] ‘ Lt ) Lol = 5¢ olla ; 01 ol lol01 o o‘-o»‘ 0-‘°-o-o.r.o.o

10 | ool ot o 0.040.0Q:g:g:g.o,oa‘:s-oo-o 1°7 | 1@ \ L ‘

\“\\Tw\\‘T\\\‘J“T\“ ll‘ll“|“‘l‘ ll ‘[l
0 L A A ’ L 1 ) 0
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00 09:00 12:00 15: 00 18: 00 21:00
Time [hh:00, PDT] Time [hh:00, PDT]
60 T T 20 T
Fresh-plume sites ;5043 Other sites

50l (© | )
® ‘ b )
€ €
o o
= =
< <=
[ =4 c
9] o
2 0
o N
= =
o o

—A— CAMS
—»— RAQMS

oL L L . L n L L
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
Time [hh:00, PDT]

oL L L L . L L .
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00

Time [hh:00, PDT]
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morning for some models (CAMS, GEOS-FP, WISC WREF-
Chem, UIOWA WRF-Chem, UCLA WRF-Chem), which is
likely for similar reasons.

Considering the coincidence of SAOD and sPM; s, the
Terra- and Aqua-MODIS overpassing times are between
11:00 and 15:00 PDT, when the models with large nighttime
sPM, 5 overpredictions (except for HRRR-Smoke) tend to
agree the best with the observed diurnal patterns but still
overpredicting (Fig. 12c and d). As mentioned previously,
these models use FRP-based fire emissions and show less un-
derprediction for sSAOD compared to the other models. This
suggests discrepancies in SAOD and sPMj 5 prediction per-
formance, which will be further discussed in the following
sections.

The model representation of the day-to-day evolution of
sPM> s magnitudes is also evaluated. Figure 13 shows the
comparison of the spread of modeled daily average sPM> 5
for the two categories of stations. The NMB and NME re-
sults generally reflect similar information and are presented
in Figs. S27 and S28. For the Fp sites, the observed means
show an overall increasing trend, with a peak on 7 August
and a slight decline afterwards. Most models generally cap-
tured the day-to-day variations of the sPM» s, with several
models showing underpredictions on 4 or 5 August and occa-
sionally overpredicting on the following days (6-9 August),
including ARQI, HRRR-Smoke, AIRPACT, UCLA WRF-
Chem, UIOWA WRF-Chem, FireWork, and NAQFC. This
could be attributed to delayed ingestion of fire emission in-
formation based on satellite observations collected prior to
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a forecast cycle, which has also been shown with the varia-
tions of the spread of magnitudes for the modeled sSAOD. By
contrast, the overestimations on 4 and 5 August are seen for
WISC WRF-Chem, GEOS-FP, and CAMS, which could be
linked to the larger emissions injected at levels closer to the
land surface than reality and within the PBL. In addition, sig-
nificant overestimations of the 75th and 90th percentiles are
shown by the models driven by FRP-based fire emissions, es-
pecially on 9 August for the three models using QFED data
(i.e., UCLA WRF-Chem, UIOWA WREF-Chem, and GEOS-
FP). These overpredictions could be related to overpredicted
total emissions and/or issues in the vertical allocation of
emissions (i.e., putting too much amount of smoke within
PBL) as will be discussed in Sect. 3.5.

For the Ot sites, the observed daily averages of sPMs s
show smaller day-to-day variations compared to the Fp sites
(Fig. 13). In contrast to the variation of the observed means
over the Fp sites that peaks on 7 August, the result over the
Ot sites peaks on 5 August and reduces slightly afterwards.
Besides meteorology, this decreasing trend after 5 August
is likely attributed to the evolution of fire activity, which
showed higher plume injection heights on 7 and 8 August,
leading to lofted smoke above the PBL and generating less
impact near the land surface, as will be discussed in Sect. 3.4
and 3.5. The observed decreasing trend is overall depicted
by some of the models, such as HRRR-Smoke, AIRPACT,
NAQFC, GEOS-FP, CAMS, and RAQMS, although with
temporal shifts and biases in their magnitudes. In compar-
ison, nearly flat or opposite trends of the daily means are
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seen for UCLA WRF-Chem, UIOWA WRF-Chem, ARQI,
and FireWork, which is likely related to allocating higher
emissions closer to the land surface compared to observa-
tions, which will be shown by the comparison against lidar
data for the aged plumes in Sect. 3.4.3.

3.4 Evaluation of vertical structure of smoke plumes
using NASA DC-8 aircraft data

3.4.1 Observations and derivation of smoke plume
heights and PBL heights

The vertical allocation of fire emissions can significantly af-
fect both the total column smoke aerosol loading and surface
aerosol concentrations in adjacent areas of the fire and re-
motely downwind. In this section, we evaluate the vertical
plume structures and fire plume injections predicted by the
models, based on the observations acquired by the DIAL-
HSRL (Hair et al., 2018) from the DC-8 aircraft that sam-
pled the Williams Flats fire plume on 4 d, namely 3, 6, 7, and
8 August 2019, during the FIREX-AQ field campaign. The
DIAL-HSRL system is capable of providing measurements
of aerosol depolarization (355, 532, 1064 nm), aerosol/cloud
extinction (532 nm), and backscatter coefficient (355, 532,
1064 nm) above and below the flight height at a temporal
resolution of 10 s. In addition, the partial-column AODs were
derived by integrating the aerosol extinction profile at 532 nm
in nadir, when the flight height was above 5.15km. In this
section, the plume structures are compared using the DIAL-
HSRL backscatter coefficient (at 532 nm) profiles, as they
provided more detailed structures and fewer missing data
than extinction and forecasts of PM; 5 concentration profiles
(as most models did not provide extinction or backscattering
profiles). In addition, the AOD derived from the lidar data is
also used to analyze the relation between vertical aerosol dis-
tribution and the ratio of surface PM» 5 concentration versus
total column aerosol loading in Sect. 3.5.

All the models evaluated in the preceding sections, except
for NAQFC, are examined in this section. The maps of flight
tracks are shown in Fig. 14. As summarized in Table 5, the
observations of 15 flight transects that sampled straight along
the smoke plume are selected, among which 11 transects rep-
resent fresh plumes close to the fire on those 4 d, and 4 tran-
sects represent the aged plumes sampled on 7 and 8 August.
The modeled counterparts of smoke plume structures along
these transects are numerically derived using the 3-D fore-
casts of PM» 5 concentration fields valid at the nearest hour
of model output relative to the sampling time of a profile.
Then the model data are bilinearly interpolated onto the lati-
tude and longitude coordinates of the sample profile at each
of the model levels.

Smoke plume heights and PBL heights are determined
from the DIAL-HSRL data and model forecasts to evalu-
ate models’ performance for plume injection. The method
used to determine plume and PBL heights is based on the
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Figure 13. Spreads of modeled and observed daily averages of smoke PM, 5 enhancements (sPMj 5) over the two categories of surface
sites, i.e., (a) fresh-plume sites and (b) other sites during 4-9 August 2019. The dates are labeled on the x axes as “month/day”. The box and
whiskers (as in Fig. 9) stand for model results. The corresponding ranges of the 10th to 90th percentiles for observations are represented by
the light grey shading, and the range of 25th to 75th percentiles is represented by the medium grey shading. The observed median and mean

are denoted by the dark grey lines and black crosses, respectively.

vertical gradients of aerosol backscatter or PMj; 5 concen-
trations. Aerosol profile measurements made by lidar have
long been used to determine PBL heights or more appro-
priately the mixed layer (ML) heights (Hayden et al., 1997;
Scarino et al., 2014; Tucker et al., 2009) in the daytime
since aerosol gradients can indicate the level below which
the aerosol species emitted within PBL tend to be well mixed
and dispersed. For aerosol profiles through a smoke plume,
strong aerosol gradients can indicate the plume top, which
can be higher than the PBL heights when emissions are
injected above the PBL. Following this heritage, for each
of the five-point moving average backscatter profiles below
10.5km, the highest level where the local minimum verti-
cal gradient is less than a threshold & is derived; if this cri-
terion is not satisfied at any level, the level of the global
minimum vertical gradient over the entire profile is used.
Then this level is referred to as plume top height (Apjume)
if the profile is in plume, i.e., when the maximum backscat-
ter below 8 km is larger than a threshold b, and otherwise
referred to as PBL height (hppr) (when the profile is out of

https://doi.org/10.5194/acp-21-14427-2021

plume). The value of b is chosen as 2.1 x 107> km~! sr~!

for 6 August, as the backgrounds increased significantly due
to dispersed smoke from fire emissions on the previous days
and b=1.2x 103 km ! sr~! for the other days. For out-
of-plume profiles, k = —1.2 x 1076 km~2 sr~!; for in-plume
profiles k = —4.0 x 107%km~2 sr~!, which is smaller than
the out-of-plume condition, in order to avoid picking up
heights affected by in-plume variations due to vertical mix-
ing and plume rise. The results are also visually inspected
and filtered to exclude the impact from the incoming smoke
from the fires in Siberia, which can be seen on 3 August.

As for the model data, hpjume is derived from the verti-
cal profiles of PMj 5 mass concentrations using a similar
method. For each of the PM; 5 profiles, pume is obtained
only if the profile is in plume, i.e., when the difference be-
tween the maximum and minimum PM; s below 8km is
larger than 5.0ugm™>. The data impacted by the Siberian
fires on 3 August were also excluded, with the masked levels
manually tuned for each model. Also, the data below 100 m
above ground level are excluded to avoid selecting the level

Atmos. Chem. Phys., 21, 14427-14469, 2021
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Figure 14. Maps of DC-8 flight tracks on 3, 6, 7, and 8 August 2019, operated during the FIREX-AQ field campaign. The selected flight
transects (see Table 5 for details) are colored by the observation time (UTC) on each day, overlaid on visible images of GOES-17 at
17:01 PDT. Note that the map coverage for 7 and 8 August is larger, in order to show the flight transects that sampled the aged plume.
White triangles represent locations of surface monitoring sites of the AirNow network.

Table 5. Summary of DC-8 flight transects selected in this study.

Flight Date in Start End Smoke plume
transect  August 2019 time time sampled

(PDT) (hh:mm, PDT) (hh:mm, PDT) (F: fresh; A: aged)
D3T1 14:44 15:00 F
D3T2 03 17:06 17:26 F
D3T3 19:33 19:49 F
D6T1 11:45 12:07 F
D6T2 06 13:28 13:45 F
D6T3 14:46 14:59 F
D7T1 14:34 14:53 A
D7T2 15:30 15:55 A
D7T3 07 16:02 16:22 F
D7T4 17:48 18:05 F
D7T5 19:21 19:41 F
D8T1 14:35 15:07 A
D8T2 08 17:09 17:36 A
D8T3 18:11 18:18 F
D8T4 18:18 18:27 F

impacted by strong emissions near the surface. The thresh-
old of vertical gradient k is modified to —2.5 x 107> ugm—*
for both in-plume and out-of-plume conditions. An addi-
tional modification is applied when the local minimum (or
the global minimum) is smaller than —3.5x 107> ug m~* that
can occur at a certain level adjacent to the very intense in-
jected fire emissions, and the vertical gradient of PMj 5 is

Atmos. Chem. Phys., 21, 14427-14469, 2021

much stronger than near the plume top. Thus, the Apume is
tuned upward using the highest level at which the gradient is
less than 3.0 x 1073 ugm—*.

Depending on data availability and the agreement of the
modeled PBL heights compared to the results estimated by
forecasted virtual potential temperature and PM; 5 profiles,

https://doi.org/10.5194/acp-21-14427-2021
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the modeled hppr is derived in different ways for three
classes of models:

1. For CAMS and RAQMS, PBL heights are not available
in their outputs, so the Appp is determined as the ML
heights derived from the out-of-plume PM, s profiles.

2. For UCLA WRF-Chem, UIOWA WRF-Chem, and
ARQI, the hppy results diagnosed by PBL parameter-
ization in model are usually lower than the ML heights
estimated by the vertical PM, 5 profiles (as will be
shown in Sect. 3.4.2). By examining the potential tem-
perature profile and land use, it is found that the under-
estimation mostly happened over the area downwind to
the Columbia River, where the model-diagnosed PBL
heights tend to represent the top of the thermal in-
ternal boundary layer relating to the underlying water
body. Therefore, hppy is determined from virtual po-
tential temperature profiles (6y) for these three models
as the lowest level at which 96, /dz = 1.3 Kkm™!. The
method, using a threshold of the vertical 6, gradient, is
found to outperform other methods based on turbulence
kinetic energy (TKE), 6y, or Richardson number for es-
timating convective boundary layer depth (LeMone et
al., 2013).

3. For the other models not mentioned in (1) or (2), the
model-diagnosed hppy, results that came with the fore-
casts are used.

It should be noted that the hppp, results derived by the
above methods are compatible with the lidar results only dur-
ing daytime when the term of ML heights is applicable. In
this work, lidar measurements for the selected transects were
mostly collected during the daytime; however, for the data
collected in the evening, e.g., as late as 18:49 LST (local stan-
dard time, or UTC—38) for D3T3 (see Table 5), the lidar /pgL.
tends to represent the residual layer height, since the aerosol
layer remains after the collapse of daytime boundary layer
and transition into the nocturnal boundary layer due to radia-
tive cooling. Therefore, to ensure the compatibility of model
and lidar data, the model hpgy, after 16:00 PDT (15:00LST)
is derived as the higher one between the hppp, values at the
current hour and 16:00 PDT for the same location, which al-
lows the top of the residual layer to be captured. The mod-
eled hppL and hpme for each of the selected transects are
compared against the lidar results. Two sets of evaluations
are shown, focusing on the fresh plumes and aged plumes
respectively.

3.4.2 Evaluation for smoke plumes close to the fire

The evolution of vertical smoke plume structure and plume
rise is demonstrated for the fresh plumes close to the fire, us-
ing the DIAL-HSRL observations that were collected on 3,
6, 7, and 8 August. As shown with the observed backscat-
ter coefficients (532 nm) in Fig. 15, obvious day-to-day vari-
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ability of the plume rise behavior and fire activity occurred
on these days. Slight plume injection is shown on 3 August,
with a layer of enhanced backscatter located right above the
PBL top at about 3 km above sea level (a.s.l. hereafter). The
lofted layer of aerosols in between 4 and 7 km a.s.1. is associ-
ated with incoming smoke plume from the Siberian fires. On
6 August, the flight sampled the plume from approximately
12:00 to 15:00 PDT, which is earlier than for the other days,
and no injection was observed. The fire just started to be-
come active at the time of D6T1, with Apume being lower
than the hppy . Elevated emission heights are seen afterwards
for D6T2 and D6T3, while no injection above the PBL was
observed, and the plume tended to be well mixed within the
PBL. This behavior can partly explain why the fire emis-
sions peaked late on that day (19:00 PDT, Fig. 4) and the
measurements took place earlier. In contrast, strong plume
injections above the PBL were seen on 7 and 8 August. The
hplume reached 7kma.s.l. on 7 August, and even stronger in-
jections were triggered on 8 August by the thermodynamic
convection related to the active burning. The flight track sam-
pled through multiple pyrocumulonimbus (pyroCb) pulses
on that day, which was generated by the convection along
with the abundant heat and moisture released during the
burning. Consequently, the emissions were significantly el-
evated, with the Apyme getting as high as 10kma.s.L.

Based on the DIAL-HSRL data, the predicted vertical
plume structures are evaluated. Figure 16 shows the compar-
ison for the transect D7T3 sampled on 7 August, and simi-
lar results along the other transects are provided in the Sup-
plement (Figs. S30-S39). Overall, there is a large spread of
the modeled plume heights. ARQI, HRRR-Smoke, UCLA
WRF-Chem, WISC WRF-Chem, FireWork, and NCAR
WRF-Chem tend to show plume injections above the PBL,
while AIRPACT, CAMS, GEOS-FP, and RAQMS show
smoke generally well mixed within the PBL. For UIOWA
WREF-Chem, although the fire emissions seem to be allocated
mostly close to the land surface, a lofted plume exists over
the downwind area above the PBL, which corresponds to in-
jected smoke that occurred earlier (see Fig. S40).

The median hpjume values for each of the 11 fresh plume
transects are evaluated by statistical metrics that have already
been used in previous sections for SAOD and sPMj 5. Note
that in the following evaluation, all the heights are converted
to above ground level (a.g.l.). The statistics are presented
in Table 6, and the observed median /pyme and model-
observation difference are shown in Fig. 17a. The total num-
ber of points incorporated varies between 8 and 11, since for
some models the fire had not been active yet in the forecasts
on 3 August. Overall, multiple models have high linear corre-
lation (eight models with » over 0.7), indicating models fol-
lowing the observed trend of injections getting deeper as the
days went by. However, all three global models which tend to
inject their emission in the mixed layer are within this group,
and thus the correlation might reflect the concurrent increas-
ing trend in the daytime PBL heights. This means that the

Atmos. Chem. Phys., 21, 14427-14469, 2021
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Figure 15. Curtain plots of backscatter coefficient (532 nm) observed along flight transects. See Table 5 for the details of the selected
transects. The red dots represent the /ipjyme determined from the in-plume profiles; the black dots are the hpp], determined from profiles out
of plume. The solid black line shows the aircraft altitude.

ARQI 08/07 23UTC (011-h)

HRRR-Smoke 08/07 23UTC (023-h)

10000

01 -~
T 7500 s 100 _ 100 _
£ 001 0 = 0 &
£ 5000 0001 & 1= 1y
o a g g
T 2500 0.0001 4 01 =& 01 =
0 1e-05 s 0.01
e- .
10000 ARPACT 08/07 23UTC (015-h)
—_ 100 100
£ 7500 ) - -
E 5000 10 ; s i 10 ;
T 2500 ‘(o1 ® b g 01 &
0.01 0.01
10000 WISC WRF-Chem 08/07 23UTC (011-h)
—_ 100 _ _ 00 _
£ 7500 “ — “ g
— 13 £ £
£ 5000 g — 10 2 1 B 10 £
= S e N S | x g 1o
T 2500 e H ! y & g
T ~| @ o1 0.1
o et endine St ol 0.01
10000 SEQSFP 08/08 00UTC (024-h) CAMS 08/08 00UTC (024-h) RAQMS 08/08 00UTC (012-h)
— 100 100 100
€ 7500 e P -
= 0 & 0 E 0 &
< 5000 1 2 i 2 N 2
=) ‘ - - -
T 2500 E | T o g H z
T 01 £ 01 £ 01 £
0.01 0.01 0.01
23:05 23:10 23:15 23:20 23:05 23:10 23:15 23:20 23:05 23:10 23:15 23:20
Time [UTC, hh:mm] Time [UTC, hh:mm] Time [UTC, hh:mm]

Figure 16. Comparison of vertical smoke structure based on the DIAL-HSRL observations along the transect D7T3 on 7 August (see details
in Table 5) through the smoke plume from the Williams Flats fire. The observed backscatter coefficient at 532 nm (Obs panel) and PM» 5 mass
concentrations forecasted by different models (model panels) are shown. The red and black dots are plume heights and mixed layer heights
determined by using the observed backscatter or modeled PM; 5 profiles. The pink dots are PBL heights derived from model diagnosis or
forecasted virtual potential temperature (for ARQI, UCLA WRF-Chem, and UIOWA WRF-Chem, and their diagnosed PBL heights by PBL
parameterization schemes are denoted by the grey dots). The black line shows the aircraft altitude.
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Figure 17. (a) Median plume top heights and PBL heights estimated using DIAL-HSRL observations (top panel) and deviation of modeled
median plume heights compared against the observed values along each transect (lower panels). All the heights are shown in units of meters
above ground level. The error bar represents the interquartile range. The “x” signs in model panels denote excluded transects for which the
fire had not been active yet. (b) Scatterplots of observed and modeled differences between the median plume top height and median PBL
height along each transect. The dots are colored by the difference of modeled and observed median plume top heights. (¢) Box plot of the
median plume top heights for the 11 transects for observations and model forecasts. Box borders show the interquartile range, and whiskers

are the minimum and maximum.

high correlation coefficients might not be a good indicator of
smoke injection performance. Meanwhile, only four models
(ARQI, HRRR-Smoke, UCLA WRF-Chem, and FireWork)
show biases <1km with NMB < 20 %, and all models have
biases <2 km with NMB < 40 % and NME of 30 %—50 %.

For the day-to-day variations, the observed Apjume presents
considerable variability associated with plume injection be-
havior, with the medians along each transect ranging from
about 2 to 9kma.g.l. (Fig. 17a). While most models show
overpredicted Apume on 3 and 6 August and underpredic-
tions on 7 and 8 August, the range of predicted Zpume is
smaller than observed for all the models (Fig. 17¢), which
means that the day-to-day variability in plume injection be-
haviors on these days was not captured by any of the models.
The underestimation of temporal variation in plume injection
heights is consistent with a previous study (Val Martin et al.,
2012).

Overall, there is not a single model that performs the
best all the time. For instance, the models that tend to
put emissions within the PBL (e.g., GEOS-FP, CAMS and

https://doi.org/10.5194/acp-21-14427-2021

RAQMS) performed better on 3 and 6 August, while the
models with more intermediate injections performed better
on 7 August (HRRR-Smoke and UCLA WRF-Chem). The
performance of the global models may also be limited by
the coarser vertical resolutions compared to high-resolution
models, as they have limited representation of the fine-scale
vertical smoke structures. The models with deeper injections
(e.g., NCAR WRF-Chem) performed the best on 8 August
for the pyroCb (Fig. 17a). This is also confirmed by com-
paring plume injection magnitude represented by the dif-
ference between the medians of plume heights and PBL
heights (median /pjume — median ipgr) for each transect. As
shown in Fig. 17c, for ARQI, HRRR-Smoke, UCLA WRF-
Chem, FireWork, and NCAR WRF-Chem, the cases with
stronger injections than observations, i.e., the data points
above the 1: 1 line, are mostly associated with the overpre-
dictions of plume heights and vice versa. Some exceptions
exist when the models give a higher injection magnitude
but still underpredicted the plume height, which can be at-
tributed to the underprediction of PBL height. By contrast,
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for GEOS-FP, CAMS, and RAQMS, the differences (median
hplume — median hppL ) are around zero for most cases. Thus,
obvious underestimations in Apjume are seen when strong in-
jections are present. Another interesting result is that while
there are multiple models using the same plume rise param-
eterization scheme (all WRF-Chem-based configurations ex-
cept HRRR-Smoke), they present large variations in their
performance (e.g., D7T3; Fig. 16). Although these models
used the same injection parameterization, the burned area is
specified differently, which, together with differences in me-
teorological fields and grid resolutions, can account for the
large spread of the predicted plume heights. Additionally, the
two systems using satellite FRP in their plume injection es-
timation (HRRR-Smoke and CAMS) also show very differ-
ent behavior, which can be explained by the different plume
rise parameterizations used in these models. Future sensitiv-
ity analysis is needed to determine the key factors contribut-
ing to their performance.

3.4.3 Evaluation for aged smoke plumes

Comparison of plume heights along the transects that sam-
pled through aged smoke plumes on 7 and 8 August shows
features consistent with the transects through the fresh
plumes the day before. Figure 18 presents comparisons of the
aged plume over northwest Montana on 7 August (D7T1).
The observed smoke plume is mostly well mixed within the
PBL, corresponding to the emissions injected within the PBL
as observed in the fresh plume on 6 August (see Figs. S33—
S35). The model forecasts have captured the plume heights
as shown by the observations, with the smoke being within
the PBL and reaching the ground surface. Similar features
can be found for D7T2 (Fig. S41). While multiple models
predicted injections into the free troposphere on 6 August
(ARQI, HRRR-Smoke, UCLA WRF-Chem, FireWork, and
NCAR WRF-Chem), these lofted plumes are not represented
along this flight transect, likely because they were advected
faster and in a different direction than the plume in the PBL.
Moreover, although the vertical location of the aged smoke
is captured by the models, the spatial variability is not well
represented, possibly owing to errors in the temporal profile
of emissions (Fig. 4).

In contrast, significant injection into the free troposphere
that happened on 7 August resulted in a large portion of the
aged smoke not mixing down to the surface on the next day,
as suggested by the lidar data (Fig. 19, D8T2). Although the
lofted smoke is partially represented by some models show-
ing stronger injections on 7 August (Fig. 16), the observed
lofted smoke covered a much larger area, with the core of the
observed plume (~ 00:25 UTC) not being captured by any
model. This is likely due to the earlier diminishing injections
and moderate burning activity in the late afternoon by the
models, as can be confirmed by the comparisons of vertical
plume structures (Figs. S36 and S37 for D7T4 and D7T5),
as well as the diurnal emission evolution profiles (Fig. 4).
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Additionally, there is a tendency of the forecasts to show a
larger proportion of smoke mixed within the PBL than in-
dicated by the observations. This could be responsible for
the discrepancies between sPMj s and SAOD performance
(i.e., although there is an evident underestimation of SAOD
for the transported smoke plume on 8 August, the predicted
sPM; 5 shows overestimations for some models). These re-
sults highlight again the significance of resolving both tem-
poral and vertical representations of fire emissions in mod-
els to improve forecasts of transported smoke plumes. An
important parameter of plume injection parameterizations is
the percentage of emissions that are injected into the free tro-
posphere. This parameter is generally assumed as a constant
depending on the fuel category (Freitas et al., 2007), which
can have a large impact on the surface smoke aerosol con-
centrations. Thus, more detailed evaluations of vertical par-
tition of emissions are needed. Another possible reason for
the discrepancy is the potentially enhanced evaporation of
organic aerosol near the surface compared to lofted plumes
(Selimovic et al., 2019), which is a process not included by
any of the forecasts evaluated here.

3.5 Synergetic evaluation of surface PM; 5 and AOD
and their ratio

The ratio between surface PM,s and AOD has been
widely considered in evaluations of model performance (e.g.,
Lennartson et al., 2018) and is also critical for studies on es-
timating surface PM» 5 based on satellite AOD retrievals. As
an intensive performance metric, this ratio is less dependent
on mass concentrations and emission than PM; s or AOD,
often referred to as extensive parameters and dependent on
mass concentrations. This ratio is dependent on the vertical
allocation of smoke aerosols and aerosol optical properties
and thus can be used to evaluate models in terms of these
aspects. This is especially important for models performing
assimilations of AOD data, as misrepresentations of these ra-
tios can lead to erroneous PM; 5 concentrations (Saide et al.,
2020).

In this section, the forecasts of surface PMj; 5 / AOD ratio
are evaluated for the 12 models. General examples of the ra-
tios under different typical mixing and layering situations of
smoke are demonstrated using the DIAL-HSRL data and sur-
face PM; 5 measurements. However, considering the sparse
coincidence of DC-8 flight measurements and surface PM3 5
data, statistical evaluation of the ratio relied on MATAC AOD
retrievals. Two sets of evaluations are presented for the model
representation of the ratio regarding probability distribution
and day-to-day evolution.

3.5.1 Observations of surface PM; 5 to AOD ratio
Examples of the ratios observed under typical conditions

of smoke aerosol profiles are shown in Fig. 20. The ratios
are derived using surface PM» 5 and AOD calculated using
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Table 6. Statistics of the forecasted median plume heights for the 11 transects that sampled through fresh plumes compared against DIAL-
HSRL observations. The best four members for each of the columns have been highlighted in bold.

Model n r Ratio MB (km) NMB (%) RMSE (km) NME (%)
ARQI 8 —0.27 1.20 —0.76 —13.1 3.11 433
HRRR-Smoke 11 0.73 1.30 0.27 6.4 1.88 36.1
AIRPACT 8 020  1.04 —1.45 —24.9 2.97 44.5
UCLA WRF-Chem 10 085 1.14 —0.33 -7.0 1.83 29.9
UIOWA WRF-Chem 8 0.74  0.88 —1.57 —26.9 2.74 34.4
WISC WRF-Chem 11 049  0.75 —1.66 —39.1 2.71 50.6
FireWork 11 0.83 1.49 0.72 17.0 2.02 42.9
NCAR WRF-Chem 9 0.91 1.52 1.25 24.1 1.83 30.8
GEOS-FP 10 0.88 0.87 —1.40 —29.9 2.39 38.1
CAMS 10 079  0.83 —1.36 —29.2 2.35 34.6
RAQMS 8 0.75  0.70 —1.82 =31.1 2.64 32.8
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Figure 18. Similar to Fig. 16 but for the transect D7T1 that sampled through the aged plume. The annotations for the colored dots are the
same as in Fig. 16, except that the blue dots represent PBL heights estimated by virtual potential temperature for the labeled hour; the pink

dots are PBL heights for models at 16:00 PDT.

aerosol extinction from the DIAL-HSRL collocated within
5 km of distance. A condition commonly occurring is that of
smoke aerosols well mixed within the PBL under a clean free
troposphere (Fig. 20a), yielding ratios in the 70-90 range.
In contrast, Fig. 20b and c provide typical results for near-
surface smoke and lofted smoke above the PBL, with the
ratios becoming much higher (402.2) or lower (38.9) com-
pared to the general situation. A mix of these two condi-
tions can also yield ratios similar to the well-mixed ones
(e.g., Fig. 20d). Therefore, the surface PM; 5 to AOD ratio is
applicable to suggest vertical placement of smoke aerosols.
One situation that could obscure the relationship of ratio and

https://doi.org/10.5194/acp-21-14427-2021

vertical smoke layering is the clean or non-smoke cases, for
which an example is presented in Fig. 20e. In this case,
the enhanced backscatter above the PBL is attributable to
scattered clouds, and the filtered extinction profile shows
well-mixed PBL aerosols with an AOD of 0.11 and a ratio
of 126.9, which also tends to be larger than the general value
for smoke mixed within PBL. Thus, for a clear indication, an
AOD filter is applied in the following analysis to extract data
pairs representing columns more likely impacted by smoke
aerosols. Meanwhile, cloudy conditions where aerosol hy-
groscopic growth could complicate the analysis are excluded

Atmos. Chem. Phys., 21, 14427-14469, 2021
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by focusing on the period of 4 to 8 August when clear-sky
conditions prevailed.

3.5.2 Evaluation of forecasted ratio

Before the evaluation was performed, tests and visual exam-
ining were conducted to find the best criteria to filter obser-
vations and forecasts over smoke-plume-affected areas, and
the filters based on sAOD yielded more appropriate results
than when using AOD. A filter of sSAOD > 0.05 is employed
for observations, while for model forecasts, due to the con-
siderable range of magnitude of the forecasted fire emissions
among the models, there is not a single SAOD threshold
that can be appropriate for all the forecasts. Consequently,
the threshold is chosen as 0.05 for most models, and re-
duced values of 0.02 (for HRRR-Smoke, WISC WRF-Chem,
and FireWork) and 0.01 (for NCAR WRF-Chem, AIRPACT,
ARQI, and NAQFC) are chosen to account for the lower
SAOD magnitudes in these forecasts. Figure 21 shows an
example of filtered observations and forecasts. Similar to
the analysis in the previous subsection, for most models the
high ratios correspond to the areas adjacent to the fire emis-
sion hotspot and transported smoke mixed down to the sur-
face. It should be noted that for models with relatively low
emissions, the areas impacted by smoke plumes cannot be
well distinguished from background and other sources (e.g.,
Fig. 7); thus the distribution of the ratio is high biased due
to inclusion of low background AOD values. Reduced ra-
tios are shown in Fig. 21 over northwest Montana for some
models (e.g., HRRR-Smoke, UCLA WRF-Chem, UIOWA
WRF-Chem, WISC WRF-Chem, FireWork, NAQFC, NCAR
WRF-Chem), indicating an aged smoke plume located above
the PBL.

Figure 22 shows the comparison of the probability dis-
tributions of the ratios for observations and model forecasts
on 4-8 August, with the parameters of the lognormal fitting
curves given Table 7. It should be mentioned that for models
that had relatively low fire emissions, as noted earlier (AIR-
PACT, ARQI, NAQFC, and NCAR WRF-Chem), the distri-
butions cannot unambiguously represent smoke plumes from
the Williams Flats fire and are likely driven by other sources
and background aerosols, so the results are not exactly com-
parable with the observations. These models tend to overpre-
dict the ratios, which is consistent with the larger ratios ob-
tained for non-smoke cases, as shown in the previous subsec-
tion. Overall, the results suggest no single model performing
the best simultaneously in terms of the mean and standard
deviation of the fitted distribution. Slight to large overpre-
dictions of the ratios are shown for most models, except for
UIOWA WREF-Chem which shows a negative bias. This ten-
dency is consistent with other studies that show discrepan-
cies in the AOD and PM; 5 performance for biomass burning
smoke (Mangold et al., 2011; Reddington et al., 2016, 2019).
For the models with prominent smoke AOD impacts, a shift
in the distribution of ratio compared to observations could be
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explained by issues in assumptions for aerosol optical prop-
erties (e.g., too high a mass extinction efficiency can bias the
ratio distribution towards the lower end) or biases in the PBL
heights (e.g., shallower PBL can lead to positively biased ra-
tios).

Meanwhile, most models display a narrower distribu-
tion of the ratio than observed, except for HRRR-Smoke.
The wider distribution is expected since HRRR-Smoke is a
smoke tracer model. The background PM» s and AOD due
to anthropogenic and other non-biomass pollution sources
were not represented, which generates more extreme ratios.
For the other models, the narrower distribution may sug-
gest a smaller probability of extreme conditions (e.g., smoke
aerosols lofted above the PBL or confined near the sur-
face). In other words, the narrow distribution tends to sug-
gest smoke plumes mostly getting mixed in the PBL. There-
fore, the misrepresentation of the distribution width can be
improved by fixing issues with regards to the vertical alloca-
tion of fire emissions that is estimated by parameterizations
of plume injection. Further work is necessary to evaluate the
contributions of relevant factors independently, e.g., fire size,
fuel type, and thermodynamic stratifications.

As the fire activity changes drastically from day to day, the
surface PMj 5 to AOD ratios also show temporal variations,
which can be found in the spread of the ratios over the hours
of comparison (Fig. 23). The observations show a decreas-
ing trend, especially for the 10th percentile, which is likely
associated with deeper PBL and/or lofted smoke owing to
stronger plume injections on 7 and 8 August compared to the
previous days. However, the models rarely captured this fea-
ture or show flatter decreasing trends than observed, which
can be associated with the fewer plume injections in models
as days went by, consistent with the evaluation results against
the DIAL-HSRL data in Sect. 3.4.2.

The model representation of the ratios also suggests dis-
crepancies between model performance for AOD and PM; 5.
Figure 24 shows how the model performance of PM; 5 com-
pares to that of AOD. Ideally, the target would be for the
dots to fall to the 1 : 1 line, meaning that the PM5 s and AOD
are biased by the same amount, and thus if emissions were
corrected, the forecast could achieve a close-to-zero bias in
both quantities simultaneously. However, the dots often fall
far from the 1:1 to line, and the further they are from the
1: 1 line, the stronger the biases generally seen in the PM3 5
to AOD ratios (see Fig. S43 for the ideal relationship be-
tween NMBs of the ratio, AOD and PMj3 5), showing that
the surface PMj 5 to AOD ratio can be a good indicator of
the discrepancies. While multiple forecasting systems show
nearly unbiased ratios for some cases (i.e., the dots close to
the 1:1 line), discrepancy in the AOD and surface PM; 5
performance occurred for all the models. This means that the
modeling systems cannot be fully improved by only revis-
ing the smoke emissions. Changes in structural configura-
tion needs to be explored, including better representations of
the aerosol optical properties, vertical allocation of the emis-
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sions, and timing of plume injections, as well as the mete-
orological fields and thermodynamic processes in the lower
troposphere (e.g., PBL heights and evolution).

4 Conclusions and recommendations to improve
wildfire smoke forecasts

Predictions of wildfire smoke impacts on local to regional air
quality by numerical forecasting systems have been a crucial

Atmos. Chem. Phys., 21, 14427-14469, 2021

tool in the decision-making and understanding of large wild-
fire events. However, the wildfire smoke forecasts relating
to biomass burning emissions still bear a large uncertainty.
In this paper, we present an intercomparison and evaluation
of the wildfire smoke predictions produced by 12 state-of-
the-art forecasting systems under the same framework. These
forecast models are drastically different from each other with
respect to the gas/aerosol emissions, complexity of chemi-
cal processes, and use of AOD data assimilation, etc. Fo-
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Table 7. Parameters of mean (©) and standard deviation (o) (natural logarithmic values) of the lognormal distributions fitted for surface
PM; 5 / AOD ratios using observations and model forecasts on 4-8 August 2019. The subscript “0” denotes observation, and “m” denotes
model. The relative difference is calculated as (um — o)/ Mo and (o;m — 00)/00. The best four values for the relative differences are shown
in bold.

Model n Lo exp (o) Mm  exp (um) Relative difference 0o om Relative difference
of u of o
ARQI 428  4.06 57.89 4.37 78.87 76% 054 0.39 —27.6 %
HRRR-Smoke 324 4.08 59.14 424 69.28 39% 050 1.10 120.2 %
AIRPACT 429  4.06 5771  4.18 65.56 31% 053 0.36 —32.1%
UCLA WRF-Chem 353 4.11 60.92 4.29 73.02 44% 051 0.50 —1.7 %
UIOWA WRF-Chem 414 4.05 57.54 3.75 42.50 —-75% 050 0.44 —11.7 %
WISC WRF-Chem 344 4.07 58.56 4.69 108.85 152% 0.53 044 —17.0 %
FireWork 416  4.07 58.77 4.39 81.01 79% 053 0.53 0.6 %
NAQFC 432 4.06 57.89 4.89 132.99 205% 0.51 0.38 —26.5%
NCAR WRF-Chem 279  4.04 57.03 4.42 83.35 94% 052 0.33 —36.3 %
GEOS-FP 274 4.06 5790 4.27 71.35 51% 049 0.35 —28.2%
CAMS 412 4.06 5775  4.17 64.85 29% 051 0.27 —48.0 %
RAQMS 311 4.07 5829 4.17 64.80 26% 052 0.39 —23.9%
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Figure 23. Box plots of observed and modeled PM, 5 / AOD ratios by hours of coincident PM; 5 and MODIS AOD data. Data have been
filtered based on thresholds of SAOD to focus on impact of fire smoke aerosols. Note that the y axis is shown in log scale. The central mark
of each box indicates the median, and the bottom and top edges of the box are the 25th and 75th percentiles respectively. The whiskers extend
to the 10th and 90th percentiles. The grey line shows total number of filtered data pairs for each group of boxes for model and observation.

cusing on the active burning period of the Williams Flats 4.1 Wildfire smoke emissions
fire (3-9 August 2019), the evaluation is carried out to re-
veal model performance in multiple dimensions, including
fire emissions, total column loading of smoke aerosols, sur-
face. PM; 5 concentrations,. and p lqme injectior.l. The major We find an overall large spread in daily total BB OC emis-
ﬁndlng§ and recommendations for 1p1proved wildfire smoke sions, with the factor between the maximum and the min-
simulation and forecast are summarized as follows. imum being about 20 to 50 on 5-9 August due to differ-

ent methodologies used for the emission estimates. Over-

The intercomparison of predicted smoke emissions suggests
a substantial uncertainty in forecasted emission inventories.
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Figure 24. Scatterplots of normalized mean bias (NMB) of AOD

and surface PMj 5 for different models evaluated by each hour of

coincident PM» 5 and MODIS AOD observations. The scattered cir-

cles are color-coded by the NMB of PM, 5 / AOD ratio in that hour.

all, the FRP-based fire emissions are relatively higher than
the satellite-fire-detection-based emissions. The large spread
is likely driven by dry-matter differences, and not emission
factors, as reported by Carter et al. (2020). Additionally, the
diurnal fire activity observed by the geostationary FRP data
shows substantial day-to-day variations, while this cannot be
well represented by the fixed diurnal patterns used by the
models. Discrepancies are shown in terms of the magnitude
of diurnal variation and timing of the peak, as well as the
nighttime fire activity. The limited representation of com-
plex fire emission evolution in models greatly affected and
challenged the performance on characterizing the impact of
smoke on air quality.

4.2 Total column smoke loading and surface impacts:
sAOD and SPM2_5

Statistics for sSAOD and surface sPMj 5 show well-predicted
magnitudes for a few models, while none of the models
managed to realistically describe their spatial distributions.
Nearly unbiased predictions are present for SAOD (UIOWA
WRF-Chem and CAMS) and sPM; 5 (FireWork, NAQFC,
and RAQMS), and as expected, the high-resolution regional
models show relatively better capability in depicturing the
fine-scale plume structures. However, low correlation coeffi-
cients with 7 <0.55 (0.36) and large errors with NME > 60 %
(70 %) are found for all models for sSAOD (sPM3 s5), which
indicates inconsistencies in the spatiotemporal variations of
smoke plumes between the forecasts and observations.

The FRP-based fire emissions and assimilation of satel-
lite AOD tend to yield better model performance in terms
of SAOD. In accordance with the emission magnitudes, the
models driven by FRP-based fire emissions (CAMS, GEOS-
FP, HRRR-Smoke, UCLA WRF-Chem, UIOWA WRF-
Chem) produce larger sSAOD and outperform those driven
by satellite-fire-detection-based emissions, showing less un-
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derestimation and better agreement for smoke plume areas.
FRP-based emission inventories generally use AOD obser-
vations to tune their conversion of FRP to emissions, which
could explain this advantage. Assimilating satellite AOD
data in initial condition and forecasts (CAMS, RAQMS,
GEOS-FP) or as constraints of fire emissions (UCLA WRE-
Chem) also helped offer better performance. Other fac-
tors such as complexity of chemical mechanisms, chemical
LBCs, horizontal resolution, initial time of forecast, and dy-
namic core used to drive the meteorological dispersion and
transport do not seem to be determining for these metrics.

For sPM3 5, however, the two operational air quality mod-
els for Canada and the US (FireWork and NAQFC) per-
form the best, which often use surface monitoring station
data as the primary metric of their evaluation. In contrast,
all models using FRP-based emissions tend to exhibit re-
markable overestimations, especially for the stations that are
closely impacted by fresh smoke plumes (MB > 6.0 uygm™3,
NMB > 40 %). The inconsistent biases in SAOD and sPMj 5
demonstrate discrepancies in the performance for total col-
umn and surface air pollution levels, which is partly at-
tributable to errors in vertical allocation of emissions, as
confirmed by the evaluation against DIAL-HSRL observa-
tions. The percentage of emissions injected into the free tro-
posphere in models is generally assumed as a constant de-
pending on fuel category, while, compared to the lidar data,
most models show larger proportions of smoke within the
PBL rather than being injected into the free troposphere,
which leads to a higher amount of smoke aerosols close to the
land surface. In addition, model representation of PBL evo-
lution, assumptions to diagnose optical properties of smoke
aerosols, and missing chemical processes, e.g., enhanced
evaporations of organic aerosols near the surface, are also
potential factors associated with this discrepancy.

The diurnal cycles of sPM» 5 suggest additional inconsis-
tencies in certain processes within models and observations.
Overall, the overestimations of sPMj; 5 proved to be even
higher during the late-afternoon and nighttime hours, thus
producing much stronger diurnal variations of sPM> s than
observed. The enlarged positive biases are presumably due
to the overestimated proportion of emissions within the PBL.
Earlier collapse of daytime PBL and lower PBL heights in
the late afternoon and nighttime can also be a reason, asso-
ciated with the disregarded sensible heat released from wild-
fire burning process and the PBL parameterizations used in
models. An evaluation of surface PM» s forecasts has sug-
gested an inconsistency in the nocturnal PBL mixing within
WRF-Chem (McKeen et al., 2007) that very little turbulent
exchange is present during stable nighttime conditions, lead-
ing pollutants to build up unreasonably in the lowest model
level. Further investigation is needed to understand their rel-
ative contributions more.

The day-to-day variation of model performance for sAOD
illustrates the significant limitation of the assumption of per-
sistence used for predicting fire emissions within the fore-
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casting period. Remarkable underestimations of sAOD are
shown on 8 August for all models, which appears to be
mainly due to the drastic expansion of the burned area on
the previous day not being captured by the models assuming
persistence of fire activity. In contrast, the impact of persis-
tence on the performance for sPMj 5 on 8 August is not as
significant as for sAOD, which is likely due to a cancellation
of errors with overestimated proportions of smoke emissions
within the PBL. Grouping sPMy 5 sites by affected by fresh
plume or not further confirms this behavior.

4.3 Plume injections

The vertical plume structure and plume injections are fur-
ther quantitatively evaluated against the DIAL-HSRL ob-
servations acquired during FIREX-AQ. While the observa-
tions show a considerable day-to-day variation in the plume
heights, all the models have smaller spreads. Overall, there
is a large inter-model difference in the predicted plume
heights. For the flight transects presenting injections within
or around the PBL heights (3 and 6 August), most mod-
els show overestimated plume heights, and the models that
usually put emissions below the PBL height perform better
(e.g., CAMS, RAQMS, and GEOS-FP). Physical parameter-
izations of plume injections (e.g., Freitas et al., 2007, 2010,
based on convective energy) yield slight overestimations on
3 and 6 August and managed to depict enhanced injections
on 7 August with stronger free-tropospheric injections, al-
though with underpredictions. Additionally, insufficient rep-
resentations are found for the strong injections owing to deep
convection of the pyroCb on 8 August. More work is needed
to improve their inferring method from input variables (e.g.,
fire intensity, fire size, meteorological fields) to plume in-
jections to accurately depict different scenarios. It is also
noteworthy that even for the models using the same plume
injection scheme (e.g., NCAR WRF-Chem, UIOWA WRF-
Chem, UCLA WRF-Chem, and WISC WRF-Chem), they
often show substantially different results which might relate
to uncertainties in meteorological fields, inputs to the plume
rise parameterization, and grid resolution that need to be in-
vestigated further. The assessments for transported plumes
(older than a day) show consistency with the injection per-
formance as revealed for the fresh plume on the day before.
It confirms the comparison results of models showing overes-
timated sPM, 5, which tend to be associated with the earlier
decay of plume injections and overestimated proportion of
smoke loading with the PBL in the late afternoon. This re-
sult further emphasizes how the errors in timing and vertical
allocation of emissions can propagate into model skill over
transported plumes.
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4.4 Discrepancy in performance for surface PM; 5 and
AOD

Surface PM; 5 / AOD is suggested as a measure to assess the
vertical distribution of smoke as well as the discrepancy in
model performance between the two individual terms. Note
that the ratios can be dominated by the background or other
emission sources when the fire emissions are low. The eval-
uation for probability distributions of the PM» 5 to AOD ra-
tios emphasizes two aspects of model improvements. First,
most models show positive biases in the means of the (log-
normal) distributions, which suggests misrepresented aerosol
optical properties (e.g., relatively lower mass extinction co-
efficients), and/or shallower mixing volume (e.g., relating
to the lower PBL). Second, the narrower distributions indi-
cate underpredicted possibility of cases with smoke plumes
reaching the land surface or lofted above the PBL. The anal-
ysis of AOD, surface PMj 5, and their ratios for coincident
samples further confirms discrepancies in the model perfor-
mance for AOD and PM; 5. The biases in AOD and PMj 5
can be effectively reduced simultaneously by adjusting the
fire emissions for the models showing fewer discrepancies in
their ratio, while large discrepancies in the ratios point to the
need of taking other factors into consideration, including the
representation of aerosol optical properties, vertical alloca-
tion of smoke aerosols, and PBL evolution as well.

4.5 Recommendations for future improvements

Model evaluations of smoke emissions and SAOD suggest
the advantage of using FRP-based fire emissions and data
assimilation in providing less biased forecasts for total col-
umn smoke aerosol loading, compared to other differences
in model features. The fact that all estimated fire emissions
exhibit a large spread in magnitude demonstrate a need of
future work to close the gap between these estimates and re-
duce their uncertainty. Leveraging FRP detections from geo-
stationary satellites could provide beneficial information in
improving the representation of temporal variation of fire
emissions and to overcome the limitation of fixed diurnal
patterns. This would be important, especially for severe wild-
fires with unusual diurnal activity. As the forecasted air qual-
ity impacts still show limitations due to the persistence as-
sumption, methodologies to describe and predict evolution
of fire burning need to be developed. A relevant system is
available in Europe, adopting a modeling strategy of hourly
sequential warm start runs (Solomos et al., 2015, 2019),
with the emissions updated every hour using geostationary
satellite detections. For the US, hourly emissions derived by
blending GOES Advanced Baseline Imager (ABI) and polar-
orbiting satellite VIIRS fire products at 3 km spatial resolu-
tion will be incorporated into operational fire smoke mod-
els, namely NAQFC and HRRR-Smoke. These studies pro-
vide an efficient way of removing the minor or extinguished
fires and at the same time of enhancing emissions from actual
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burning fires, thus tracking the diurnal cycle of biomass burn-
ing. However, challenges still exist in making assumptions
about the fire intensity and spread over the next hours/days.
Also, compared to Europe, the fire intensities and their dura-
tions are on much larger scales in North America. The large
spatial variability of fuels, complex topography, and different
ecosystems in the US add to the complexity.

Forecast performance for SAOD and surface sPM» 5 and
their discrepancies highlight key modeling processes to
be improved. The proportion of emissions getting injected
above the PBL appears to evolve with fire burning intensity,
as indicated by the lidar observations, while all models tend
to show underestimated free-troposphere smoke emissions
and plume heights towards the days with enhanced burn-
ing. This illustrates a key need to improve plume rise pa-
rameterizations and vertical partition of fire emissions that is
closely relevant to accurate representation of smoke plumes
and the performance discrepancies. Modeled aerosol com-
ponents and late-afternoon and nighttime evolution of PBL
structures are also closely relevant. In addition, although not
evaluated specifically in this work, model assumptions of
aerosol optical properties are important for both the AOD
forecast performance and the discrepancies. Most models use
optical properties that come embedded in the model version,
and these are usually out of date. Thus, it is necessary to more
proactively update optical property modules that reflect all
that we have learned from field campaigns and satellite ob-
servations and make them easy to be incorporated into the
community models. Given these various factors, future sen-
sitivity and retrospective runs and analysis on these processes
would help to identify the determinant factor(s) and their rel-
ative contributions for improving smoke forecasting.

Data availability. Flight observational data from FIREX-AQ,
along with the Fuel2Fire emissions analysis, NIROPS burn area,
and GOES-17 fire detections and FRP data during the field cam-
paign, are archived by NASA/LARC/SD/ASDC (https://doi.org/
10.5067/ASDC/FIREXAQ_Aerosol_AircraftinSitu_ DC8_Data_1,
NASA/LARC/SD/ASDC, 2020). AERONET and DRAGON net-
work AOD observations can be accessed on the AERONET website
(https://aeronet.gsfc.nasa.gov/new_web/DRAGON-FIREX-AQ_
2019.html, Holben et al., 2019). MODIS MAIAC AOD
retrievals (MCD19A2 Version 6) are available online
(https://doi.org/10.5067/MODIS/MCD19A2.006, Lyapustin
and Wang, 2018). Surface PM, 5 observations are available at
OpenAQ (https://openaq.org, OpenAQ, 2019) and US EPA’s Air
Data (https://www.epa.gov/outdoor-air-quality-data, U.S. EPA,
2019). Model forecasts and smoke emissions are provided by their
modeling groups and collected by Xinxin Ye and Pablo E. Saide,
and the data are available upon request.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-21-14427-2021-supplement.
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