C13-2

A 1.15pW 5.54mm? Implant with a Bidirectional Neural Sensor and Stimulator SoC utilizing
Bi-Phasic Quasi-static Brain Communication achieving 6kbps-10Mbps Uplink
with Compressive Sensing and RO-PUF based Collision Avoidance

Baibhab Chatterjee, Gaurav Kumar K, Mayukh Nath, Shulan Xiao, Nirmoy Modak, Debayan Das, Jayant Krishna and Shreyas Sen
Purdue University, West Lafayette, IN, USA. email: {bchatte, shreyas}@purdue.edu

Abstract

To solve the challenge of powering and communication in a brain
implant with low end-end energy loss, we present Bi-Phasic Quasi-
static Brain Communication (BP-QBC), achieving < 60dB worst-case
channel loss, and ~41X lower power w.r.t. traditional Galvanic body
channel communication (G-BCC) at a carrier frequency of IMHz
(~6X lower power than G-BCC at 10MHz) by blocking DC current
paths through the brain tissue. An additional 16X improvement in net
energy-efficiency (pJ/b) is achieved through compressive sensing
(CS), allowing a scalable (6kbps-10Mbps) duty-cycled uplink (UL)
from the implant to an external wearable, while reducing the active
power consumption to 0.52uW at 10Mbps, i.e. within the range of
harvested body-coupled power in the downlink (DL), with externally
applied electric currents < 1/5th of ICNIRP safety limits. BP-QBC
eliminates the need for sub-cranial interrogators, utilizing quasi-static
electrical signals for end-to-end BCC, avoiding transduction losses.

Introduction and Motivation

Traditional brain-machine interfaces (BMlIc) with tethered data
transmission/powering increases risks of cortical scarring, gliosis,
infection, and cerebrospinal fluid (CSF) leakage. Recently, untethered
miniaturized wireless neural sensors [1-3] and stimulators [4-6] have
been demonstrated with various data/power transmission modalities
as shown in Fig. 1. RF [1,7] suffers from increased tissue absorption,
requiring large Tx power (0.5W in [1,7] which exceeds ICNIRP safety
guidelines [8] by ~10X). Optical (OP) [2] and Ultrasonic (US) [3]
telemetry are safer, at the cost of significant loss due to scattering and
skull absorption (110dB loss in [3]), requiring a sub-cranial
interrogator which needs to be surgically placed, and reduces end-to-
end efficiency. Magneto-Electric (ME) [4] methods exhibit low
tissue-absorption but has large transduction loss (0.1mT magnetic
field, equivalent to ~300kV/m electric field requirement in [4] for iso-
energy-density). As an alternative, Fig. 1 describes BP-QBC for
communication in a neural implant. The implant can sense and
transmit information to a wearable headphone-shaped hub through the
UL. The hub sends power and configuration/scan bits to the implant
through the DL. Both UL and DL use fully electrical signals to avoid
transduction losses (a challenge in OP, US and ME systems). The UL
use MHz-GHz narrow-band frequencies to (1) avoid interfering with
physiological signals and (2) avoid stimulating the brain tissue with
low-frequencies. For traditional G-BCC, the electrodes on the implant
are shorted through the low-impedance (~kQ) tissue/fluids in the body,
resulting in high DC power consumption. A DC-blocking capacitor in
the signal path for BP-QBC creates a bi-phasic output that eliminates
the DC power going into the tissue and maintains ion balance.

System on a Chip (SoC) Architecture and Implementation

The implemented BP-QBC SoC in 65nm CMOS (Fig. 2, top)
features (1) a 52pJ/b, duty-cycled, OOK-based scalable UL Tx with
on -chip clock, CS and collision avoidance, (2) a 31nW DL Rx to
receive system configuration bits and control signals, (3) a 89.2%
efficiency (Istim/Inc) bi-phasic stimulator and (4) a 30-stage RF-
rectifier (RR) based energy-harvester [9], capable of generating 1V
supply with ~70mV,, input. Dual supply domains are utilized: 0.4V
for low-leakage/low-power in always-on timer/controller modules,
and 1V for duty-cycled data transmission/stimulation. The SoC uses
1:1000 duty cycling with a 100ms transmit phase (TP) + 100ms
stimulation phase (SP) within 100s. Additional modes with 1:100 and
1:10 duty cycling can be configured through DL control bits. A 13nW
reference (0.4V, 1V) generator and two 24nW LDOs are used to
supply Vop for the SoC, utilizing the energy harvested from an RR.
Fig. 3 shows the design details of the building blocks of the SoC. The
external Csrtore at the output of RR is carefully optimized for a max.
data rate (DR) with <<100s charging time and <100mV voltage droop
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during TP/SP. A 17nW charge pump generates 1.8V Vpuwmp to bias the
power gates (on the supply of the duty-cycled modules) in deep-
subthreshold during off-state to reduce leakage by 500X (from
0.51uW to 1InW). A ring-oscillator based Physical Un-clonable
Function (RO-PUF) with a 9b-PRBS ensures that different nodes
within the brain enters TP/SP in staggered timeslots, thereby enabling
collision avoidance without a MAC layer. A wake-up based CS front
end reduces the Tx DR, resulting in an average duty-cycled power of
1.15uW (0.52uW without leakage), at 10Mbps with CS. This results
in a >60X improvement in energy-efficiency (pJ/b) as compared to the
narrowband state-of-the-art BMIc [2]. The CS module is equipped
with an on-chip 2-stage DWT-based sparsifier and dual varying-seed-
PRBS sensing-matrix generator, to compress both sparse and non-
sparse signals with varying compression factor (CF) from 5X to
33.33X. The BMIc Node DL Rx consists a 10.1nW Front-End (FE)
amplifier, a 3.2nW 4-stage passive envelope detector and a 16.2nW
fully digital oversampled CDR. The model for the BMIc channel
transfer function (TF) is developed analytically from dipole coupling
theory and is verified with Finite Element method (FEM)-based
simulations as well as IC-measurements using the implemented SoC,
which enables realistic BCC-based BMIc channel measurements for
the first time because of its small form-factor (node volume < 6mm?).
Measurement Results

Fig. 4(a) shows the Power consumption of the Tx over 42kHz-
1GHz and compares with traditional G-BCC measurements. At a
nominal quasi-static frequency of 1IMHz, BP-QBC offers 41X lower
power than G-BCC. Fig. 4(a) also shows the randomized time slots
for duty-cycled TP/SP, along with the time-domain stimulation
waveforms in a 0.9% phosphate buffered saline (PBS) solution. The
measurements with CS are shown in Fig. 4(b). For CF=33.33X, the
10Mbps TP power reduces from 7.23mW to 217uW, while
consuming additional computation power of 212uW, resulting in
overall power reduction of ~16X. The memory requirement is also
reduced by >10X as compared to a ‘store and send’ scenario. EEG
waveforms from GigaScience database are passed through the CS
(CF=33.33X), and are reconstructed in MATLAB. In Fig. 5(a), the
power consumption of the DL Rx is plotted w.r.t. the DR, showing an
energy efficiency of < 35pJ/b at 1kbps. The charging of the Cstore
w.r.t. the DL input signal amplitude shows a minimum input voltage
requirement of 70mVy, for charging up to 1.2V. The In-vitro setup for
BP-QBC channel TF measurement is shown in Fig. 5(b). Brain slices
from the C57BL/6J Mouse strain are used, adhering to the overseeing
Animal Care and Use Committee guidelines. 500pm-2mm thick slices
are placed in a measurement dish containing artificial CSF saturated
with carbogen (95% 02+5% COz). Two electrodes (signaltref) are
placed on the surface of the brain slice. The Rx electrodes are placed
at a distance (L) from the Tx electrodes. The experiments are repeated
with PBS in a PET container with similar dimensions as that of the
human skull (diameter~110mm). The channel TF shown in Fig. 5(b)
exhibits a loss of ~20dB for the mouse brain and ~60dB in PBS with
human-brain sized dimensions. Fig. 6 compares the SoC performance
with state-of-the-art BMlIc telemetry/stimulators, exhibiting (1)
highest DR (3000X improvement vs. [2]) for narrowband BMlIc, (2)
max. channel length with (3) lowest always-on power and (4) lowest
end-to-end loss (>20 dB better than prior art) due to fully-electrical
quasi-static signaling, while demonstrating the first BP-OBC link
with simultaneous powering, communication, CS and stimulation.
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Fig.1: Bi-Phasic Quasi-static Brain Communication (BP-QBC): (a) Motivation and
comparison with alternative technologies, (b) SoC Node Implementation for BP-QBC
(R_ and C__in the bottom right figure represent loading due to Brain Tissue on Tx). The
5pF DC blocking cap (Cs) in BP-QBC eliminates any DC current going into the load.

Circuit Details for BMIc Node Implanted Transmitter for UL Communication

Fig.2: (a) System-level Block Diagram with (b)Timing waveforms and (c) Circuit-level
highlights of the BP-QBC SoC. Once the Csore at the energy harvester is charged to 1-
1.2V, the SoC can start bi-phasic comm. (MHz-GHz) and stim. (Hz-kHz pulses) for
100ms within a 100s period. GNACs are used to set default configurations at power-on.

a) BMIc Node Implanted Transmitter (UL) / Implanted Stimulator: Measurement Results
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Fig.3: Circuit/Simulation details of the BMIc Tx: a 30-stage RR converts 70mVp AC to
1.2V DC. Design considerations (number of stages, output cap) are also shown. A CP
reduces leakage power, and a Randomizer performs RO-PUF based transmit slot
selection for collision avoidance. HFSS (FEM) simulations show channel loss < 60dB.

(a) BMIc Node Implanted Receiver (DL): Implementation and Measurement Results a) Chip Micrograph
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Fig.4: (a) Measurement Results of the BMIc UL Tx with R, = 1kQ and C_= 5pF: Power
consumption, Randomizer operation showing 3 different nodes transmitting at
different time-slots, and bi-phasic stimulation waveforms, (b) Measurement results
with ~16X transmit power reduction due to CS, with reconstruction of EEG waveforms.

(b) Technology Specs. + Chip Design Summary
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(c) Comparison with state-of-the-art BMIc telemetry and stimulator SoCs
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Fig.6: (a) Chip Micrograph, (b) Tech. Specs + Design Summary, (c) Comparison Table.
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