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Abstract 
To solve the challenge of powering and communication in a brain 

implant with low end-end energy loss, we present Bi-Phasic Quasi-
static Brain Communication (BP-QBC), achieving < 60dB worst-case 
channel loss, and ~41X lower power w.r.t. traditional Galvanic body 
channel communication (G-BCC) at a carrier frequency of 1MHz 
(~6X lower power than G-BCC at 10MHz) by blocking DC current 
paths through the brain tissue. An additional 16X improvement in net 
energy-efficiency (pJ/b) is achieved through compressive sensing 
(CS), allowing a scalable (6kbps-10Mbps) duty-cycled uplink (UL) 
from the implant to an external wearable, while reducing the active 
power consumption to 0.52μW at 10Mbps, i.e. within the range of 
harvested body-coupled power in the downlink (DL), with externally 
applied electric currents < 1/5th of ICNIRP safety limits. BP-QBC 
eliminates the need for sub-cranial interrogators, utilizing quasi-static 
electrical signals for end-to-end BCC, avoiding transduction losses. 

Introduction and Motivation 
    Traditional brain-machine interfaces (BMIc) with tethered data 
transmission/powering increases risks of cortical scarring, gliosis, 
infection, and cerebrospinal fluid (CSF) leakage. Recently, untethered 
miniaturized wireless neural sensors [1-3] and stimulators [4-6] have 
been demonstrated with various data/power transmission modalities 
as shown in Fig. 1. RF [1,7] suffers from increased tissue absorption, 
requiring large Tx power (0.5W in [1,7] which exceeds ICNIRP safety 
guidelines [8] by ~10X). Optical (OP) [2] and Ultrasonic (US) [3] 
telemetry are safer, at the cost of significant loss due to scattering and 
skull absorption (110dB loss in [3]), requiring a sub-cranial 
interrogator which needs to be surgically placed, and reduces end-to-
end efficiency. Magneto-Electric (ME) [4] methods exhibit low 
tissue-absorption but has large transduction loss (0.1mT magnetic 
field, equivalent to ~300kV/m electric field requirement in [4] for iso-
energy-density). As an alternative, Fig. 1 describes BP-QBC for 
communication in a neural implant. The implant can sense and 
transmit information to a wearable headphone-shaped hub through the 
UL. The hub sends power and configuration/scan bits to the implant 
through the DL. Both UL and DL use fully electrical signals to avoid 
transduction losses (a challenge in OP, US and ME systems). The UL 
use MHz-GHz narrow-band frequencies to (1) avoid interfering with 
physiological signals and (2) avoid stimulating the brain tissue with 
low-frequencies. For traditional G-BCC, the electrodes on the implant 
are shorted through the low-impedance (~kΩ) tissue/fluids in the body, 
resulting in high DC power consumption. A DC-blocking capacitor in 
the signal path for BP-QBC creates a bi-phasic output that eliminates 
the DC power going into the tissue and maintains ion balance.  

System on a Chip (SoC) Architecture and Implementation 
    The implemented BP-QBC SoC in 65nm CMOS  (Fig. 2, top) 
features (1) a 52pJ/b, duty-cycled, OOK-based scalable UL Tx with 
on -chip clock, CS and collision avoidance, (2) a 31nW DL Rx to 
receive system configuration bits and control signals, (3) a 89.2% 
efficiency (IStim/IDC) bi-phasic stimulator and (4) a 30-stage RF-
rectifier (RR) based energy-harvester [9], capable of generating 1V 
supply with ~70mVp input. Dual supply domains are utilized: 0.4V 
for low-leakage/low-power in always-on timer/controller modules, 
and 1V for duty-cycled data transmission/stimulation. The SoC uses 
1:1000 duty cycling with a 100ms transmit phase (TP) + 100ms 
stimulation phase (SP) within 100s. Additional modes with 1:100 and 
1:10 duty cycling can be configured through DL control bits. A 13nW 
reference (0.4V, 1V) generator and two 24nW LDOs are used to 
supply VDD for the SoC, utilizing the energy harvested from an RR. 
Fig. 3 shows the design details of the building blocks of the SoC. The 
external CSTORE at the output of RR is carefully optimized for a max. 
data rate (DR) with <<100s charging time and <100mV voltage droop 

during TP/SP. A 17nW charge pump generates 1.8V VPUMP to bias the 
power gates (on the supply of the duty-cycled modules) in deep-
subthreshold during off-state to reduce leakage by 500X (from 
0.51μW to 1nW). A ring-oscillator based Physical Un-clonable 
Function (RO-PUF) with a 9b-PRBS ensures that different nodes 
within the brain enters TP/SP in staggered timeslots, thereby enabling 
collision avoidance without a MAC layer. A wake-up based CS front 
end reduces the Tx DR, resulting in an average duty-cycled power of 
1.15μW (0.52μW without leakage), at 10Mbps with CS. This results 
in a >60X improvement in energy-efficiency (pJ/b) as compared to the 
narrowband state-of-the-art BMIc [2]. The CS module is equipped 
with an on-chip 2-stage DWT-based sparsifier and dual varying-seed-
PRBS sensing-matrix generator, to compress both sparse and non-
sparse signals with varying compression factor (CF) from 5X to 
33.33X. The BMIc Node DL Rx consists a 10.1nW Front-End (FE) 
amplifier, a 3.2nW 4-stage passive envelope detector and a 16.2nW 
fully digital oversampled CDR. The model for the BMIc channel 
transfer function (TF) is developed analytically from dipole coupling 
theory and is verified with Finite Element method (FEM)-based 
simulations as well as IC-measurements using the implemented SoC, 
which enables realistic BCC-based BMIc channel measurements for 
the first time because of its small form-factor (node volume < 6mm3). 

Measurement Results 
    Fig. 4(a) shows the Power consumption of the Tx over 42kHz-
1GHz and compares with traditional G-BCC measurements. At a 
nominal quasi-static frequency of 1MHz, BP-QBC offers 41X lower 
power than G-BCC. Fig. 4(a) also shows the randomized time slots 
for duty-cycled TP/SP, along with the time-domain stimulation 
waveforms in a 0.9% phosphate buffered saline (PBS) solution. The 
measurements with CS are shown in Fig. 4(b). For CF=33.33X, the 
10Mbps TP power reduces from 7.23mW to 217μW, while 
consuming additional computation power of 212μW, resulting in 
overall power reduction of ~16X. The memory requirement is also 
reduced by >10X as compared to a ‘store and send’ scenario. EEG 
waveforms from GigaScience database are passed through the CS 
(CF=33.33X), and are reconstructed in MATLAB. In Fig. 5(a), the 
power consumption of the DL Rx is plotted w.r.t. the DR, showing an 
energy efficiency of < 35pJ/b at 1kbps. The charging of the CSTORE 
w.r.t. the DL input signal amplitude shows a minimum input voltage 
requirement of 70mVp for charging up to 1.2V. The In-vitro setup for 
BP-QBC channel TF measurement is shown in Fig. 5(b). Brain slices 
from the C57BL/6J Mouse strain are used, adhering to the overseeing 
Animal Care and Use Committee guidelines. 500μm-2mm thick slices 
are placed in a measurement dish containing artificial CSF saturated 
with carbogen (95% O2+5% CO2). Two electrodes (signal+ref) are 
placed on the surface of the brain slice. The Rx electrodes are placed 
at a distance (L) from the Tx electrodes. The experiments are repeated 
with PBS in a PET container with similar dimensions as that of the 
human skull (diameter~110mm). The channel TF shown in Fig. 5(b) 
exhibits a loss of ~20dB for the mouse brain and ~60dB in PBS with 
human-brain sized dimensions. Fig. 6 compares the SoC performance 
with state-of-the-art BMIc telemetry/stimulators, exhibiting (1) 
highest DR (3000X improvement vs. [2]) for narrowband BMIc, (2) 
max. channel length with (3) lowest always-on power and (4) lowest 
end-to-end loss (>20 dB better than prior art) due to fully-electrical 
quasi-static signaling, while demonstrating the first BP-QBC link 
with simultaneous powering, communication, CS and stimulation. 
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Fig.1: Bi-Phasic Quasi-static Brain Communication (BP-QBC): (a) Motivation and
comparison with alternative technologies, (b) SoC Node Implementation for BP-QBC
(RL and CL in the bottom right figure represent loading due to Brain Tissue on Tx). The
5pF DC blocking cap (CS) in BP-QBC eliminates any DC current going into the load.

Fig.2: (a) System-level Block Diagram with (b)Timing waveforms and (c) Circuit-level
highlights of the BP-QBC SoC. Once the CSTORE at the energy harvester is charged to 1-
1.2V, the SoC can start bi-phasic comm. (MHz-GHz) and stim. (Hz-kHz pulses) for
100ms within a 100s period. GNACs are used to set default configurations at power-on.

Fig.4: (a) Measurement Results of the BMIc UL Tx with RL = 1kΩ and CL = 5pF: Power
consumption, Randomizer operation showing 3 different nodes transmitting at
different time-slots, and bi-phasic stimulation waveforms, (b) Measurement results
with ~16X transmit power reduction due to CS, with reconstruction of EEG waveforms.

Fig.5: (a) Measurement Results of the BMIc DL Rx with input termination of RL = 1kΩ
and CL = 5pF : energy efficiency and LDO output, (b) In-Vitro experimental setup for
channel TF measurement in PBS and Mouse Brain Slice. Effect of large ground plate
(table-top measurements with large setup) and capacitive coupling is calibrated out. Fig.6: (a) Chip Micrograph, (b) Tech. Specs + Design Summary, (c) Comparison Table.
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(a) BMIc Node Implanted Receiver (DL): Implementation and Measurement Results

(b) In-Vitro Experiments for BP-QBC Channel Transfer Function (TF) Measurements
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Circuit Details for BMIc Node Implanted Transmitter for UL Communication
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Theory of Dipole Coupling
in Brain Tissue
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d_Node=4mm, t_Node=1mm
Frequency = 10MHz

CP: ↓ leakage of duty cycled modules

HFSS (FEM) Simulation: Channel Transfer Function (TF) for UL Communication utilizing BP-QBC+ Powering Considerations

Randomizer: RO-PUF approach (node-specific slots) for Collision Avoidance 
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Point

Human Model VHP-Female v2.2 
(NEVA EM LLC)

Platform Ansys HFSS
Tissue properties σ and ε: Gabriel-

Gabriel database
Excitation 1Vp

Model Contents:
Skin, Blood, Fat, Skull, 

CSF, Gray Matter, White 
Matter, Cerebellum
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30-stage RF Rectifier with 1 Ext. Cap (CSTORE = 40μF)
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(a) Chip Micrograph (b) Technology Specs. + Chip Design Summary

(c) Comparison with state-of-the-art BMIc telemetry and stimulator SoCs 
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Node DL Rx
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Node UL Tx
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Test Chip Process 65nm 1P9M CMOS LP
Package Gold Wire-bond with Glob-Top Encapsulation, Polyimide Flex PCB

UL Tx/ Stim. Supply 0.8V-1V
Active Area 0.23mm2 (including circuits for CS + Stim. + channel TF measurement)
Load 1kΩ Resistance || 5pF Cap
Performance 52pJ/b with CS at 10Mbps
IO used 5 (Additional 10 IOs for Scan/Tests)

DL Rx Supply 0.4V
Active Area 0.0432mm2

i/p Termination 1kΩ Resistance || 5pF Cap
Performance 31pJ/b at 1kbps
IO used 3 (Additional 7 IOs for Scan/Tests)

Energy Harvest Active Area 0.0432mm2

IO used 2 (Additional 3 IOs for test outputs)

This Work
(Communication + 

Stimulation)

BMIc Communication BMIc Stimulation
ISSCC’20,

Lim [2]
ISSCC’19,

Ghanbari [3]
SSCL’20,

Yuk
ISSCC’20,

Yu [4]
ISSCC’18,

Jia [5]
ISSCC’16,

Lo [6]

Target Application Brain/Spinal Cord Brain Brain Brain Spinal 
Cord/Brain Brain Spinal Cord

Process Node (nm) 65 180 65 110 180 350 180

Link Architecture BP-QBC
(Narrowband)

Optical
(Narrowband)

Ultra-sonic
(Narrowband)

Capacitive BCC*
(Broadband) Magneto-Electric Inductive Inductive

Chip Size (mm2) 1 x 1 0.19 x 0.17 0.5 x 0.5 1 X 0.5 1 x 1.5 1 x 1 4.4 x 5.7
Implant Volume (mm3) 5.54 N/A 0.8 N/A 8.2 12.2 500

External Components 1 cap + Electrode 1 LED + 1 PV 
Diode+ Electrode

1 Piezo + 
Electrode

1 Battery + LDOs + 
Electrode

1 cap + ME Film 
+ Electrode 4 cap + coil 6 cap. + 2 coils

Sub-Cranial Interrogator Not required Yes Yes No No No No
Max. Distance

from Node to Hub (mm) 55 ~20 50 N/A 30 7 N/A

End-to-End loss ~60dB (@55mm) >80dB >80dB ~40dB (@30mm) >80dB >80dB >80dB
Always On Power

for SoC (uW)
0.66

(circuits + leakage) 0.74 (circuits) 13 (circuits) N/A 23.7 (circuits) 300 (circuits) 864 (circuits)

Uplink (Node to Hub) Communication OOK, BP-HBC Sym. Inter-val
Mod. AM back-scatter 3-level Polar RZ, 

Capacitive BCC

\

Comm. Collision Resolution Yes: RO-PUF based Yes Yes No
UL Node Tx Power 1.15μW@10Mbps§ 0.74μW 28.8μW 566.1μW**

Encoded Data Rate (DR) DReffective=10Mbps 
(300kbps with CS) 100bps N/A 16.7Mbps

(Broadband)
UL Node Tx

Energy Efficiency 52pJ/b@10Mbps >7.4nJ/
LED firing N/A 33.9pJ/b**

@16.7Mbps
UL Hub Rx Power 76μW (10Mbps, CS) N/A N/A 62μW

Compressive Sensing Yes: 5X to 33.33X SBP only No No No No No
Max. Stimulation Power 1.2mW

\ \
1.5mW N/A 1mW

Stimulation Efficiency (%) 89.2 90 N/A N/A
Max Istim (mA) / #Ctrl Bits 1/6 1.5/5 N/A 0.5/7

Node Rx Power 31nW (1kbps) N/A No DL N/A 20uW No DL No DL
Clock Recovery Yes Yes No Yes No No No

Sy
st

em
UL

St
im

.
DL

* Utilizes capacitive coupling through the parasitic return path of external components, which would lead to lower signal reception in a truly implantable scenario
§: With CS and duty cycling, with leakage      ** No carrier involved, may lead to noise/interference issues with Broadband Communication. However, pJ/b is lower. 
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