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The emergence of Audio-based Augmented Reality has been calling 
for increasing data-rates for audio signals, with significant reduction 
in power to enable extremely energy-constrained sensor nodes. 
Typically, the communication power dominates sensing and 
computing power in a node [1]. For highly energy constrained 
scenarios, compressive sensing (CS) have been demonstrated (Fig. 
1), where samples are first compressed at the sensor to contain the 
same information in a smaller number of samples, before 
transmitting to a receiver, where the signal is reconstructed. Previous 
CS works [2-5] have focused entirely on “sparse” physiological 
signals, operating in low speed regime. This work illustrates the first 
CS design, enabled with a discrete wavelet transform (DWT) 
sparsifier for catering to non-sparse signals such as high definition 
audio. Audio recording and playback are quite sensitive to quality, 
thereby requiring audio codecs, such as .aac, for efficient 
compression and decompression of audio streams, which usually 
consume power in the order of mW [6]. Audio inferencing operated 
in intelligent assistants are more tolerant to input quality, functioning 
effectively when the Perceptual Evaluation of Audio Quality Mean 
Opinion Score (PAEQ MOS) [7], an ITU-R standard objective metric 
for characterizing perceived audio quality, exceeds 1.5. CS presents 
an opportunity to achieve >10X reduction in transmitted audio data 
with orders of magnitude lower power, as compared to codecs. The 
design is implemented in 65 nm CMOS and consumes 238 uW 
power at 0.65 V and 15 Mbps. 

Fig. 2 shows the block-level overview of the proposed CS 
architecture. The CS implementation takes in N input samples and 
compresses them into M linear combinations, using on-chip DWT 
sparsifier and the sensing matrix Φ, realizing a matrix-multiplication, 
i.e. CS Encoding. Thus, instead of N input samples, M compressed
samples are transmitted, thereby reducing the communication power
of the sensor by approximately N/M, which consequently lowers the
overall sensor power. The design works with audio in both raw format
(such as .wav – in Mode 1), and compressed format (such as .aac –
in Mode 2). Due to additional codec-based compression in Mode 2,
it further reduces the communication power with an increase in
computation power, whereas Mode 1 provides a new modality with
low-power audio compression.  Finally, to ensure operation at high
speeds, the entire design is realized as a pipelined architecture.

The CS IC comprises of pre-processing unit, the CS encoder and a 
serializer, followed by a transmit buffer. The signal reconstruction 
and performance evaluation are performed off-chip in MATLAB. For 
reconstruction, L1-norm minimization is done by Basis Pursuit 
algorithm, using the received compressed bits, sensing matrix and 
signal basis. The performance of compression is evaluated using 1) 
Signal-to-Noise-Distortion-Ratio (SNDR) [2] post reconstruction, 
which measures time-domain signal correlation and 2) PAEQ MOS.  

The input signal is digitized to 8 bits and is fed serially to the CS IC. 
The pre-processing units, consisting of a deserializer and sparsifier, 
deserializes and then sparsifies the input samples, before feeding to 
the CS encoder for compression. A 2-stage Discrete Wavelet 
transform (DWT) is chosen for sparsifying the audio over the Discrete 
Cosine Transform (DCT). Although DCT offers better sparsity than 
DWT for an audio signal, yet DCT, being a lossy compression, fails 
to maintain the signal integrity, thereby exhibiting poor signal 
reconstruction. Fig. 3 presents the circuit implementation of DWT 
sparsifier, along with the quantitative analysis comparing the 
performance of DCT and DWT based sparsification. The DWT 
Sparsifier can be bypassed using an external scan bit. 

The output of the sparsifier, supplied to the CS Encoder, includes 
majority of elements with zero value. Thus, in order to reduce the 
power consumption, the CS encoder, including sensing matrix 
generator and matrix multiplier, is implemented in a Wake-up mode, 
such that the block is power gated when the input is zero, preserving 
the previously accumulated values in the registers. For every non-
zero input sample, the Matrix multiplier accumulates the product of 
input sample and the row elements of sensing matrix Φ in M 16-bit 

accumulators. As the value of M 
directly impacts the power and area 
overheads, it is chosen to be 30, 
considering the trade-off between 
signal reconstruction time and 
output audio quality as shown in 
Fig. 3. The degree of compression, 
defined as compression factor (CF) 
= N/M, is determined by number of 
samples to be accumulated (N), 
which can be set using 3-bit 
external scan, and can vary in the 
range 3X-33.3X for both the modes. To prevent data overflow, the 
accumulator size is chosen to be 16. After every N samples, the 
seeds of the PRBS generators in the sensing matrix are re-seeded 
and the serializer serializes the accumulated values, before 
transmitting through the driver. The accumulators are initialized to 
zero for next N samples. Fig. 4 shows the implementation of the 
proposed Wake-up CS encoder. 

For reliable reconstruction at the receiver, the rows of sensing matrix 
are required to be “uncorrelated” with each other. A Dual PRBS-
based sensing matrix [2], consisting of two independent PRBS 
generators, produces the required random Bernoulli matrix by XOR-
ing the output of one PRBS generator with every state of other PRBS 
at lower area and power costs. A Seed update signal is sent to seed 
generator to update the seed of the sensing matrix for every 
incoming input sample. Fig. 4 also shows the circuit implementation 
of the sensing matrix generator.  

The entire CS block occupies 400 µm X 320 µm area in 65nm CMOS 
technology, consuming 2.4-238 μW for data rates varying from 0.1-
15 Mbps. The output waveforms, observed at the oscilloscope, are 
captured, and processed in MATLAB. Fig. 5 shows the timing 
diagram of the input audio signal and output reconstructed signal for 
CF of 3. The test-chip power and specifications are also shown in 
Fig. 5. The consumed power scales with the input data rate, while 
staying almost independent of CF for a particular data rate. The 
leakage power dominates the low speed regime and increases with 
supply voltage. The shmoo plot shows the functionality of the chip at 
different supply voltages. Fig. 6 provides the optimal supply voltage 
needed for operating at different data rates. It is found that for a 15 
Mbps input signal, the minimum supply voltage required is 0.65 V. 
Fig. 6 also shows that CF below 15X provides acceptable signal 
reconstruction. These points correspond to PAEQ MOS >1.5 and 
SNDR > 0.2 dB. Note that inherently sparse signals can be operated 
at higher CF because the signal information present in a 
compression window is much less and thus can be represented by a 
lower value of M. 

The pipelined CS implementation with Wake-up Encoder and on-
chip DWT sparsifier is the first high-speed CS targeted for audio 
signals in energy constrained sensor nodes. It achieves the highest 
input data rate (up to 15 Mbps) in literature, while the Wake-Up 
operation facilitates low power operation (2.4-238 uW). Fig. 6 
compares the present work with other related works in the literature. 
The implemented architecture is generic enough to be applied to 
both sparse and non-sparse signals (all four quadrants in Fig. 1). 
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Fig. 1. i) Challenges for perpetual operation of sensor node and Need for 
Compressive Sensing (CS); ii) Overview of CS operation; iii) Performance 
comparison with related works and Contributions of the proposed work. 

Fig. 2. i) System-level block diagram of implemented CS; ii) Architecture of 
CS Block, utilizing the 2-stage DWT Sparsifier and Wake-Up Encoder; iii) 
Design Flow of Off-Chip processing for signal reconstruction. 

Fig. 3. i) Circuit implementation of DWT Sparsifier, with functional validation 
using sinusoid; ii) Benefits of DWT over DCT in terms of MOS and SNDR; 
iii) Design choice of value of M in the CS Encoding, showing the trade-off
between signal reconstruction time and MOS. 

Fig. 4. i) Architecture of the proposed Wake-up CS Encoder, presenting the 
associated control signals and the power-gating to reduce the overall power 
consumption; ii)  Control flow and Circuit Diagram of the Dual PRBS-based 
sensing matrix generation. 

Fig. 5. Measurement Results for CS IC: (i) Input-Output Timing diagram for 
Audio Input, ii) Variation of power with input Data Rate and Compression 
factor, iii) Shmoo plot, depicting the operability of the IC at different DR and 
Supply voltages, iv) Chip Specifications. 

Fig. 6. i) Optimal supply voltages for different DR to achieve lowest operating 
energy efficiency; ii) Choice of CF for effective reconstruction of audio signal; 
iii) Performance comparison of implemented CS IC with state-of-the-art CS
Encoders; iv) Measurement Setup. 
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i) Optimal supply voltages for different DR to achieve lowest operating energy efficiency; ii) Choice 

of CF for effective reconstruction of audio signal; iii) Performance comparison of implemented CS 

IC with state-of-the-art CS Encoders; iv) Measurement Setup
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