
Journal of Machine Learning Research 21 (2020) 1-49 Submitted 5/20; Revised 10/20; Published 11/20

Online matrix factorization for Markovian data
and applications to Network Dictionary Learning

Hanbaek Lyu hlyu@math.ucla.edu
Department of Mathematics
University of California, Los Angeles, CA 90025, USA

Deanna Needell deanna@math.ucla.edu
Department of Mathematics
University of California, Los Angeles, CA 90025, USA

Laura Balzano girasole@umich.edu
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109, USA

Editor: Julien Mairal

Abstract
Online Matrix Factorization (OMF) is a fundamental tool for dictionary learning problems,
giving an approximate representation of complex data sets in terms of a reduced number of
extracted features. Convergence guarantees for most of the OMF algorithms in the litera-
ture assume independence between data matrices, and the case of dependent data streams
remains largely unexplored. In this paper, we show that a non-convex generalization of
the well-known OMF algorithm for i.i.d. stream of data in (Mairal et al., 2010) converges
almost surely to the set of critical points of the expected loss function, even when the data
matrices are functions of some underlying Markov chain satisfying a mild mixing condition.
This allows one to extract features more efficiently from dependent data streams, as there
is no need to subsample the data sequence to approximately satisfy the independence as-
sumption. As the main application, by combining online non-negative matrix factorization
and a recent MCMC algorithm for sampling motifs from networks, we propose a novel
framework of Network Dictionary Learning, which extracts “network dictionary patches”
from a given network in an online manner that encodes main features of the network. We
demonstrate this technique and its application to network denoising problems on real-world
network data.
Keywords: Online matrix factorization, convergence analysis, Markovian data, dictio-
nary learning, non-negative matrix factorization, networks

1. Introduction

In modern data analysis, a central step is to find a low-dimensional representation to better
understand, compress, or convey the key phenomena captured in the data. Matrix factor-
ization provides a powerful setting for one to describe data in terms of a linear combination
of factors or atoms. In this setting, we have a data matrix X ∈ Rd×n, and we seek a fac-
torization of X into the product WH for W ∈ Rd×r and H ∈ Rr×n. This problem has
gone by many names over the decades, each with different constraints: dictionary learning,
factor analysis, topic modeling, component analysis. It has applications in text analysis, im-

c©2020 Hanbaek Lyu and Deanna Needell and Laura Balzano.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/20-444.html.

Lyu and Needell and Balzano

age reconstruction, medical imaging, bioinformatics, and many other scientific fields more
generally (Sitek et al., 2002; Berry and Browne, 2005; Berry et al., 2007; Chen et al., 2011;
Taslaman and Nilsson, 2012; Boutchko et al., 2015; Ren et al., 2018).

𝑑

𝑛

𝑑

𝑟 𝑛

𝑟 ×
≅ 𝑋 𝑊

𝐻

Dictionary Code Data

Dictionary

NMF

≈

Sample sq. patches

Code

×

1 2 3

4

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

1
2
3
4

1 2 3 4

Graph Matrix Pixel picture

of sq. patches sampled

(rank-r basis)

 𝑘

 𝑘

 𝑘

Figure 1: Illustration of matrix factorization. Each column of the data matrix is approximated
by the linear combination of the columns of the dictionary matrix with coefficients given by the
corresponding column of the code matrix.

Online matrix factorization (OMF) is a problem setting where data are accessed in a
streaming manner and the matrix factors should be updated each time. That is, we get draws
of X from some distribution π and seek the best factorization such that the expected loss
EX∼π

[
‖X −WH‖2F

]
is small. This is a relevant setting in today’s data world, where large

companies, scientific instruments, and healthcare systems are collecting massive amounts of
data every day. One cannot compute with the entire dataset, and so we must develop online
algorithms to perform the computation of interest while accessing them sequentially. There
are several algorithms for computing factorizations of various kinds in an online context.
Many of them have algorithmic convergence guarantees, however, all these guarantees require
that data are sampled independently from a fixed distribution. In all of the application
examples mentioned above, one may make an argument for (nearly) identical distributions
(e.g., using subsampling), but never for independence. This assumption is critical to the
analysis of previous works (see., e.g., (Mairal et al., 2010; Guan et al., 2012; Zhao et al.,
2017)).

A natural way to relax the assumption of independence in this online context is through
the Markovian assumption. In many cases one may assume that the data are not indepen-
dent, but independent conditioned on the previous iteration. The central contribution of
our work is to extend the analysis of online matrix factorization in (Mairal et al., 2010) to
the setting where the sequential data form a Markov chain. This is naturally motivated by
the fact that the Markov chain Monte Carlo (MCMC) method is one of the most versatile
sampling techniques across many disciplines, where one designs a Markov chain exploring
the sample space that converges to the target distribution.

As the main application of our result, we propose a novel framework for network data
analysis that we call Network Dictionary Learning (see Section 6). This allows one to
extract “network dictionary atoms” from a given network that capture the most important
local subgraph patterns in the network. We also propose a network reconstruction algorithm
using the learned network dictionary atoms. A key ingredient is a recent MCMC algorithm
for sampling motifs from networks developed by Lyu together with Memoli and Sivakoff
(Lyu et al., 2019), which provides a stream of correlated subgraph patterns of the given
network. We provide convergence guarantee of our Network Dictionary Learning algorithm

2

OMF for Markovian data

(Corollary 2) as a corollary of our main result, and illustrate our framework through various
real-world network data (see Section 6).

1.1 Theoretical contribution

The main result in the present paper, Theorem 1, rigorously establishes convergence of a
non-convex generalization (3) of the online matrix factorization scheme in (Mairal et al.,
2010; Mairal, 2013b) when the data sequence (Xt)t∈N is realized as a function ϕ(Yt) of some
underlying Markov chain Yt (which includes the case that Xt itself forms a Markov chain)
with a mild mixing condition. A practical implication of our result is that one can now ex-
tract features more efficiently from dependent data streams, as there is no need to subsample
the data sequence to approximately satisfy the independence assumption. We illustrate this
point through an application to sequences of correlated Ising spin configurations generated
by the Gibbs sampler (see Section 5). Our application to the Ising model can easily be gen-
eralized to other well-known spin systems such as the cellular Potts model in computational
biology (Ouchi et al., 2003; Marée et al., 2007; Szabó and Merks, 2013) and the restricted
Boltzmann Machine in machine learning (Nair and Hinton, 2010) (see Section 5).

An important related work is (Mensch et al., 2017), where the authors obtain a pertur-
bative analysis of the original work in (Mairal et al., 2010). In the former, convergence of the
OMF algorithm in (Mairal et al., 2010) (see also (3)) has been established when the time-t
data matrix Xt conditional on the past data is sampled from an approximate distribution
πt that converges to the true distribution π at an exponential rate (see assumption (H) in
(Mensch et al., 2017)). While this work provides an important theoretical justification of
the use of code approximation in the OMF algorithm in (Mairal et al., 2010) (see Ht in (3)),
we emphasize that this result does not imply our main result (Theorem 1) in the present
work. Indeed, when the data (Xt)t∈N forms a Markov chain with transition matrix P , we
have πt = P (Xt−1, ·), and this conditional distribution can even be a constant distance away
from the stationary distribution π. (For instance, consider the case when Xt alternates be-
tween two matrices. Then π = [1/2, 1/2] and πt is either [1, 0] or [0, 1] for all t ≥ 1.) In fact,
this is the main difficulty in analyzing the OMF algorithm (3) for dependent data sequences.
This is a nontriviality that we address in our current work here.

The proof of our main result (Theorem 1) adopts a number of techniques used in (Mairal
et al., 2010; Mairal, 2013b) for the i.i.d. input, but uses a key innovation that handles
dependence in the data matrices directly without subsampling, which can potentially be
applied to relax independence assumptions for convergence of other online algorithms. The
theory of quasi-martingales (Fisk, 1965; Rao, 1969) is a key ingredient in convergence analysis
under i.i.d input in (Mairal et al., 2010; Mairal, 2013b) as well as many other related works.
Namely, one shows that

∞∑
t=0

(
E
[
f̂t+1(Wt+1)− f̂t(Wt)

∣∣∣∣Ft])+

<∞,

where f̂t denotes an associated surrogate loss function, Wt the learned dictionary at time t,
and Ft the filtration of the information up to time t. However, this is not necessarily true
without the independence assumption. Our key insight to overcome this issue is that, while
the 1-step conditional distribution P (Xt−1, ·) may be far from the stationary distribution

3

Lyu and Needell and Balzano

π, the N -step conditional distribution PN (Xt−N , ·) is exponentially close to π under mild
conditions. More precisely, we use conditioning on a “distant past” Ft−at , not on the present
Ft, in order to allow the Markov chain to mix close enough to the stationary distribution
π for at iterations. Then concentration of Markov chains allows us to choose a suitable
sequence 1 ≤ at ≤ t (see Proposition 9 and Lemma 12), for which we show

∞∑
t=0

E

[(
E
[
f̂t+1(Wt+1)− f̂t(Wt)

∣∣∣∣Ft−at])+
]
<∞

in the dependent case, from which we derive our main result.

2. Background

In this section, we provide some relevant background and state the main problem and
algorithm.

2.1 Topic modeling and matrix factorization

Topic modeling (or dictionary learning) aims at extracting important features of a complex
dataset so that one can approximately represent the dataset in terms of a reduced number
of extracted features (topics) (Blei et al., 2003). Topic models have been shown to efficiently
capture latent intrinsic structures of text data in natural language processing tasks (Steyvers
and Griffiths, 2007; Blei et al., 2010). One of the advantages of topic modeling based
approaches is that the extracted topics are often directly interpretable, as opposed to the
arbitrary abstraction of deep neural network based approach.

Matrix factorization is one of the fundamental tools in dictionary learning problems.
Given a large data matrix X, can we find some small number of “dictionary vectors” so
that we can represent each column of the data matrix as a linear combination of dictionary
vectors? More precisely, given a data matrix X ∈ Rd×n and sets of admissible factors
C ⊆ Rd×r and C′ ⊆ Rr×n, we wish to factorize X into the product of W ∈ C and H ∈ C′ by
solving the following optimization problem

inf
W∈C⊆Rd×r, H∈C′⊆Rr×n

‖X −WH‖2F , (1)

where ‖A‖2F =
∑

i,j A
2
ij denotes the Frobenius norm. Here W is called the dictionary and H

is the code of data X using dictionary W . A solution of such matrix factorization problem
is illustrated in Figure 1.

When there are no constraints for the dictionary and code matrices, i.e., C = Rd×r
and C′ = Rr×n, then the optimization problem (1) is equivalent to principal component
analysis, which is one of the primary techniques in data compression and dictionary learning.
In this case, the optimal dictionary W for X is given by the top r eigenvectors of its
covariance matrix, and the corresponding code H is obtained by projecting X onto the
subspace generated by these eigenvectors. However, the dictionary vectors found in this
way are often hard to interpret. This is in part due to the possible cancellation between
them when we take their linear combination, with both positive and negative coefficients.

4

OMF for Markovian data

When the admissible factors are required to be non-negative, the optimization problem
(1) is an instance of Nonnegative matrix factorization (NMF), which is one of the funda-
mental tools in dictionary learning problems that provides a parts-based representation of
high dimensional data (Lee and Seung, 1999; Lee et al., 2009). Due to the non-negativity
constraint, each column of the data matrix is then represented as a non-negative linear com-
bination of dictionary elements (See Figure 1). Hence the dictionaries must be "positive
parts" of the columns of the data matrix. When each column consists of a human face
image, NMF learns the parts of human face (e.g., eyes, nose, and mouth). This is in con-
trast to principal component analysis and vector quantization: Due to cancellation between
eigenvectors, each “eigenface” does not have to be parts of face (Lee and Seung, 1999).

2.2 Online Matrix Factorization

Many iterative algorithms to find approximate solutions WH to the optimization problem
(1), including the well-known Multiplicative Update by Lee and Seung (Lee and Seung,
2001), are based on a block optimization scheme (see (Gillis, 2014) for a survey). Namely,
we first compute its representation Ht using the previously learned dictionary Wt−1, and
then find an improved dictionary Wt (see Figure 2 with setting Xt ≡ X).

Figure 2: Iterative block scheme of functional OMF. (Yt)t∈N is the sequence of underlying infor-
mation. At each time t, a data matrix Xt of interest is observed from information Yt via a fixed
function ϕ. Sequences of dictionaries (Wt)t∈N and codes (Ht)t∈N are learned from data matrices by
a block optimization scheme.

A main example in this setting is when Yt is a homomorphism x : F → G from a k-node
network F with node set [k] = {1, 2, . . . , k} into a n-node network G with node set V , which
is an element of V [k], and Xt is the k× k matrix that is the adjacency matrix of the k-node
subnetwork of G induced by x. There, one may sample a random homomorphism x using a
Markov chain Monte Carlo (MCMC) algorithm so that {Yt} forms a Markov chain, but the
induced k × k maxtrix sequence Xt may not form a Markov chain (see Section 6).

Despite their popularity in dictionary learning and image processing, one of the draw-
backs of these standard iterative algorithms for NMF is that we need to store the data matrix
(which is of size O(dn)) during the iteration, so they become less practical when there is a
memory constraint and yet the size of data matrix is large. Furthermore, in practice only
a random sample of the entire dataset is often available, in which case we are not able to
apply iterative algorithms that require the entire dataset for each iteration.

5

Lyu and Needell and Balzano

The Online Matrix Factorization (OMF) problem concerns a similar matrix factoriza-
tion problem for a sequence of input matrices. Here we give a more general and flexible
formulation of OMF. Roughly speaking, for each time t ∈ N, one observes information Yt,
from which a data matrix Xt of interest is extracted as Xt = ϕ(Yt), for a fixed function ϕ.
We then want to learn sequences of dictionaries (Wt)t∈N and codes (Ht)t∈N from the stream
(Xt)t∈N of data matrices.

For a precise formulation, let (Yt)t∈N be a discrete-time stochastic process of information
taking values in a fixed sample space Ω with unique stationary distribution π. Fix a function
ϕ : Ω→ Rd×n, and define Xt = ϕ(Yt) for each t ∈ N. Fix sets of admissible factors C ⊆ Rd×r
and C′ ⊆ Rr×n for the dictionaries and codes, respectively. The goal of the functional OMF
problem is to construct a sequence (Wt, Ht)t≥1 of dictionary Wt ∈ C ⊆ Rd×r and codes
Ht ∈ C′ ⊆ Rr×n such that, almost surely as t→∞,

‖Xt −Wt−1Ht‖2F → inf
W∈C, H∈C′

EY∼π
[
‖ϕ(Y)−WH‖2F

]
. (2)

Here and throughout, we write EY∼π to denote the expected value with respect to the
random variable Y that has the distribution described by π. Thus, we ask that the sequence
of dictionary and code pairs provides a factorization error that converges to the best case
average error. Since (2) is a non-convex optimization problem, it is reasonable to expect
that Wt converges only to a locally optimal solution in general. Convergence guarantees to
global optimum is a subject of future work.

We also mention recent related work in the online dictionary learning setting with the fol-
lowing modeling assumption: The time-t data is given by Xt = W ∗Ht for some unknown but
fixed dictionary W ∗, and the code matrix Ht is sampled independently from a distribution
concentrated around an unknown code matrix H∗. Under some suitable additional assump-
tions, a convergence guarantee both for the dictionaries Wt →W ∗ and codes Ht → H∗ has
been obtained by Rambhatla et al. (2019).

2.3 Algorithm for online matrix factorization

In the literature of OMF, one of the crucial assumptions is that the sequence of data matrices
(Xt)t∈N are drawn independently from a common distribution π (see., e.g., (Mairal et al.,
2010; Guan et al., 2012; Zhao et al., 2016)). In this paper, we analyze convergence properties
of the following scheme of OMF:

Upon arrival of Xt:

Ht = arg minH∈C′⊆Rr×n‖Xt −Wt−1H‖2F + λ‖H‖1
At = (1− wt)At−1 + wtHtH

T
t

Bt = (1− wt)Bt−1 + wtHtX
T
t

Wt = arg minW∈C⊆Rd×r

(
tr(WAtW

T)− 2tr(WBt)
)

s.t. tr((BT
t −WAt)(Wt−1 −W)T) ≤ 0

, (3)

where (wt)t≥1 is a prescribed sequence of weights, and A0 and B0 are zero matrices of size
r × r and r × d, respectively. Note that the L2-loss function is augmented with the `1-
regularization term λ‖H‖1 with regularization parameter λ ≥ 0, which forces the code Ht

to be sparse. See Appendix B for a more detailed algorithm implementing (3).

6

OMF for Markovian data

In the above scheme, the auxiliary matrices At ∈ Rr×r and Bt ∈ Rr×d effectively
aggregate the history of data matrices X1, . . . , Xt and their best codes H1, . . . ,Ht. The
previous dictionary Wt−1 is updated to Wt, which minimizes a quadratic loss function
tr(WAtW

T)− 2tr(WBt) in the (not necessarily convex) constraint set C ⊆ Rd×r subject to
the additional ellipsoidal constraint tr((BT

t −WAt)(Wt−1−W)T) ≤ 0. This extra condition
means that Wt should lie inside an ellipsoid with an axis between the previous iterate Wt−1

and the global minimum A−1
t BT

t of the unconstrained quadratic function (see Figure 4 for
illustration). We present an algorithm that solves this quadratic problem when C is the
disjoint union of convex sets (see Algorithm 3).

When C is convex and wt = 1/t for all t ≥ 1, the ellipsoidal condition for Wt becomes
redundant and (3) reduces to the classical algorithm of OMF in the celebrated work by
Mairal et al. (Mairal et al., 2010). Assuming that Xt’s are independently drawn from the
stationary distribution π, with additional mild assumption, the authors of Mairal et al.
(2010) proved that the sequence (Wt)t∈N converges to a critical point of the expected loss
function in (2) augmented with the `1-regularization term λ‖H‖1. Later, Mairal generalized
a similar convergence result under independence assumption for a broader class of non-convex
objective functions (Mairal, 2013b).

2.4 Preliminary example of dictionary learning from dependent data samples
from images

Here we give a preliminary example of dictionary learning from dependent data samples
from images. One of the well-known applications of NMF is for learning dictionary patches
from images and image reconstruction. For a standard NMF application, we first choose an
appropriate patch size k ≥ 1 and extract all k × k image patches from a given image. In
terms of matrices, this is to consider the set of all (k × k) submatrices of the image with
consecutive rows and columns. If there are N such image patches, we are forming (k2 ×N)
patch matrix to which we apply NMF to extract dictionary patches. It is reasonable to
believe that there are some fundamental features in the space of all image patches since
nearby pixels in the image are likely to be spatially correlated.

A computationally more efficient way of learning dictionary patches, especially from large
images, is to use online NMF algorithms to minibatches of patches sampled randomly from
the image. It is easy to sample k×k patches independently and uniformly from a given image,
hence we can generate i.i.d. minibatches of a fixed number of patches. On the other hand,
we can also generate a dependent sample of patches by using simple symmetric random walk
on the image, meaning that the next patch is chosen from the four single-pixel shifts of the
previous one with equal probability (using periodic boundary condition). A toy example for
this application of online NMF for these two different sampling methods is shown in Figure
3. However, we report that the set of learned dictionaries for the random walk sampling
method does appear more localized when for less iterations, which is reasonable since then
the random walk may only explore a restricted portion of the entire image. See Section 5
for more details about applications on dictionary learning from MCMC trajectories.

7

Lyu and Needell and Balzano

 i.i.d. sampling Markovian sampling

Learned dictionary patches
Reconstructed-i.i.d. Reconstructed-Markov

Dictionary patches learned
by Markovian sampling

(𝑎) (𝑐) (𝑒)

Original image

(𝑏) (𝑑)

Figure 3: Learning 100 dictionary patches of size 10 from M.C. Escher’s Cycle (1938) shown in
(c) by online NMF and two different sampling methods. Randomly sampled minibatches of 1000
patches of size 10 are fed into an online NMF algorithm for 500 iterations, where in (a), patches
are sampled independently and uniformly, and in (b), the top left corner of the patches performs
a simple symmetric random walk on the image. (d) and (e) show reconstructed images using the
learned dictionary patches in (a) and (b), respectively.

2.5 Notation

Fix integers m,n ≥ 1. We denote by Rm×n the set of all m× n matrices of real entries. For
any matrix A, we denote its (i, j) entry, ith row, and jth column by Aij , [A]i•, and [A]•j .
For each A = (Aij) ∈ Rm×n, denote its one, Frobenius and operator norms by ‖A‖1, ‖A‖F ,
and ‖A‖op, respectively, where

‖A‖1 =
∑
ij

|aij |, ‖A‖2F =
∑
ij

a2
ij , ‖A‖op = inf{c > 0 : ‖Ax‖F ≤ c‖x‖F for all x ∈ Rn}.

For any subset A ⊂ Rm×n and X ∈ Rn×m, denote

R(A) = sup
X∈A
‖X‖F , dF (X,A) = inf

Y ∈A
‖X − Y ‖F . (4)

For any continuous functional f : Rm×n → R and a subset A ⊆ RN , we denote

arg min
x∈A

f =

{
x ∈ A

∣∣∣∣ f(x) = inf
y∈A

f(y)

}
.

When arg minx∈A f is a singleton {x∗}, we identify arg minx∈A f as x∗.
For any event A, we let 1A denote the indicator function of A, where 1A(ω) = 1 if ω ∈ A

and 0 otherwise. We also denote 1A = 1(A) when convenient. For each x ∈ R, denote
x+ = max(0, x) and x− = max(0,−x). Note that x = x+ − x− for all x ∈ R and the
functions x 7→ x± are convex.

Let N = {0, 1, 2, . . . } denote the set of nonnegative integers. For each integer n ≥ 1,
denote [n] = {1, 2, . . . , n}. A simple graph G = ([n], AG) is a pair of its node set [n] and its

8

OMF for Markovian data

adjacency matrix AG, where AG is a symmetric 0-1 matrix with zero diagonal entries. We
say nodes i and j are adjacent in G if AG(i, j) = 1.

3. Preliminary discussions

3.1 Markov chains on countable state space

We note that from here on, Markov chains will be denoted as Yt and we reserve Xt to denote
the data. We first give a brief summary on Markov chains. (see, e.g., (Levin and Peres,
2017)). Fix a countable set Ω. A function P : Ω2 → [0,∞) is called a Markov transition
matrix if every row of P sums to 1. A sequence of Ω-valued random variables (Yt)t∈N is
called a Markov chain with transition matrix P if for all y0, y1, . . . , yn ∈ Ω,

P(Yn = yn |Yn−1 = yn−1, . . . , Y0 = y0) = P(Yn = yn |Yn−1 = yn−1) = P (Yn−1, yn). (5)

We say that a probability distribution π on Ω is a stationary distribution for the chain
(Yt)t∈N if π = πP , that is,

π(x) =
∑
y∈Ω

π(y)P (y, x).

We say the chain (Yt)t∈N is irreducible if for any two states x, y ∈ Ω there exists an integer
t ∈ N such that P t(x, y) > 0. For each state x ∈ Ω, let T (x) = {t ≥ 1 |P t(x, x) > 0} be
the set of times when it is possible for the chain to return to starting state x. We define the
period of x by the greatest common divisor of T (x). We say the chain Yt is aperiodic if all
states have period 1. Furthermore, the chain is said to be positive recurrent if there exists
a state x ∈ Ω such that the expected return time of the chain to x started from x is finite.
Then an irreducible and aperiodic Markov chain has a unique stationary distribution if and
only if it is positive recurrent (Levin and Peres, 2017, Thm 21.21).

Given two probability distributions µ and ν on Ω, we define their total variation distance
by

‖µ− ν‖TV = sup
A⊆Ω
|µ(A)− ν(A)|.

If a Markov chain (Yt)t∈N with transition matrix P starts at y0 ∈ Ω, then by (5), the
distribution of Yt is given by P t(y0, ·). If the chain is irreducible and aperiodic with stationary
distribution π, then the convergence theorem (see, e.g., (Levin and Peres, 2017, Thm 21.14))
asserts that the distribution of Yt converges to π in total variation distance: As t→∞,

sup
y0∈Ω

‖P t(y0, ·)− π‖TV → 0. (6)

See (Meyn and Tweedie, 2012, Thm 13.3.3) for a similar convergence result for the general
state space chains. When Ω is finite, then the above convergence is exponential in t (see.,
e.g., (Levin and Peres, 2017, Thm 4.9))). Namely, there exists constants ξ ∈ (0, 1) and
C > 0 such that for all t ∈ N,

max
y0∈Ω

‖P t(y0, ·)− π‖TV ≤ Cξt. (7)

Markov chain mixing refers to the fact that, when the above convergence theorems hold,
then one can approximate the distribution of Yt by the stationary distribution π.

9

Lyu and Needell and Balzano

3.2 Empirical Risk Minimization for OMF

Define the following quadratic loss function of the dictionary W ∈ Rd×r with respect to data
X ∈ Rd×n

`(X,W) = inf
H∈C′⊆Rr×n

‖X −WH‖2F + λ‖H‖1, (8)

where C′ denotes the set of admissible codes and λ > 0 is a fixed `1-regularization parameter.
For each W ∈ C define its expected loss by

f(W) = EY∼π[`(ϕ(Y),W)]. (9)

Suppose arbitrary sequences of data matrices (Xt)t∈N is given. Fix a non-increasing sequence
of weights (wt)t∈N in (0, 1). Define the (weighted) empirical loss ft(W) recursively as

ft(W) = (1− wt)ft−1(W) + wt`(Xt,W), t ≥ 1,W ∈ C, (10)

where we take f0 ≡ 0. Note that when we take “balanced weights” wt = 1/t for all t ≥ 1,
then the weighted empirical loss function takes the usual form ft(W) = t−1

∑t
s=1 `(Xs,W),

where all losses are counted evenly. For wt � 1/t (e.g., wt = t−3/4), we take the recent
losses more importantly than the past ones.

Suppose the sequence of data matrices (Xt)t≥1 itself is an irreducible Markov chain on Ω
with unique stationary distribution π. Note that for the balanced weights wt = 1/t, by the
Markov chain ergodic theorem (see, e.g., (Durrett, 2010, Thm 6.2.1, Ex. 6.2.4) or (Meyn and
Tweedie, 2012, Thm. 17.1.7)), for each dictionary W , the empirical loss converges almost
surely to the expected loss:

lim
t→∞

ft(W) = f(W) a.s.

In fact, this almost sure convergence holds for the weighted case uniformly in W varying
in compact C (see Lemma 11). This observation and the block optimization scheme in
Subsection 2.2 suggests the following scheme for our functional OMF proglem:

Upon arrival of Xt:

{
Ht = arg minH∈C′‖Xt −Wt−1H‖2F + λ‖H‖1
Wt = arg minW∈C ft(W).

(11)

Finding Ht in (11) can be done using a number of known algorithms (e.g., LARS (Efron
et al., 2004), LASSO (Tibshirani, 1996), and feature-sign search (Lee et al., 2007)) in this
formulation. However, there are some important issues in solving the optimization problem
for Wt in (11). Note that minimizing empirical loss to find Wt as above is an example
of empirical risk minimization (ERM), which is a classical problem in statistical learning
theory (Vapnik, 1992). For i.i.d., data points, recent advances guarantees that solutions of
ERM even for a class of non-convex loss functions converges to the set of local minima of
the expected loss function (Mei et al., 2018). However, such convergence guarantee is not
known for dependent data points, and there some important computational shortcomings
in the above ERM for our OMF problem. Namely, in order to compute the empirical loss
ft(W), we may have to store the entire history of data matrices X1, . . . , Xt, and we need to
solve t instances of optimization problem (8) for each summand of ft(W). Both of these are
a significant requirement for memory and computation. These issues are addressed in the
OMF scheme (3), as we discuss in the following subsection.

10

OMF for Markovian data

3.3 Asymptotic solution minimizing surrogate loss function

The idea behind the OMF scheme (3) is to solve the following approximate problem

Upon arrival of Xt:

{
Ht = arg minH∈C′‖Xt −Wt−1H‖2F + λ‖H‖1
Wt = arg minW∈C f̂t(W)

(12)

with a given initial dictionary W0 ∈ C, where f̂t(W) is an upper bounding surrogate for
ft(W) defined recursively by

f̂t(W) = (1− wt)f̂t−1(W) + wt
(
‖Xt −WHt‖2F + λ‖Ht‖1

)
with f̂0 ≡ 0. Namely, we recycle the previously found codes H1, . . . ,Ht and use them as
approximate solutions of the sub-problem (8). Hence, there is only a single optimization for
Wt in the relaxed problem (12).

It seems that this might still require storing the entire history X1, X2, . . . , Xt of data
matrices up to time t. But in fact we only need to store two summary matrices At ∈ Rr×r
and Bt ∈ Rr×d. Indeed, (12) is equivalent to the optimization problem (3) stated in the
introduction. To see this, note that

‖X −WH‖2F = tr
(
(X −WH)(X −WH)T

)
= tr(WHHTW T)− 2tr(WHXT) + tr(XXT).

Hence if we let At and Bt be recursively defined as in (3), then we can write

f̂t(W) = tr(WAtW
T)− 2tr(WBt) + rt, (13)

where rt does not depend on W . This explains the quadratic objective function for Wt in
(3).

4. Statement of main results

4.1 Setup and assumptions

Fix integers d, n, r ≥ 1 and a constant λ > 0. Here we list all technical assumptions required
for our convergence results to hold.

(A1). The observed data matrices Xt are given by Xt = ϕ(Yt), where Yt are drawn from a
countable sample space Ω (hence Ω is measurable with respect to the counting measure), and
ϕ : Ω→ Rd×n is a bounded function.

(A2). Dictionaries Wt are constrained to the subset C ⊆ Rd×r, which is the disjoint union
of compact and convex sets C1, C2, . . . , Cm in Rd×r.

(M1). The sequence of information (Yt)t∈N is an irreducible, aperiodic, and positive recur-
rent Markov with state space Ω. We let P and π denote the transition matrix and unique
stationary distribution of the chain (Yt)t∈N, respectively.

11

Lyu and Needell and Balzano

(M2). There exists a sequence (at)t∈N of non-decreasing integers such that

0 ≤ at < t,
∞∑
t=1

w2
t−at
√
t <∞,

∞∑
t=1

w2
t at <∞,

∞∑
t=1

wt sup
y∈Ω
‖P at+1(y, ·)− π‖TV <∞.

(C1). The loss and expected loss functions ` and f defined in (8) and (9) are continuously
differentiable and have Lipschitz gradient.

(C2). The eigenvalues of the positive semidefinite matrix At defined in (3) are at least some
constant κ1 > 0 for all sufficiently large t ∈ N.

It is standard to assume compact support for data matrices as well as dictionaries, which
we do for as well in (A1) and (A2). We remark that our analysis and main results still hold
in the general state space case, but this requires a more technical notion of the positive
Harris chains irreducibility assumption in order to use the functional central limit theorem
for general state space Markov chains (Meyn and Tweedie, 2012, Thm. 17.4.4). We restrict
our attention to the countable state space Markov chains in this paper.

The motivation behind assumptions (A1) and (M1) is the following. If the sample space
Ω as well as the desired distribution π are complicated, then one may use a Markov chain
Monte Carlo (MCMC) algorithm to sample information according to π, which will then
be processed to form a meaningful data matrix. For the MCMC sampling, one designs a
Markov chain on Ω that has π as a stationary distribution, and then show that the chain is
irreducible, aperiodic, and positive recurrent. Then by the general Markov chain theory we
have summarized in Subsection 3.1, π is the unique stationary distribution of the chain.

On the other hand, (M2) is a very weak assumption on the rate of convergence of the
Markov chain (Yt)t∈N to its stationary distribution π. Note that (M2) follows from

(M2)’. There exist constants β ∈ (3/4, 1] and γ > 2(1− β) such that

wt = O(t−β), sup
y∈Ω
‖P t(y, ·)− π‖TV = O(t−γ).

Indeed, it is easy to verify that (M2)’ with at = b
√
tc implies (M2). Furthermore, the

mixing condition in (M2)’ is automatically satisfied when Ω is finite, which in fact covers
many practical situations. Indeed, assuming (M1) and that Ω is finite, the convergence
theorem (7) provides an exponential rate of convergence of the empirical distribution of the
chain to π, in particular implying the polynomial rate of convergence in (M2)’.

Next, we comment on (A2). Our analysis holds as long as we can solve the quadratic
minimization problem for Wt under the constraint C intersected with the ellipsoid Et :=
tr((BT

t −WAt)(Wt−1−W)T) ≤ 0 with Hessian matrix At (see (3)). A particular instance of
interest is when C is the disjoint union of convex constraint sets Ci as in (A2). By definition
At is positive semidefinite, so each Ci ∩ Et is convex. Hence under (A2), we can solve Wt in
(3) by solving the convex sub-problems on each Ci∩Et (see Algorithm 3 for details, and also
Figure 4 right). This setting will be particularly useful for dictionary learning for multi-
cluster data set, where it is desirable to find a dictionary that lies in one of multiple convex
hulls of representative elements in each cluster (Peng et al., 2019). In the special case when
C is convex, the additional ellipsoidal condition becomes redundant (see Proposition 6 (iii)

12

OMF for Markovian data

and also Figure 4 left), so the algorithm (3) as well as the assumption (A2) reduce to the
standard ones in (Mairal et al., 2010; Mairal, 2013a,b)).

Below we give a brief discussion about why we need to use the additional ellipsoidal
constraint for the dictionary update in the general non-convex C case. A crucial ingredient
in the convergence analysis of the OMF algorithm (Algorithm 3) is the following so-called
‘second-order growth property’:

gt(Wt)− gt(Wt−1) ≥ c‖Wt −Wt−1‖2F for all t ≥ 1. (14)

Here gt is the quadratic function defined by gt(W) = tr(WAtW
T)−2tr(WBt), where At and

Bt are recursively computed by Algorithm 3. Roughly speaking, it should be guaranteed
that we improve in minimizing gt quadradically in the change of the dictionary matrix
Wt −Wt−1. However, when C is non-convex, it is possible that one may pay a large change
from Wt−1 to Wt and still do not gain any meaningful improvement in minimizing gt (see
Figure 4, middle). The ellipsoidal constraint Et ensures the second-order growth property
(14) when we optimize gt in C ∩ Et (see Proposition 6 (i)).

𝑡𝑟 (𝐵 − 𝑊𝐴)(𝑊 − 𝑊) ≤ 0

𝒞

𝑔 (𝑊) = 𝑐

𝐴 𝐵

𝑊

Ellipsoid

𝑊

𝒞

𝑔 (𝑊) = 𝑐

𝐴 𝐵

𝑊

Ellipsoid

𝑊

𝒞

𝑔 (𝑊) = 𝑐

𝐴 𝐵

𝑊

Ellipsoid

𝑊

argmin𝒞 g

argmin𝒞 g

𝒞

𝒞

Figure 4: Illustration of the constraint quadratic minimization problem for the dictionary update
step in the main algorithm (3). There, the updated dictionary matrix Wt is found by minimizing
the quadratic function gt(W) = tr(WAtW

T) − 2tr(WBt) (global minimum at A−1t BTt), where At
and Bt are recursively computed by the algorithm (3), over the constraint set C intersected with the
ellipsoid Et := tr((BTt −WAt)(Wt−1 −W)T) ≤ 0. (Left) If C is convex, the additional ellipsoidal
constraint becomes redundant. (Middle) If C is non-convex, the second-order growth condition (14)
may be violated by the minimizer of gt in C but is still guaranteed with the ellipsoidal condition.
(Right) When C is the disjoint union of convex sets, then the constraint quadratic problem on C ∩Et
can be exactly solved.

Our main result, Theorem 1, guarantees that both the empirical and surrogate loss
processes (ft(Wt)) and (f̂t(Wt)) converge almost surely under the assumptions (A1)-(A2)
and (M1)-(M2). The assumptions (C1)-(C2), which are also used in (Mairal et al., 2010),
are sufficient to ensure that the limit point is a critical point of the expected loss function
f defined in (9).

We remark that (C1) follows from the following alternative condition (see (Mairal et al.,
2010, Prop. 1)):

13

Lyu and Needell and Balzano

(C1)’. For each X ∈ Ω and W ∈ C, the sparse coding problem in (8) has a unique solution.

In order to enforce (C1)’, we may use the elastic net penalization by Zou and Hastie
(Zou and Hastie, 2005). Namely, we may replace the first equation in (3) by

Ht = arg min
H∈C′⊆Rr×n

‖Xt −Wt−1H‖2F + λ‖H‖1 +
κ2

2
‖H‖2F (15)

for some fixed constant κ2 > 0. See the discussion in (Mairal et al., 2010, Subsection 4.1)
for more details.

On the other hand, (C2) guarantees that the eigenvalues of At produced by (3) are lower
bounded by the constant κ1 > 0. It follows that At is invertible and f̂t is strictly convex
with Hessian 2At. This is crucial in deriving Proposition 7, which is later used in the proof
of Theorem 1. Note that (C2) can be enforced by replacing the last equation in (3) with

Wt = arg min
W∈C⊆Rd×r

(
tr
(
W (At + κ1I)W T

)
− 2tr(WBt)

)
(16)

s.t. tr((BT
t −WAt)(Wt−1 −W)T) ≤ 0.

The same analysis for the algorithm (3) that we will develop in the later sections will apply
for the modified version with (15) and (16), for which (C1)-(C2) are trivially satisfied.

4.2 Statement of main results

Our main result in this paper, which is stated below in Theorem 1, asserts that under the
OMF scheme (3), the induced stochastic processes (ft(Wt))t∈N and (f̂t(Wt))t∈N converge as
t→∞ in expectation. Furthermore, the sequence (Wt)t∈N of learned dictionaries converge
to the set of critical points of the expected loss function f .

Theorem 1. Suppose (A1)-(A2) and (M1)-(M2). Let (Wt, Ht)t≥1 be a solution to the
optimization problem (3). Further assume that

∑∞
t=1wt =∞. Then the following hold.

(i) limt→∞ E[ft(Wt)] = limt→∞ E[f̂t(Wt)] <∞.

(ii) ft(Wt)− f̂t(Wt)→ 0 and f(Wt)− f̂t(Wt)→ 0 as t→∞ almost surely.

(iii) Further assume (C1)-(C2). Then almost surely,

lim
t→∞
‖∇W f(Wt)− 2(WtAt −Bt)‖F = 0.

Furthermore, the distance between Wt and the set of all local extrema of f in C con-
verges to zero almost surely.

The second part of Theorem 1 (ii) is a new result based on the first part and a uniform
convergence result in Lemma 11. This implies that for large t, the true objective function
f(Wt), which requires averaging over random data matrices sampled from the stationary
distribution π, can be approximated by the easily computed surrogate objective f̂t(Wt). If
we further assume that the global minimizer of the quadratic function g(W) = tr(WAtW

T)−
2tr(WBt) is in the interior of the constraint set C, then ∇W g(Wt) = 2(WtAt − Bt) ≡ 0, so

14

OMF for Markovian data

Theorem 1 (iii) yields ‖∇W f(Wt)‖F → 0 almost surely as t → ∞. We also remark that in
the special case of convex constraint set C for dictionaries, i.i.d. data matrices (Xt)t∈N, and
balanced weights wt = 1/t, our results above recover the classical results in (Mairal et al.,
2010, Prop. 2 and 3). For general weighting scheme and objective functions, similar results
were obtained (Mairal, 2013b) using similar proof techniques.

As discussed in Subsection 1.1, the core of our proof of Theorem 1 is to use conditioning
on distant past in order to allow the Markov chain to mix close enough to the stationary
distribution π. This allows us to control the difference between the new and the average
losses by concentration of Markov chains (see Proposition 9 and Lemma 12), overcoming
the limitation of the quasi-martingale based approach typically used for i.i.d. input (Mairal
et al., 2010; Mairal, 2013a,b). A practical implication of the theoretical result is that one can
now extract features more efficiently from the same dependent data streams, as there is no
need to subsample the data sequence to approximately satisfy the independence assumption.

It is worth comparing our approach that directly handles Markovian dependence to the
popular approach using subsampling. Namely, if we keep only one Markov chain sample in
every τ iterations (subsampling epoch) then the remaining samples are asymptotically in-
dependent provided the epoch τ is long enough compared to the mixing time of the Markov
chain. A similar line of approach was used in (Yang et al., 2019) for a relevant but different
problem of factorizing the unknown transition matrix of a Markov chain by observing its
trajectory. However, there are a number of shortcomings in the approach based on subsam-
pling. First, consecutive samples obtained after subsampling are nearly independent, but
never completely independent. Hence subsampling dependent sequences does not rigorously
verify independence assumption. Second, subsampling makes use of only a small portion of
the already obtained samples, which may be not be of the most efficient use of given data
samples. Our approach directly handles Markovian dependence in data samples and hence
does not suffer from these shortcomings. See Section 5 for a numerical verification of this
claim.

5. Application I: Learning features from MCMC trajectories

In this section, we demonstrate learning features from a single MCMC trajectory of depen-
dent samples in the case of two-dimensional Ising model, which was first introduced by Lenz
in 1920 for modeling ferromagnetism (Lenz, 1920) and has been one of the most well-known
spin systems in the physics literature. Our analysis for the Ising model could easily be
generalized to the other well-known spin systems such as the Potts model (Wu, 1982), the
cellular Potts model (Ouchi et al., 2003; Marée et al., 2007; Szabó and Merks, 2013), or the
restricted Boltzmann Machine (Nair and Hinton, 2010).

5.1 Spin systems and the Ising model

Consider a general system of binary spins. Namely, let G = (V,E) be a simple graph with
vertex set V and edge set E. Imagine each vertex (site) of G can take either of the two
states (spins) +1 or −1. A complete assignment of spins for each site in G is given by a
spin configuration, which we denote by a map x : V → {−1, 1}. Let Ω = {−1, 1}V denote
the set of all spin configurations. In order to introduce a probability measure on Ω, fix a

15

Lyu and Needell and Balzano

function H(·; θ) : Ω → R parameterized by θ, which is called a Hamiltonian of the system.
For each choice of parameter θ, we define a probability distribution πθ on the set Ω of all
spin configurations by

πθ(x) =
1

Zθ
exp (−H(x; θ)) , (17)

where the partition function Zθ is defined by Zθ =
∑

x∈Ω exp (−H(x; θ)). The induced
probability measure Pθ on {−1, 1}V is called a Gibbs measure.

The Ising model is defined by the following Hamiltonian

H(x;T, h) =
1

T

− ∑
{u,v}∈E

x(u)x(v)−
∑
v∈V

h(v)x(v)

 ,

where x is the spin configuration, the parameter T is called the temperature, and h : V → R
the external field. In this paper we will only consider the case of zero external field. Note that,
with respect to the corresponding Gibbs measure, a given spin configuration x has higher
probability if the adjacent spins tend to agree, and this effect of adjacent spin agreement
is emphasized (resp., diminished) for low (resp., high) temperature T . Different choice of
the spin space Ω and the Hamiltonian H lead to other well-known spin systems such as the
Potts model, cellular Potts Model, and the restricted Bolzman Machine (Nair and Hinton,
2010) (see the references given before).

5.2 Gibbs sampler for the Ising model

One of the most extensively studied Ising models is when the underlying graph G is the
two-dimensional square lattice (see (McCoy and Wu, 2014) for a survey). It is well known
that in this case the Ising model exhibits a sharp phase transition at the critical temperature
T = Tc = 2/ log(1+

√
2) ≈ 2.2691. Namely, if T < Tc (subcritical phase), then there tends to

be large clusters of +1’s and −1 spins; if T > Tc (supercritical phase), then the spin clusters
are very small and fragmented; at T = Tc (criticality), the cluster sizes are distributed as a
power law.

In order to sample a random spin configuration x ∈ Ω, we use the following MCMC
called the Gibbs sampler. Namely, let the underlying graph G = (V,E) be a finite N × N
square lattice. We evolve a given spin configuration xt : V → {−1, 1} at iteration t as
follows:

(i) Choose a site v ∈ V uniformly at random;

(ii) Let x+ and x− be the spin configurations obtained from xt by setting the spin of v to
be 1 and −1, respectively. Then

p(xt, x
+) =

π(x+)

π(x+) + π(x−)
, p(xt, x

−) =
π(x−)

π(x+) + π(x−)
.

Note that p(xt+1, x
+) = (1 + exp(2T−1

∑
u∼v xt(u)))−1, where the sum in the exponential

is over all neighbors u of v. Iterating the above transition rule generates a Markov chain
trajectory (xt)t∈N of Ising spin configurations, and it is well known that it is irreducible,
aperiodic, and has the Boltzmann distribution πT (defined in (17)) as its unique stationary
distribution.

16

OMF for Markovian data

5.3 Learning features from Ising spin configurations

Suppose we want to learn features from a random element X in a sample space Ω with
distribution π. When the sample space is complicated, it is often not easy to directly sample
a random element from it according to the prescribed distribution π. While Markov chain
Monte Carlo (MCMC) provides a fundamental sampling technique that uses Markov chains
to sample a random element (see, e.g., (Levin and Peres, 2017)), it inherently generates a
dependent sequence of samples. In order to satisfy the independence assumption in most
online learning algorithms, either one may generate each sample by a separate MCMC
trajectory, or uses subsampling to reduce the dependence in a given MCMC trajectory.
Both of these approaches suffer from inefficient use of already obtained data sample and
never guarantee perfect independence. However, as our main result (Theorem 1) guarantees
almost sure convergence of the dictionaries under Markov dependence, we may use arbitrary
(or none) subsampling epoch to optimize the learning for a given MCMC trajectory. We will
show that learning features from dependent sequence of data yields qualitatively different
outcome, and also significantly improves efficiency of the learning process.

Figure 5: Plot of surrogate losses (normalized by 4 × 104) vs. MCMC iterations (unit 104) for
subsampling epochs of 1000, 10000, 100000, and 500000 for temperatures T = 0.5 (left), T = 2.26
(middle), and T = 5 (right), respectively.

We first describe the setting of our simulation of online NMF algorithm on the Ising
model. We consider a Gibbs sampler trajectory (xt)t∈N of the Ising spin configurations
on the 200 × 200 square lattice at three temperatures T = 0.5, 2.26, and 5. Initially x0

is sampled so that each site takes +1 or −1 spins independently with equal probability,
and we run the Gibbs sampler for 5 · 106 iterations. We use four different subsampling
epochs τ = 1000, 10000, 100000, and 500000 for online dictionary learning. Namely, every τ
iterations, we obtain a coarsened MCMC trajectory, which is represented as a 200×200×(5 ·
106/τ) array A whose kth array A[:, :, k] corresponds to the spin configuration Xk := xτk.
Then (Xk)k≥0 also defines an irreducible and aperiodic Markov chain on Ω with the same
stationary distribution πT . For each Xk, which is a 200×200 matrix of entries from {−1, 1},
we sample 1000 patches of size 20 × 20. After flattening each patch into a column vector,
we obtain a 400 × 1000 matrix, which we denote by Patch20(Xk). We apply the online
NMF scheme to the Markovian sequence (Patch20(Xk))k≥0 of data matrices to extract 100
dictionary patches.

17

Lyu and Needell and Balzano

𝑾

𝑯

𝜑(𝑿)

𝑿 Observed Tensor

Observed Matrix

Dictionaries 𝑾

𝑯

𝜑(𝑿)

𝑿

𝑾

𝑯

𝜑(𝑿)

𝑿

𝑾

𝑯

𝜑(𝑿)

𝑿

Codes

⋯

⋯

 Typical Ising spin config. at 𝑇 = 0.5
Learned from MCMC trajectory Learned from a fixed spin config.

Dictionary patches of size 20

 Typical Ising spin config. at 𝑇 = 2.26
Learned from MCMC trajectory
Dictionary patches of size 20

Learned from a fixed spin config.
Dictionary patches of size 20

 Typical Ising spin config. at 𝑇 = 5
Learned from MCMC trajectory
Dictionary patches of size 20

Learned from a fixed spin config.
Dictionary patches of size 20

Dictionary patches of size 20

Figure 6: (Left) 100 learned dictionary patches from a MCMC Gibbs sampler for the Ising model
on 200× 200 square lattice at a subcritical temperature (T = 0.5). (Middle) 100 learned dictionary
patches from fixed Ising spin configuration at T = 0.5 shown in the right.

We remark even with the largest subsampling epoch τ = 500000 of our choice, con-
secutive spin configurations are far from being independent, especially at low temperature
T = 0.5. Notice that by the coupon collector’s problem, with high probability, we need
40000 log 40000 ≈ 423865 iterations so that each of the 40000 nodes in the lattice gets re-
sampled at least once. As changes only occur at the interface between the +1 and −1 spins,
the interfaces will barely move during this epoch, especially at the low-temperature case
T = 0.5. At one extreme, two configurations that are τ = 1000 iterations at T = 0.5 apart
will look almost identical, hence with significant correlation. However, in all cases, as the
chain (Xt)t∈N is irreducible, aperiodic, and on a finite state space, we can apply the main
theorem (Theorem 1) to guarantee the almost sure convergence of the dictionary patches to
the set of critical points of the expected loss function (9).

In Figure 5, we plot the surrogate loss f̂t(Wt) in all 12 cases of different temperatures
and subsampling epochs. By Theorem 1 (ii), the surrogate loss is a close approximation of
the true objective (the expected loss) for large t, which should normally be computed using
a separate Monte Carlo integration. Notice that in all cases, the Gibbs sampler is run for the
same 5×107 iterations. Since we do not have to worry about dependence in the samples for
our convergence theorem to hold, one might expect to get steeper decrease in the surrogate
loss at the shorter subsampling epoch, as it enables training dictionaries over more samples.
We indeed observe such results in Figure 5. Interestingly, for T = 0.5, we observe that longer
subsampling epoch τ = 10000 gives faster decay in the surrogate error than τ = 1000 does.
This can be explained as an overfitting issue. Namely, since two configurations that are 1000
iterations apart are barely different, training dictionaries too frequently may overfit them to
specific configurations, while the objective is to learn from the average configuration. The
dictionaries learned from each of the 12 simulations are shown in Figure 14.

In Figures 6, 11, and 12, we compare 100 learned dictionary elements directly from the
MCMC trajectory (Xk)0≤k≤500 with subsampling epoch τ = 10000 as well as from a fixed
spin configuration for the three temperatures T = 0.5 (subcritical), T = 2.26 (near critical),
and T = 5 (supercritical). In all three figures, we see qualitative differences between the
two sets of dictionary elements, which can be explained as follows. Since spin configurations

18

OMF for Markovian data

gradually change in the MCMC trajectory (Xk)0≤k≤500, the dictionary elements learned
from the trajectory should not be overfitted to a particular configuration as the one in
the middle of each figure does, but should capture features common to a number of spin
configurations at the corresponding temperature.

6. Application II: Network dictionary learning by online NMF and motif
sampling

In this section, we propose a novel framework for network data analysis that we call Network
Dictionary Learning, which enables one to extract “network dictionary patches” from a given
network to see its fundamental features and to reconstruct the network using the learned
dictionaries. Network Dictionary Learning is based on two building blocks: 1) Online NMF
on Markovian data, which is the main subject in this paper, and 2) a recent MCMC algorithm
for sampling motifs from networks in (Lyu et al., 2019). More details on Network Dictionary
Learning and applications to social networks will be given in an upcoming paper (Lyu et al.,
2020).

6.1 Extracting patches from a network by motif sampling

We formally define a network as a pair G = (V,A) of node set V and a weight matrix
A : V 2 → [0,∞) describing interaction strengths between the nodes. In this formulation,
we do not distinguish between multi-edges and weighted edges in networks. A given graph
G = (V,E) determines a unique network G = (V,AG) with AG the adjacency matrix of G.
We call a network G = (V,A) simple if A is symmetric, binary (i.e., A(x, y) ∈ {0, 1}), and
without self-edges (i.e., A(x, x) = 0). We identify a simple graph G = (V,E) with adjacency
matrix AG with the simple network G = (V,AG).

For networks, we can think of a (k × k) patch as a sub-network induced onto a subset
of k nodes. As we imposed to select k consecutive rows and columns to get patches from
images, we need to impose a reasonable condition on the subset of nodes so that the selected
nodes are strongly associated. For instance, if the given network is sparse, selecting three
nodes uniformly at random would rarely induce any meaningful sub-network. Selecting
such a subset of k nodes from networks can be addressed by the motif sampling technique
introduced in (Lyu et al., 2019). Namely, for a fixed “template graph” (motif) F of k nodes,
we would like to sample k nodes from a given network G so that the induced sub-network
always contains a copy of F . This guarantees that we are always sampling some meaningful
portion of the network, where the prescribed graph F serves as a backbone. More precisely,
fix an integer k ≥ 1 and a matrix AF : [k]2 → [0,∞), where [k] = {1, 2, . . . , k}. The
corresponding network F = ([k], AF) is called a motif. The particular motif of our interest
is the k-chain, where AF = 1({(1, 2), (2, 3), . . . , (k − 1, k)}). The k-chain motif corresponds
to a directed path with node set [k].

Based on these ideas, we propose the following preliminary version of Network Dictionary
Learning for simple graphs.

19

Lyu and Needell and Balzano

Network Dictionary Learning (NDL): Static version for simple graphs

(i) Given a simple graph G = (V,A) and a motif F = ([k], AF), let Hom(F,G) denote the
set of all homomorphisms F → G:

Hom(F,G) =

x : [k]→ [n]

∣∣∣∣ ∏
1≤i,j≤k

A(x(i),x(j))AF (i,j) = 1

 .

Compute Hom(F,G) and write Hom(F,G) = {x1,x2, . . . ,xN}.

(ii) For each homomorphism x : F → G, associate a (k × k) matrix Ax by

Ax(a, b) = A(x(a),x(b)) 1 ≤ a, b ≤ k. (18)

Let X denote the (k2 × N) matrix whose ith column is the k2-dimensional vector
obtained by vectorizing Axi (using the lexicographic ordering).

(iii) Factorize X ≈ WH using NMF. Reshaping the columns of the dictionary matrix W
into k × k-squares gives the learned network dictionary elements.

6.2 Motif sampling from networks and MCMC sampler

There are two main issues in the preliminary Network Dictionary Learning scheme for simple
graphs we described in the previous subsection. First, computing the full set Hom(F,G) of
homomorphisms F → G1 is computationally expensive with O(nk) complexity. Second, in
the case of the general network with edge and node weights, some homomophisms could
be more important in capturing features of the network than others. In order to overcome
the second difficulty, we introduce a probability distribution for the homomorphisms for the
general case that takes into account the weight information of the network. To handle the
first issue, we use a MCMC algorithm to sample from such a probability measure and apply
online NMF to sequentially learn network dictionary patches.

For a given motif F = ([k], AF) and a n-node network G = (V,A), we introduce the
following probability distribution πF→G on the set V [k] of all vertex maps x : [k]→ V by

πF→G(x) =
1

Z

 ∏
1≤i,j≤k

A(x(i),x(j))AF (i,j)

 , (19)

where Z is the normalizing constant called the homomorphism density of F in G. We call
the random vertex map x : [k] → V distributed as πF→G the random homomorphism of F
into G. Note that πF→G becomes the uniform distribution on the set of all homomorphisms
F → G when both A and AF are binary matrices.

In order to sample a random homomorphism F → G, we use the MCMC algorithms
introduced in (Lyu et al., 2019) called the Glauber chain (see Algorithm MG) and the Pivot
chain (see Algorithm MP). The Glauber chain an exact analogue of the Gibbs sampler for

1. When G is a complete graph Kq with q nodes, computing homomorphisms F → Kq equals to computing
all proper q-colorings of F .

20

OMF for Markovian data

Pivot move
generated

Pivot move
accepted

Pivot move
rejected

Position
resampled

Glauber chain

Pivot chain

Figure 7: Single iterations of the Glauber chain (first row) and Pivot chain (second row) sampling
of homomorphisms xt : F → G, where G is the (6 × 6) grid and F = ([4],1{(1,2),(2,3),(3,4)}) is the
4-chain motif. For the Glauber chain, a node v ∈ [4] (in red) in the motif is sampled uniformly
at random and its position xt(v) is resampled to xt+1(v). For the Pivot chain, a random walk
move xt(1) → xt+1(1) of the pivot (in red) is generated, which is accepted or rejected according
to the acceptance probability computed by the Metropolis-Hastings algorithm. If it is accepted,
positions of the subsequent nodes xt+1(2),xt+1(3),xt+1(4) are sampled successively; otherwise, we
take xt+1 ← xt.

the Ising model we discussed in Subsection 5.2. Namely, for the update xt 7→ xt+1, we pick
one node v ∈ [k] of F uniformly at random, and resample the time-t position xt(v) ∈ V
of node i in the network G from the correct conditional distribution. (See the first row of
Figure 7 for an illustration.)

The Pivot chain is a combination of a random walk on networks and the Metropolis-
Hastings algorithm. There, node 1 in the motif is designated as the ‘pivot’. For each
update xt 7→ xt+1, we first generate a random walk move xt(1) → xt+1(1) of the pivot
(e.g., when the network is simple, then xt+1(1) is a uniformly chosen neighbor of xt(1)),
which is then accepted with a suitable acceptance probability (see (34)) according to the
Metropolis-Hastings algorithm (see, e.g., (Levin and Peres, 2017, Sec. 3.2)). If rejected,
we take xt+1 ← xt; otherwise, each xt+1(i) ∈ V for i = 2, 3, . . . , κ is sampled successively
from the appropriate conditional distribution (see (35)) so that the stationary distribution
such that the resulting Markov chain is the desired distribution πF→G in (19) as its unique
stationary distribution. (See the second row of Figure 7 for an illustration.)

In Algorithm MP, we provide a variant of the original Pivot chain in (Lyu et al., 2019)
that uses an approximate computation of the correct acceptance probability (34) with the
boolean variable AcceptProb = Approximate. This is to reduce the computational cost of
computing the exact acceptance probability, which could be costly when the motif F has
large number of nodes. (See (Lyu et al., 2020) for a more detailed discussion.)

6.3 Algorithms for Network Dictionary Learning and Reconstruction

In Algorithm NDL, we give the algorithm for Network Dictionary Learning that combines
online NMF and MCMC motif sampling with the ideas that we described in (6.1). Below
we give a high-level description of Algorithm NDL.

21

Lyu and Needell and Balzano

(The detailed algorithm is given in the appendix)

Network Dictionary Learning (NDL): Online version for general networks

Given a simple graph G = (V,A) and a motif F = ([k], AF), do the following for t =
1, 2, . . . , T :

(i) Generate N homomorphisms xs for N(t− 1) ≤ s ≤ Nt using a MCMC motif sampling
algorithm

(ii) Compute N (k × k) matrices Axs by (18). Let Xt be the (k2 × N) matrix whose jth
column is the vectorization of Ax`

with ` = N(t− 1) + j.

(iii) Update the previous dictionary matrix Wt−1 ∈ Rk
2×N
≥0 to Wt with respect to the new

data matrix Xt using Online NMF.

At each iteration t = 1, 2, . . . , T , a chosen motif sampling algorithm generates a sequence
of N homomorphisms xs : F → G and corresponding (k × k) matrices Axs , which are
summarized as the (k2 × N) data matrix Xt. The online NMF algorithm (Algorithm 1)
then learns a nonnegative factor matrix Wt of size (k2× r) by improving the previous factor
matrix Wt−1 with respect to the new data matrix Xt. Note that during this entire process,
the algorithm only needs to hold two auxiliary matrices Pt and Qt of fixed sizes (r × r)
and (r × k2), respectively, but not the previous data matrices X1, . . . , Xt−1. Hence NDL
is efficient in memory and scalable in the network size. Moreover, NDL is applicable for
temporally changing networks due to its online nature.

Next, in Algorithm NR, we provide an algorithm that reconstructs a given network using
a network dictionary learned by Algorithm NDL. The idea behind our network reconstruction
algorithm is the following. Similarly as in image reconstruction, network reconstruction is
done by first sampling random k-node subgraphs that contain the corresponding motifs,
whose adjacency matrices are approximated by the learned dictionary atoms. Then these
reconstructions are patched together with a suitable averaging. However, unlike image
reconstruction where we can easily access any desired (k × k) square patch, for network
reconstruction, we cannot directly sample a random k-node subgraph that contains a fixed
motif. For this, we use the Markov chain (xt)t∈N of homomorphisms F → G as we do
in network dictionary learning. For each t ∈ N, we reconstruct the k × k patch of G
corresponding to the current homomorphism xt using the learned dictionaries. We keep
track of the overlap count for each entry A(a, b) that we have reconstructed up to time t,
and take the average of all the proposed values of each entry A(a, b) up to time t.

As a corollary of our main result (Theorem 1) and (Lyu et al., 2019, Thm 5.7) for the
convergence of the Glauber and Pivot chains for homomorphisms, we obtain the following
convergence guarantee of Algorithm NDL for Network Dictionary Learning.

Corollary 2. Let F = ([k], AF) be the k-chain motif and let G = (V,A) be a network that
satisfies the following properties:

(i) Random walk on G is irreducible and aperiodic;

22

OMF for Markovian data

(ii) G is bidirectional, that is, A(a, b) > 0 implies A(b, a) > 0.

(iii) For all t ∈ N, there exists a unique solution for Ht in (36).

(iv) For all t ∈ N, the eigenvalues of the positive semidefinite matrix At that is defined in
(36) are at least as large as some constant κ1 > 0.

Then Algorithm NDL with MCMC ∈ {Glauber, Pivot} for Network Dictionary Learning con-
verges almost surely to the set of local optima of the associated expected loss function.

Proof Let (Xt)t∈N be the sequence of (k2 × N) matrices of “minibatches of subgraph
patterns” Xt defined in Algorithm NDL. Since Algorithm NDL can be viewed as the OMF
algorithm (3) applied to the dependent sequence (Xt)t∈N, it suffices to verify the assumptions
(A1), (M1), and (M2)’ according to Theorem 1.

We first observe that the matrices Xt ∈ Rk
2×N
≥0 computed in line 13 of Algorithm NDL

do not necessarily form a Markov chain, as the forward evolution of the Markov chain xt
depends not only on the induced (k×k) matrix Axt , but also on the actual homomorphisms
xt. However, note that the ‘augmented’ sequence Xt := (Xt,xNt) forms a Markov chain.
Indeed, the distribution of Xt+1 given Xt depends only on xNt and A, since this determines
the distribution of the homomorphisms (xs)Nt<s<N(t+1), which in turn determine the k2×N
matrix Xt+1.

Under the assumptions (i) and (ii), (Lyu et al., 2019, Thm 5.7 and 5.8) shows that the
sequence (xt)t∈N of homomorphisms F → G is a finite state Markov chain that is irreducible
and aperiodic with unique stationary distribution πF→G (see (19)). This easily implies the
N -tuple of homomorphisms (xs)N(t−1)<s<Nt also form a finite-state, irreducible, and aperi-
odic chain with a unique stationary distribution. Consequently, the Markov chain (Xt)t∈N
that we defined above is also a finite-state, irreducible, and aperiodic chain with a unique
stationary distribution. In this setting, one can regard Algorithm NDL as the Online NMF
algorithm in (3) for the input sequence Xt = ϕ(Xt), where ϕ : (X,x) 7→ X is the projec-
tion on its first coordinate. Because Xt takes only finitely-many values, the range of ϕ is
bounded. This verifies all hypotheses of Theorem 1, so the assertion follows.

Remark 3. A similar convergence result of Algorithm NDL with MCMC = ApproxPivot also
holds. The precise statement and its proof will be given in (Lyu et al., 2020).

6.4 Applications of Algorithm NDL to real-world networks

In this subsection, we apply Algorithms NDL to the following real-world networks:

1. SNAP Facebook (Facebook) (Leskovec and Mcauley, 2012; Grover and Leskovec, 2016):
This network has 4,039 nodes and 88,234 edges. This network is a Facebook network
that has been used as a benchmark example for edge inference.

2. arXiv ASTRO-PH (arXiv) (Leskovec and Krevl, June 2014; Grover and Leskovec, 2016):
This network has 18,722 nodes and 198,110 edges. It is a collaboration network be-
tween authors of preprints that were posted in the arXiv in astrophysics. Nodes
represent scientists and edges indicate coauthorship relationships.

23

Lyu and Needell and Balzano

3. Homo sapiens PPI (H. sapiens) (Oughtred et al., 2019; Grover and Leskovec, 2016):
This network has 19,706 nodes and 390,633 edges. The nodes represent proteins in the
organism of Homo sapiens, and edges represent physical interactions between these
proteins.

Let G = (V,E) be any simple graph and let F = ([6], AF) be the 6-chain motif. Fix a
homomorhism x : F → G. Then the corresponding (6× 6) matrix Ax (defined in (18)) is of
the following form:

Ax =

0 1 ∗ ∗ ∗ ∗
1 0 1 ∗ ∗ ∗
∗ 1 0 1 ∗ ∗
∗ ∗ 1 0 1 ∗
∗ ∗ ∗ 1 0 1
∗ ∗ ∗ ∗ 1 0

 , (20)

where entries marked as ∗ may be 0 or 1 (not necessarily the same values). Notice that the
1’s in the diagonal line above the main diagonal correspond to the entries A(x(i),x(i+ 1)),
1 ≤ i < 6, that are required to be 1 since AF (i, i+1) = 1 and x : F → G is a homomorphism
(recall that A is binary since G is a simple graph). The same observation holds for any k-
chain motifs for any k ≥ 2. Hence the more interesting information is captured by the
entries off of the two diagonal lines.

In Figure 8, we show r = 25 network dictionary elements learned from each of the above
networks using Algorithm NDL with the following parameters: F = ([21], AF) the 21-chain
motif, T = 100, N = 100, and λ = 1. In Figure 8, such entries in the the learned dictionary
elements reveal distinctive structures of the networks. Namely, most dictionary elements for
Facebook show ‘communities’ (blocks of pixels) and ‘hub nodes’ (diagonal entries with the
corresponding row and column in black); arXiv show a very few hub nodes, but do exhibit
clusters (groups of black pixels), which is reasonable since scientists tend to collaborate often
as a team and it is less likely that there is an overly popular scientist (whereas popular users
in Facebook networks are natural); In the Homo sapiens PPI, it seems that proteins there
hardly form large clusters of mutual interaction.

Note that in Figure 8, we also show the “dominance score” for each dictionary element,
which has the meaning of its ‘usage’ in approximating a sampled (k×k) matrix Ax from G.
It is computed by normalizing the square root of the diagonal entries of the r× r aggregate
matrix Pt in (36). Roughly speaking, the ith diagonal entry of Pt is approximately the
average of the L2 norm of the ith row of the code matrix H where Xt ≈ WH for Xt the
k2 × N matrix of ‘subgraph patterns’ and W the k2 × r dictionary matrix. For instance,
in both arXiv and H. sapiens, the ‘most dominant’ dictionary elements (with dominance
score over 0.15) have mostly zeros outside of the two diagonal lines, indicating that these
two networks are sparse.

6.5 Applications of Algorithm NR for network denoising problems

In this subsection, we apply Algorithm NR to solve network denoising problems. Namely,
if we are given a simple graph Gtrue = (V,E), we may either add some ‘false edges’ or
delete some true edges (hence creating ‘false nonedges’) randomly and create a ‘corrupted

24

OMF for Markovian data

SNAP Facebook arXiv ASTRO-PH Homo sapiens PPI

Figure 8: r = 25 learned dictionary elements from networks Facebook, arXiv, and H. sapiens with
21-chain motif F . Black=1 and white = 0 with gray scale. The values below the dictionary elements
indicate their “dominance score”, which is computed by the diagonal entries of the r × r aggregate
matrix Pt in (36).

version’ Gobs = (V,E′) of the original graph Gtrue. The problem is to recover Gtrue when
we are only given with the corrupted observed network Gobs. This problem is also known as
‘network denoising’ (Correia et al., 2019) or ‘edge inference’ (or prediction) (Liben-Nowell
and Kleinberg, 2007; Lü and Zhou, 2011; Menon and Elkan, 2011; Kovács et al., 2019) in the
cases of adding or deleting edges, respectively. Here we refer these problems collectively as
‘network denoising’ with ‘additive noise’ or ‘subtractive noise’, correspondingly. Each setting
can be regarded as a binary classification problem. Namely, for the additive noise case, it is
equal to the binary classification of the edges set E′ in the corrupted graph Gobs into true
(positive) and false (negative) edges; for the subtractive noise case, we are to classify the set
of all nonedges in Gobs into true (nonedges in Gtrue) and false (deleted edges of Gtrue).

To experiment with these problems, we use the three real-world networks: Facebook,
arXiv, and H. sapiens. Given a network Gtrue = (V,E), we first generate four corrupted
networks Gobs as follows. In the subtractive noise case, we create a smaller connected
network by removing a uniformly chosen random subset that consists of 50% of the edges
from our network. In the additive noise case, we create a corrupted network by adding edges
between node pairs independently with a fixed probability so that the new network has 50%
new edges.

In order to solve the network denoising problems, we first apply Algorithm NDL with
21-chain motifs with r = 25 columns in the dictionary matrix to learn a network dictionary
for each of these four networks, and we use each dictionary to reconstruct the network
from which it was learned using Algorithm NR with parameters T = 200, 000, λ = 0, and
MCMC = ApproxPivot. The reconstruction algorithms output a weighted network Grecons =
(V,Arecons). For denoising additive noise, we classify each edge in the corrupted network
as ‘positive’ if its weight in Arecons is strictly larger than some threshold θ. For denoising
subtractive noise, we classify each nonedge in the corrupted network as ‘positive’ if its weight
in Arecons is strictly less than some threshold θ (see Remark 4 for why we use the opposite

25

Lyu and Needell and Balzano

0.0 0.2 0.4 0.6 0.8 1.0
False-positive…rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
…
po
si
tiv
e…

ra
te

SNAP…Facebook

+50%……(AUC=0.845)
50%……(AUC=0.886)

0.0 0.2 0.4 0.6 0.8 1.0
False-positive…rate

0.0

0.2

0.4

0.6

0.8

1.0

arXiv…ASTRO-PH

+50%……(AUC=0.793)
50%……(AUC=0.934)

0.0 0.2 0.4 0.6 0.8 1.0
False-positive…rate

0.0

0.2

0.4

0.6

0.8

1.0

Homo…Sapiens…PPI

+50%……(AUC=0.709)
50%……(AUC=0.861)

Figure 9: Application of the NDL and NDR algorithms to network denoising with additive and
subtractive noise on Facebook and PPI networks. We first use NDL to learn a network dictionary
from a corrupted network and then reconstruct the networks using NDR to assign a confidence value
to each potential edge. We then use these confidence values to infer membership of potential edges
in the uncorrupted network. Importantly, we never use information from the original networks. For
each network, we indicate the receiver-operating characteristic (ROC) curves and corresponding area-
under-the-curve (AUC) scores for network denoising with additive noise using the labels +50%, and
we indicate the ROC curves and corresponding AUC scores for network denoising with subtractive
noise using the labels −50%.

directionality of classification for subtractive noise). By varying θ we construct a receiver
operating characteristic (ROC) curve that consists of points whose horizontal and vertical
coordinates are the false-positive rate and true-positive rate, respectively. For instance, if
θ = 0 in the additive (resp., subtractive) noise case, almost all edges (resp., nonedges) will
be classified as ‘positive’ (resp., ‘negative’), so it will correspond to the corner (1, 1) (resp.,
(0, 0)) in the ROC curve.

Algorithm SNAP Facebook Homo sapiens PPI arXiv ASTRO-PH
Spectral Clustering 0.619 0.492 0.574

DeepWalk 0.968 0.744 0.934
LINE 0.949 0.725 0.890

node2vec 0.968 0.772 0.934
NDL+NDR (our method) 0.907 0.861 0.934

Table 10: Comparison of AUC scores for network denoising with additive (+50%) and subtractive
(−50%) noises. The results in the first four rows are obtained from Grover and Leskovec (2016).

In Figure 9, we show the ROC curves and corresponding area-under-the-curve (AUC)
scores for our network-denoising experiments with subtractive and additive noise for all
three networks. For example, if one adds 50% of false edges to the Facebook so that 88,234
edges are true and 44,117 edges are false, then our method achieves AUC of 0.845, and is
able to detect over 78% (34,411) of the false edges while misclassifying 20% (17,647) of the
true edges (see Figure 9 left). In Table 10, we also compare the performance of our method

26

OMF for Markovian data

against some popular supervised algorithms based on network embedding, such as node2vec
(Grover and Leskovec, 2016), DeepWalk (Perozzi et al., 2014), and LINE (Tang et al., 2015)
for the task of denoising 50% subtractive noise for SNAP Facebook, H. Sapiens, and arXiv.
It is important to note that, unlike these methods, our algorithm for network denoising is
unsupervised in the sense that it never requires any information from the original network
G. Nonetheless, our algorithm shows comparable performance and in two cases the best
results among all methods considered here.

Remark 4. The reason that we used the opposite directionality of classification for sub-
tractive noise, that is, a nonedge (p, q) in Gobs is classified ‘positive’ if Arecons(p, q) < θ, is
that we often obtain ‘flipped’ ROC curves using the standard classification scheme

Arecons(p, q) > θ =⇒ (p, q) is classified as positive (21)

for denoising subtractive noise. While a complete understanding of this phenomenon is yet
to be made, we remark here why the standard classification (21) may not work in our favor
for subtractive noise. The issue is related with sparsity of real-world networks, which does
not arise in image denoising.

First recall that every sampled k × k matrix Ax is conditioned to have 1’s on its first
super- and sub-diagonals (see (20)), corresponding to the observed edges of Gobs in the
image of the homomorhpism x. Hence for subtractive noise, false non-edges (deleted edges
in Gtrue) always appear as 0’s outside the two super- and sub-diagonal lines of Ax. Now if
Gobs is sparse (as most real-world networks are), then there are very few positive entries in
Ax other than the first super- and sub-diagonal entries. Hence if we approximate such Ax

using network dictionary atoms, it is more likely to overfit to reconstruct the observed edges
(1’s in the first super- and sub-diagonal entries), which will result in small reconstructed
weights for the other entries of Ax, including the ones corresponding to false non-edges.

In Lyu et al. (2020), a modified version of NDR (Algorithm NR) will be introduced that
addresses this issue, so that we can use the classification scheme (21) uniformly both for
additive and subtractive noise.

7. Proof of Theorem 1

In this section, we provide the proof of our main result, Theorem 1.

7.1 Preliminary bounds

In this subsection, we derive some key inequalities and preliminary bounds toward the proof
of Theorem 1. Note that proofs are relagated to the appendix.

Proposition 5. Let (Wt, Ht)t≥1 be a solution to the optimization problem (3). Then for
each t ∈ N, the following hold almost surely:

(i) f̂t+1(Wt+1)− f̂t(Wt) ≤ wt+1 (`(Xt+1,Wt)− ft(Wt)) = ft+1(Wt)− ft(Wt).

(ii) 0 ≤ wt+1

(
f̂t(Wt)− ft(Wt)

)
≤ wt+1 (`(Xt+1,Wt)− ft(Wt)) + f̂t(Wt)− f̂t+1(Wt+1).

27

Lyu and Needell and Balzano

Proof See Appendix A.

Next, we show that if the data are drawn from compact sets, then the set of all possible
codes also form a compact set. This also implies boundedness of the matrices At ∈ Rr×r
and Bt ∈ Rr×n, which aggregate sufficient statistics up to time t (defined in (3)).

The following proposition provides a second-order growth property of the quadratic
function for Wt in the OMF algorithm (3) when the set C of constraints for the dictionaries
is general and not necessarily convex. This is well-known for the convex case (see, e.g.,
(Mairal, 2013a, Lem. B.5)).

Proposition 6. Fix symmetric and positive definite A ∈ Rr×r, arbitrary B ∈ Rr×d. Denote
g(W) = tr(WAW T)− 2tr(WB) for each W ∈ Rd×r. Then the following hold:

(i) Let W1,W2 ∈ Rd×r be such that tr((BT −W2A)(W1 −W2)T) ≤ 0. Then

g(W1)− g(W2) ≥ tr((W1 −W2)A(W1 −W2)T) ≥ 0. (22)

(ii) FixW1,W2 ∈ Rd×r and suppose the function g(λW2+(1−λ)W1) is monotone decreasing
in λ ∈ [0, 1]. Then tr((BT −W2A)(W1 −W2)T) ≤ 0.

(iii) Let C ⊆ Rd×r be convex, Wt−1 ∈ C arbitrary, and Wt = arg minW∈C g(W). Then

g(Wt−1)− g(Wt) ≥ tr((Wt −Wt−1)A(Wt −Wt−1)T) ≥ 0.

Proof See Appendix A.

An important consequence of the above second-order growth condition is an upper bound
on the change of learned dictionaries, which is also known as “iterate stability” (Mairal,
2013b, Lem B.8)

Proposition 7. Let (Wt, Ht)t≥1 be a solution to the OMF scheme (3). Assume (A1)-(A2)
and (C2) for (3). Then there exist some constant c > 0 such that almost surely for all t ∈ N,

‖Wt+1 −Wt‖F ≤ cwt+1.

Proof See Appendix A.

Remark 8. Proposition 7 with triangle inequality shows that ‖Wm−Wn‖F ≤
∑m

j=n+1wj .
Hence if

∑∞
j=1wj < ∞, then Wt converges in the compact set C for arbitrary input data

sequence (Xt)t∈N in a bounded set.

28

OMF for Markovian data

7.2 Convergence of the empirical and surrogate loss

We prove Theorem 1 in this subsection. According to Proposition 5, it is crucial to bound
the quantity `(Xt+1,Wt)−ft(Wt). When Yt’s are i.i.d., we can condition on the information
Ft up to time t so that

E
[
`(Xt+1,Wt)− ft(Wt)

∣∣∣∣Ft] = f(Wt)− ft(Wt).

Note that for each fixed W ∈ C, ft(W) → f(W) almost surely as t → ∞ by the strong
law of large numbers. To handle time dependence of Wt, one can instead look that the
convergence of the supremum ‖ft − f‖∞ over the compact set C, which is provided by the
classical Glivenko-Cantelli theorem. This is the approach taken in (Mairal et al., 2010;
Mairal, 2013b) for i.i.d. input.

However, the same approach breaks down when (Yt)t∈N is a Markov chain. This is
because, conditional on Ft, the distribution of Yt+1 is not necessarily the stationary distri-
bution π. Our key innovation to overcome this difficulty is to condition much early on – at
time t−N for some suitable N = N(t). Then the Markov chain runs N +1 steps up to time
t+ 1, so if N is large enough for the chain to mix, then the distribution of Yt+1 conditional
on Ft−N is close to the stationary distribution π. The error of approximating the stationary
distribution by the N + 1 step distribution is controlled using total variation distance and
mixing bound.

Proposition 9. Suppose (A1)-(A2) and (M1). Fix W ∈ C. Then for each t ∈ N and
0 ≤ N < t, conditional on the information Ft−N up to time t−N ,(

E
[
`(Xt+1,W)− ft(W)

∣∣∣∣Ft−N])+

≤ |f(W)− ft−N (W)|+Nwtft−N (W)

+ 2‖`(·,W)‖∞ sup
y∈Ω
‖PN+1(y, ·)− π‖TV .

Proof Recall that for each s ≥ 0, Fs denotes the σ-algebra generated by the history of
underlying Markov chain Y0, Y1, . . . , Ys. Fix y ∈ Ω and suppose Yt−N = y. Then by the
Markov property, the distribution of Yt+1 conditional on Ft−N equals PN+1(y, ·), where
P denotes the transition kernel of the chain (Yt)t∈N. Using the fact that 2‖µ − ν‖TV =∑

x |µ(x)−ν(x)| (see (Levin and Peres, 2017, Prop. 4.2)) and recalling Xt = ϕ(Yt) by (A1),
it follows that

E
[
`(Xt+1,W)

∣∣∣∣Ft−N] =
∑
y′∈Ω

`(ϕ(y′),W)PN+1(y,y′)

=
∑
y′∈Ω

`(ϕ(y′),W)π(y′) +
∑
y′∈Ω

`(ϕ(y′),W)(PN+1(y,y′)− π(y′))

≤
∑
y′∈Ω

`(ϕ(y′),W)π(y′) + 2‖`(·,W)‖∞‖PN+1(y, ·)− π‖TV

= f(W) + 2‖`(·,W)‖∞‖PN+1(y, ·)− π‖TV .

29

Lyu and Needell and Balzano

Also, observe that

E
[
−ft(W)

∣∣∣∣Ft−N] = −ft−N (W)
t∏

k=t−N+1

(1− wk)− E

 t∑
k=t−N+1

`(Xk,W)wk

t∏
j=k+1

(1− wk)

∣∣∣∣Ft−N

≤ −ft−N (W) + ft−N (W)

(
1−

t∏
k=t−N+1

(1− wk)

)
≤ −ft−N (W) +Nwtft−N (W),

where we have used the fact that ` ≥ 0 and wk ∈ (0, 1) is non-increasing in k. Then
combining the two bounds and a triangle inequality give the assertion.

Next, we provide some probabilistic lemmas.

Lemma 10. Under the assumptions (A1)-(A2) and (M1),

E

[
sup
W∈C

√
t

∣∣∣∣∣f(W)− 1

t

t∑
s=1

`(Xs,W)

∣∣∣∣∣
]

= O(1).

Furthermore, supW∈C
∣∣f(W)− 1

t

∑t
s=1 `(Xs,W)

∣∣→ 0 almost surely as t→∞.

Proof Let F denote the collection of functions `(ϕ(·),W) : Ω→ [0,∞) indexed by W ∈ C,
which are bounded and measurable under (A1). The underlying Markov chain (Yt)t∈N has
countable state space Ω and is positive recurrent under (M1). Then the second part of the
statement is a direct consequence of the uniform SLLN for Markov chains (Levental, 1988,
Thm. 5.8). For the first part, note that by the uniform functional CLT for Markov chains
(Levental, 1988, Thm 5.9), the empirical process {gt(W) |W ∈ C}, gt(W) :=

√
t(f(W) −

t−1
∑t

s=1 `(ϕ(Ys),W)) converges weakly to a centered Gaussian process (XW)W∈C indexed
by C (or equivalently, by F), whose sample paths are bounded and uniformly continuous
in the space `∞(F) of bounded functions F → R. Moreover, from the theory of Gaussian
processes (see, e.g., (Dudley, 2010; Talagrand, 1987)) it is well known that for some universal
constant K > 0,

E
[

sup
W∈C

XW

]
≤ K

∫ ∞
0

√
logN(ε) dε,

where N(ε) denotes the minimum number of ε-balls needed to cover the parameter space C.
Since C is compact by (A2), the right hand side is finite. By the weak convergence of the
empirical process, it follows that the expectation in the assertion is uniformly bounded in t.
This shows the assertion.

While the uniform convergence results in Lemma 10 applies to empirical loss functions
of balanced weights (e.g., wt = 1/t for all t ≥ 1), we may need a similar uniform convergence
results for the general weights. The following lemma is due to Mairal (Mairal, 2013b, Lem
B.7), which originally extended the uniform convergence result to weighted empirical loss
functions with respect to i.i.d. input data. An identical argument gives the corresponding
result in our Markovian case, but we provide it here for the sake of completeness.

30

OMF for Markovian data

Lemma 11. Under the assumptions (A1)-(A2) and (M1), there exists a constant C > 0
such that

E
[

sup
W∈C
|f(W)− ft(W)|

]
≤ Cwt

√
t

for all t ≥ 1. Furthermore, if
∑∞

t=1w
2
t

√
t < ∞, then supW∈C |f(W)− ft(W)| → 0 almost

surely as t→∞.

Proof See Appendix A.

Next, we use the concentration bound in Lemma 11 together with the mixing condition
(M2) to show that the surrogate loss process (f̂t(Wt))t∈N has the bounded positive expected
variation.

Lemma 12. Let (Wt, Ht)t≥1 be a solution to the optimization problem (3). Suppose (A1)-
(A2) and (M1) hold.

(i) Let (at)t∈N be a sequence of non-decreasing non-negative integers such that at ∈ o(t).
Then there exists absolute constants C1, C2, C3 > 0 such that for all sufficiently large
t ∈ N,

E

[(
E
[
wt+1

(
`(Xt+1,Wt)− ft(Wt)

) ∣∣∣∣Ft−at])+
]
≤ C1w

2
t−at
√
t+ C2w

2
t at

+ C3wt sup
x∈Ω
‖P at+1(x, ·)− π‖TV .

(ii) Further assume that (M2) holds. Then we have

∞∑
t=0

(
E
[
f̂t+1(Wt+1)− f̂t(Wt)

])+
≤
∞∑
t=0

wt+1 (E [(`(Xt+1,Wt)− ft(Wt))])
+ <∞.

Proof Recall that (Yt,Wt) ∈ Ω × C for all t ∈ N and both Ω and C are compact. Since
ϕ : Ω→ Rd×n is bounded, we have

L := sup
Y ∈Ω,W∈C

`(ϕ(Y),W) <∞.

Denote

∆t := sup
y∈Ω
‖P t(y, ·)− π‖TV .

Note that ‖fs‖∞ ≤ L for any s ≥ 0. Hence according to Propositions 9, we have∣∣∣∣E [wt+1 (`(Xt+1,Wt)− ft(Wt))

∣∣∣∣Ft−at]∣∣∣∣ ≤ wt (‖f − ft−at‖∞) + 2Lw2
t at + Lwt∆t. (23)

31

Lyu and Needell and Balzano

Since at = o(t), we have at ≤ t/2 for all sufficiently large t ∈ N. Then by Lemma 11, there
exists a constant C1 > 0 such that for all sufficiently large t ∈ N,

E [‖f − ft−at‖∞] ≤ C1wt−at
√
t− at.

Noting that ws is non-increasing in s, this gives

E [wt‖f − ft−at‖∞] ≤ C1w
2
t−at
√
t

for all sufficiently large t ≥ 1. Hence taking expectation on both sides of (23) with respect
to the information from time t− at to t yields the first assertion.

Now we show the second assertion. The first inequality in the assertion follows by
Proposition 5 (i). To show that the last expression is finite, denote Zt = w−1

t+1(`(Xt+1,W)−
ft(W)). Note that by the first assertion and (M2), we have

∞∑
t=1

E

[(
E
[
Zt

∣∣∣∣Ft−at])+
]
<∞.

Then by iterated expectation and Jensen’s inequality, it follows that

∞∑
t=1

(E[Zt])
+ =

∞∑
t=1

(
E
[
E
[
Zt

∣∣∣∣Ft−at]])+

≤
∞∑
t=1

E

[(
E
[
Zt

∣∣∣∣Ft−at])+
]
<∞.

This completes the proof of (ii).

Lemma 13. Let (Wt, Ht)t≥1 be a solution to the optimization problem (3). Suppose (A1)-
(A2) and (M1)-(M2) hold. Then the following hold.

(i) E[f̂t(Wt)] converges as t→∞.

(ii) E

[∞∑
t=0

wt+1

(
f̂t(Wt)− ft(Wt)

)]
=
∞∑
t=0

wt+1

(
E[f̂t(Wt)]− E[ft(Wt)]

)
<∞.

(iii)
∞∑
t=0

wt+1

(
f̂t(Wt)− ft(Wt)

)
<∞ almost surely.

Proof In order to show that E[f̂t(Wt)] converges as t → ∞, since ft(Wt) is bounded
uniformly in t, it suffices to show that the sequence (E[f̂t(Wt)])t∈N has a unique limit point.
To this end, observe that for any x, y ∈ R, (x+y)+ ≤ x+ +y+. Note that, for each m,n ≥ 1
with m > n,

(
E[f̂m(Wm)]− E[f̂n(Wn)]

)+
≤

m−1∑
k=n

(
E[f̂k+1(Wk+1)]− E[fk(Wk)]

)+

≤
∞∑
k=n

(
E[f̂k+1(Wk+1)]− E[f̂k(Wk)]

)+
.

32

OMF for Markovian data

The last expression converges to zero as n → ∞ by Lemma 12 (ii). This implies that the
sequence (E[f̂t(Wt)])t∈N has a unique limit point, as desired.

The first equality follows from Fubini’s theorem by noting that f̂t−ft ≥ 0. On the other
hand, by using Proposition 5 (ii),

∞∑
t=0

wt+1

(
E[f̂t(Wt)]− E[ft(Wt)]

)
≤
∞∑
t=0

wt+1 (E[`(Xt+1,Wt)]− ft(Wt)])
+

−
∞∑
t=0

(
E[f̂t+1(Wt+1)]− E[f̂t(Wt)]

)
.

The first sum on the right hand side is finite by Lemma 12 (ii), and the second sum is also
finite since we have just shown that E[f̂t(Wt)] converges as t→∞. This shows (ii). Lastly,
recall that non-negative random variable of finite expectation must be finite almost surely.
Hence (iii) follows directly from (ii).

Now we prove the first main result in this paper, Theorem 1.
Proof [Proof of Theorem 1] Suppose (A1)-(A2) and (M1)-(M2) hold. We first show (ii).
Recall Lemma 13 (iii). Both f̂t and ft are uniformly bounded and Lipschitz by Proposition
15. Hence writing ht = f̂t− ft, using Proposition 7, there exists a constant C > 0 such that
for all t ≥ 1,

|ht+1(Wt+1)− ht(Wt)| ≤ |ht+1(Wt+1)− ht+1(Wt)|+ |ht+1(Wt)− ht(Wt)|

≤ C‖Wt+1 −Wt‖F +
∣∣∣(f̂t+1(Wt)− f̂t(Wt)

)
− (ft+1(Wt)− ft(Wt))

∣∣∣
= C‖Wt+1 −Wt‖F + wt+1|f̂t(Wt)− ft(Wt)| = O(wt+1).

Thus, according to Proposition 16, it follows from Lemma 13 (ii) that

lim
t→∞

(
f̂t(Wt)− ft(Wt)

)
= 0 a.s.

Moreover, for all t ≥ 1, triangle inequality gives

|f(Wt)− f̂t(Wt)| ≤
(

sup
W∈C
|f(W)− ft(W)|

)
+ |ft(Wt)− f̂t(Wt)|.

The right hand side converges to zero almost surely as t→∞ by what we have just shown
above and Lemma 11. This shows (ii).

Next, we show (i). Recall that E[f̂t(Wt)] converges by Lemma 13. The Jensen’s inequality
and the bounds imply

|E[ht+1(Wt+1)]− E[ht(Wt)]| ≤ E [|ht+1(Wt+1)− ht(Wt)|] = O(wt+1).

Since E[f̂t(Wt)] ≥ E[ft(Wt)], Lemma 13 (i)-(ii) and Lemma 16 give

lim
t→∞

E[ft(Wt)] = lim
t→∞

E[f̂t(Wt)] + lim
t→∞

(
E[ft(Wt)]− E[f̂t(Wt)]

)
= lim

t→∞
E[f̂t(Wt)] ∈ (1,∞).

33

Lyu and Needell and Balzano

This shows (i).
Lastly, we show (iii). Denote gt(W) = tr(WAtW

T)−2tr(WBt) and f̂t(W) = gt(W)+ rt
(see (13)). Note that ∇W gt = 2(WAt −Bt). We will first show

lim sup
t→∞

‖∇W f(Wt)−∇W gt(Wt)‖F = 0. (24)

First choose a subsequence (tk)k≥0 such that ‖∇W f(Wtk)−∇W gtk(Wtk)‖F converges. Recall
that the sequence (Wt, At, Bt, rt)t∈N is bounded by Proposition 14 and (A1)-(A2). Hence
we may choose a further subsequence of (tk)k≥0, which we will denote by (sk)k∈N, so that
(Wsk , Ask , Bsk , rsk) converges to some (W∞, A∞, B∞, r∞) in Rd×r × Rr×r × Rr×n × R a.s.
as k →∞. Define a function

f̂(W) = tr(WA∞W
T)− 2tr(WB∞) + r∞.

Then we write

‖∇W f(Wsk)−∇W gsk(Wsk)‖F ≤ ‖∇W f(Wsk)−∇W f(W∞)‖F + ‖∇W f(W∞)−∇W f̂(W∞)‖F

+ ‖∇W f̂(W∞)−∇W gsk(Wsk)‖F .

By the choice of (sk)k∈N, the first term in the right hand side vanishes as k → ∞. For the
second term, note that f̂t ≥ ft for all t ∈ N and over all C. Hence, for each W ∈ C, almost
surely,

f̂(W) = lim
k→∞

f̂sk(W) ≥ lim
k→∞

fsk(W) = f(W),

where the last equality follows from Markov chain ergodic theorem (see, e.g., (Durrett, 2010,
Thm 6.2.1, Ex. 6.2.4) or (Meyn and Tweedie, 2012, Thm. 17.1.7)). Moreover, by part (i),
we know that

f̂(W∞) = lim
k→∞

f̂sk(Wsk) = f(W∞) ∈ (0,∞)

almost surely. Hence by using a Taylor expansion and the fact that ∇W f is Lipschitz (see
(C1)), it follows that

∇W f(W∞) = ∇W f̂(W∞).

For the last term, note that

‖∇W f̂(W∞)−∇W gsk(Wsk)‖F = ‖2W (A∞ −Ask)− 2(BT
∞ −Bsk)‖F → 0,

as Ask → A∞ and Bsk → B∞ by the choice of (sk)k≥0.

lim sup
k→∞

‖∇W f(Wsk)−∇W gsk(Wsk)‖F = 0.

Since (sk)k∈N is a further subsequence of (tk)k≥0 and since ‖∇W f(Wtk) − ∇W gt(Wtk)‖F
converges along (tk)k≥0, the same also holds for (tk)k≥0. This shows (24).

34

OMF for Markovian data

To conclude that W∞ is a local extremum of f , it is enough to show that ∇W f(W∞)
is in the normal cone of C at W∞. Choose a subsequence (tk)k≥0 such that (Atk , Btk ,Wtk)
converges to (A∞, B∞,W∞). According to Assumption (A2), there exists some convex part
Cj of C such that for all sufficiently large k ≥ 1, Wtk ∈ Cj . Recall that Wt is the minimizer
of the quadratic function gt(W) = tr(WAtW

T)− 2tr(WBt) in C ∩ Et, where Et denotes the
ellipsoid tr((BT

t −WAt)(Wt−1−W)) ≤ 0. By Proposition 6 (iii), minimizing gt over Cj ∩Et
is equivalent to minimizing gt over Cj . Hence Wtk is also the minimizer of gtk over Cj for all
sufficiently large k. Since C is a disjoint union of convex parts (see Assumption (A2)), this
verifies that for all sufficiently large k, ∇W gtk(Wtk) is in the normal cone of the constraint
set C at Wtk (see., e.g., (Boyd and Vandenberghe, 2004)). Then (24) and continuity of the
gradients of f and gt verifies that ∇W f(W∞) is in the normal cone of C atW∞, as desired.

Acknowledgement

HL is partially supported by NSF Grant DMS-2010035 and is grateful for helpful discussions
with Yacoub Kureh and Joshua Vendrow for network denoising applications of network
dictionary learning. DN is grateful to and was partially supported by NSF CAREER DMS
#1348721 and NSF BIGDATA #1740325. LB was supported by the Institute for Advanced
Study Charles Simonyi Endowment, ARO YIP award W911NF1910027, NSF CAREER
award CCF-1845076, and AFOSR YIP award FA9550-19-1-0026.

References

Michael W. Berry and Murray Browne. Email surveillance using non-negative matrix factorization.
Computational & Mathematical Organization Theory, 11(3):249–264, 2005.

Michael W. Berry, Murray Browne, Amy N. Langville, V. Paul Pauca, and Robert J. Plemmons.
Algorithms and applications for approximate nonnegative matrix factorization. Computational
statistics & data analysis, 52(1):155–173, 2007.

David Blei, Lawrence Carin, and David Dunson. Probabilistic topic models: A focus on graphical
model design and applications to document and image analysis. IEEE signal processing magazine,
27(6):55, 2010.

David M. Blei, Andrew Y. Ng, and Michael I Jordan. Latent dirichllocation. Journal of Machine
Learning Research, 3(Jan):993–1022, 2003.

Rostyslav Boutchko, Debasis Mitra, Suzanne L. Baker, William J. Jagust, and Grant T Gullberg.
Clustering-initiated factor analysis application for tissue classification in dynamic brain positron
emission tomography. Journal of Cerebral Blood Flow & Metabolism, 35(7):1104–1111, 2015.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Yang Chen, Xiao Wang, Cong Shi, Eng Keong Lua, Xiaoming Fu, Beixing Deng, and Xing Li.
Phoenix: A weight-based network coordinate system using matrix factorization. IEEE Transac-
tions on Network and Service Management, 8(4):334–347, 2011.

Fernanda B. Correia, Edgar D. Coelho, José L. Oliveira, and Joel P. Arrais. Handling noise in
protein interaction networks. BioMed Research International, 2019.

35

Lyu and Needell and Balzano

Richard M. Dudley. Sample functions of the gaussian process. In Selected Works of RM Dudley,
pages 187–224. Springer, 2010.

Rick Durrett. Probability: Theory and Examples. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, Cambridge, UK, fourth edition, 2010.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. The
Annals of Statistics, 32(2):407–499, 2004.

Donald L. Fisk. Quasi-martingales. Transactions of the American Mathematical Society, 120(3):
369–389, 1965.

Nicolas Gillis. The why and how of nonnegative matrix factorization. Regularization, Optimization,
Kernels, and Support Vector Machines, 12(257), 2014.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 855–864, 2016.

Naiyang Guan, Dacheng Tao, Zhigang Luo, and Bo Yuan. Online nonnegative matrix factorization
with robust stochastic approximation. IEEE Transactions on Neural Networks and Learning
Systems, 23(7):1087–1099, 2012.

Katja Kovács, István A .and Luck, Kerstin Spirohn, Yang Wang, Carl Pollis, Sadie Schlabach,
Wenting Bian, Dae-Kyum Kim, Nishka Kishore, and Tong Hao. Network-based prediction of
protein interactions. Nature Communications, 10(1):1240, 2019.

Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788, 1999.

Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization. In Advances
in Neural Information Processing Systems, pages 556–562, 2001.

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficient sparse coding algorithms. In
Advances in Neural Information Processing Systems, pages 801–808, 2007.

Hyekyoung Lee, Jiho Yoo, and Seungjin Choi. Semi-supervised nonnegative matrix factorization.
IEEE Signal Processing Letters, 17(1):4–7, 2009.

Wilhelm Lenz. Beitršge zum verstšndnis der magnetischen eigenschaften in festen kšrpern.
Physikalische Z, 21:613–615, 1920.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

Jure Leskovec and Julian J. Mcauley. Learning to discover social circles in ego networks. In Advances
in Neural Information Processing Systems, pages 539–547, 2012.

Shlomo Levental. Uniform limit theorems for harris recurrent markov chains. Probability theory and
related fields, 80(1):101–118, 1988.

David A. Levin and Yuval Peres. Markov chains and mixing times, volume 107. American Mathe-
matical Soc., 2017.

David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks. Journal of
the American society for Information Science and Technology, 58(7):1019–1031, 2007.

36

OMF for Markovian data

Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A, 390(6):
1150–1170, 2011.

Eyal Lubetzky and Allan Sly. Critical ising on the square lattice mixes in polynomial time. Com-
munications in Mathematical Physics, 313(3):815–836, 2012.

Hanbaek Lyu, Facundo Memoli, and David Sivakoff. Sampling random graph homomorphisms and
applications to network data analysis. arXiv:1910.09483, 2019.

Hanbaek Lyu, Yacoub Kureh, Joshua Vendrow, and Mason Porter. Learning low-rank latent
mesoscale structures in networks. In preparation, 2020.

Julien Mairal. Optimization with first-order surrogate functions. In International Conference on
Machine Learning (ICML), pages 783–791, 2013a.

Julien Mairal. Stochastic majorization-minimization algorithms for large-scale optimization. In
Advances in Neural Information Processing Systems, pages 2283–2291, 2013b.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning for matrix factor-
ization and sparse coding. Journal of Machine Learning Research, 11:19–60, 2010.

Athanasius FM Marée, Verônica A Grieneisen, and Paulien Hogeweg. The cellular potts model and
biophysical properties of cells, tissues and morphogenesis. In Single-cell-based models in biology
and medicine, pages 107–136. Springer, 2007.

Barry M. McCoy and Tai Tsun Wu. The two-dimensional Ising model. Courier Corporation, 2014.

Song Mei, Yu Bai, and Andrea Montanari. The landscape of empirical risk for nonconvex losses.
The Annals of Statistics, 46(6A):2747–2774, 2018.

Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factorization. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pages 437–
452. Springer, 2011.

Arthur Mensch, Julien Mairal, Bertrand Thirion, and Gaël Varoquaux. Stochastic subsampling for
factorizing huge matrices. IEEE Transactions on Signal Processing, 66(1):113–128, 2017.

Sean P. Meyn and Richard L. Tweedie. Markov Chains and Stochastic Stability. Springer-Verlag,
Heidelberg, Germany, 2012.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In International Conference on Machine Learning (ICML), pages 807–814, 2010.

Noriyuki Bob Ouchi, James A. Glazier, Jean-Paul Rieu, Arpita Upadhyaya, and Yasuji Sawada.
Improving the realism of the cellular potts model in simulations of biological cells. Physica A:
Statistical Mechanics and its Applications, 329(3-4):451–458, 2003.

Rose Oughtred, Chris Stark, Bobby-Joe Breitkreutz, Jennifer Rust, Lorrie Boucher, Christie Chang,
Nadine Kolas, Lara O’Donnell, Genie Leung, and Rochelle McAdam. The biogrid interaction
database: 2019 update. Nucleic acids research, 47(D1):D529–D541, 2019.

Jianhao Peng, Olgica Milenkovic, and Abhishek Agarwal. Online convex matrix factorization with
representative regions. In Advances in Neural Information Processing Systems, pages 13242–13252,
2019.

37

Lyu and Needell and Balzano

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 701–710, 2014.

Sirisha Rambhatla, Xingguo Li, and Jarvis Haupt. Noodl: Provable online dictionary learning and
sparse coding. International Conference on Learning Representations (ICLR), 2019.

K Murali Rao. Quasi-martingales. Mathematica Scandinavica, 24(1):79–92, 1969.

Bin Ren, Laurent Pueyo, Guangtun Ben Zhu, John Debes, and Gaspard Duchêne. Non-negative
matrix factorization: robust extraction of extended structures. The Astrophysical Journal, 852
(2):104, 2018.

Arkadiusz Sitek, Grant T. Gullberg, and Ronald H. Huesman. Correction for ambiguous solutions in
factor analysis using a penalized least squares objective. IEEE transactions on medical imaging,
21(3):216–225, 2002.

Mark Steyvers and Tom Griffiths. Probabilistic topic models. Handbook of latent semantic analysis,
427(7):424–440, 2007.

András Szabó and Roeland MH Merks. Cellular potts modeling of tumor growth, tumor invasion,
and tumor evolution. Frontiers in oncology, 3:87, 2013.

Michel Talagrand. Regularity of gaussian processes. Acta mathematica, 159:99–149, 1987.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: Large-scale
information network embedding. In Proceedings of the 24th International Conference on World
Wide Web, pages 1067–1077, 2015.

Leo Taslaman and Björn Nilsson. A framework for regularized non-negative matrix factorization,
with application to the analysis of gene expression data. PloS One, 7(11):e46331, 2012.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances in neural infor-
mation processing systems, pages 831–838, 1992.

Fa-Yueh Wu. The potts model. Reviews of modern physics, 54(1):235, 1982.

Lin F. Yang, Vladimir Braverman, Tuo Zhao, and Mengdi Wang. Online factorization and partition
of complex networks from random walks. Uncertainty in Artificial Intelligence, 2019.

Renbo Zhao, Vincent YF Tan, and Huan Xu. Online nonnegative matrix factorization with general
divergences. arXiv preprint arXiv:1608.00075, 2016.

Renbo Zhao, Vincent Tan, and Huan Xu. Online nonnegative matrix factorization with general
divergences. In Artificial Intelligence and Statistics, pages 37–45, 2017.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.

38

OMF for Markovian data

Appendix A. Auxiliary proofs and lemmas

In this appendix, we provide some auxiliary proofs and statements that we use in the proof of
Theorem 1. Among the results we provide here, the proof of Proposition 7 is original and the rest
are due originally due to (Mairal et al., 2010; Mairal, 2013b).
Proof [Proof of Proposition 5] To see the equality in (i), note that

ft+1(Wt)− ft(Wt) = (1− wt+1)ft(Wt) + wt+1`(Xt+1,Wt)− ft(Wt)

= wt+1(`(Xt+1,Wt)− ft(Wt)).

Next, we have

f̂t+1(Wt) = (1− wt+1)f̂t(Wt) + wt+1`(Xt+1,Wt)

for all t ∈ N, so it follows that

f̂t+1(Wt+1)− f̂t(Wt)

= f̂t+1(Wt+1)− f̂t+1(Wt) + f̂t+1(Wt)− f̂t(Wt)

= f̂t+1(Wt+1)− f̂t+1(Wt) + (1− wt+1)f̂t(Wt) + wt+1`(Xt+1,Wt)− f̂t(Wt))

= f̂t+1(Wt+1)− f̂t+1(Wt) + wt+1(`(Xt+1,Wt)− ft(Wt)) + wt+1(ft(Wt)− f̂t(Wt)).

Then the inequalities in both (i) and (ii) follows by noting that f̂t+1(Wt+1) ≤ f̂t+1(Wt) and ft ≤ f̂t.

For each X ∈ Rd×n, W ∈ Rd×r, and H ∈ Rr×n, denote `(X,W,H) = ‖X −WH‖2F + λ‖H‖1
and define

Hopt(X,W) = arg min
H∈C′⊆Rr×n

`(X,W,H). (25)

Note that under (C2), there exists a unique minimizer of the function in the right hand side, with
which we identify as Hopt(X,W).

Proposition 14. Assume (A1) and let R = R(ϕ(Ω)) <∞ be as defined in (4). Then the following
hold:

(i) For all X ∈ Ω and W ∈ C,

‖Hopt(X,W)‖2F ≤ λ−2R4.

(ii) For any sequence (Xt)t≥1 ⊆ Ω and (Wt)t≥1 ⊆ C, define At and Bt recursively as in (3). Then
for all t ≥ 1, we have

‖At‖F ≤ λ−2R4, ‖Bt‖F ≤ λ−1R3.

Proof From (25), we have

λ‖Hopt(X,W)‖1 ≤ inf
H∈C′⊆Rr×n

(
‖X −WH‖2F + λ‖H‖1

)
≤ ‖X‖2F ≤ R2.

Note that ‖H‖2F ≤ ‖H‖21 for any H. This yields (i). To get (ii), we observe ‖XY ‖F ≤ ‖X‖F ‖Y ‖F
from the Cauchy-Schwarz inequality. Then (ii) follows immediately from (i) and triangle inequality.

Next, we show the Lipschitz continuity of the loss function `(·, ·). Since Ω and C are both
compact, this also implies that f̂t and ft are Lipschitz for all t ∈ N.

39

Lyu and Needell and Balzano

Proposition 15. Suppose (A1) and (A2) hold, and let M = 2R(ϕ(Ω)) + 2R(C)R(ϕ(Ω))2/λ. Then
for each X1, X2 ∈ Ω and W1,W2 ∈ C,

|`(X1,W1)− `(X2,W2)| ≤M
(
‖X1 −X2‖F + λ−1R(ϕ(Ω))‖W1 −W2‖F

)
.

Proof Fix X ∈ Ω ⊆ Rd×n and W1,W2 ∈ C. Denote H∗ = Hopt(X2,W2) and H∗ = Hopt(X1,W1).
According to Proposition 14, the Frobenius norm ofH∗ andH∗ are uniformly bounded by R(ϕ(Ω))2/λ.
Note that for any A,B ∈ Ω, the triangle inequality implies

‖a‖2F − ‖b‖2F = (‖a‖F − ‖b‖F) (‖a‖F + ‖b‖F)

≤ ‖a− b‖F (‖a‖F + ‖b‖F) .

Also, the Cauchy-Schwartz inequality, (A1)-(A2), and Proposition 14 imply

‖X1 −W1H
∗‖F + ‖X2 −WH∗‖F ≤ ‖X1‖F + ‖W1H

∗‖F + ‖X2‖F + ‖W2H
∗‖F

≤ ‖X1‖F + ‖W1‖F ‖H∗‖F + ‖X2‖F ‖H∗‖F
≤ 2R(ϕ(Ω)) + 2R(C)R(ϕ(Ω))2/λ.

Denoting M = 2R(ϕ(Ω)) + 2R(C)R(ϕ(Ω))2/λ, we have

|`(X1,W1)− `(X2,W2)| ≤
∣∣(‖X1 −W1H

∗‖2F + λ‖H∗‖1
)
−
(
‖X2 −W2H

∗‖2F + λ‖H∗‖1
)∣∣

≤M‖(X1 −X2) + (W2 −W1)H∗‖F
≤M (‖X1 −X2‖F + ‖W1 −W2‖F · ‖H∗‖F)

≤M
(
‖X1 −X2‖F + λ−1R(ϕ(Ω))2‖W1 −W2‖F

)
.

This shows the assertion.

Proof [Proof of Proposition 6] First note that (iii) follows easily from (i) and (ii). Namely, since
g is strictly convex and C is convex, Wt = arg minW∈C g(W) is uniquely defined and g(λWt + (1 −
λ)Wt−1) is monotone decreasing in λ ∈ [0, 1]. Hence (iii) follows from (i) and (ii).

In order to show (i) and (ii), we first derive a general second order Taylor expansion for the
function g. Let W,W ′, W̄ ∈ Rd×r be arbitrary. Then a simple calculation gives that

g(W)− g(W̄) = tr((W − W̄)A(W − W̄)T) + 2tr((W − W̄)(AW̄T −B)),

and also a similar expression for g(W ′). Writing ∆W = W ′ −W , we get

g(W)− g(W ′) = tr((W − W̄)A(W − W̄)T)− tr((W ′ − W̄)A(W ′ − W̄)T)

+ 2tr((W − W̄)(AW̄T −B))− 2tr((W ′ − W̄)(AW̄T −B))

= −2tr((W ′ − W̄)A(∆W)T) + tr(∆WA(∆W)T) (26)

+ 2tr((W − W̄)(AW̄T −B)) + 2tr((W̄ −W ′)(AW̄T −B)). (27)

To show (i), let W1,W2 ∈ Rd×r be such that tr((BT − W2A)(W1 − W2)T) ≤ 0. By taking
W = W1, W ′ = W2, and W̄ = (A−1B)T in the above expansion, we get

g(W1)− g(W2) = 2tr((W̄ −W2)A(∆W)T) + tr(∆WA(∆W)T)

= tr((BT −W2A)(W2 −W1)T) + tr(∆WA(∆W)T) ≥ tr(∆WA(∆W)T).

This shows (22), as desired.

40

OMF for Markovian data

To show (ii), fix W1,W2 ∈ Rd×r and W (λ) = λW2 + (1 − λ)W1 for λ ∈ [0, 1]. Then by taking
W = W̄ = W (λ) and W ′ = W2 in (26)-(27), we get

g(W (λ))− g(W2) = −tr(∆WA(∆W)T) + 2tr((Wλ −W2)(AWT
λ −B)).

Suppose g(W (λ)) is monotone decreasing in λ ∈ [0, 1]. In particular, g(W (λ)) ≥ g(W2). Since A is
positive definite, the above equation gives

2tr((Wλ −W2)(AWT
λ −B)) ≤ −tr(∆WA(∆W)T) ≤ 0.

This yields, for all λ ∈ [0, 1),

tr((W1 −W2)(AWT
λ −B)) ≤ 0.

By letting λ↗ 1, this gives the desired inequality

tr((BT −WλA)(W1 −W2)T) = tr((W1 −W2)(AWT
2 −B)) ≤ 0.

Proof [Proof of Proposition 7] The argument is almost the same as that of (Mairal et al., 2010,
Lem.1). The only difference is that we use Proposition 6 for a second order growth property for non-
convex constraint set C for the quadratic optimization problem for Wt with additional constraint,
as in (3).

Let At and Bt be as in (3). Denote ĝt+1(W) = tr(WAt+1W
T)−2tr(WBt) and ĥt+1 := ĝt− ĝt+1.

We first claim that there exists a constant c > 0 such that

|ĥt+1(W)− ĥt+1(W ′)| ≤ cwt+1‖W −W ′‖F (28)

for all W,W ′ ∈ C and t ∈ N. To see this, we first write

ĥt+1(W) = tr(W (At −At+1)WT)− 2tr(W (Bt −Bt+1)).

The Cauchy-Schwartz inequality yields tr(ATB) =
∑
i,j AijBij ≤ ‖A‖F ‖B‖F , so we have

‖ĥt+1(W)− ĥt+1(W ′)‖F ≤
∣∣tr ((W −W ′)(At −At+1)WT

)∣∣+
∣∣tr (W ′(At −At+1)(W −W ′)T

)∣∣
+ 2 |tr(W −W ′)(Bt −Bt+1)|

≤ 2 (R(C)‖At −At+1‖F + ‖Bt −Bt+1‖F) · ‖W −W ′‖F ,

where R(C) = supW∈C‖W‖F < ∞ by (A2). Note that ‖Ht − Hopt(Xt,Wt−1)‖F = O((log t)−2)
implies that there exists a constant c2 > 0 such that ‖Ht‖F ≤ ‖Hopt(Xt,Wt−1)‖F + c2 for all t ∈ N.
Hence by Proposition 14, it follows that ‖At‖F and ‖Bt‖F are uniformly bounded in t. Thus there
exists a constant C > 0 such that for all t ∈ N,

‖At −At+1‖F = wt+1‖At −Ht+1H
T
t+1‖F ≤ Cwt+1,

and similarly

‖Bt −Bt+1‖F ≤ C ′wt+1

for some other constant C ′ > 0. Hence the claim (28) follows.
To finish the proof, according to the assumptions (A2) and (C2), we first apply Proposition 6

(i) to deduce the following second order growth condition for all t ∈ N:

ĝt+1(Wt)− ĝt+1(Wt+1) ≥ κ1‖Wt −Wt+1‖2F ≥ 0. (29)

41

Lyu and Needell and Balzano

Using the inequalities ĝt+1(Wt+1) ≤ ĝt+1(Wt) and ĝt(Wt) ≤ ĝt(Wt+1) given by (29), we deduce

0 ≤ ĝt+1(Wt)− ĝt+1(Wt+1)

= ĝt+1(Wt)− ĝt(Wt) + [ĝt(Wt)− ĝt(Wt+1)] + ĝt(Wt+1)− ĝt+1(Wt+1)

≤ ĝt+1(Wt)− ĝt(Wt) + ĝt(Wt+1)− ĝt+1(Wt+1) = ĥt+1(Wt+1)− ĥt+1(Wt),

Hence by (29) and the claim (28), we get

κ1‖Wt −Wt+1‖2F ≤ ĥt+1(Wt+1)− ĥt+1(Wt) ≤ cwt+1‖Wt −Wt+1‖F .

This shows the assertion.

Proof [Proof of Lemma 11] Fix t ∈ N. Recall the weighted empirical loss ft(W) defined recursively
using the weights (ws)s≥0 in (10). For each 0 ≤ s ≤ t, denote

wts = ws

t∏
j=s

(1− wj). (30)

Then for each t ∈ N, we can write

ft(W) =

t∑
s=1

`(Xs,W)wts

Moreover, note that wt1, . . . , wtt > 0 and wt1+· · ·+wtt = 1. Define Fi(W) = (t−i+1)−1
∑t
j=1 `(Xi,W)

for each 1 ≤ i ≤ t. By Lemma 10, there exists a constant c1 > 0 such that

E
[

sup
W∈C

|Fi(W)− f(W)|
]
≤ c1√

t− i+ 1
(31)

for all 1 ≤ i ≤ t. Noting that (wt1, . . . , w
t
t) is a probability distribution on {1, . . . , t}, a simple

calculation shows the following important identity

ft − f =
t∑
i=1

(wti − wti−1)(t− i+ 1)(Fi − f),

with the convention of wt0 = 0. Now by triangle inequality (31),

E
[

sup
W∈C

|ft(W)− f(W)|
]
≤ E

[
t∑
i=1

(wti − wti−1)(t− i+ 1) sup
W∈C

|Fi(W)− f(W)|

]

=
t∑
i=1

(wti − wti−1)(t− i+ 1)E
[

sup
W∈C

|Fi(W)− f(W)|
]

≤
t∑
i=1

(wti − wti−1)c1
√
t− i+ 1

≤ c1
√
t

t∑
i=1

(wti − wti−1) = c1
√
twtt.

Noting that wtt = wt in (30), this shows the first part of assertion. We can show the second part by
using Lemma 16, following the argument in the proof of (Mairal, 2013b, Lem. B7). See the reference

42

OMF for Markovian data

for more details.

The following deterministic statement on converging sequences is due to Mairal et al. (Mairal
et al., 2010).

Lemma 16. Let (an)n∈N and (bn)n∈N non-negative real sequences such that
∞∑
n=0

an =∞,
∞∑
n=0

anbn <∞, |bn+1 − bn| = O(an).

Then limn→∞ bn = 0.

Proof See (Mairal, 2013b, Lem. A.5).

Appendix B. Algorithm for the generalized online NMF scheme

In this section, we state an algorithm for the generalized online NMF scheme (3). We denote by
ΠS : Rp×q → S ⊆ Rp×q the projection onto S. The main algorithm, Algorithm 1 below, is a direct
implementation of (3). In Algorithm 3, A tB denotes the disjoint union for sets A and B.

Algorithm 1 Online NMF for Markovian data
1: Variables:
2: Xt ∈ Ω ⊆ Qd×n: data matrix at time t ∈ N
3: Wt−1 ∈ C ⊆ Rd×r: learned dictionary at time t
4: (At−1, Bt−1) ∈ Rr×r × Rr×d: aggregate sufficient statistic up to time t
5: λ, κ1,K > 0: parameters
6: C′ ⊆ Rr×n: constraint set of codes
7: Upon arrival of Xt:
8: Compute Ht using Algorithm 2.
9: At ← t−1((t− 1)At−1 +HtH

T
t), Bt ← t−1((t− 1)Bt−1 +HtX

T
t).

10: Compute Wt using Algorithm 3, with Wt−1 as a warm restart, so that

Wt = arg min
W∈C⊆Rd×r

(
tr(WAtW

T)− 2tr(WBt)
)

s.t. tr((BTt −WAt)(Wt−1 −W)T) ≤ 0

Algorithm 2 Sparse coding
1: Variables:
2: Xt ∈ Ω ⊆ Qd×n: data matrix at time t ∈ N
3: Wt−1 ∈ C ⊆ Rd×r: learned dictionary at time t
4: λ > 0: sparsity regularizer
5: C′ ⊆ Rr×n: constraint set of codes
6: Repeat until convergence:
7: Do J ← All ones matrix in ∈ Rr×n;

Ht ← ΠC′

(
Ht −

1

tr(WT
t−1Wt−1)

(WT
t−1Wt−1Ht −WT

t−1Xt + λJ)

)
(32)

8: Return Ht

43

Lyu and Needell and Balzano

Algorithm 3 Dictionary update
1: Variables:
2: Wt−1 ∈ C = C1 t · · · t Cm ⊆ Rd×r: learned dictionary at time t
3: (At, Bt) ∈ Rr×r × Rr×d: aggregate sufficient statistic up to time t
4: λ, κ1 > 0: parameters
5: Do Et ← {W ∈ Rr×d | tr((BTt −WtAt)(Wt−1 −Wt)

T) ≤ 0}
6: For i = 1, 2, . . . ,m:
7: Do W

(i)
t ←Wt−1 and Wt ←Wt−1

8: If Ci ∩ Et 6= ∅ Repeat until convergence:
9: For j = 1 to r:

[Wt]•j ← ΠCi∩Et

(
[Wt−1]•j −

1

[At]jj + 1
(Wt−1[At]•j − [BTt]•j)

)
(33)

10: Do W
(i)
t ←Wt

11: Return Wt = arg min
W∈{W (1)

t ,...,W
(m)
t } tr(WAtW

T)− 2tr(WBt)

When C is convex, Algorithm 3 reduces to the dictionary update algorithm in (Mairal et al.,
2010), as the ellipsoidal condition in (3) becomes redundant (see Proposition 6 (iii)). We also remark
that the specific coordinate descent algorithms (32) and (33) can be replaced by any other standard
algorithms such as LARS.

Appendix C. Algorithms for Network Dictionary Learning and
Reconstruction

In this section, we provide algorithms for network dictionary learning (NDL) (Algorithm NDL) and
network reconstruction (Algorithm NR) as well as MCMC motif sampling algorithms (Algorithms
MG, MP) that sample a random homomorphism x : F → G from a motif F = ([k], AF) into a
network G = (V,A).

Algorithm MG . Glauber Chain Update
1: Input: Network G = (V,A), k-chain motif F = ([k], AF), and homomorphism x : F → G
2: Do: Sample v ∈ [k] uniformly at random
3: Sample ` ∈ V at random from the distribution p given by

p(w) =
1

Z

∏
u∈[k]

A(x(u), w)AF (u,v)

∏
u∈[k]

A(w,x(u))AF (v,u)

 , w ∈ V

where Z =
∑
c∈V

(∏
u∈[k]A(x(u), c)AF (u,v)

)(∏
u∈[k]A(c,x(u))AF (v,u)

)
is the normaliza-

tion constant.
4: Define a new homomorphism x′ : F → G by x′(w) = ` if w = v and x′(w) = x(w) otherwise
5: Output: Homomorphism x′ : F → G

44

OMF for Markovian data

Algorithm MP . Pivot Chain Update
1: Input: Symmetric network G = (V,A), motif F = ([k], AF), and homomorphism x : F → G
2: Parameters: AcceptProb ∈ {Exact, Approximate}
3: Do: x′ ← x
4: If

∑
c∈V A(x(1), c) = 0: Terminate

5: Else:
6: Sample ` ∈ V at random from the distribution p1 given by

p1(w) =
A(x(1), w)∑
c∈V A(x(1), c)

, w ∈ V

7: Compute the acceptance probability λ ∈ [0, 1] by

λ←

[∑

c∈V Ak−1(`,c)∑
c∈V Ak−1(x(1),c)

∑
c∈V A(c,x(1))∑
c∈V A(x(1),c) ∧ 1

]
If AcceptProb = Exact[∑

c∈V A(c,x(1))∑
c∈V A(x(1),c) ∧ 1

]
If AcceptProb = Approximate

(34)

8: Sample U ∈ [0, 1] uniformly at random, independently of everything else
9: `← x(1) if U > λ and x′(1)← `.

10: For i = 2, 3, . . . , k:
11: Sample x′(i) ∈ V from the distribution pi given by

pi(w) =
A(x(i− 1), w)∑
c∈V A(x(i− 1), c)

, w ∈ V (35)

12: Output: Homomorphism x′ : F → G

Algorithm A3 . Rejection Sampling of Homomorphisms
1: Input: Network G = (V,A), motif F = ([k], AF)

2: Requirement: There exists at least one homomorphism F → G
3: Repeat: Sample x = [x(1),x(2), . . . ,x(k)] ∈ V [k] so that x(i)’s are independent and identically

distributed
4: If

∏
1≤i,j≤k A(x(i),x(j))AF (i,j) > 0:

5: Return x : F → G and Terminate
6: Output: A homomorphism x : F → G

45

Lyu and Needell and Balzano

Algorithm NDL . Network Dictionary Learning (NDL)
1: Input: Network G = (V,A)

2: Parameters: F = ([k], AF) (motif) , T ∈ N (# iterations) , N ∈ N (# homomorphisms per
iteration) , r ∈ N (# latent motifs) , λ ≥ 0 (`1-regularizer)

3: Options: MCMC ∈ {Pivot, PivotApprox, Glauber}
4: Requirement: There exists at least one homomorphism F → G
5: Initialization:
6: Sample a homomorphism x : F → G by the rejection sampling in Algorithm A3
7: W = (k2 × r) matrix of independent entries that we sample uniformly from [0, 1]
8: P0 = zero matrix of size r × r; Q0 = zero matrix of size r × k2

9: For t = 1, 2, . . . , T :
10: MCMC update and minibatch extraction :
11: Successively generate N homomorphisms xN(t−1)+1,xN(t−1)+2, . . . ,xNt by applying

Algorithm MP with AcceptProb = Exact if MCMC = Pivot

Algorithm MP with AcceptProb = Approximate if MCMC = PivotApprox

Algorithm MG with AcceptProb = Glauber if MCMC = Glauber

12: For N(t− 1) < s ≤ Nt:
13: Axt ← k × k matrix defined by Axt(a, b) = A(xt(a),xt(b)) for 1 ≤ a, b ≤ k
14: Xt ← k2 ×N matrix whose jth column is vec(Ax`

) with ` = N(t− 1) + j
(vec(·) denotes the vectorization operator in lexicographic ordering of entries)

15: Single iteration of Online Nonnegative Matrix Factorization :
Ht ← arg minH∈Rr×N

≥0
‖Xt −Wt−1H‖2F + λ‖H‖1 (using Algorithm 2)

Pt ← (1− t−1)Pt−1 + t−1HtH
T
t

Qt ← (1− t−1)Qt−1 + t−1HtX
T
t

Wt ← arg min
W∈Cdict⊆Rk2×r

≥0

(
tr(WPtW

T)− 2tr(WQt)
)

(using Algorithm 3),

(36)

where Cdict := {W ∈ Rk
2×r
≥0 | columns of W have Frobenius norm at most 1}

16: Output: Network dictionary WT ∈ Cdict ⊆ Rk
2×r
≥0

46

OMF for Markovian data

Algorithm NR . Network Reconstruction (NR)

1: Input: Network G = (V,A) , and network dictionary W ∈ Rk
2×r
≥0

2: Parameters: F = ([k], AF) (motif) , T ∈ N (# iterations) , λ ≥ 0 (`1-regularizer)
3: Options: MCMC ∈ {Pivot, PivotApprox, Glauber}
4: Requirement: There exists at least one homomorphism F → G
5: Initialization:
6: Arecons , Acount : V 2 → {0} (zero matrices)
7: Sample a homomorphism x0 : F → G by the rejection sampling in Algorithm A3
8: For t = 1, 2, . . . , T :
9: MCMC update and mesoscale patch extraction :

10: xt ← Updated homomorphism obtained by applying

Algorithm MP with AcceptProb = Exact if MCMC = Pivot

Algorithm MP with AcceptProb = Approximate if MCMC = PivotApprox

Algorithm MG with AcceptProb = Glauber if MCMC = Glauber

11: Axt ← k × k matrix defined by Axt(a, b) = A(xt(a),xt(b)) for 1 ≤ a, b ≤ k
12: Xt ← k2 × 1 matrix obtained by vectorizing Axt

13: Local reconstruction :
14: X̃t ← Xt and W̃ ←W

15: Ht ← arg min
H∈Rr×1

≥0

||X̃t − W̃H||2F + λ‖H‖1 and X̂t ← W̃Ht

16: Âxt;W ← k × k matrix obtained by reshaping the k2 × 1 matrix X̂t

17: Update global reconstruction:
18: For a, b ∈ {1, . . . , k}:

Acount(xt(a),xt(b))← Acount(xt(a),xt(b)) + 1

j ← Acount(xt(a),xt(b))

Arecons(xt(a),xt(b))← (1− j−1)Arecons(xt(a),xt(b)) + j−1Âxt;W (xt(a),xt(b))

19: Output: Reconstructed network Grecons = (V,Arecons)

47

Lyu and Needell and Balzano

Appendix D. Additional figures

In this appendix, we give further examples of the Ising model application discussed in Section 5.
As shown in Figure 12, the learned dictionary elements at the high temperature T = 5 are much
noiser than the ones corresponding to the lower temperatures. This is reasonable since the Ising spins
become less correlated at higher temperatures, so we do not expect there are a few dictionary patches
that could approximate the highly random configuration. We remark that this is not an artifact of the
Gibbs sampler mixing slowly, as it is well known that it mixes faster at high temperature (Lubetzky
and Sly, 2012). We also remark that, while our convergence theorem (Theorem 1) guarantees
that our dictionary patches will almost surely converge to a local optimum even under Markovian
dependence, we do not know how effective they are in actually approximating the input sequence.
This will depend on the model (e.g., temperature) as well as parameters of the algorithm (patch
size, number of dictionaries, regularization, etc.). Moreover, as in the high temperature Ising model,
effective dictionary learning may not be possible at all, which is also suggested in Figure 5 right.

𝑾

𝑯

𝜑(𝑿)

𝑿 Observed Tensor

Observed Matrix

Dictionaries 𝑾

𝑯

𝜑(𝑿)

𝑿

𝑾

𝑯

𝜑(𝑿)

𝑿

𝑾

𝑯

𝜑(𝑿)

𝑿

Codes

⋯

⋯

 Typical Ising spin config. at 𝑇 = 0.5
Learned from MCMC trajectory Learned from a fixed spin config.

Dictionary patches of size 20

 Typical Ising spin config. at 𝑇 = 2.26
Learned from MCMC trajectory
Dictionary patches of size 20

Learned from a fixed spin config.
Dictionary patches of size 20

 Typical Ising spin config. at 𝑇 = 5
Learned from MCMC trajectory
Dictionary patches of size 20

Learned from a fixed spin config.
Dictionary patches of size 20

Dictionary patches of size 20

Figure 11: (Left) 100 learned dictionary patches from a MCMC Gibbs sampler for the Ising model on
200× 200 square lattice at a near critical temperature (T = 2.26). (Middle) 100 learned dictionary
patches from fixed Ising spin configuration at T = 0.5 shown in the right.

Figure 12: (Left) 100 learned dictionary patches from a MCMC Gibbs sampler for the Ising model
on 200× 200 square lattice at a supercritical temperature (T = 5). (Middle) 100 learned dictionary
patches from fixed Ising spin configuration at T = 0.5 shown in the right.

48

OMF for Markovian data

𝑇
=
5

𝑇
=
2
.2
6

𝑇
=
0
.5

𝜏 = 1000 𝜏 = 10000 𝜏 = 100000 𝜏 = 500000

Figure 13: Plot of (normalized) surrogate errors vs. MCMC iterations (unit 104) for subsampling
epochs of 1000, 10000, 100000, and 500000 for temperatures T = 0.5 (left), T = 2.26 (middle), and
T = 5 (right), respectively.

𝑇
=
5

𝑇
=
2
.2
6

𝑇
=
0
.5

𝜏 = 1000 𝜏 = 10000 𝜏 = 100000 𝜏 = 500000 Original

Figure 14: Reconstruction of fixed Ising spin configurations at temperatures T = 0.5, 2.26,
and 5 (rightmost column) using the learned dictionaries at different subsampling epochs τ =
1000, 10000, 100000, and 500000 shown in Figure 14. Since the dictionaries are learned from the
entire MCMC trajectories, reconstruction error of a fixed configuration does not change drastically
in the subsampling epoch.

49

