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ABSTRACT: A novel methodology for direct modeling of long-time scale nonadiabatic
dynamics in extended nanoscale and solid-state systems is developed. The presented approach
enables forecasting the vibronic Hamiltonians as a direct function of time via machine-learning
models trained directly in the time domain. The use of periodic and aperiodic functions that
transform time into effective input modes of the artificial neural network is demonstrated to be
essential for such an approach to work for both abstract and atomistic models. The best
strategies and possible limitations pertaining to the new methodology are explored and
discussed. An exemplary direct simulation of unprecedentedly long 20 picosecond trajectories
is conducted for a divacancy-containing monolayer black phosphorus system, and the
importance of conducting such extended simulations is demonstrated. New insights into the
excited states photophysics in this system are presented, including the role of decoherence and
model definition.

N onadiabatic molecular dynamics (NA-MD) is a powerful
tool for modeling the evolution of excited statesthe key

process that defines the outcomes of many photoinduced
processes, such as nonradiative electron−hole recombination,
“hot” charge carrier cooling, charge transfer and carrier trapping,
excitation energy transfer and relaxation, exciton dissociation,
and photoinduced isomerization.1−6 Modeling nonadiabatic
processes in extended nanoscale and solid-state systems is a
computationally demanding task and naturally requires various
approximations in order to handle large-size systems and long-
time scale processes. First, the quantum-classical trajectory
surface hopping (TSH) technique7,8 is the most widely used
family of approximations. Second, the neglect of back-reaction
approximation (NBRA) is often used in the TSH methods for
extended systems.9−11 The NBRA postulates that the nuclear
dynamics is insensitive to the underlying electronic dynamics
and helps reduce the number of trajectories by neglecting
possible branching of the nuclear probability density as
represented by the swarms of classical trajectories.
Despite the use of TSH and NBRA approaches, the modeling

of slow nonadiabatic (NA) processes in extended systems
remains a challenge. Indeed, if the state transition probabilities
are on the order of 10−6, many (on the order of 104−106) long
(e.g., on the nanosecond scale) trajectories are required to
obtain statistically converged results. Depending on the level of
theory used and the size of the systems studied, such calculations
may be quite expensive. Conventionally, few-picosecond
trajectories are computed for systems of few hundreds of
atoms while using Kohn−Sham (KS) orbitals and pure
functionals such as the Perdew−Burke−Ernzerhof
(PBE).3,10,12−20 Recently, we have extended this procedure to

go beyond the KS picture via the time-dependent density
functional theory (TD-DFT) calculations of excited states and
computing the corresponding couplings.21,22 However, one
major drawback of such an approach is that the TD-DFT still
relies on the short-ranged exchange component of the PBE
functional and hence is incapable of fully capturing excitonic
effects. To capture such effects, the TD-DFT calculations with
hybrid functionals are desirable. The calculations with hybrid
functionals may be orders of magnitude more expensive than
those with pure functionals,23 especially when the TD-DFT level
is leveraged. Jiang et al.24 also developed an approach that
leverages the GW plus Bete−Salpeter equation (GW-BSE)
states, which may be even more time-consuming. In the end, the
practical threshold is at a few hundred of femtoseconds of direct
trajectory computed for a few-hundred atom systems. For the
systems with over 1000 atoms, such calculations remain
prohibitively expensive and require falling back to semiempirical
and tight-binding theories.
Several approaches have been proposed or undertaken to

extend the time scales of NA-MD simulations. Excluding the
whole spectrum of methods that aim to accelerate the electronic
structure calculations part, a number of techniques for sampling
rare events in the context of NA-MD calculations have been
proposed in the past.25−27 However, they are formulated with
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the assumptions that go beyond the NBRA framework, such as
the use of non-NBRA trajectories. In the context of the NBRA
framework, only a handful of approaches have been used.
Prezhdo and Long28−30 have been using a simplistic approach in
which the original short (few-picosecond) trajectory is repeated
several times to yield arbitrary long time-series of the properties
needed to conduct the TSH calculations. Wang et al.31 utilized
Fourier transform of the directly obtained Hamiltonian matrix
elements to reconstruct indefinitely long time-series of such
quantities in simulations of charge carrier dynamics in organic
semiconductors with dynamic disorder. Because of the
periodicity properties of the Fourier transform, the data
forecasted by a Fourier series reconstructed from the short-
time dynamics of the target property (e.g., energy) is exactly the
repetition of the short-time time-series used to compute the
Fourier transform of the target property. In this regard, the
method of Wang et al.31 is similar to the repetition approach of
Long and Prezhdo.28−30

Several years ago, the author proposed the biased NAD32 and
quasi-stochastic Hamiltonian (QSH)33 approaches to address
the infrequent hops problem within the NBRANA-MD context.
Recognizing the quasi-periodicity of the time-only dependent
vibronic Hamiltonian that appears in this context, the QSH
approach constructs the Hamiltonian in a physically guided way
such that the key frequencies, mean values, and fluctuation
amplitudes of energy levels and scalar nonadiabatic couplings
(NACs) time-series are captured. The resulting analytical
expression is explicitly dependent on a single “effective
coordinate”timeand can be used to compute indefinitely
long trajectories at a negligible cost. Unlike the Fourier
transform approach of Wang et al.31 or the short-trajectory-
repetition technique of Long and Prezhdo, the QSH method
yields the time-series of the desired properties that are not mere
repetition of the properties known from the short-time
dynamics, especially when a sufficiently large number of
modes is included. Instead, the QSH generates qualitatively
new trajectories that can better mimic stochastic effects in long-
term simulations instead of repeating the noise present in the
short-time trajectories.
The QSH can be regarded as a simplistic machine learning

(ML) approach. It uses the initial data set to “train/reconstruct”
the function that is used to produce the time-series with the
statistical properties similar to those of the original data set,
although QSH does not mean to provide the best fit to such a
data set, only to capture its statistical properties. A logical next
step is to apply the formal ML techniques to predict the vibronic
Hamiltonians as the function of time, capturing the original data
set as much as possible this time. The use of ML in NA-MD
modeling is a vigorously spreading paradigm that has seen many
early successes already,34−41 although met several challenges as
well.42 For instance, Dral, Barbatti, and Thiel (DBT)37 reported
the kernel ridge regression (KRR) approach that fits energies
and NACs to the “training” data points computed for multiple
molecular geometries. Considering this technique represents the
properties of interest in terms of internal coordinates of the
studies systems, the dimensionality of the input space of the ML
learningmodels increases with the number of classical degrees of
freedom of the atomistic systems. As a result, such an approach
needs a very large number of training points to achieve a good
convergence. As an example, for a 33-dimensional model, one
needs already about 10000 points (each requires expensive ab
initio calculations). Such a large number of points may be
prohibitive for nanoscale systems. Naturally, the nonlinear

dimensionality reduction (NLDR) techniques have been
suggested. Virshup et al.43 utilized the diffusion map (DM)
approach for the detailed analysis of ethylene’s NA dynamics. Li
et al.,44,45 explored the utility of classical multidimensional
scaling (MDS) and isometric feature mapping (ISOMAP) as
meaningful descriptors of the photodynamics in several
molecular and model systems. Hughes et al.,46 utilized the
NLDR to construct effective low-dimensional potentials for the
use in wavepacket dynamics. Zhou et al.38 developed
unsupervised ML approaches to extract the “most important”
coordinates that could be used in the NA-MD. Mangan et al.47

explored the unsupervised ML approaches to establish
correlations between the structural features of condensed-
matter systems such as lead halide perovskites and their NACs
and band gaps, although no use of ML in the NA-MD
simulations has been reported. More recently, Wu et al.48

utilized the KRR approach to conduct the NA-MD calculations
of perovskite systems using several internal degrees of freedom
as the inputs to the ML model to predict the NACs and energy
gaps.
In this work, I present a new time-domain ML (TD-ML)

approach for long-time NA-MD, specifically designed for the
NBRA-type of calculations. Unlike most of the existing NLDR-
ML techniques, the key “reaction” coordinate is time itself. As
was alluded to above, within the NBRA framework, the energy
gaps and NACs are explicit functions of time. Thus, from the
mathematical or computer science standpoint the problem is
essentially a forecast problemthe prediction of the time-series.
The solution to such a problem can be found via either
convolution neural networks or long short-term memory
networks.49 However, such techniques are prone to potential
error accumulation problems and lack physical insights. Instead,
in the current TD-ML a multilayer perceptron (MLP) artificial
neural network (ANN) with a specially designed input layer
structure is used (Figure 1).

Considering that the training of theMLPs with the hyperbolic
tangent transfer function is the most efficient only for input
values around zero, where the transfer function has the largest
slope, using the time variable as the direct input to the MLP is
doomed to fail. At the same time, we recognize the quasi-
periodicity of the energy gap and NAC time-series that appear in
NBRA NA-MD calculations. Thus, it is reasonable and essential
to utilize a nonlinear transformation of time. In this work, a
series of periodic and bound basis functions (hereafter referred
to as the modes) of time, sin(ωit), is used as such a
transformation. Although only one effective reaction coor-

Figure 1.Conceptual schematic of the TD-MLmodel for NBRA-based
NA-MD simulations.
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dinatetimeis used as a nominal input to the MLP, it
generates a series of linearly independent input basis functions
that are propagated to the MLP (Figure 1) and undergo further
nonlinear transformations through the hidden neurons. The
realistic time-series of electronic energy gaps and NACs
obtained from ab initio calculations are almost never ideal
periodic functions, since the thermal effects (bath, thermostat)
are included. Therefore, it is desirable to break the exact
periodicity of the output, X(t), as the function of the input t. For
this reason, the input layer of the TD-ML scheme is extended to
include nonperiodic but bound (for instance, to the [0, 1]
interval) basis functions (modes) of the form, exp(−t/τi), Figure
1. The input from the basis functions of the two types is then
propagated to multiple hidden layers of theMLP to yield a single
output value, X(t), of the desired property. Thus, the overall
effect of the constructed ANNs is to obtain the mapping of time,
t, to a quasiperiodic time-only dependent property of interest,
X(t): MLP:t→ X(t).
The TD-ML method can be regarded as a simple yet quite

dramatic NL-DR approach: the dynamics of an arbitrary system
(model or atomistic, finite or periodic, of any size and
composition, with or without external bath modes), is described
by a single coordinate, time, which nonlinearly modulates the
system’s properties of interest. The time variable replaces the
explicit consideration of the system’s and bath’s degrees of
freedom, which all are nonlinear functions of time. However, in
order to use the time-variable to predict the properties of interest
at its arbitrary values via MLP, the nonlinear transformation of
this variable to a set of auxiliary linearly independent basis
functions is necessary.
Although the dimensionality reduction in the TD-ML model

can be quite dramatic (from hundreds and thousands of internal
coordinates to just one), it is important to remember its main
limitationthe NBRA. In other words, the approach is expected
to work best when the dynamics of the nuclear degrees of
freedom is confined to a limited region of the phase space, which
is usually the case for systems that do not undergo significant
structural reorganization on the time scale of simulations.

Having said that, the approach may still be applicable to systems
with a greater flexibility of nuclear degrees of freedom (e.g.,
photoinduced isomerization situations), but the corresponding
MLP models may be harder to train and would require a
significant amount of the training data. The TD-ML approach
also assumes the regularity of the dynamics and cannot describe
the processes that are not included in the training dynamics. For
instance, if the system can undergo multiple reactive steps not
seen in the training data, the TD-ML approach is expected to
break down. If the training data contains information on reactive
processes, the TD-ML would predict such processes (implicitly,
via the energy gaps andNACs) in the forecasted time-series with
the regularity seen in the training data, which may or may not be
adequate in the long-time simulations.
In the present work, the aim is to predict adiabatic energy gaps

between all adjacent pairs of states,X(t) =ΔEi+1 = Ei+1(t)− Ei(t)
and scalar NACs for all distinct pairs of states,

X t d d
t

i j( ) ,ij ji i j
ψ ψ= = − ≡

∂

∂
<

Separate ANNs are trained for each property. Thus, for a 2-level
system, 2 ANNs are trained, one for the energy gap ΔE1 = E1 −

E0 and one for the NAC, d01; for a five-state system, a total of 14

ANNs are trained: 4 for energy gaps and 10
5 4

2
=

×
for distinct

NACs. Although it is possible to train the joint ANNs for all
states and all NACs, such an approach is not explored in this
work and will be studied separately. Furthermore, the primary
goal of this work is to explore the viability of the ANN based
approach rather than provide a comprehensive evaluation of
various possible strategies.
Similar to QSH formulations, the frequencies, ωi, used in the

mode definition are taken as the peak positions of the Fourier
transform of the target property’s autocorrelation functions
(ACF), I(ω) = |FT[⟨X(0)X(τ)⟩]|2 (Figure 2). This choice is
motivated by the line shape theory,50,51 which associates such
frequencies with the phonon modes that are most strongly
coupled to the corresponding electronic state transitions.

Figure 2. Definition of frequencies of the ANN input modes’ frequencies in the TD-ML method.
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Therefore, such modes may be regarded as the key internal
degrees of freedom that parametrize the vibronic Hamiltonian.
The number of the maxima in the ACF for a given property X
may be large, so only a fraction of the dominant frequencies is
selected to define the modes. Specifically, only the frequencies
with the amplitudes larger than 0.01% of the maximal peak
amplitude: ω:I(ω) ≥ 10−4 × I(ωmax), are used in this work. At
this point, it is unclear what the best choice of the τi parameters
is, so they are selected to span a range of time scales up to the
order of magnitude of the “training” trajectory. Following the
common ANN training practices, the time-series of the target
properties X(t) used to train the MLPs are first centered at zero
and then rescaled to the [−0.75, 0.75] interval before they are
used in the ANN training. The corresponding transformations
are saved and stored in the .json files for later reuse in NA-MD
calculations. In all cases, the resilient propagation (RProp)
algorithm52−54 is used for the ANN training. Unlike the
commonly used backpropagation algorithm (back-prop) which
can use a variable number of training patterns at every training
epoch, the RProp algorithm uses all the presented training
samples at every training step (epoch). This makes it more
memory-consuming and often slower than the back-prop, but
more robust and faster to converge. In all the simulations
presented in this work, the ANNs are trained with the RProp
algorithm for 250 epochs with 250 training iterations per each
epoch. Tracking the error function of the trained ANNs shows
that this is sufficient to achieve the convergence of the trained
MLPs. The training data preparation, ANN training algorithms,
and the NA-MD computations, both direct and ANN-based, are
conducted with the Libra55 (version 5.1.056) software package in
which all these capabilities are implemented.
The typical output of the trained ANNs is illustrated in Figure

3, which shows how the time-series for the energy gap (Figure
3a) and NAC (Figure 3d) can be reconstructed as functions of a
continuous time variable. As mentioned above, the training is
not conducted in terms of the direct time variable, but rather in

terms of periodic and aperiodic basis functions. The desired
properties as the functions of two leading periodic modes are
shown in Figure 3b,c for gap, and Figure 3e,f for NAC. Note that
in these coordinates, the functions appear nonsingle-valued
since for each value of the basis function there may be several
values of the target function. However, one should remember
that these panels show only the projections of the actual function
on lower-dimensional subspaces. The actual function is single-
valued in terms of the effective coordinate and time, as is
apparent from Figure 3, panels a and d.
To demonstrate the performance of the TD-ML NA-MD

approach, we consider several types of calculations: (a) a model
two-state time-dependent Hamiltonian; (b) a two-state and (c)
a five-state Hamiltonian based on the TD-DFT calculations for
the divacancy-containing monolayer black phosphorus, studied
recently by the author.57 Since the main focus of this work is on
the TD-ML, the NA-MD is conducted only at the Tully’s fewest
switches surface hopping (FSSH)7 level, for systems (b), and (c)
at the instantaneous decoherence at the attempted hops (IDA)
of Tretiak.58

For all models, the ANN training data consist of the time-
dependent Hamiltonian matrix elements, obtained either
analytically (as in model I) or via atomistic calculations (models
II and III). Such a time-dependence of the energy gaps and
NACs should be understood in a general way: it may reflect
either the evolution of the system alone or can also incorporate
system-bath interactions with an indefinite number of implicit
thermal bath modes. From the mathematical/algorithmic point
of view, the TD-ML approach handles all types of data equally,
but the way the training data are produced determines the kind
of physics/interactions that are accounted for in the resulting
ANN model. Another important consideration for NA-MD
simulations is whether a phase correction is applied to the wave
functions and the corresponding properties59 along the
precomputed trajectory and whether the state identities are
tracked along the trajectories.60−63 For model I below, one can

Figure 3. Energy gap (a, b, c) and NAC (d, e, f) reproduced by the ANNs trained on the data set of 1000 points. The panels a and d show the desired
time-dependent functions, while the actual training is conducted in terms of the input basis functions (modes). The target functions as the functions of
the first modes (different for energy gap and NAC) are shown in panels b, c, e, and f.
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assume without the loss of generality that both effects are
included by the construction. For models II and III, such
corrections have been applied explicitly, when the properties
were obtained, as explained elsewhere.57

Model I. First, we consider a model vibronic Hamiltonian of
the form

H t
i d t

i d t H t
( )

0 ( )

( ) ( )

01

01 11

ikjjjjjj y{zzzzzz=

ℏ

− ℏ (1a)

H t t t

t

( ) 0.12 0.002 sin( ) 0.0032 sin( )

0.001 sin( )

11 11 12

13

ω ω

ω

= + +

− (1b)

d t
t t t t

H t
( )

0.2sin( ) 0.12sin( ) 0.1sin( ) 0.01sin( )

( )
01

21 22 23 24

11

ω ω ω ω
=

+ − +

(1c)

Here,ω11 = 100 cm
−1,ω12 = 125 cm

−1,ω13 = 50 cm
−1,ω21 = 200

cm−1, ω21 = 225 cm−1, ω23 = 375 cm−1, and ω24 = 1175 cm−1.
The plots of the first 1 ps time-series for these components of
this Hamiltonian are shown in Figure 2a,d. The model
Hamiltonian given by eq 1a can be regarded as obtained within
the NVE or NVT ensemble sampling. It is convenient to study
several important methodological questions related to the
formulation of the TD-ML method. The first question being,
How does the quality of the trained ANNs depend on the
amount of the training patterns used? The key aspiration here is
to be able to use a small subset of the available data to construct
ANNs that could accurately capture the dynamics (referred to as
the ANN-based dynamics) computed with the full data set used
directly (referred to as the direct dynamics). The FSSH
dynamics computed using the 2 ps trajectories with the

Hamiltonians given directly by eq 1 yields the ground state
repopulation time scale of 1.7 ps. This time scale is considered a
reference result for this model.
The ANNs with fixed architecture (with five hidden and one

output neurons) are trained using different sets of the training
data, ranging from as little as 100 fs (100 data points), Figure 4,
panels a, b, c to as much as 15 ps (15 000 data points), Figure 4,
panels g, h, and i. As Figure 4 suggests, the use of a small data sets
usually leads to faster dynamics −0.8−0.9 ps (Figure 4, panels b
and c) for the smallest training set, while increasing the number
of the training points to 15 000 helps recover the reference
ground state repopulation time scale of 1.7 ps (Figure 4, panels h
and i. The excessive amount of the training data points is not
necessary though: reasonable time scales of 1.4−1.7 ps are
already recovered using the half of the data points used in the
direct calculations (Figure 4, panels d−f). Despite the general
trends observed, the outliers are also possiblejust increasing
the amount of the data points may sometimes lead to larger
deviations of the ANN-based results from the reference
dynamics (e.g., see Supporting Information, Figures S1 and
S2). This is likely due to overtraining the ANN.
The choice of the τi parameters in the nonperiodic basis

functions is not obvious from the beginning. For this reason, two
sets of calculations have been conducted−one with three τ

parameters: 1000, 3000, and 5000 au (Figure 4, panels b, e, h)
and the other with eight τ parameters spanning several orders of
magnitude: 1, 10, 25, 100, 500, 1000, 3000, and 5000 au (Figure
4, panels c, f, i). A rather general observation is that such an
extended set increases the flexibility of the resulting ANNs and
leads to a more favorable agreement with the target reference
(e.g., compare second and third columns in Figure 4, also see
Supporting Information, Figures S1 and S2). So far, there is no

Figure 4. Dependence of the computed dynamics on the size of the ANN data set and the selection of the τ parameters for a fixed ANN architecture
with one layer of five hidden neurons.
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clear way to determine these parameters a priori. The choice
here is to use a set of tau parameters that span several orders of
magnitude. Such an approach allows for a higher flexibility of the
ANN to “select” the relevant parameters during the training
procedure.
Another logical question regarding the formulation of the

optimal TD-ML model is the choice of the MLP architecture.
We observe that using the larger number of neurons in the
hidden layers as well as the larger number of such layers tends to
accelerate the computed dynamics (Figure 5). This effect tends
to fade away for larger training data sets (e.g., Figure 5, panels j−

l). It may be attributed to the quality of each neuron connection
(converged weights and biases) in the trained ANNs. Increasing
the number of neurons and hidden layers increases the number
of free ANN parameters to be optimized. Using insufficient data
to train the ANN means a smaller amount of training
information is used to optimize the corresponding parameters
(Figure 5, panels b−d). This explanation agrees with the weaker
deterioration of the ANN results for more complex ANN
architectures when sufficient or even excessive amount of
training information is used (e.g., Figure 5, panels j−l).
Therefore, it is preferable to use minimalistic ANN architec-

Figure 5. Comparison of the direct and ANN-based dynamics for the model I Hamiltonian with the ANNs of different architectures (5 hidden
neurons, b, f, j; 10 hidden neurons, c, g, k; 5 and 5 hidden neurons in 2 hidden layers, d, h, l) trained using different sets of the training data (100 fs, a−d,
1000 fs, e−h, 15 000 fs, i−l). Only the hidden layers’ architectures are shown. Panels a, e, and i show the original (green) and ANN-based (black)
energy gap as a function of time. The ANN reproduces the gap almost identically so the lines superimpose.

Figure 6. Nonadiabatic dynamics in a 2-state model of a divacancy-containing ML-BP (model II): (a) top and (b) side views of the supercell. The
ground state population recovery kinetics computed using (c, d) FSSH and (e, f) IDA methods with the (c, e) direct and (d, f) ANN-based dynamics.
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tures, especially when the amount of the training data points is
limited. Stated differently, the time scales predicted by the
ANNs are the lower bounds to the true time scales obtained in
the direct dynamics. This statement should be taken mainly as a
phenomenological observation (although rather consistent in
many calculations, e.g. see Supporting Information, Figures S1
and S2), and deviations from this rule are possible. Furthermore,
this conclusion follows from a single model Hamiltonian and the
atomistic calculations that are described below. Further
exploration of this rule may be needed with a more extensive
set of models, although this goal goes outside the scope of this
work.
Second, the developed TD-ML NA-MD approach is applied

to the atomistic problem. Specifically, to the divacancy-
containing monolayer black phosphorus (ML-BP, Figure 6,
panels a and b). Here, the “ML” abbreviation stands for
monolayer and is not to be confused with the “ML”which stands
for “machine learning” in other contexts. In the atomistic model,
the vibronic Hamiltonians are computed at the TD-DFT/PBE
level of theory for the periodic supercell of ML-BP along the
precomputed ground-state MD trajectory and are stored in files.
The details of all calculations are given in a recent work of the
author,57 so are not repeated here. The same set of files with
vibronic Hamiltonians as used in that prior work is used here. A
total of 2000 files are used for a direct dynamics of 2 ps.
Model II. First, a minimalistic ML-BP model of only two

states (ground and the first excited) is considered. The vibronic
Hamiltonians for all 2000 steps are used to train the two ANNs−
one for the band gap and the other one for the scalar NAC
coupling these two states. Following the conclusions from the
model Hamiltonian (model I), 10 τ parameters are used to
define the nonperiodic basis functions for the ANN input: 1, 5,
10, 25, 50, 100, 250, 500, 1000, and 2000 au. The automatic
procedure determines an additional 18 modes for the energy gap
and 36modes for theNAC. Following the observation for model
I, only one hidden layer is used. The number of neurons in the
hidden layer is chosen to be roughly half of the number of input
neurons. Hence, the architectures of the gap andNACANNs are
[28, 15, 1] and [46, 25, 1], respectively.

The direct dynamics computed with both the FSSH (Figure
6c) and IDA (Figure 6e) yield the exponential ground state
recovery kinetics with the time scales of 142−150 ps. The time
scales are comparable to each other for both the FSSH and IDA
methods, suggesting the relative unimportance of decoherence
effects in this model. This effect is attributed to the model
propertieshaving only two states makes the decoherence
events less important. This hypothesis is confirmed below using
a five-state model. The ANN-based dynamics yields slightly
shorter time scales of 112−134 ps (Figure 6d,f), but still within
the error bars for each of the FSSH and IDAmethods separately.
Thus, the TD-ML approach works reasonably well although
tends to give the lower bound for the time scales, consistent with
the observations for model I.
Model III. Although the ANN-based and direct dynamics are

consistent with each other, the computed time scales are much
larger than a few picoseconds time scale reported earlier.57 This
difference may be attributed to the difference in the number of
excited states included in modeling. The model II only uses one,
whereas the prior work utilizes 10 excited states. To test this
hypothesis, the NA-MD calculations are repeated for theML-BP
but with five electronic states (model III, Figure 7). Indeed, the
ground state recovery kinetics changes to the Gaussian one and
the time scales for the FSSH calculations decrease dramatically
to 7−8 ps (Figure 7, panels a and b), whereas the IDA time scales
increase to 220−280 ps (Figure 7, panels d and e). These
numbers are in much better agreement with the results reported
previously,57 even though only four excited states are used
instead of 10. These results confirm the above-mentioned
attribution of the increased FSSH time scales in model I to the
number of excited states used in simulations. Indeed, as shown
earlier,57 there are several closely spaced excited states nearby
the S1 state in the divacancy ML-BP. Thus, a strong population
transfer to those upper states is facilitated in the early dynamics.
The rest of the dynamics can be regarded as the one started from
a band of states. Such a many-state delocalization of the initial
state leads to the Gaussian dynamics, which is characterized by
much shorter time scales than those derived from the
exponential kinetics.

Figure 7. Comparison of the ground state population recovery kinetics in the direct (a, d) and ANN-based (b, c, e, f) dynamics for the five-state
divacancy ML-BP model (model III). Panels c and f demonstrate the explicit 20 ps dynamics computed with the ANN-based Hamiltonian.
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The five-state model III also highlights the importance of
decoherence effects as compared to the two-state model II (e.g.,
compare Figure 7, panels a and d). As noted above, the five-state
model favors the fast coherent population transfer to all the
excited states from the starting S1 state since there are several
closely positioned excited states. The increased wave function
amplitudes on all such states favor the hopping in and out of
these states. The IDA decoherence algorithm prevents the
accumulation of the wave function amplitudes on the inactive
states and slows down the dynamics involving such states.
Furthermore, by virtue of the wave function collapse, the IDA
method “resets” the dynamics to an effective 2-model situation,
favoring the exponential kinetics instead of the Gaussian. In the
2-state model II, no such coherent population transfer on states
above S1 is possible by definition, so the IDA algorithm does not
change the qualitative picture, leading to both FSSH and IDA
results appearing similar (Figure 6, panels c−f).
It should be reminded that the observations regarding the

importance of decoherence effects in models with different
number of electronic states are obtained within the NBRA
framework. Outside the NBRA, decoherence effects may
manifest themselves already in two-state models, as is known
from the Fermi-golden rule types of approaches. Furthermore,
the decoherence effects discussed here are explored only with
one of the simplest decoherence correction schemesthe IDA
method. The observed insensitivity of the dynamics to the
inclusion of decoherence via the IDA schememay be its intrinsic
deficiency. Other, more sophisticated decoherence correction
schemes such as decoherence-induced surface hopping
(DISH),57,64 modified simplified decay of mixing (mSDM),65

or an augmented FSSH (A-FSSH)66,67 could be used to further
explore these effects. However, such a discussion is outside the
scope of the present work, which focuses on the TD-ML
methodology.
As with the two-state model, the dynamics computed with the

ANN-based vibronic Hamiltonian yields the time scales (Figure
7, panels b and e) that agree with the values obtained from the
direct dynamics (Figure 7, panels a and d) within the error bars.
The agreement is observed for both the FSSH and IDA
methods, suggesting that the TD-ML approach remains robust
for more complex problems such as the one defined by the
model III.
Finally, we are in a position to explore the applicability of the

TD-ML to direct long-time NA-MD simulations. Using the
ANN-based vibronic Hamiltonian developed for model III,
explicit 20 ps NA-MD trajectories are computed using the FSSH
(Figure 7c) and IDA (Figure 7f) methods. As a reminder, each
simulation consists of 10 batches of 2000 stochastic trajectories,
yet requires only a couple dozen hours of the wall-time. The
wall-time may likely be further reduced by reducing the number
of the input basis functions. In the current calculations, the NAC
ANNs used 70−90 input modes. The performed long-time
simulations reveal several interesting effects. First, the FSSH-
based ground state population recovery kinetics is not Gaussian
in the long-time limit, although rather close. To be able to
compare the time scale with other simulations, the population
curve is fitted to the best Gaussian fit (Figure 7c). The
corresponding time scale is twice shorter than those obtained
using the fit to shorter 2 ps trajectories, 3.2 ps. A similar effect
holds for the IDA calculations (Figure 7f), for which the time
scale falls into the 82 ps range instead of the extrapolation-based
284 ps range. A close examination of Figure 7f shows that the
initial slope of the population recovery curves is smaller than the

one at the later times. This effect may be rationalized as follows:
at longer simulation times, larger average amplitudes on all states
develop, even with the decoherence effects in place. Thus, the
state transitions are more likely than at shorter simulation times
when the average amplitudes on all states are relatively small.
Alternatively, this could be considered a locally nonlinear
kinetics. A possible reason for such a nonlinearity could be the
methodological deficiency of the ad hoc IDA method. A
conjecture is that a proper decoherence method should preserve
the kinetic order of the state transition rates, thus making the
time scales derived from short trajectories potentially more
consistent with those obtained from longer simulations.
However, testing this hypothesis goes outside the scope of the
present work.
In summary, this work reports the time-domain machine-

learning methodology for direct NA-MD with dozens, if not
hundreds, of picoseconds to model slow nonadiabatic processes.
This work also demonstrates the application of this technique to
the explicit modeling of 20 ps dynamics of excited state
relaxation in divacancy-containing ML-BP. The developed TD-
ML approach is rooted in the idea of using the MLP ANN with
periodic and aperiodic basis functions of time as the input
modes. The ANN quality improves when an extensive set of
training data can be used, but a reasonable performance can be
obtained with rather small training sets already. The ANN
quality can also be improved by increasing the number of
aperiodic basis functions. The ANN architecture is not too
critical to the quality of the derived ANNsonly one hidden
layer with a modest number of neurons is sufficient to lead to a
good performance. Increasing the complexity of the ANN
architecture may in fact lead to poorer results due to the
increased number of parameters that need to be optimized. In
this case, larger training data sets are required. The ANN-based
dynamics tend to accelerate the dynamics as compared to the
direct dynamics, as observed both in model and atomistic
simulations.
The simulations conducted in this work, suggest that

including higher-lying excited states in simulations can
significantly affect the computed time scales for the ground
state population recovery, even if the system starts in the S1 state.
In FSSH simulations, such additional states accelerate the
kinetics (to about 7−8 ps) and make it Gaussian, whereas
including only one excited state in the model leads to slower
kinetics of the exponential type (140−150 ps). The presence of
extra states in the model leads to a notable difference in the
ground state recovery time scales as computed with the
overcoherent FSSH (7−8 ps) and decoherence-accounting
IDA methods (220−280 ps). In the model problem with only
two states, there is almost no difference between the FSSH and
IDA results (140−150 ps). Finally, the direct long-trajectory
simulations conducted with the TD-ML method reveal that
direct simulation of the slow dynamics may lead to smaller
population transfer time scales (e.g., 3.5 ps for FSSH and 82 ps
for IDA) as compared to those obtained from the short-time
dynamics due to stronger population-dependence of the
nonadiabatic transfer rates at such later times. It is also
conjectured that such an acceleration may be due to intrinsic
deficiencies of ad hoc decoherence correction schemes such as
the IDAmethodology. The computational protocols used in this
work (Python and SLURM scripts), the key input and output
files, as well as important computational data are available
online.68
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