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ABSTRACT Stony coral tissue loss disease (SCTLD) is decimating Caribbean corals. Here,
through the metatranscriptomic assembly and annotation of two alphaflexivirus-like
strains, we provide genomic evidence of filamentous viruses in SCTLD-affected, -exposed,
and -unexposed coral colonies. These data will assist in clarifying the roles of viruses in
SCTLD.

iral infections of endosymbiotic dinoflagellates (family Symbiodiniaceae) within coral

tissues are hypothesized to play a role in stony coral tissue loss disease (SCTLD) (1), a
widespread disease that affects Caribbean stony corals (2-4). Here, we present high-quality
draft genome sequences for two viruses in the family Alphaflexiviridae, coral holobiont-asso-
ciated alphaflexvirus (CHFV) 1 and 2 (Fig. 1A), that were assembled from metatranscrip-
tomes from SCTLD-affected, SCTLD-exposed, and control (unexposed) coral holobionts
sampled during a SCTLD transmission experiment (5). The field collections were authorized
by the Department of Planning and Natural Resources Coastal Zone Management under
permit number DFW19057U.

Tissue samples were harvested from 12 frozen fragments of three coral species
(Montastraea cavernosa, Porites astreoides, and Pseudodiploria strigosa) collected from St.
Thomas, U.S. Virgin Islands (Table 1). Total RNA was extracted using the RNAqueous-4PCR
total RNA isolation kit (Invitrogen, Life Technologies AM1914). Tissues were lysed using a
refrigerated Qiagen TissueLyser Il microcentrifuge at 30 oscillations per second for 30 s.
The elution stage consisted of two consecutive 30-uL elutions. Contaminating DNA and
chromatin were removed from the total RNA using the Ambion DNase | (RNase-free) kit
(Invitrogen, Life Technologies AM2222). Samples were preprocessed by Novogene Co.,
Ltd. (Davis, CA, USA) for mRNA enrichment using polyA tail capture; the mRNA libraries
underwent 150-bp, paired-end sequencing on an lllumina NovaSeq 6000 instrument using
the NEBNext Ultra Il RNA library prep kit.

All bioinformatic tools were run using default parameters unless otherwise specified.
BBSplit (BBMap v38.90) was used to map quality-filtered (fastp v0.20.1 [16]) reads to coral or
Symbiodiniaceae transcriptomes (9) and generate three read files: (i) coral, (i) Symbiodinia-
ceae, and (i) noncoral/non-Symbiodiniaceae. Noncoral/non-Symbiodiniaceae reads were
combined and normalized using BBnorm.sh within BBMap (Table 1). Normalized reads were
assembled using the program TransPi (17). Multiple assemblies were generated using
rmaSPADES v3.140 (kmer: 75,8591,107 nucleotides) (18), Trans-ABySS v2.0.1 (kmer:
25,35,55,75,85 nucleotides) (19), SOAPdenovo-Trans v1.03 (kmer: 25,35,55,75,85 nucleotides)

Volume 11 Issue2 e01199-21

A. Apprill,f M. E. Brandt,©

Editor Jelle Matthijnssens, KU Leuven
Copyright © 2022 Veglia et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to A. M. S. Correa,
ac53@rice.edu.

The authors declare no conflict of interest.
Received 22 December 2021

Accepted 28 January 2022

Published 17 February 2022

A Miersbiolesy  myra.asm.org 1

Downloaded from https://journals.asm.org/journal/mra on 17 February 2022 by 99.152.241.220.


https://orcid.org/0000-0003-3118-5127
https://orcid.org/0000-0002-4249-2977
https://orcid.org/0000-0003-0137-5042
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://mra.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/mra.01199-21&domain=pdf&date_stamp=2022-2-17

Veglia etal. 4 Microbiology
CHFV1 Sequence
similarity (aa)
I ImO%
56%
CHFV2
I partial RdRp Il hypothetical protein [ coat protein
B) ---------------------------------------------------------------------------------- QED44205.1 Garlic virus A

...................................................................................... QED44151.1 Garlic virus A
.................................................................................. QCY49501.1 Shallot virus X
----------------------------------------------------------------------------- QED44427.1 Garlic virus E
B0 | e s smn i e st s b st e s eSS s S e S e S S YP 009389473.1 Vanilla latent virus
s R S e S R R R RS SRR RS S e R QJD13457.1 Alfalfa virus S
-------------------- BAU68240.1 Cactus virus X

--------------------- QQG34613.1 Agave potexvirus 1
--------------------------- YP 009389419.1 Euonymus yellow vein virus

53 _|: --------------------- AAB71853.1 RNA Cymbidium mosaic virus
99 Y00 s 2wt i s i QHT72343.1 Pepino mosaic virus
_D ------------------------ QQG34575.1 Ferula potexvirus 1

------------------------ QZN83677.1 Strawberry mild yellow edge virus
00 | | e BBB06664.1 Lily virus X
gy I YP 001655010.1 Phaius virus X
----QQG34618.1 Cymodocea alphaflexivirus 1
100 |-Coral holobiont-associated alphaflexivirus 1 [CHFV1] s

Tresiscaler0il 100 LCoral holobiont-associated alphaflexivirus 2 [CHFV2] %

FIG 1 (A) Visualized tBLASTx pairwise alignment of the two coral holobiont-associated alphaflexivirus (CHFV) genomes reported in this study. The arrows
represent the predicted genes; the arrow color corresponds to the annotation type. The gray-scale shading between the two genomes represents the
percent amino acid (aa) sequence similarity. (B) Maximum likelihood phylogeny generated from translated alphaflexivirus RdRp amino acid sequences from
the CHFVs (purple stars) reported in this study, as well as previously described plant-associated alphaflexiviruses. Translated alphaflexivirus RdRp amino
acid sequences were aligned using MUSCLE v5 (36) and trimmed using trimAl (37). The phylogeny was constructed using IQTREE v2 (38) with the
LG+1+G4 substitution model (determined by ModelFinder [39]), and support was assessed using 1,000 nonparametric bootstrap replicates. The tree was
visualized using the Interactive Tree of Life v5 (40); branches with bootstrap support values of <50 were collapsed. The tree scale indicates the number of
amino acid substitutions per site.

(20), Trinity v2.9.1 (kmer: 35 nucleotides) (11), and Velvet v1.2.12/Oases v0.2.09 (kmer:
65,71,81,87,91,97,101 nucleotides) (21, 22). The multiple assemblies were concatenated into a
single file, and the EvidentialGene tr2aacds pipeline v2019.05.14 (23, 24) was used to collapse
duplicates and remove misassembled contigs from the assembly file. VirSorter2 (25) was
used to detect RNA viruses from the nonredundant metatranscriptome-assembly file
(minimum  length, 300 nucleotides). Viral genomes similar to known members of the
Alphaflexiviridae were identified by aligning translated open reading frames (ORFs) to the
proteic version of the Reference Virus Database (26, 27) with DIAMOND BLASTx v2.0.11.149
in “ultra-sensitive” mode (28, 29). Cenote-Taker 2 (30) was used to annotate identified viral
genomes with similarity to the Alphaflexiviridae and calculate the genome coverage using
the normalized reads. The alphaflexivirus read count per sample library was estimated by
mapping nonnormalized reads to the nonredundant assembly using bowtie2 (31) with the
align_and_estimate_abundance.pl script (11; Table 1).

The CHFV1 and CHFV2 genomes are linear, share 85.9% genome-wide nucleotide
identity, and are 6,228 and 6,227 nucleotides long with 42.4% and 42.0% G+C content,
respectively. Coverages for the CHFV1 and CHFV2 assemblies are estimated at 334.9x
and 123.4 %, respectively. CheckV (32) was used to identify the genomes as high quality
with 90% completeness (average amino acid identity-based [medium-confidence]).
Visualization of a tBLASTx (33) pairwise alignment between the CHFV genomes was
conducted using Easyfig (34) and depicted the genomes’ three shared ORFs (Fig. 1A).
The closest relative of the CHFV genomes, as determined using Cenote-Taker 2, is
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g TABLE 1 Sample information and RNA sequencing results for libraries with reads that contributed to the generation of coral holobiont-associated alphaflexivirus genome assemblies
2 (CHFV1 and CHFV2)
& No. of noncoral/non-
@ Sample SRA accession No. of raw No. of cleaned Symbiodiniaceae Colony health No. of reads No. of reads
N Coral species® ID no. reads (millions) reads (millions) reads (millions)® status® mapped to CHFV1 mapped to CHFV2
Montastraea cavernosa Mcav_c3 SRR17230326 72.450238 72.148886 19.297152 Control 2,872 142
Mcav_c6 SRR17230325 43.625450 43.554690 12.021936 Control 780 46
Mcav_c7 SRR17230323 61.253870 60.945362 17.604312 Control 300 3,524
Mcav_d2 SRR17230322 58.179614 57.916530 15.643962 Disease exposed 26 152
Mcav_d3 SRR17230321 55.231168 54.982506 15.468590 Disease affected 834 92
Mcav_d4 SRR17230320 55.800824 55.586294 15.306024 Disease exposed 16 12
Mcav_d6 SRR17230319 51.396670 50.957730 15.184224 Disease affected 3,282 142
Mcav_d8 SRR17230318 62.688392 62.423220 18.170028 Disease exposed 34 56
Porites astreoides Past_c6 SRR17230317 56.484214 56.032382 12.568462 Control 16 16
Past_d4 SRR17230316 62.052534 61.792644 13.390588 Disease exposed 316 72
Past_d6 SRR17239955 38.818898 38.603064 8.295652 Disease affected 16 0

Pseudodiploria strigosa Pstrig_d5 SRR17230324 55.559408 55.277124 20.791874 Disease exposed 4,736 1,422

2 0On shallow reefs in the U.S. Virgin Islands, M. cavernosa typically harbors Symbiodiniaceae in the genus Cladocopium, P. astreoides typically harbors Symbiodiniaceae in the genus Symbiodinium, and P. strigosa is typically
dominated by Symbiodiniaceae in the genus Breviolum (6, 7) but can also be dominated by Cladocopium symbionts (8).

b Reads not mapping to coral or Symbiodiniaceae transcriptomes and retained for further analysis using BBSplit (within BBMap v38.90) (9). A genome-guided M. cavernosa transcriptome was generated using the draft genome
from reference 10, and de novo Porites astreoides and Pseudodiploria strigosa transcriptomes were assembled using Trinity v2.11.0 (11). These reference transcriptomes were generated by the Mydlarz lab (University of Texas at
Arlington, Arlington, TX, USA) for internal use but will be made available upon request. Symbiodiniaceae transcriptomes representing the genera Symbiodinium, Breviolum, Cladocopium, and Durusdinium were sourced from
reference 12, “Kb8 Sequences” (http://medinalab.org/zoox/), reference 13, “S. minutum” (http://zoox.reefgenomics.org/download/), reference 14, “Clade C1 Symbiodinium” (http://ssid.reefgenomics.org/download/), and
reference 15, “Dtrenchii_rnaseq_assembly_v1.0” (https://datadryad.org/stash/dataset/doi:10.5061/dryad.12j173m), respectively.

< “Disease-affected” colony health status indicates corals that showed active lesions at the time of sampling; “disease-exposed” indicates coral fragments that were exposed to SCTLD but showed no signs of disease by the end of
the experiment; “control” indicates that fragments were never exposed to SCTLD and never developed lesions during the course of the experiment.
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strawberry mild yellow edge virus (NCBI protein accession number NP_620642.1) (35),
sharing ~33.5% amino acid similarity for the RNA-dependent RNA polymerase (RdRp)
(ORF1).
A phylogenetic tree was generated from translated RdRp sequences from the two
CHFVs and 16 plant-associated alphaflexiviruses (Fig. 1B). The CHFV replicase sequen-
ces formed a clade with the RdRp sequence of an unclassified alphaflexivirus that
infects Cymodocea nodosa seagrass (Fig. 1B).
The CHFV genomes reported here constitute genomic-based evidence of filamen-
tous viruses from coral colonies. Quantitative PCR primer sets can be developed from
these genome assemblies to support the critical next step of characterizing the pres-
ence/absence and abundance of coral holobiont-associated alphaflexiviruses across
coral colonies, to further clarify the potential role of viruses in SCTLD.
Data availability. Coral holobiont-associated alphaflexivirus 1 and 2 have been de-
posited at NCBI's GenBank (accession numbers OM030231 and OM030232). The raw
reads from the transcriptome sequencing (RNA-Seq) libraries were deposited at NCBI's
Sequence Read Archive (SRA) under BioProject accession number PRINA788911
(Table 1).
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