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ABSTRACT
The stochastic block model is widely used for detecting community structures in network data. How to test
the goodness of fit of the model is one of the fundamental problems and has gained growing interests in
recent years. In this article, we propose a novel goodness-of-fit test based on the maximum entry of the
centered and rescaled adjacency matrix for the stochastic block model. One noticeable advantage of the
proposed test is that the number of communities can be allowed to grow linearly with the number of nodes
ignoring a logarithmic factor.Weprove that thenull distributionof the test statistic converges indistribution
to a Gumbel distribution, and we show that both the number of communities and the membership vector
canbe tested via theproposedmethod. Furthermore,we show that theproposed test has asymptotic power
guarantee against a class of alternatives. We also demonstrate that the proposed method can be extended
to the degree-corrected stochastic block model. Both simulation studies and real-world data examples
indicate that the proposedmethodworks well. Supplementarymaterials for this article are available online.
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1. Introduction

One of the fundamental problems in network data analysis
is community detection that aims to divide nodes into
communities such that the links are dense within communities
and relatively sparse between communities. The stochastic
block model proposed by Holland, Laskey, and Leinhardt
(1983) is probably the most studied network model for this
purpose; see Snijders and Nowicki (1997), Nowicki and
Snijders (2001), Bickel and Chen (2009), Rohe, Chatterjee,
and Yu (2011), Choi, Wolfe, and Airoldi (2012), Jin (2015),
and Zhang and Zhou (2016) for some of the representative
work.

In a stochastic block model with k communities, n nodes
are clustered into k blocks, that is, there exists a mapping σ of
community membership: [n] → [k]n, where [n] = {1, . . . , n}.
Given the community membership σ , the entries Aij (i >

j) of the symmetric adjacency matrix A ∈ {0, 1}n×n of an
undirected random graph G are then assumed to be mutually
independent Bernoulli random variables with the occurrence
probabilities Pij = Bσ (i)σ (j) for certain symmetric probabil-
ity matrix B ∈ [0, 1]k×k. A large number of methods for
recovering the community membership have been proposed,
including modularity (Newman 2006), profile-likelihood maxi-
mization (Bickel and Chen 2009), pseudo-likelihoodmaximiza-
tion (Amini et al. 2013), variational methods (Daudin, Picard,
and Robin 2008), and spectral clustering (Rohe, Chatterjee,
and Yu 2011; Jin 2015). Asymptotic properties of the estima-
tors of the community membership have also been established;

CONTACT Ji Zhu jizhu@umich.edu Department of Statistics, University of Michigan, 1085 South University, Ann Arbor, MI 48109-1107.
∗The first two authors contributed equally to this work.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

see Choi, Wolfe, and Airoldi (2012), Rohe, Chatterjee, and Yu
(2011), Zhao, Levina, and Zhu (2012), Sarkar and Bickel (2015),
Jin (2015), Lei and Rinaldo (2015), and Zhang and Zhou (2016).
For a review of the subject, we refer to Bhattacharyya and
Bickel (2016). However, how to validate the stochastic block
model is a challenging problem and has not been addressed
only until recently. Specifically, Wang and Bickel (2017) devel-
oped a likelihood-based approach to test the model and derived
the asymptotic distribution of the log-likelihood ratio statistic
undermodelmisspecificationwhen the number of communities
k is fixed. Bickel and Sarkar (2015) used the largest eigenvalue
of the centered and scaled adjacency matrix to test the Erdős–
Rényi model and derived the asymptotic null distribution. By
extending their arguments, Lei (2016) developed a goodness-
of-fit test for stochastic block models using the largest singular
value of the centered and rescaled adjacency matrix and derived
its asymptotic null distribution when the condition k = o(n1/6)
holds. It was also acknowledged that it is difficult to extend
these results to the more flexible degree-corrected block model.
Karwa et al. (2016) developed a finite-sample Monte Carlo
goodness-of-fit test for the stochastic block model. The pro-
posed test calculates goodness-of-fit statistics of graphs sampled
from a conditional distribution given sufficient statistics of the
stochastic block model; then the sample statistics are compared
to the one calculated from the observed network, from which a
naive p-value estimator is obtained. The proposed procedure is
computationally expensive and there is no theoretical guarantee
for the null distribution and asymptotic power of such finite-
sample Monte Carlo tests.

© 2020 American Statistical Association
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In this article, we propose a novel goodness-of-fit test based
on the maximum entry-wise deviation of the centered and
rescaled adjacency matrix. We show that the asymptotic null
distribution of the test statistic is a Gumbel distribution when
k = o(n/ log2 n). This condition implies that k is allowed to
grow linearly with n ignoring a logarithmic factor. This kind of
scenario was referred to by Rohe, Qin, and Fan (2014) as the
highest dimensional stochastic block model as the number of
communities must be smaller than the number of nodes, and
no reasonable model would allow k to grow faster than that. As
a result, the proposed test significantly relaxes the condition that
k = o(n1/6) in Lei (2016). Moreover, we show that the proposed
test is asymptotically powerful against a class of alternatives. We
also propose an augmented test statistic that improves the power
of the goodness-of-fit test, while having the same asymptotic
null distribution as the original test statistic. The maximum
entry-wise deviation approach was first introduced by Jiang
(2004) for testing the hypothesis H0 : R = I versus H1 : R %= I,
where R is a correlation matrix; therefore, the setting is quite
different from ours.

The remainder of the article is organized as follows. In Sec-
tion 2, we introduce the new test statistic, and state its asymp-
totic null distribution and asymptotic power. Further, we pro-
pose an augmented test statistic to improve the power of the
test. We extend our results to the degree-corrected stochastic
blockmodel in Section 3. Simulation studies and real-world data
examples are given in Sections 4 and 5, respectively.

2. A NewGoodness-of-Fit Test for the Stochastic
BlockModel

Consider a stochastic block model on n nodes with the mem-
bership vector σ and probability matrix B. For any fixed (B, σ ),
the probability mass function for the adjacency matrix A is

P(A) =
∏

1≤i<j≤n
BAij

σ (i)σ (j)(1 − Bσ (i)σ (j))
(1−Aij),

and the corresponding log-likelihood under the stochastic block
model can be written as

"(A|B, σ ) = 1
2

k∑

u,v=1
(muv logBuv + (nuv − muv) log(1 − Buv)),

where

nuv =
n∑

i=1

∑

j%=i
1{σ (i) = u, σ (j) = v} and

muv =
n∑

i=1

∑

j%=i
Aij1{σ (i) = u, σ (j) = v}.

It is not difficult to see that given a number of communities k0
and a membership vector σ0, the maximum likelihood estimate
of B is given by

B̂σ0
uv =






∑
i∈σ−1

0 (u),j∈σ−1
0 (v) Aij

|σ−1
0 (u)|·|σ−1

0 (v)| , u %= v,
∑

i%=j∈σ−1
0 (u) Aij

|σ−1
0 (u)|·(|σ−1

0 (u)|−1) , u = v,
(1)

where σ−1
0 (u) = {i : 1 ≤ i ≤ n, σ0(i) = u} and | σ−1

0 (u) | is the
number of nodes in block u.

Now given an observed adjacency matrix A, one may be
interested in knowing whether A can be well fitted by a stochas-
tic block model with k0 communities and/or a membership
vector σ0. This leads to the following two hypothesis tests for
fitness of the stochastic block model:

(1) H0 : k = k0 versus H1 : k > k0, and
(2) H0 : σ = σ0 versus H1 : σ %= σ0,

wherewe use k and σ to denote the true number of communities
and the true membership vector, respectively, and use k0 and σ0
to denote a hypothetical number of communities and a hypo-
thetical membership vector, respectively. Note in hypothesis test
(1), we consider the one-sided alternative in which nodes are
partitioned into less than k communities (i.e., k0 < k). For k0 >
k, nodes are partitioned into more than k communities. In this
case, goodness-of-fit tests may not have theoretical guarantee,
as a stochastic block model with k communities can also be
reformulated as one with k0 > k communities by artificially
splitting one or more true communities. As a result, we focus
on the one-sided alternative H1 : k > k0, similar to what has
been considered in Lei (2016), Chen and Lei (2018), and Wang
and Bickel (2017).

Let the centered and rescaled adjacency matrix Ã be

Ãij =






Aij−P̂σ0
ij√

(n−1)̂Pσ0
ij (1−P̂σ0

ij )
, i %= j

0, i = j,

where P̂σ0
ij = B̂σ0

σ0(i)σ0(j), as defined in (1). Under the null
hypothesis H0 : k = k0, σ = σ0, if k = o(n1/6), Lei (2016)
showed that

n2/3(λ1(Ã) − 2) d→ TW1 and n2/3(−λn(Ã) − 2) d→ TW1,

where TW1 denotes the Tracy–Widom distribution with index
1 and λi(A) denotes the ith largest eigenvalue of the matrix
A. Further, to test (1), Lei (2016) proposed to obtain σ̂ using
spectral clustering (under k = k0) and developed the following
test statistic:

Tn,k0 = max[n2/3(λ1(Ã) − 2), n2/3(−λn(Ã) − 2)],
where σ0 in Ã has been replaced by σ̂ . Note Tn,k0 is a Bonferroni
correction, and the corresponding level-α rejection rule is then

reject H0 : k = k0 if Tn,k0 ≥ t1−α/2,

where tα is the αth quantile of the TW1 distribution for α ∈
(0, 1). As an improvement to many previous methods, the num-
ber of communities k in Lei (2016) is allowed to grow as n
increases, but at the rate of k = o(n1/6), which suggests that
the test may not perform well when k is large.

We aim to develop a new test statistic that allows k to grow,
up to a logarithm factor, linearly with n, and is able to test the
goodness of fit of stochastic block models in both hypothesis
tests (1) and (2). Most existing work in the literature have only
considered the hypothesis test (1), while as we will see, as a
natural by-product of our result, we are also able to consider
the hypothesis test (2), which is o%en of practical interest as
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well. Moreover, the proposed test statistic can be extended to
the degree-corrected stochastic block model. Specifically, we
propose a new test statistic based on the maximum entry-wise
deviation:

Ln(k0, σ0) ! max1≤i≤n,1≤v≤k0 | ρ̂iv |,

where ρ̂iv = 1√
|σ−1

0 (v)/{i}|

∑
j∈σ−1

0 (v)/{i}
Aij−B̂σ0

σ0(i)σ0(j)√
B̂σ0

σ0(i)σ0(j)(1−B̂σ0
σ0(i)σ0(j))

,

and σ−1
0 (v)/{i} denotes the set of nodes, excluding node i, that

belong to community v in σ0.

2.1. The Asymptotic Null Distribution

To derive the asymptotic distribution for Ln(k0, σ0), we make
the following assumptions:
(A1) The entries of B are uniformly bounded away from 0 and

1, and B has no identical rows.
(A2) There exist C1 > 0 and C2 > 0 such that

C1n/k ≤ min
1≤u≤k

| σ−1(u) |≤ max
1≤u≤k

| σ−1(u) |

≤ C2n2/(k2 log2 n)
for all n.

Condition (A1) requires that the entries in the probability
matrix B are bounded away from 0 and 1, which was also
considered in Lei (2016). At the same time, Condition (A1)
requires that B is identifiable. Such a condition was considered
in Wang and Bickel (2017) as well. Condition (A2) requires
the size of the smallest community is at least proportional to
n/k. This is a reasonable and mild condition; for example, it is
satisfied almost surely if the membership vector σ is generated
from a multinomial distribution with n trials and probability
π = (π1, . . . ,πk) such that min1≤u≤k πu ≥ C1/k. Condition
(A2) also places an upper bound on the largest community size.
This is a reasonable condition as well and similar conditions
have been considered by Zhang and Zhou (2016) and Gao et al.
(2018). The upper bound on the largest community size is used
to control the maximum grouped bias between B̂σ (i)σ (j) and its
population version Bσ (i)σ (j), that is,

max
1≤i≤n,1≤v≤k

×
∣∣∣

1
√
| σ−1(v)/{i} |

∑

j∈σ−1(v)/{i}

Bσ (i)σ (j) − B̂σ (i)σ (j)√
Bσ (i)σ (j)(1 − Bσ (i)σ (j))

∣∣∣

such that it converges in probability to 0.
We now state the asymptotic properties of Ln(k0, σ0) and

delay the proof to the supplementary materials.

Theorem 1. Suppose that Conditions (A1) and (A2) hold. Then
under the null hypothesis H0 : k = k0, σ = σ0, as n → ∞, if
k = o(n/ log2 n), we have

Ln(k0, σ0)√
log(2k0n)

P−→
√
2 and

lim
n→∞ P(L2n(k0, σ0) − 2 log(2k0n)+ log log(2k0n) ≤ y)

= exp
{
− 1
2
√

π
e−y/2

}
, (2)

where the right hand-side of (2) is the cumulative distribution
function of the Gumbel distribution with µ = −2 log(2

√
π)

and β = 2.

Using the above theorem, we can carry out both hypothesis
tests (1) and (2). To carry out hypothesis test (1), we need to first
estimate the community membership σ̂ underH0 : k = k0, and
then compute

Tn = L2n(k0, σ̂ ) − 2 log(2k0n)+ log log(2k0n).

Assume that σ̂ is strongly consistent (i.e., P(̂σ = σ0) → 1).
Following Theorem 1, we have that Tn follows a Gumbel distri-
bution withµ = −2 log(2

√
π) and β = 2. To carry out the test,

we rejectH0 : k = k0, ifTn > t(1−α), where tα is theαth quantile
of the Gumbel distribution with µ = −2 log(2

√
π) and β = 2.

To obtain the asymptotic null distribution of Tn calculated
with σ̂ , the estimated σ̂ is required to be strongly consistent.
This assumption is analogous to the strong consistency condi-
tion on σ̂ in Lei (2016) and the global optimum condition on
the maximum likelihood estimation inWang and Bickel (2017).
Under Conditions (A1) and (A2), strong consistency (or exact
recovery) is achievable when k = o(n/ log2 n) by Theorem 1.1
in Gao et al. (2018). To achieve strong consistency, we consider
the majority voting algorithm in Gao et al. (2017), initialized by
spectral clustering (Lei and Rinaldo 2015). Based on Theorem
4 in Gao et al. (2017), this procedure can achieve strong consis-
tencywhen k = o(n/ log2 n). Alternatively, to obtain σ̂ , onemay
consider spectral clustering combined with the sample splitting
method in Lei and Zhu (2017), or the variational EMmethod in
Daudin, Picard, and Robin (2008).While the latter twomethods
performwell empirically, they do not have theoretical guarantee
on strong consistency when k diverges.

As for hypothesis test (2), since σ0 gives a corresponding k0,
we can compute

Tn = L2n(k0, σ0) − 2 log(2k0n)+ log log(2k0n),

and we reject H0 : σ = σ0, if Tn > t(1−α), where tα is again the
αth quantile of theGumbel distributionwithµ = −2 log(2

√
π)

and β = 2. In Section 4, we carry out extensive simulation
studies to investigate the finite sample performance of the two
proposed tests of hypothesis.

2.2. The Asymptotic Power

In this section, we study the asymptotic power of the proposed
tests. To do so, we first define a class of alternatives. For a
stochastic block model with true membership vector σ and true
probability matrix B, define probability matrix Bσ0 with respect
to a given membership vector σ0 as

Bσ0
uv =






∑
i∈σ−1

0 (u),j∈σ−1
0 (v) Bσ (i)σ (j)

|σ−1
0 (u)|·|σ−1

0 (v)| , u %= v,
∑

i%=j∈σ−1
0 (u) Bσ (i)σ (j)

|σ−1
0 (u)|·(|σ−1

0 (u)|−1) , u = v.

From the above definition, we can see that Bσ = B. We
introduce the following condition on k0 and σ0:
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(A2′) There exist C1 > 0 and C2 > 0 such that

C1n/k0 ≤ min
1≤u≤k0

| σ−1
0 (u) |≤ max

1≤u≤k0
| σ−1

0 (u) |

≤ C2n2/(k20 log2 n),

for all n.

This condition is analogous to (A2) and as we have argued, is a
reasonably mild condition on community sizes.

Define the maximum grouped difference between B and Bσ0

as

"(k0, σ0) = max
1≤i≤n,1≤v≤k0

×
∣∣∣

1
√
| σ−1

0 (v) |

∑

j∈σ−1
0 (v)

(Bσ (i)σ (j) − Bσ0
σ0(i)σ0(j))

∣∣∣.

Consider the following alternative class of number of commu-
nities and membership vectors:

F(k, σ ,B) = {(k0, σ0) : k0 ≤ k, "(k0, σ0)/
√
log n −→ ∞}.

The set F(k, σ ,B) specifies that under the alternative, the max-
imum grouped difference between B and Bσ0 diverges faster
than

√
log n. It can be seen that when

∑
j∈σ−1

0 (v)(Bσ (i)σ (j) −
Bσ0

σ0(i)σ0(j)) = O(|σ−1
0 (v)|) for some i and v, under Condition

(A2′) and k0 = o(n/ log2 n), we have that "(k0, σ0)/
√
log n −→

∞. For example, when k0 = k, for an alternative σ0 such
that Bσ0 %= B (up to row/column permutations), we have∑

j∈σ−1
0 (v)(Bσ (i)σ (j) − Bσ0

σ0(i)σ0(j)) = O(|σ−1
0 (v)|) for some i and

v, and consequently (k0, σ0) ∈ F(k, σ ,B).
Given k, σ , and B, it is straightforward to calculate "(k0, σ0)

for an alternative (k0, σ0) and verify if it belongs to F(k, σ ,B).
We next provide some sufficient conditions for (k0, σ0) ∈
F(k, σ ,B) when k0 < k.

Corollary 1. Suppose that Conditions (A1) and (A2) hold.
Consider the stochastic block model with B and σ from
multinomial (π1, . . . ,πk). Let B− denote B a%er removing the
diagonal entries, that is, B−

u,· = (Buv)1≤v≤k,v %=u, where B−
u,·

denotes the uth row of matrix B−. For any k0 < k and σ0
satisfying σ0(i) = σ0(j) if σ (i) = σ (j), we have (k0, σ0) ∈
F(k, σ ,B), if at least one of the following conditions holds for
some c0 > 0:

(i) minu%=v |Buu − Bvv| > c0,
(ii) minu%=v ‖B−

u,·−B−
v,·‖∞ > c0, where ‖·‖∞ denotes the vector

infinity norm,
(iii) minu%=v |πu/πv − 1| > c0.

The proof is collected in the supplementary materials. In Corol-
lary 1, we focus on the merged alternatives (i.e., communities in
σ are merged to form communities in σ0) to reduce the number
of possible alternatives in developing the theoretical result, simi-
lar to that inWang andBickel (2017). Condition (i) specifies that
the absolute differences between diagonal entries in B are lower
bounded,Condition (ii) specifies that the differences, in terms of
the infinity norm, between rows in B− are lower bounded, and
Condition (iii) specifies that the differences between elements
in (π1, . . . ,πk) are lower bounded. These conditions cover a

large class of stochastic block models. Next, we discuss the
asymptotic power of our proposed test against alternatives in
F(k, σ ,B). The following theorem provides a lower bound on
the growth rate of the test statistic under an alternative (k0, σ0) ∈
F(k, σ ,B).

Theorem 2. Suppose that Conditions (A1) and (A2′) hold. For
any alternative (k0, σ0) ∈ F(k, σ ,B), let Tn = L2n(k0, σ0) −
2 log(2k0n)+ log log(2k0n). If k0 = o(n/ log2 n), we have

P(Tn ≥ c1 log(n)) → 1, (3)

for some positive constant c1.

The proof is collected in the supplementary materials. Theo-
rem 2 shows that the growth rate ofTn under the alternative is at
least log(n). The asymptotic null distribution in Theorem 1 and
the growth rate under the alternative suggest that the null and
the alternative hypotheses are well separated, and our proposed
test is asymptotically powerful against (k0, σ0) ∈ F(k, σ ,B).
Specifically, our proposed test is asymptotically powerful when
k0 < k, if at least one of the conditions in Corollary 1 holds.

Notably, however, under the planted partition model (i.e.,
Buu = p and Buv = q, u %= v for some 0 ≤ q < p ≤ 1)
with equal sized communities, some straightforward algebra
shows that "(k0, σ0) = 0 for any (k0, σ0) satisfying k0 < k and
σ0(i) = σ0(j) if σ (i) = σ (j). Consequently, such alternatives do
not belong to F(k, σ ,B). Additionally, one can verify that our
test is not powerful against such alternatives under the planted
partition model with equal sized communities. For example,
consider a simple case with k = 2 and π1 = π2. Under k0 = 1,
we have Bσ0 = (p + q)/2, and the entry-wise deviation is
calculated as

ρi1 =
1√
n

∣∣∣∣∣∣∣

∑

j∈σ−1
0 (1)

Aij − p+q
2√

p+q
2 (1 − p+q

2 )

∣∣∣∣∣∣∣

= 1√
n

∣∣∣
∑

j∈σ−1(1)(Aij − p)+ ∑
j∈σ−1(2)(Aij − q)

∣∣∣
√

p+q
2 (1 − p+q

2 )

.

It can be seen that this entry-wise deviation is not well
separated from those calculated under the null, that is,

1√
n/2

∣∣∣
∑

j∈σ−1(1)(Aij−p)
∣∣∣√

p(1−p)
and 1√

n/2

∣∣∣
∑

j∈σ−1(2)(Aij−q)
∣∣∣√

q(1−q)
, and our pro-

posed test is not powerful. The above calculation can be
generalized to the cases where k ≥ 2 and k0 < k. Returning
to the case of k = 2 and k0 = 1, it is straightforward to show
that when |π1/π2 − 1| > c0 for some c0 > 0, the growth rate
of maxi,v ρi1 is

√
n. Consequently, the null and the alternative

are well separated, and our proposed test is powerful. More
generally, for k ≥ 2 and k0 < k, if minu%=v |πu/πv − 1| > c0 for
some c0 > 0, our proposed test is powerful (see Corollary 1).

2.3. An Augmented Test Statistic

In this section, we discuss a practical solution to improve the
power of the proposed test for hypothesis test (1) under the
planted partition model with equal sized communities. Con-
sider a planted partition model with n nodes, k equal sized
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communities, and within and between community connecting
probabilities p and q, respectively.We propose adding a commu-
nity of size n/(2k) to the model. For the added community, we
let the within and between community connecting probabilities
be p′ and q′, respectively. Note that (p′, q′) can be the same
as or different from (p, q). For this new model with k + 1
communities, by Theorem 1, the asymptotic null distribution of
the test statistic still follows a Gumbel distribution. Moreover,
under an alternative k0 < k+ 1, if the added small community
is merged with others to form a new community in σ0, we
have "(k0, σ0) ∈ F(k, σ ,B) and our proposed test is powerful.
For spectral clustering based algorithms, such as that in Gao
et al. (2017), it is reasonable to assume that the added small
community is merged with others in σ0 when k0 < k + 1, as
this tends to lead to smaller within-cluster sum of squares.

The discussion above implies that when carrying out hypoth-
esis test (1), an additional community can be added to the
observed network to improve the power of our proposed test.
We refer to the test statistic calculated with the added commu-
nity as the augmented test statistic. Denote k+0 = k0 + 1. For
a given adjacency matrix A and null hypothesis H0 : k =
k0, σ = σ0, the augmented test statistic is calculated through
the following steps:

1. Calculate B̂ using (1).
2. Add a k+0 th community of size nk+0 = min1≤u≤k0 |σ−1

0 (u)|/2
to the observed network. For the added community, let the
within and between community connecting probabilities be
max1≤u≤k0 B̂uu and minu%=v B̂uv/2, respectively.

3. Calculate the size n+ and the adjacency matrix A+ of the
network from step (2). With the membership vector σ+

0 =
(σ0, k+0 , . . . , k

+
0︸ ︷︷ ︸

nk+0

), calculate the probability matrix B̂+.

4. The augmented test statistic is calculated as

T+
n = L2n(k+0 , σ

+
0 ) − 2 log(2k+0 n+)+ log log(2k+0 n+).

To carry out hypothesis test (1), we reject the null hypothesis
if T+

n > t(1−α), where tα is the αth quantile of the Gumbel
distribution with µ = −2 log(2

√
π) and β = 2.

Note that the asymptotic null distribution of the augmented
test statistic T+

n is the same as Tn, provided that the added
community satisfies Conditions (A1) and (A2). Under Condi-
tions (A1) and (A2), other procedures (e.g., different size or
connecting probabilities) for adding the additional community
are also feasible. We adopt the above procedure as it is easy
to implement and shows good empirical performance in our
numerical studies.

3. Extension to the Degree-Corrected Stochastic
BlockModel

It has been observed that a typical real-world network o%en
contains a few high-degree “hub” nodes which have many edges
and many low-degree nodes that have few edges. The stochastic
block model, however, does not accommodate such hetero-
geneity. To incorporate the degree heterogeneity of nodes for
community detection, Karrer and Newman (2011) proposed
the degree-corrected stochastic block model. Specifically, the

degree-corrected stochastic block model assumes that P(Aij =
1 | σ (i) = u, σ (j) = v) = ωiωjBuv, where ω = (ωi)1≤i≤n are a
set of node degree parameters measuring the degree variation.
For identifiability of the model, we use the following constraint
for the degree-corrected stochastic block model:

(A3)
∑

i ωi1{σ (i) = u} = |σ−1(u)| for 1 ≤ u ≤ k.

To develop a goodness-of-fit test for the degree-corrected
stochastic block model, we consider two cases: (1) ω is known,
and (2) ω is unknown. We first consider the case where ω is
known. In this case, we propose the following test statistic:

Ln1(k0, σ0) ! max1≤i≤n,1≤v≤k0 | τ̂iv |,

where τ̂iv = 1√
|σ−1

0 (v)/{i}|

∑
j∈σ−1

0 (v)/{i}
Aij−ωiωj B̂

σ0
σ0(i)σ0(j)√

ωiωj B̂
σ0
σ0(i)σ0(j)(1−ωiωj B̂

σ0
σ0(i)σ0(j)).

To derive the asymptotic distribution of Ln1(k0, σ0), wemake
the following additional assumption:

(A4) The entries of (ωiωjBσ (i)σ (j))1≤i≤n,1≤j≤n are uniformly
bounded away from 0 and 1.

We now state the asymptotic properties of Ln1(k0, σ0).

Theorem 3. Suppose that Conditions (A2)–(A4) hold. Then
under the null hypothesis H0 : k = k0, σ = σ0, as n → ∞,
if k = o(n/ log2 n), we have

Ln1(k0, σ0)√
log(2k0n)

P−→
√
2 and

lim
n→∞P(L2n1(k0, σ0) − 2 log(2k0n)+ log log(2k0n) ≤ y)

= exp
{
− 1
2
√

π
e−y/2

}
.

Note that E( Aij−ωiωjPij√
ωiωjPij(1−ωiωjPij)

)= 0 and E( Aij−ωiωjPij√
ωiωjPij(1−ωiωjPij)

)2

= 1, which is analogous to the result under the stochastic
block model, in which E( Aij−Bσ (i)σ (j)√

Bσ (i)σ (j)(1−Bσ (i)σ (j))
) = 0 and

E( Aij−Bσ (i)σ (j)√
Bσ (i)σ (j)(1−Bσ (i)σ (j))

)2 = 1. Henceforth, the proof of
Theorem 3 is very similar to that of Theorem 1, and we omit
the details in the article. Using the result in the above theorem,
we can carry out hypothesis tests (1) and (2) using the test *α

defined as

*α = I(Tn1 > t(1−α)),

where Tn1 = L2n1(k0, σ0) − 2 log(2k0n) + log log(2k0n) and
tα is the αth quantile of the Gumbel distribution with µ =
−2 log(2

√
π) and β = 2. To estimate σ̂ , we adopt the regular-

ized spherical spectral clustering algorithm in Lei and Rinaldo
(2015). Other methods such as the SCORE algorithm in Jin
(2015) and the normalized neighbor voting procedure in Gao
et al. (2018) can also be considered. Following similar argu-
ments as in the case of stochastic block model, it can also be
shown that the test *α is powerful against a class of alternatives
defined similarly as in (2.2). Following similar arguments as in
Section 2.2, we can show that when the communities are equal
sized and Buu = p and Buv = q, u %= v for some 0 ≤ q < p ≤ 1,
our proposed test is not powerful when k0 < k. To overcome
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this challenge, we propose an augmented test statistic for the
degree-corrected stochastic blockmodel. The calculation of this
augmented test statistic is similar to that under the stochastic
block model, and we include the computational details in the
supplementary materials.

If ω is unknown, we can plug in its estimate for Ln1(k0, σ0).
Similar to Karrer and Newman (2011), we replace the Bernoulli
distribution of Aij by the Poisson distribution with the mean
ωiωjBuv. As discussed in Zhao, Levina, and Zhu (2012), there
is no practical difference in performance between the log-
likelihood and its slightly more elaborate version based on
the Bernoulli observations. The reason is that the Bernoulli
distribution with a small mean can be well approximated by
a Poisson distribution. One advantage of using the Poisson
distribution is that it greatly simplifies the calculation. Another
advantage is that it admits networks containing both multi-
edges and self-edges. Specifically, for any fixed (B,ω, σ ), the
log-likelihood of observing the adjacency matrix A under the
degree-corrected stochastic block model can be written as

"(A|B,ω, σ ) =
∑

1≤i≤n
di logωi +

1
2

k∑

u,v=1
(muv logBuv − nuvBuv),

where di = ∑
1≤j≤n Aij, and muv and nuv are defined the

same as before. It is not difficult to show that given σ0, the
maximum likelihood estimate of the parameter ω is given by
ω̂i = |σ−1

0 (u)|di/
∑

j:σ0(j)=σ0(i) dj. Then the proposed plug-in
test statistic is given by

Ln2(k0, σ0) ! max1≤i≤n,1≤v≤k0 | τ̂iv |, (4)

where τ̂iv = 1√
|σ−1

0 (v)/{i}|

∑
j∈σ−1

0 (v)/{i}
Aij−ω̂iω̂j B̂

σ0
σ0(i)σ0(j)√

ω̂iω̂j B̂
σ0
σ0(i)σ0(j)(1−ω̂iω̂j B̂

σ0
σ0(i)σ0(j))

.

When ω is unknown, it is very challenging to derive the
asymptotic distribution of Ln2(k0, σ0), due to the complex
dependency between the centered and rescaled entries in τ̂iv.
We perform simulation studies and find that the empirical
distribution of L2n2(k0, σ0)−2 log(2k0n)+log log(2k0n) deviates
from the Gumbel distribution by a location and scale shi%
(see Figure 2). This shi% is especially large when the number
of communities k is small. As a practical solution, in Section
S2.2, we describe a bootstrap correction procedure. With the
bootstrap corrected test statistic, both hypothesis tests (1) and
(2) can be carried out, similar to what have been done in
Section 2.

4. Simulation Studies

In this section, we carry out extensive simulation studies to
evaluate the performance of the proposed test statistic. We
consider both the stochastic block model and the degree-
corrected stochastic block model. In the stochastic block
model setting, the majority voting algorithm in Gao et al.
(2017), initialized by spectral clustering is used to obtain the
community membership, whereas in the degree-corrected
stochastic blockmodel setting, the regularized spherical spectral
clustering algorithm in Lei and Rinaldo (2015) is employed.
For the stochastic block model, we consider the test statistic
Tn = L2n(k0, σ0) − 2 log(2k0n) + log log(2k0n), and the

augmented test statistic T+
n proposed in Section 2.3. For the

degree-corrected stochastic block model, we consider Tn2 =
L2n2(k0, σ0) − 2 log(2k0n) + log log(2k0n), and the augmented
test statistic T+

n2 proposed in Section S2.1. In our comparative
simulation studies, Lei (2016), Karwa et al. (2016) and our
method are all implemented in R.1

4.1. Simulation 1: The Null Distribution Under the
Stochastic BlockModel and a Bootstrap Correction

In this simulation,we examine thefinite sample null distribution
of the test statistic Tn and verify the result in Theorem 1. As the
speed of convergence to a Gumbel distributionmay be slow, one
may consider a finite sample bootstrap correction. Such a finite-
sample correctionwas first proposed in Bickel and Sarkar (2015)
and later considered in Lei (2016). Here, we extend their ideas
to our setting.

For an adjacency matrix A and null hypothesis k = k0, σ =
σ0, the bootstrap corrected goodness-of-fit test statistic is calcu-
lated as the following:

1. Calculate B̂ using (1). Calculate Tn using A and (̂B, σ0).
2. For m = 1, . . . ,M, generate A(m) from the stochastic block

model (̂B, σ0), and calculate T(m)
n using A(m) and (̂B, σ0).

3. Using (T(m)
n : 1 ≤ m ≤ M), estimate the location and

scale parameters µ̂ and β̂ of the Gumbel distribution using
maximum likelihood estimation.

4. The bootstrap corrected test statistic is calculated as

Tn,boot = µ+ β

(Tn − µ̂

β̂

)
,

where µ = −2 log(2
√

π) and β = 2.

Since the limiting distribution of the test statistic is provably
Gumbel, finite sample corrections can be made inexpensively
by generating a small number of bootstrap samples to estimate
the location and scale parameters. In all of our simulations, we
useM = 100.

In Figure 1, we plot the distribution of Tn with and without
bootstrap corrections from 1000 data replications. In this simu-
lation, we set k = k0 = 3 with π1 = π2 = π2 = 1/3. The edge
probability between communities u and v is Buv = 0.1(1+ 2 ×
1(u = v)). We consider sample sizes n = 300 and n = 1500. It
can be seen that the finite sample null distribution ofTn deviates
slightly from the limiting distribution when n = 300, and the
difference is much reduced when n = 1500. When bootstrap
correction is considered, the finite sample null distribution is
close to the limit even when n = 300.

4.2. Simulation 2: Hypothesis Test (1) Under the Stochastic
BlockModel

In the stochastic blockmodel setting, we consider the hypothesis
test

H0 : k = k0 versus H1 : k > k0.

1We obtained the code for Lei (2016) from the author’s website and imple-
mented the code for Karwa et al. (2016) by ourselves following the algo-
rithm proposed in the article.
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Figure 1. Null densities under the stochastic block model in Simulation 1 with n = 300 (left plot) and n = 1500 (right plot). The red dashed lines, blue dash-dotted lines,
and black solid lines show the densities of the test statistic Tn , the bootstrap corrected test statistic Tn,boot, and the theoretical limit, respectively.

Table 1. Proportion of rejection at nominal level α = 0.05 for hypothesis test H0 : k = k0 versus H1 : k > k0.

Tn T+n T+n,boot
k 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

k0 = 2 0.03 0.09 0.43 0.66 0.82 0.06 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00
k0 = 4 * 0.04 0.08 0.42 0.88 * 0.08 1.00 1.00 1.00 * 0.05 1.00 1.00 1.00
k0 = 6 * * 0.08 0.14 0.28 * * 0.08 1.00 1.00 * * 0.04 1.00 1.00
k0 = 8 * * * 0.08 0.14 * * * 0.09 1.00 * * * 0.05 1.00
k0 = 10 * * * * 0.08 * * * * 0.10 * * * * 0.04

NOTE: Each community has 200 nodes and Buv = 0.1(1+ 4× 1(u = v)). * indicates alternatives that are not considered (since we only consider a one-sided test with the
alternative H1 : k > k0).

Table 2. Proportion of rejection at nominal level α = 0.05 for H0 : k = k0 versus H1 : k > k0.

T+n,boot Leiboot

k 1 2 3 5 10 20 30 1 2 3 5 10 20 30

k0 = 1 0.03 1.00 1.00 1.00 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00 1.00 1.00
k0 = 2 * 0.06 1.00 1.00 1.00 1.00 1.00 * 0.04 1.00 1.00 1.00 1.00 1.00
k0 = 3 * * 0.06 1.00 1.00 1.00 1.00 * * 0.02 1.00 1.00 1.00 1.00
k0 = 5 * * * 0.05 1.00 1.00 1.00 * * * 0.03 1.00 1.00 1.00
k0 = 10 * * * * 0.06 1.00 1.00 * * * * 0.46 1.00 1.00
k0 = 20 * * * * * 0.04 1.00 * * * * * 0.82 1.00
k0 = 30 * * * * * * 0.04 * * * * * * 0.98

NOTE: The network size is n = 3000 with equal sized communities, and Buv = 0.1(1 + 4 × 1(u = v)). * indicates alternatives that are not considered (since we only
consider a one-sided test with the alternative H1 : k > k0).

We first compare the performance of the test statistic Tn, the
augmented test statistic T+

n and the bootstrap corrected aug-
mented test statistic T+

n,boot under varying k and k0. We set
the edge probability between communities u and v as 0.1(1 +
4 × 1(u = v)), and let the size of each block be 200. Table 1
reports the result from 100 data replications. While the Type I
errors from all three test statistics are close to the nominal level,
T+
n,boot’s Type I errors are closer to the nominal level when k is

large. As this simulation setting considers a planted partition
model with equal sized communities, Tn does not have good
power. This agrees with our theoretical results in Section 2.2.
It is seen that, with the augmentation, the power from both T+

n
and T+

n,boot improve significantly.
Next, we compare our method with Lei (2016). For their

test statistic, we also use the bootstrap correction procedure
suggested in their work, and this test statistic is referred to as
Leiboot. We fix the network size at n = 3000 and let both k and
k0 vary. Table 2 reports the results from T+

n,boot and Leiboot from
200 data replications. It can be seen from Table 2 that the two
tests have comparable Type I errors when k is small (i.e., k ≤ 5).
However, when k is large (i.e., k ≥ 10), the Type I errors from
T+
n,boot aremuch closer to the nominal level. This agreeswith our

theoretical finding that our proposed test allows k to grow at a

much faster rate than that of Lei (2016). Moreover, it is seen that
both tests have good power. Specifically, both tests are powerful
against the Erdős–Rényi model alternative (i.e., k0 = 1) when
k ≥ 2.

We have also run comparative simulations with sparser net-
works, networks with unbalanced community sizes and net-
works with randomly generated B. In the interest of space, we
report these additional results in the supplementary materials.

4.3. Simulation 3: Hypothesis Test (2) Under the Stochastic
BlockModel

In the stochastic block model setting, we also consider the
hypothesis test

H0 : σ = σ0 versus H1 : σ %= σ0.

We use the true number of communities k when we obtain the
membership vector σ0. We investigate the probability of Type
I error of the test statistic Tn and Tn,boot. The network size n
is the same as in Simulation 2. The edge probability between
communities u and v is 0.1(1+ 2× 1(u = v)). Each simulation
is repeated 200 times. The simulation results are given inTable 3.
It can be seen from this table that the probabilities of Type I error
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Table 3. Proportion of rejection at nominal level α = 0.05 for hypothesis test H0 :
σ = σ0 versus H1 : σ %= σ0 under settings in Simulation 3.

k = k0 2 3 4 5 6 7 8

Tn 0.05 0.05 0.07 0.07 0.09 0.07 0.10
Tn,boot 0.04 0.08 0.05 0.03 0.06 0.03 0.04
Karwa et al. (2016) 0.19 0.10 0.14 0.15 0.15 0.15 0.20

of both Tn and Tn,boot are close to the nominal level, withTn,boot
having a slightly smaller Type I error when k is large. We also
compare our method with Karwa et al. (2016). We can see that
the estimated Type I errors from our tests are much closer to the
nominal level than that of Karwa et al. (2016).

Wehave also run simulations to examine the power of the test
when a proportion of the labels in σ are corrupted. We find that
our test is powerful under this setting. In the interest of space, we
report these additional results in the supplementary materials.

4.4. Simulation 4: The Null Distribution Under the
Degree-Corrected Stochastic BlockModel and a
Bootstrap Correction

In this simulation,we examine thefinite sample null distribution
of the test statistic Tn2 under the degree-corrected stochastic
block model. Similar to Simulation 1, we also consider a finite
sample bootstrap correction. The calculation for the bootstrap
corrected test statistic Tn2,boot is similar to that in Simulation 1
and we include the computational details in the supplementary
materials.

To generate the degree parametersω, we follow the approach
in Zhao, Levina, and Zhu (2012). The identifiability constraint∑

i ωi1{σ (i) = u} = |σ−1(u)| for each community 1 ≤ u ≤
k is replaced by the requirement that the ωi be independently
generated from a distribution with unit expectation, that is,

ωi =






ηi, w.p. 0.8,
9/11, w.p. 0.1,
13/11, w.p. 0.1,

where ηi is uniformly distributed on the interval [ 45 , 65 ]. In this
simulation, we consider k = k0 = 3 with πu = 1/3, u =
1, . . . , 3, and k = k0 = 5 with πu = 1/5, u = 1, . . . , 5.

The edge probability between communities u and v is Buv =
0.1(1+ 2 × 1(u = v)). We consider sample sizes n = 300, 500,
and 1500.

In Figure 2, we plot the distribution of Tn2 with and without
bootstrap corrections from 1000 data replications. It can be
seen that when k = 3, the null distribution of Tn2 deviates
from the Gumbel distribution by a location and scale shi%. Such
a deviation does not decrease even when the sample size is
increased to n = 1500. However, when k is increased to 5, the
distribution ofTn2 ismuch less deviated from theGumbel distri-
bution in Theorem 3. Note that when the bootstrap correction
is considered, the sample null distribution is close to the limit
even when k = 3 and n = 300.

4.5. Simulation 5: Hypothesis Test Under the
Degree-Corrected Stochastic BlockModel

In the degree-corrected stochastic block model setting, we then
consider the hypothesis test

H0 : k = k0 versus H1 : k > k0.

We investigate the probability of Type I error and the power of
the test statistic T+

n2,boot, which is the augmented test statistic
(calculated as in Section S2.1) with bootstrap correction. The
connecting probabilities are generated the same as in Simulation
4. We consider equal sized communities with 200 nodes each.
Each simulation is repeated 100 times. The simulation results
are given in Table 4. It is seen that the probability of Type I error
is close to the nominal level and the test also shows good power.

Table 4. Proportion of rejection at nominal level α = 0.05 for hypothesis test H0 :
k = k0 versus H1 : k > k0 under the setting in Simulation 5.

T+n,boot
k 2 4 6 8 10

k0 = 2 0.05 1.00 1.00 1.00 1.00
k0 = 4 * 0.06 1.00 1.00 1.00
k0 = 6 * * 0.04 1.00 1.00
k0 = 8 * * * 0.04 1.00
k0 = 10 * * * * 0.07

NOTE: * indicates alternatives that are not considered (since we only consider a one
sided test with the alternative H1 : k > k0).

Figure 2. Null densities under the degree-corrected stochastic block model setting in Simulation 4 with k = 3, n = 300 (left plot), k = 3, n = 1500 (middle plot), and
k = 5, n = 500 (right plot). The red dashed lines, blue dash-dotted lines, and black solid lines show the densities of the test statistic Tn2, the bootstrap corrected test
statistic Tn2,boot, and the theoretical limit, respectively.
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5. Data Examples

5.1. International Trade Data

In this subsection, we apply the proposed method to the inter-
national trade dataset that was studied in Westveld and Hoff
(2011). The dataset contains yearly international trade infor-
mation among n = 58 countries from 1981 to 2000. The
original network is directed and weighted, in which each node
corresponds to a country and for a given year, Tradeij indicates
the amount of exports from country i to country j; see West-
veld and Hoff (2011) for details. Saldana, Yu, and Feng (2017)
revisited the dataset for the purpose of estimating the number
of communities. Following Saldana, Yu, and Feng (2017), we
focus on the international trade network in 1995 and transform
the directed and weighted adjacency matrix to an undirected
binary matrix. Specifically, let Wij = Tradeij + Tradeji, and
we set Aij = 1 if Wij ≥ W0.5, and Aij = 0 otherwise, where
W0.5 denotes the 50th percentile of {Wij}1≤i<j≤n. Saldana, Yu,
and Feng (2017) used three different methods and identified
three different numbers of communities, specifically, 3, 7, and
10, respectively. Note due to the limited size of the network,
some communities can be very small (e.g., less than 5 nodes).
In that case, the augmentation procedure may not work well
since the added community may have less than or equal to 2
nodes. We thus use Tn,boot as the test statistic for the stochastic
block model and obtain Tn,boot = 44.28, 3.33, and 13.44 for
k0 = 3, 7, and 10, respectively. Since t0.95 = 3.41 for the
Gumbel distribution, we do not reject H0 : k = 7 at the level
of 0.05. As discussed in Saldana, Yu, and Feng (2017), k = 7
seems to be a reasonable choice for the number of communities,
corresponding to countries with highest GDPs, industrialized
European and Asian countries with medium-level GDPs, and
developing countries in South America with the lowest GDPs.

5.2. Political Blog Data

In this subsection, we use the political blog network (Adamic
and Glance 2005) to demonstrate the proposed methods for
both the stochastic block model and the degree-corrected
stochastic block model. The dataset consists of political blogs,
with edges representing web links. Each node is labeled either
as “conservative” or “liberal” based on the blogger’s political
stance. We only consider the largest connected component of
this network which consists of 1222 nodes as is commonly
done in the literature. Chen and Lei (2018) applied a network
cross-validation method to the political blog data to select
the number of communities, and they identified k = 10 and
k = 2, respectively, for the stochastic block model and the
degree-corrected stochastic blockmodel. Here, we reanalyze the
data using the test statistics that we have developed to test the
significance of the number of communities identified by Chen
and Lei (2018). Specifically, we useT+

n,boot andT
+
n2,boot as the test

statistic for the stochastic blockmodel and the degree-corrected
stochastic block model, respectively. We obtain T+

n,boot = 23.59
under k = 10, and T+

n2,boot = 2.06 under k = 2. Since
t0.95 = 3.41 for the Gumbel distribution, at the level of 0.05,
we would reject H0 : k = 10 under the stochastic block model
and not rejectH0 : k = 2 under the degree-corrected stochastic

block model. The result of our analysis agrees with that of Chen
and Lei (2018) for the degree-corrected stochastic block model
but not so for the stochastic block model. It is possible that
the stochastic block model is not an appropriate model for this
particular dataset as it was observed that there is a big variation
among node degrees.

6. Discussion

In this article, we have developed a novel goodness-of-fit test
based on themaximumentry-wise deviation of the centered and
rescaled observed adjacency matrix and demonstrated that its
asymptotic null distribution is the Gumbel distribution when
k = o(n/ log2 n), which significantly relaxes the condition in
Lei (2016). The test is different from those used in traditional
methods based on independent random variables, in which
the goodness of fit is assessed by the sum of residual squares.
For stochastic block models, the residual is a matrix, and the
proposed test incorporates the signal change among different
blocks nested in the residual matrix to test the goodness of fit
of the model. In the case of degree-corrected stochastic block
model with unknown degree parameters, through simulation
studies, we show that the distribution of Tn2 under the null
deviates from the Gumbel distribution with µ = −2 log(2

√
π)

and β = 2. Finding the asymptotic null distribution of Tn2
under the degree-corrected stochastic blockmodel is a challeng-
ing task, as the estimated degree parameters ω̂i, i = 1, . . . , n,
introduce complex dependencies between the entries of the
rescaled adjacency matrix. As such, the theoretical arguments
used in the current article can no longer be directly applied or
extended to obtain the asymptotic null distribution of Tn2.

Both our work and Lei (2016) consider dense networks, that
is, entries in the probability matrix B are bounded away from 0.
In practice, networks can be sparse. To admit the sparse case,
the probability matrix B is o%en assumed to be of the form
B = ρnB0, where the entries of B0 are of order 1, and ρn is a
parameter controlling the sparsity of the network and allowed to
decrease to zerowhen n increases (Bickel andChen 2009). Some
recent work that consider tests based on subgraph statistics have
obtained closed-form asymptotic null distributions in the sparse
regime (Gao and Lafferty 2017; Jin, Ke, and Luo 2019). However,
these asymptotic null distributions only hold under k = 1, that
is, the Erdős–Rényi model. Thus, these tests can only be used
to test if there are communities in the network but not how
many are there. In addition, Wang and Bickel (2017) considers
a likelihood-based model selection approach and derives the
asymptotic distribution of the log-likelihood ratio statistic in the
sparse case. However, the number of communities k is fixed in
their work. For ourmethod, when the network is sparse, existing
arguments do not guarantee the moderate deviation bound (see
Lemma 2) due to the heavy tail of the centered and rescaled adja-
cency entry (Aij − Bσ (i)σ (j))/

√
Bσ (i)σ (j)(1 − Bσ (i)σ (j)). It would

be of interest to investigate whether the moderate deviation
bound in Lemma 2 can be modified to consider such heavy-
tailed scenarios in future work.

SupplementaryMaterials

The supplementary materials collect all technical proofs, additional com-
putational details and simulation results.
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