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Abstract. We define a discrete version of the bilinear spherical maximal function, and
show bilinear lppZdq ˆ lqpZdq Ñ lrpZdq bounds for d ě 3, 1

p `
1
q ě

1
r , r ą d

d´2 and p, q ě 1.

Due to interpolation, the key estimate is an lppZdq ˆ l8pZdq Ñ lppZdq bound, which holds
when d ě 3, p ą d

d´2 . A key feature of our argument is the use of the circle method which
allows us to decouple the dimension from the number of functions compared to the work of
Cook.

1. Introduction

The study of multilinear variants of continuous operators appearing in harmonic analysis
is a rich area of study. Another active area of investigation is determining bounds for
discrete operators involving integration over a curved submanifold – these operators often
exhibit radically different behaviour than their continuous counterparts. Discrete bilinear
and multilinear variants have been significantly less studied. In this paper we combine the
themes of discreteness and multilinearity with the study of the discrete bilinear spherical
maximal function. Namely, we prove lppZdq ˆ lqpZdq Ñ lrpZdq bounds in an open region
obtained by both simple discrete lp theory and interpolation with a key estimate, which we
prove. This estimate is an lppZdq ˆ l8pZdq Ñ l8pZdq bound for p ą d

d´2
that is obtained

using the circle method from analytic number theory. While this application introduces
a number of number theoretic obstacles, it also allows us to decouple the multilinearity
(number of functions) with the dimension compared to the work of Cook [5]. The idea
for approaching an lppZdq ˆ l8pZdq Ñ l8pZdq estimate is classic in the continuous setting,
but in the particular case of the bilinear spherical maximal function it was first employed
by Barrionuevo, Grafakos, He, Honźık and Oliveira [4]. For simplicity, we work with the
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bilinear version of the discrete spherical maximal function in Z2d but we comment on the
more general results for the l-linear version in the last section.

The study of spherical maximal functions dates back to Stein [23] where they naturally
arose in connection with the wave equation. This operator is bounded on LppRdq for d ě 2,
p ą d

d´1
(Stein d ě 3 [23], Bourgain d “ 2 [6]); these ranges are sharp. Oberlin introduced a

multilinear variant with functions on R, and proved bounds from LppRq ˆ . . . ˆ LppRq into
LqpRq for p1

p
, 1
q
q lying in a polygonal region [20]. Geba, Greenleaf, Iosevich, Sawyer and the

second author [8] were the first to consider a multilinear variant with functions in Rd, and
proved bounds in the bilinear setting of the type LppRdq ˆ LppRdq Ñ Lp

1

pRdq for 1 ď p ď 2
and d ě 2. Barrionuevo, Grafakos, He, Honźık and Oliveira [4] expanded vastly on the results
by Geba et al and obtained a wide range of Hölder type estimates LppRdqˆLqpRdq Ñ LrpRdq

for d ě 8. This was improved to d ě 4 by Grafakos, He and Honźık [9] and the range of
estimates then slightly expanded by Heo, Hong and Yang [10]. Finally, in a recent work,
Jeong and Lee proved sharp bounds for the continuous bilinear spherical maximal function
in R2d [13] with their method clearly extending to higher levels of multilinearity.

Magyar, Stein and Wainger considered a discrete linear spherical maximal function, first
introduced by Magyar [14], and proved bounds for d ě 5, p ą d

d´2
; moreover they showed

that this range was sharp in d and p. Cook studied a version of the discrete multilinear
spherical maximal function analogous to Oberlin’s work and similarly proved bounds of the
type lppZq ˆ . . . ˆ lppZq Ñ lqpZq [5]. We continue to further the investigation of discrete
multilinear spherical maximal functions by introducing the circle method technique, allowing
us to consider functions on Zd and obtaining a wide range of estimates. Our range is not
sharp, but approaches sharp estimates as d Ñ 8. We relate some necessary conditions of
multilinear spherical maximal functions in the opening section as well as sharpness examples
after the proof of the main theorem. An interesting open question is to fully determine the
sharp range for this operator, thus providing the discrete analogue to [13].

In our recent work [3], we have been able to show the sharp bound for the discrete bilinear
spherical maximial function for d ě 5, with analogous results for multilinear and other
variants. We emphasize that those techniques are both different to the current approach
and do not permit us to currently say anything in dimensions 3 and 4, which this paper’s
approach can tackle.

We now define our bilinear discrete (or integral) spherical maximal function (we comment
on the multilinear version in the last section). The operators that we consider extend those
considered in [5], and our boundedness results complement these as well as the continuous
bounds found in [20], [8], [4], [9], [10], [13]. Note that our technique is different to the
approach used in [5], we directly import the continuous bounds as a key step. Many papers
have used this technique in the linear setting, such as [18], [15], [11], and [2].

The continuous spherical averages can be written as

Tλpf, gqpxq “

ż

λS2d´1

fpx´ uqgpx´ vqdσλpu,vq

where u and v are vectors in Rd, and dσλ is the continuous normalized spherical measure
on λS2d´1. We can rewrite this as a convolution operator:

Tλpf, gqpxq “ ppf b gq ˚ dσλqpx,xq.
2



Then the maximal operator is

T ˚pf, gqpxq :“ sup
λą0

|Tλpf, gqpxq|.

Abusing notation, the discrete version that we will consider is

T ˚pf, gqpxq “ sup
λPN

ˇ

ˇ

ˇ

ˇ

ˇ

1

Npλq

ÿ

u2`v2“λ

fpx´ uqgpx´ vq

ˇ

ˇ

ˇ

ˇ

ˇ

where u, v P Zd and Npλq “ #tpu,vq P Zd ˆ Zd : u2 ` v2 “ λu is the number of lattice
points on the sphere of radius λ1{2 in R2d, which by the Hardy-Littlewood asymptotic is
approximately λd´1 if the distribution is regular. Here u2 is shorthand for u2

1`¨ ¨ ¨`u
2
d. This

operator can also be thought of as

T ˚pf, gqpxq “ sup
λą0

|ppf b gq ˚ σλqpx,xq| .

where this time, σλpu,vq “
1

Npλq
χtuPZd,vPZd:u2`v2“λu is the normalized arithmetic (probabil-

ity) surface measure. For Npλq to be regular, we need 2d ą 4, or d ě 3. We will assume
regularity throughout the paper.

We will prove the following:

Theorem 1. T ˚ is bounded lppZdq ˆ l8pZdq Ñ lppZdq for all d ě 3, p ą d
d´2

.

Remark 1. Sharpness examples provided at the end of the proof of Theorem 1 in section 6.1
show that for lppZdq ˆ l8pZdq Ñ lppZdq bounds to hold when d ě 3 we must have p ą 1. As
dÑ 8 our result approaches the sharp range.

Remark 2. By symmetry, we also get that T ˚ is bounded l8pZdq ˆ lppZdq Ñ lppZdq for
all p ą d

d´2
. We can interpolate these bounds to get all points on the line including the

l2ppZdq ˆ l2ppZdq Ñ lppZdq bounds for all p ą d
d´2

; these lines approach the line containing

the l2pZdq ˆ l2pZdq Ñ l1pZdq bounds as d Ñ 8 so we approach the full Banach range of
estimates as d Ñ 8. By trivially estimating the operator in l8pZdq, we also have that T ˚

is bounded on l8pZdq ˆ l8pZdq Ñ l8pZdq. Interpolating these three bounds and noting the
nesting properties of the discrete lp spaces, that is:

}f}lqpZdq ď }f}lppZdq for all 1 ď p ď q ď 8,

leads to the Corollary below.

Corollary 1. T ˚ is bounded lppZdq ˆ lqpZdq Ñ lrpZdq for all d ě 3, 1
p
` 1

q
ě 1

r
, r ą d

d´2
and

p, q ě 1.

The key feature of this Corollary is the wide range of Hölder estimates obtained, while the
broader estimates follow immediately from the nesting property of the discrete lp spaces. As
mentioned it would be interesting to see what the full range of bounds (and most importantly
the full Hölder range) for this operator are.

The paper is organized as follows: we begin with some necessary conditions for bound-
edness in Section 2. In Section 3 we use the circle method to decompose our operator. We
handle the error from the minor arcs in Section 4, the rest of the error in Section 5, and the
main term from the decomposition in Section 6, where we prove Theorem 1. We comment
on multilinear extensions in the final section.
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2. Necessary conditions

We begin by relating some necessary bounds for the bilinear (and multilinear) operators
that we consider. Note that if we know that an operator T is bounded on lp0pZdqˆ lq0pZdq Ñ
lr0pZdq, then we automatically get all bounds lppZdq ˆ lqpZdq Ñ lrpZdq for all p ď p0, q ď
q0, r ě r0 due to the nestedness properties of the discrete norms.

Lemma 1. If T ˚pf1, . . . , fmq is bounded on lp1pZdq ˆ ¨ ¨ ¨ ˆ lpmpZdq Ñ lrpZdq, then 1
r
ď

1
p1
` ¨ ¨ ¨ ` 1

pm
.

Therefore for T ˚ to be bounded on lppZdqˆ lqpZdq Ñ lrpZdq, we need 1
r
ď 1

p
` 1

q
. (So in the

bilinear case, the best l2pZdq bounds we can expect are l2pZdq ˆ l2pZdq Ñ l1pZdq bounds).

Proof. We focus on the bilinear setting – minor modifications yield the multilinear result. We
also focus on the case when 1 ď p, q, r ă 8. We use a scaling argument: Let f, g “ χr0,Lqd .
Then we have that

}T ˚pf, gqpyq}lrpZdq “ p
ÿ

yPZd

psup
λ
λ1´d

ÿ

u2`v2“λ

χr0,Lqdpy ´ uqχr0,Lqdpy ´ vqq
r
q
1{r.

For each y, the inner expression will be nonzero only if u2 ` v2 “ λ and ui ď yi ă ui `L as
well as vi ď yi ă vi ` L for all 1 ď i ď d. Since L is fixed, when λ gets large, there are Ld

such y that contribute to the sum, giving

pLdpsup
λ
λ1´d#t|u|2 ` |v|2 “ λurqq1{r À Ld{r

since there are asymptotically λd´1 such pu,vq. On the other hand by an even simpler
calculation

}f}lppZnq}g}lqpZnq “ Ld{pLd{q.

Hence to have Ld{r À Ld{pLd{q we must have 1
r
ď 1

p
` 1

q
, or more generally for the m-linear

variant, 1
r
ď 1

p1
` ¨ ¨ ¨ ` 1

pm
.

�

3. Set up and decomposition

We now turn to the proof of Theorem 1. The first key point to note is that we can pull
out the function g in l8 norm and reduce matters to considering lppZdq Ñ lppZdq bounds for
an operator T0, see for example Barrionuevo et al [4]; indeed we have

T ˚pf, gqpxq ď }g}l8pZdq ¨ T
˚
0 p|f |qpxq (3.1)

where

T0pfqpxq :“
1

Npλq

ÿ

u2`v2“λ

fpx´ uq (3.2)

and
T ˚0 pfq :“ sup

λą0
|T0pfq|. (3.3)
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Therefore we have that T0p|f |q “ p|f | b 1q ˚ σλ, so

{T0p|f |qpξq “
´

x|f | b δ0

¯

pξ,ηq ¨ σ̂λpξ,ηq “
1

Npλq

ÿ

u2`v2“λ

x|f |pξqepu ¨ ξq

where ξ P Td and epxq “ e2πix.
So we can rewrite

{T0p|f |q “ x|f |σ̂λ,0

where

σ̂λ,0pξq “
1

Npλq

ÿ

u2`v2“λ

epu ¨ ξq. (3.4)

We will start by using the circle method to decompose the Fourier transform of the arith-
metic surface measure σ̂λ,0pξq. The circle method will lead us to the following decomposition:

T0 “Mλ ` Eλ “Mλ ` pAλ ´Mλq ` Em,λ :“ I ` II ` III (3.5)

where the term I is the main term coming from the major arcs, term II is the major arc
approximation error term, and term III is the error term coming from the minor arcs (we
emphasize that T0 depends on λ even though we suppress this notation). We will prove
lppZdq Ñ lppZdq bounds for the maximal operators arising from each of these terms. The
process begins in a similar manner to [18] and [15].

Let Λ ď λ ă 2Λ and call N “ Λ1{2. Applying the circle method to σ̂λ,0, we get that

σ̂λ,0pξq “
1

Npλq

ÿ

0ďui,viďN

epu ¨ ξq

ż

T
epθpu2

` v2
´ λqqdθ “

1

Npλq

ż

T

d
ź

i“1

ÿ

uiďN

epθu2
i`ξiuiq

d
ź

j“1

ÿ

vjďN

epθv2
j qep´λθqdθ :“

1

Npλq

ż

T

d
ź

i“1

SNpθ, ξiq
d
ź

j“1

SNpθqep´λθqdθ

:“
1

Npλq

ż

T
F pθ, ξqF pθqep´λθqdθ.

We will decompose this Fourier transform as σ̂λ,0 “ M̂λ ` Êλ, where M̂λ will come from

the major arcs and Êλ will come from the minor arc piece as well as error from the major
arc approximation. Define the major arc centered at the rational a{q

Ma{q :“ tθ P T : |θ ´
a

q
| ď

1

8qN
u,

and the major arcs

M :“
ď

1ďqďN

ď

pa,qq“1,aďq

Ma{q

and let m “ TzM be the minor arcs.
On the major arcs, let θ “ a

q
` β where |β| ď 1

8qN
and split u “ qũ ` y,v “ qṽ ` z into

residue classes. Define a smooth compactly supported function Φpxq such that Φpxq “ 1 for
|x| ă 1. Then on Ma{q, we have

1

Npλq

ż

ÿ

yPZd
q

ÿ

zPZd
q

ÿ

ũPZd

ÿ

ṽPZd

epp
a

q
`βqpqũ`yq2`ξ¨pqũ`yq`p

a

q
`βqpqṽ`zq2qΦp

u

N
qΦp

v

N
qep´λp

a

q
`βqqdβ.
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Let Bpxq “ epβx2qΦp x
N
q. We apply Poisson summation with respect to each Φ separately

to get

1

Npλq
ep
´λa

q
qq´d

ÿ

yPZd
q

ÿ

lPZd

ep
ay2

q
qep
l ¨ y

q
qq´d

ÿ

zPZd
q

ÿ

mPZd

ep
m ¨ z

q
q

ż

|β|ă 1
8Nq

ep´λβqB̂pξ´
l

q
qB̂p´

m

q
qdβ.

We define the Gauss sum Gpl, a, qq “ q´d
ř

yPZd
q
epay

2

q
qep l¨y

q
q and the sum Gpm, 0, qq “

q´d
ř

zPZd
q
epm¨z

q
q. Note that the sum Gpm, 0, qq, despite our notation, is not a Gauss sum

since there is no quadratic term. Due to the term B̂p´m
q
q in the exponential integral, we

cannot use orthogonality of characters to simplify this piece; with this in mind, the above
equals

Â
a{q
λ :“

1

Npλq
ep
´λa

q
q
ÿ

lPZd

Gpl, a, qq
ÿ

mPZd

Gpm, 0, qq

ż

|β|ď1{8qN

ep´λβqB̂pξ ´
l

q
qB̂p´

m

q
qdβ.

(3.6)
We follow the approach of [15] and insert smooth cutoff functions Ψ1, Ψ2 (where Ψ1pξq “ 1
for |ξ| ă 1 and similarly for Ψ2) to define the approximate multiplier

B̂
a{q
λ :“

1

Npλq
ep
´λa

q
q
ÿ

lPZd

Gpl, a, qq
ÿ

mPZd

Gpm, 0, qqΨ1pqξ´lqΨ2p´mq

ż

|β|ď1{8qN

ep´λβqB̂pξ´
l

q
qB̂p´

m

q
qdβ.

(3.7)
Note that only the m “ 0 term contributes to Ψ2. One may wonder why Ψ2 was inserted,
since it always localizes to the zero frequency. The reason for inserting such a localization
is important for the main term analysis and we comment on this then. Any error that we
incur by inserting these functions will be handled easily in Section 5; moreover this approach
of using smooth weights (the functions Ψ1 and Ψ2) is often done in analytic number theory
(here we insert these weights on the Fourier side).

Now extend the integration to the whole real line to define the approximate multiplier:

Ĉ
a{q
λ :“

1

Npλq
ep
´λa

q
q
ÿ

lPZd

Gpl, a, qq
ÿ

mPZd

Gpm, 0, qqΨ1pqξ´lqΨ2p´mq

ż

R
ep´λβqB̂pξ´

l

q
qB̂p´

m

q
qdβ.

(3.8)
Now we can identify, as in [22] (note that we have replaced sharp cutoffs with smooth ones
via Ψ1 and Ψ2) the exponential integral in β with

Ădσλ1{2ppξ b 0q ´ p
l

q
b
m

q
qq

which is the continuous spherical surface measure on the sphere of radius λ1{2 in R2d, so

Ĉ
a{q
λ “ M̂

a{q
λ . Note that this symbol enjoys the Fourier decay

Ădσppξ b ηqq À p1` |ξ| ` |η|q´
2d´1

2 . (3.9)

Note that the justification of this identification and the claimed decay above follows exactly
as in the proofs in [22] (see page 498 and related discussion, also see Section 3.1 in [11]).
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Summing over q, a, we have that

M̂λ “

N
ÿ

q“1

ÿ

aPZ˚q

ep
´λa

q
q
ÿ

lPZd

Gpl, a, qq
ÿ

mPZd

Gpm, 0, qqΨ1pqξ´lqΨ2p´mqĂdσλ1{2ppξb0q´p
l

q
b
m

q
qq.

4. Minor arcs

Here we show lppZdq Ñ lppZdq bounds for the minor arc multiplier

Êm,λ “
1

Npλq

ż

m

F pθ, ξqF pθqep´λθqdθ.

This approach follows [1] with minor changes. We sketch the details.
We proceed by showing an l2pZdq Ñ l2pZdq bound for a dyadic version of the operator

Em,λ, with some power decay in N , that is

} sup
λPrΛ,2Λq

|Em,λ|}l2pZdqÑl2pZdq À N´δ (4.1)

for some δ ą 0.
First, we adopt a proposition from [1]. Its proof is very similar, but we include a brief

sketch for completion.

Proposition 1. } supλPrΛ,2Λq |Em,λ|}l2pZdqÑl2pZdq À
1

NpΛq

ş

m
supξPTd |F pθ, ξq||F pθq|dθ

Proof. First note that

|Em,λpfqpuq| ď
1

NpΛq

ż

m

|

ż

Td

F pθ, ξqF pθqf̂pξqep´u ¨ ξqdξ|dθ

and call hpθ,uq :“
ş

Td F pθ, ξqF pθqqf̂pξqep´u ¨ ξqdξ. Now we have

} sup
λPrΛ,2Λq

|Em,λpfq|}l2pZdq ď
1

NpΛq
}

ż

m

|hpθ,uq|dθ}l2pZdq ď
1

NpΛq

ż

m

p
ÿ

uPZd

|hpθ,uq|2q1{2dθ

using Minkowski’s integral inequality. After an application of Bessel’s inequality the above
is bounded by

1

NpΛq

ż

m

p

ż

Td

|F pθ, ξqF pθqf̂pξq|2dξq1{2dθ

ď
1

NpΛq

ż

m

sup
ξ
|F pθ, ξq||F pθq|dθp

ż

Td

|f̂pξq|2dξq1{2

ď
1

NpΛq
}f̂}L2pTdq

ż

m

sup
ξ
|F pθ, ξq||F pθq|dθ

and after applying Plancherel we get

}f}l2pZdq

1

NpΛq

ż

m

sup
ξ
|F pθ, ξq||F pθq|dθ.

�
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Next using the classic Weyl’s inequality (see [25]), we get supξ |SNpθ, ξq| À N1{2`ε, so we
therefore have (for any ε ą 0),

ż

m

sup
ξPTd

|F pθ, ξq||F pθq|dθ À Nd`ε
“ N2d´2´pd´2q`ε

which is (4.1) for δ “ d´ 2´ ε.
We also have that

} sup
λPrΛ,2Λq

|Em,λ|}l1pZdqÑl1pZdq À N2, (4.2)

since

}Em,λpfqpuq}l1pZdq ď
1

Npλq

ż

m

|

ż

Td

F pθ, ξqF pθqqf̂pξqep´u ¨ ξqdξ|dθ

ď
N2d

NpΛq
}

ż

m

|fpuq}l1pZdq ď N2
|m|}f}1.

Hence we can interpolate the gain from (4.1) with (4.2) to get:

} sup
λPrΛ,2Λq

|Em,λ|}lppZdqÑlppZdq À Nαp

where αp “ 2p2{p´ 1q ´ δp2´ 2{pq. If p ą 2`δ
1`δ

then we have that αp ă 0. We can take any

0 ă δ ă d´ 2, so taking δ as close to d´ 2 as we wish, we get this bound for p ą d
d´1

. Then
we sum up over dyadic ranges to get

›

›

›

›

sup
λ

ˇ

ˇEm,λ|
ˇ

ˇ

›

›

›

›

lppZdqÑlppZdq

ď
ÿ

N“2j

} sup
λPrΛ,2Λq

|Em,λ|}lppZdqÑlppZdq

À
ÿ

N“2j

Nαp À
ÿ

j

2αpj ď C.

which yields lppZdq Ñ lppZdq bounds for Em,λ for all p ą d
d´1

.

5. Major arc error terms

Here we will show that the error incurred from using the operator Mλ (via Bλ and Cλ)
instead of Aλ is small, namely:

›

›

›

›

›

sup
λPrΛ{2,Λq

ˇ

ˇAλ ´Mλ

ˇ

ˇ

›

›

›

›

›

lppZdqÑlppZdq

À Λ´γp (5.1)

for some γp ą 0. This argument is standard, but for completeness we quickly sketch the
details. The estimate (5.1) is sufficient, since

›

›

›

›

sup
λ

ˇ

ˇAλ ´Mλ

ˇ

ˇ

›

›

›

›

lppZdqÑlppZdq

ď
ÿ

Λu2j

›

›

›

›

›

sup
λPrΛ{2,Λq

ˇ

ˇAλ ´Mλ

ˇ

ˇ

›

›

›

›

›

lppZdqÑlppZdq

À
ÿ

j

2´γpj ď C.
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To show (5.1), we will show
›

›

›

›

›

sup
λPrΛ{2,Λq

ˇ

ˇAλ ´Mλ

ˇ

ˇ

›

›

›

›

›

l2pZdqÑl2pZdq

À Λ´βp (5.2)

which is Proposition 4 of [15]; see also [11], and interpolate this with the estimate
›

›

›

›

›

sup
λPrΛ{2,Λq

ˇ

ˇAλ ´Mλ

ˇ

ˇ

›

›

›

›

›

lppZdqÑlppZdq

À 1. (5.3)

Given any ε ą 0, this will prove (5.1) for any d
d´2

` ε ă p ď 2 as long as βp ą 0. To prove
(5.3), we simply combine the estimates

›

›

›

›

›

sup
λPrΛ{2,Λq

ˇ

ˇAλ
ˇ

ˇ

›

›

›

›

›

lppZdqÑlppZdq

À 1

and
›

›

›

›

›

sup
λPrΛ{2,Λq

ˇ

ˇMλ

ˇ

ˇ

›

›

›

›

›

lppZdqÑlppZdq

À 1.

The latter estimate is true for d
d´2

ă p ď 2 due to Section 6, and the former is true by [14].

6. Main Term

Here we estimate the lp Ñ lp norm of the main term. Firstly, using the triangle inequality,

} sup
λ
|Mλ|}p ď

8
ÿ

q“1

ÿ

aPZ˚q

} sup
λ
|Ma,q

λ |}p

where we recall the multiplier M̂a,q
λ defined in (3.8):

M̂a,q
λ “

ÿ

lPZd

Gpl, a, qq
ÿ

mPZd

Gpm, 0, qqΨ1pqξ ´ lqΨ2p´mqĂdσλ1{2ppξ b 0q ´ p
l

q
b
m

q
q.

The multiplier M̂a,q
λ naturally splits up into the product of two multipliers as in [18]

Ŝpξq “
ÿ

lPZd

ÿ

mPZd

Gpl, a, qqGpm, 0, qqΨ1pqξ ´ lqΨ2p´mq

and

Ŝ 1λpξq “
ÿ

lPZd

ÿ

mPZd

Ψ1
1pqξ ´ lqΨ

1
2p´mq

Ădσλ1{2ppξ b 0q ´ p
l

q
b
m

q
qq

where Ψ1
1 is an appropriate cutoff function such that Ψ1

1Ψ1 “ Ψ1, and similarly for Ψ1
2. At

this stage it is important to have the term Ψ2 present – without this localizing term (which
reduces the sum in m to a single term), we could not split the multiplier in this way, since
this splitting relies on the fact that for each ξ, there is only one l and one m that contribute
to the sum - see [15] for details.

Since Ma,q
λ “ S 1λ ˝ S “ S ˝ S 1λ, It suffices to bound both S and supλ |S

1
λ| in lppZdq.

9



To bound S 1, we use the bounds for the continuous version of the bilinear spherical maximal
function from [13]. Note that due to the extra Fourier decay, we are able to get lppZdq bounds
for all p ą 1.

Proposition 2. } supλ |S
1
λ|}lppZdqÑlppZdq ď C for all d ě 2, p ą 1

Proof. Fist note that we have Ŝ 1λpξq “ Ûλpξ,0q where

Ûλpξ,ηq “
ÿ

lPZd

ÿ

mPZd

Ψ1
1pqξ ´ lqΨ2pqη ´mqĂdσλ1{2ppξ b ηq ´ p

l

q
b
m

q
qq. (6.1)

This is now a symbol in T2d. We can now apply Magyar-Stein-Wainger transference [18] to
Uλ, followed by an application of the boundedness of the bilinear spherical maximal function
in [13] to get

} sup
λ
|Uλ|}lppZ2dq ď } sup

λ
|Uλ|}LppR2dq ď C,

where we have used the decay of our symbol in (3.9) to compare it to mollified bilinear
spherical averages in [13] via the method of Rubio de Francia [21].

Finally, we have that since Ŝ 1λpξq “ Ûλpξ,0q, then

} sup
λ
|S 1λpfq|}lppZdq “ } sup

λ
|Uλpf, δ0q|}lppZ2dq

and since }δ0}lppZdq “ 1,

} sup
λ
|Uλpf, δ0q|}lppZ2dq ď } sup

λ
|Uλ|}lppZ2dq

which finishes the proof.
�

To bound the operator S notice that now
ř

mPZd
q
Gpm, 0, qqΨ2p´mq = Gp0, 0, qq “ 1 so

that our multiplier now takes the form of those considered in [18]. We have:

Proposition 3. }S}lppZdqÑlppZdq ď q´dp1´1{pq

Proof. Using Proposition 2.2 of [18] with γ “ Gpl, a, qq we have that

}S}lppZdqÑlppZdq ď psup
l
|Gpl, a, qq|q2´2{p.

Recalling supl |Gpl, a, qq| ď q´d{2, we get the desired bound. �

Summing over q and a, we get

} sup
λ
|Mλ|}lppZdq ď

8
ÿ

q“1

ÿ

aPZ˚q

q´dp1´1{pq
ă 8

if and only if p ą d
d´2

. Therefore, the arithmetic term provides the bottleneck for bound-

edness, with the restriction p ą d
d´2

, which matches the bounds in the linear setting. Note
that unlike the linear setting, we can take d ě 3 instead of d ě 5.
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6.1. Proof of Theorem 1. We now complete the proof of Theorem 1. Combining the
restriction on p from the error estimates along with the sufficient conditions for the main
term, we see that the full operator T ˚0 is bounded on lppZdq Ñ lppZdq for all d ě 3, p ą d

d´2
.

Therefore T ˚ is bounded on lppZdq ˆ l8pZdq Ñ lppZdq for all d ě 3, p ą d
d´2

.

By taking the example f “ δ0, g ” 1, one can see that for λ “ |x|2 that }Tλpf, gq}
p
lppZdq

ě
ř

xPZd

`

1
|x|2pd´1q

˘p
, which converges if and only if p ą d

2pd´1q
, therefore for p ě 1. Similarly,

one can take λ “ n|x|2 for any natural number n, to reduce matters to estimating

ÿ

xPZd

ˆ

1

|x|2pd´1q
#tv : |v|2 “

n´ 1

n
λu

˙p

.

The count in this sum is u |x|d´2 for d ě 5 by the Hardy-Littlewood asymptotic, so we get
ÿ

xPZd

`

|x|´d
˘p
.

For d “ 4, we use the fact that for pn´1
n
qλ “ 1 mod 8, we have the same asymptotic, and

for d “ 3, use the fact that for infinitely many even λ, we have that #tv : |v|2 “ n´1
n
λu is

nonzero. The most restrictive of these estimates yield p ą 1. It would be interesting to see
if p ą 1 is also the sharp range of boundedness.

7. Multilinear results

We now mention the l-linear results that we obtain, which comes by interpolation with an
l8pZdq ˆ ¨ ¨ ¨ ˆ l8pZdq ˆ lppZdq Ñ lppZdq bound for T ˚pf1, . . . , flq. In this case, the symbol
we are analyzing is bounded by:

T ˚pf1, . . . , flqpxq ď }f1}l8pZdq ¨ ¨ ¨ }f2}l8pZdq ¨ T
˚
0 p|fl|qpxq (7.1)

where we can rewrite
{T0p|fl|q “ x|fl|σ̂λ,0,...,0

(with l ´ 1 zeros) with

σ̂λ,0,...,0pξq “
1

Npλq

ÿ

u2
1`¨¨¨`u

2
l“λ

epul ¨ ξq. (7.2)

The Magyar-Stein-Wainger principle applies; now the main term operator M̂a,q
λ has one term

involving l and l ´ 1 terms involving m1, . . .ml´1 instead of simply m (and the spherical
measure involving the tensor product is adjusted accordingly). In particular, we use the

Magyar-Stein-Wainger transference principle applied to Ŝ 1λpξq “ Ûλpξ,0, . . . ,0q (l´1 zeros).
Our proofs carry through in this setting; we only indicate the necessary changes. Firstly,

the count Npλq is approximately λ
ld
2
´1 by the Hardy-Littlewood asymptotic as long as d ą

4{l. Secondly, in the error term analysis, we get the dyadic l2pZdq bound of N pld´2q´p ld
2
´2´εq “

N ld´2´δ for δ “ ld
2
´ 2 ´ ε. Interpolating with the trivial l1pZdq estimate of N2, we get lp

bounds for all p ą ld
ld´2

. For the main term (which still splits into the two operators S
and S 1λ), we get the restriction p ą mintpc, pdu where pc is the infimum of p such that the
operator S 1λ is bounded (which stems from continuous bounds for the multilinear spherical
maximal function), and pd “

d
d´2

is still the infimum of all p such that S is bounded. So

we have that the l-linear variant is bounded on l8pZdq ˆ ¨ ¨ ¨ ˆ l8pZdq ˆ lppZdq Ñ lppZdq for
11



all p ą d
d´2

. Through interpolation this leads to bounds lp1pZdq ˆ . . . ˆ lplpZdq Ñ lrpZdq for
1
p1
` . . .` 1

pl
ě 1

r
, r ą d

d´2
and p1, . . . , pl ě 1.
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