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ABSTRACT. We define a discrete version of the bilinear spherical maximal function, and

show bilinear (P(Z4) x 19(Z%) — 1"(Z%) bounds for d > 3, % + % >1 > andp,g=> 1.

Due to interpolation, the key estimate is an [P(Z%) x (*(Z%) — IP(Z?) bound, which holds

when d > 3, p > df2. A key feature of our argument is the use of the circle method which

allows us to decouple the dimension from the number of functions compared to the work of
Cook.

1. INTRODUCTION

The study of multilinear variants of continuous operators appearing in harmonic analysis
is a rich area of study. Another active area of investigation is determining bounds for
discrete operators involving integration over a curved submanifold — these operators often
exhibit radically different behaviour than their continuous counterparts. Discrete bilinear
and multilinear variants have been significantly less studied. In this paper we combine the
themes of discreteness and multilinearity with the study of the discrete bilinear spherical
maximal function. Namely, we prove [P(Z%) x 19(Z%) — ["(Z%) bounds in an open region
obtained by both simple discrete [P theory and interpolation with a key estimate, which we
prove. This estimate is an (P(Z%) x 1*(Z%) — 1*(Z") bound for p > -% that is obtained
using the circle method from analytic number theory. While this application introduces
a number of number theoretic obstacles, it also allows us to decouple the multilinearity
(number of functions) with the dimension compared to the work of Cook [5]. The idea
for approaching an IP(Z%) x [*(Z%) — 1°(Z?) estimate is classic in the continuous setting,
but in the particular case of the bilinear spherical maximal function it was first employed

by Barrionuevo, Grafakos, He, Honzik and Oliveira [4]. For simplicity, we work with the
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bilinear version of the discrete spherical maximal function in Z>? but we comment on the
more general results for the [-linear version in the last section.

The study of spherical maximal functions dates back to Stein [23] where they naturally
arose in connection with the wave equation. This operator is bounded on LP(R%) for d > 2,
p > 7% (Stein d > 3 [23], Bourgain d = 2 [6]); these ranges are sharp. Oberlin introduced a

multilinear variant with functions on R, and proved bounds from LP(R) x ... x LP(R) into
L9(R) for (é, %) lying in a polygonal region [20]. Geba, Greenleaf, losevich, Sawyer and the

second author [8] were the first to consider a multilinear variant with functions in R¢, and
proved bounds in the bilinear setting of the type LP(R?) x LP(R?) — LF'(R?) for 1 < p < 2
and d > 2. Barrionuevo, Grafakos, He, Honzik and Oliveira [4] expanded vastly on the results
by Geba et al and obtained a wide range of Holder type estimates LP(R?) x L4(R?) — L"(R%)
for d > 8. This was improved to d > 4 by Grafakos, He and Honzik [9] and the range of
estimates then slightly expanded by Heo, Hong and Yang [10]. Finally, in a recent work,
Jeong and Lee proved sharp bounds for the continuous bilinear spherical maximal function
in R?? [13] with their method clearly extending to higher levels of multilinearity.

Magyar, Stein and Wainger considered a discrete linear spherical maximal function, first
introduced by Magyar [14], and proved bounds for d > 5,p > df‘lz; moreover they showed
that this range was sharp in d and p. Cook studied a version of the discrete multilinear
spherical maximal function analogous to Oberlin’s work and similarly proved bounds of the
type (P(Z) x ... x IP(Z) — 19Z) [5]. We continue to further the investigation of discrete
multilinear spherical maximal functions by introducing the circle method technique, allowing
us to consider functions on Z? and obtaining a wide range of estimates. Our range is not
sharp, but approaches sharp estimates as d — oo. We relate some necessary conditions of
multilinear spherical maximal functions in the opening section as well as sharpness examples
after the proof of the main theorem. An interesting open question is to fully determine the
sharp range for this operator, thus providing the discrete analogue to [13].

In our recent work [3], we have been able to show the sharp bound for the discrete bilinear
spherical maximial function for d > 5, with analogous results for multilinear and other
variants. We emphasize that those techniques are both different to the current approach
and do not permit us to currently say anything in dimensions 3 and 4, which this paper’s
approach can tackle.

We now define our bilinear discrete (or integral) spherical maximal function (we comment
on the multilinear version in the last section). The operators that we consider extend those
considered in [5], and our boundedness results complement these as well as the continuous
bounds found in [20], [8], [4], [9], [10], [13]. Note that our technique is different to the
approach used in [5], we directly import the continuous bounds as a key step. Many papers
have used this technique in the linear setting, such as [18], [15], [11], and [2].

The continuous spherical averages can be written as

Ta(f,g) (@) = f f(@ — wg(x — v)dox(u, v)

AS§2d-1

where u and v are vectors in R?, and do, is the continuous normalized spherical measure
on AS?~1. We can rewrite this as a convolution operator:

T\(f 9)(x) = ((f2® g) * doy)(z, ).



Then the maximal operator is
T*(f,9)(x) := sup [T\(f, g)(z)].

A>0
Abusing notation, the discrete version that we will consider is

S fle - wgle o)

u+v2=X

1
T(f,g)(x) = sup | ——

(F.9)(@) = sup
where u, v € Z% and N(\) = #{(u,v) € Z? x Z¢ : u* + v* = )} is the number of lattice
points on the sphere of radius A2 in R?*¢, which by the Hardy-Littlewood asymptotic is
approximately A?~! if the distribution is regular. Here u? is shorthand for u? + - - - +u2. This
operator can also be thought of as

T(f,9)(x) = Sup [(f®g) *or)(z, )|

where this time, o) (u,v) = ﬁX{uezdmezd:uQ +v2=y is the normalized arithmetic (probabil-
ity) surface measure. For N(\) to be regular, we need 2d > 4, or d = 3. We will assume
regularity throughout the paper.

We will prove the following:
Theorem 1. T* is bounded IP(Z%) x 1°(Z%) — IP(Z) for alld =3, p > ;4.

Remark 1. Sharpness examples provided at the end of the proof of Theorem 1 in section 6.1
show that for IP(Z%) x [*(Z%) — [P(Z%) bounds to hold when d > 3 we must have p > 1. As
d — oo our result approaches the sharp range.

Remark 2. By symmetry, we also get that T* is bounded [*(Z4) x IP(Z%) — P(Z%) for

all p > d;i? We can interpolate these bounds to get all points on the line including the

1?P(Z%) x 1?P(Z%) — 1P(Z*) bounds for all p > -%; these lines approach the line containing

the (2(Z4) x 1?(Z%) — 1*(Z?) bounds as d — o so we approach the full Banach range of
estimates as d — o00. By trivially estimating the operator in [*(Z%), we also have that T*
is bounded on [®(Z%) x I°(Z%) — 1*(Z%). Interpolating these three bounds and noting the
nesting properties of the discrete [P spaces, that is:

| flliaqzay < | fllizay for all 1 < p < g < 0,

leads to the Corollary below.

Corollary 1. T* is bounded IP(Z%) x 19(Z%) — I"(Z%) for all d = 3,
pq= 1

1—1)+%>%,7“>d%2 and

The key feature of this Corollary is the wide range of Holder estimates obtained, while the
broader estimates follow immediately from the nesting property of the discrete [P spaces. As
mentioned it would be interesting to see what the full range of bounds (and most importantly
the full Holder range) for this operator are.

The paper is organized as follows: we begin with some necessary conditions for bound-
edness in Section 2. In Section 3 we use the circle method to decompose our operator. We
handle the error from the minor arcs in Section 4, the rest of the error in Section 5, and the
main term from the decomposition in Section 6, where we prove Theorem 1. We comment

on multilinear extensions in the final section.
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2. NECESSARY CONDITIONS

We begin by relating some necessary bounds for the bilinear (and multilinear) operators
that we consider. Note that if we know that an operator T is bounded on P (Z%) x [%(Z%) —
["(Z%), then we automatically get all bounds [P(Z%) x 19(Z%) — I"(Z%) for all p < pg,q <
qo, ™ = 1o due to the nestedness properties of the discrete norms.

Lemma 1. If T*(fi,..., fn) is bounded on IP'(Z%) x --- x P»(Z%) — I"(Z?), then L <
R

Therefore for T* to be bounded on P(Z%) x 19(Z%) — I"(Z"), we need + < 217 + %. (So in the
bilinear case, the best [2(Z?) bounds we can expect are [?(Z%) x [?(Z%) — [*(Z%) bounds).
Proof. We focus on the bilinear setting — minor modifications yield the multilinear result. We

also focus on the case when 1 < p,q,r < 0c0. We use a scaling argument: Let f,g = x[o,1)e-
Then we have that

1T, 9)(?4)“17“(261) = ( Z (sup A Z X[o,L)d(y - U)X[O,L)d(y - 'U))T)l/r-
yeZd u2+v2=X

For each y, the inner expression will be nonzero only if u? + v? = XA and u; < y; < u; + L as
well as v; < 9; < v; + L for all 1 < i < d. Since L is fixed, when \ gets large, there are L?
such y that contribute to the sum, giving

(L (sup A {fuf? + [of? = AY))Yr < L9
A

since there are asymptotically A\Y~! such (u,v). On the other hand by an even simpler
calculation

| £l lgliazny = L/PLY4.
Hence to have LY" < L¥PL%7 we must have 1 < % + %, or more generally for the m-linear
variant, % < p%—l—--wi—ﬁ.

O

3. SET UP AND DECOMPOSITION

We now turn to the proof of Theorem 1. The first key point to note is that we can pull
out the function g in [ norm and reduce matters to considering IP(Z?) — ?(Z%) bounds for
an operator Tp, see for example Barrionuevo et al [4]; indeed we have

T (f,9)(@) < gl - T (1) (=) (3.1)
where
(H@) - 55 % fe-w (3.2)
and T
T3(5) = sup|To(1)] (3.3)
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Therefore we have that Ty(|f|) = (|f|® 1) = o, so

— A 1 -
LAME = (F@s) €m-oem =557 X H@ew¢)
u2+v2=X
where € € T? and e(x) = 2™,
So we can rewrite -
To(lf]) = |f|&/\,0
where .
oxo0(§) = NOY Z e(u-§). (3.4)

u?4v2=X
We will start by using the circle method to decompose the Fourier transform of the arith-
metic surface measure ) o(§). The circle method will lead us to the following decomposition:

To=M\+E\=M\+ (Ax— M)+ Ep:=T+I11+1II (3.5)

where the term I is the main term coming from the major arcs, term II is the major arc
approximation error term, and term III is the error term coming from the minor arcs (we
emphasize that Ty depends on A even though we suppress this notation). We will prove
IP(Z%) — IP(Z%) bounds for the maximal operators arising from each of these terms. The
process begins in a similar manner to [18] and [15].

Let A < A < 2A and call N = AY2. Applying the circle method to 6y, we get that

o€ = v D) elud) j e(O(u? + v* — X))o —

()\> 0<u;,v; <N

1 .
_A)J [T eoud+&u) ]_[ Z ~\0)db := J]_[SN (0 & Sn(0)e(=A0)do

T =1 w;<N

1
- 0T f F (9, €)P(6)e(—0)do.

We will decompose this Fourier transform as 0y = M A+ EA, where M y will come from

the major arcs and E\ will come from the minor arc piece as well as error from the major
arc approximation. Define the major arc centered at the rational a/q

1
—
8gN

U U My

1<g<N (a,9)=1,a<q

a/q. {96T |9——‘\

and the major arcs

and let m = T\M be the minor arcs.
On the major arcs, let 6 = ¢ ¢t 8 where 3| < g% and split w = ¢t + y,v = qv + z into

residue classes. Define a smooth compactly supported function ®(x) such that ®(x) = 1 for
|a:| < 1. Then on M,,, we have

f 22 2 2 el B gty e it y) - (B) (b)) BB

N
yeZd zeZd acZd veZd

)6(—A(5+5))d6'
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Let B(x) = e(fx?)®(%). We apply Poisson summation with respect to each ® separately
to get

1 —/\a y - mz B Sre
T L N el B 3 ¥ o™E [ ceaniie

yeZd lezd q zeZ¢ meZd | 8Nq

)B(—?

l
p )dg.

We define the Gauss sum G(I,a,q) = q_dzyezg e(%)e(%y) and the sum G(m,0,q) =

DI e(%). Note that the sum G(m,0,q), despite our notation, is not a Gauss sum
q

since there is no quadratic term. Due to the term B (—%) in the exponential integral, we

cannot use orthogonality of characters to simplify this piece; with this in mind, the above
equals

B e S 6l B Glmaoa) [ e-A)B(E -

lezd meZd

|B|<1/8¢qN

We follow the approach of [15] and insert smooth cutoff functions ¥y, ¥y (where ¥, (£) =1
for |€] < 1 and similarly for W,) to define the approximate multiplier

Bt =

O Y 6tan Y Gmo.guieg-hvt-m) [ d-AnBle-
N()\) q leza meZd
18|<1/8qN

(3.7)
Note that only the m = 0 term contributes to ¥5. One may wonder why W, was inserted,
since it always localizes to the zero frequency. The reason for inserting such a localization
is important for the main term analysis and we comment on this then. Any error that we
incur by inserting these functions will be handled easily in Section 5; moreover this approach
of using smooth weights (the functions Wy and W,) is often done in analytic number theory
(here we insert these weights on the Fourier side).

Now extend the integration to the whole real line to define the approximate multiplier:

ol 1 —Xa e byp_m
e )W (l,a,q)médG(m,O,q)\lfl(qﬁ—l)\lfz(—m)Le(—Aﬁ)B(ﬁ_g)B(_?)d5~
(3.8)

Now we can identify, as in [22] (note that we have replaced sharp cutoffs with smooth ones
via Uy and Wy) the exponential integral in § with

doy2((€©0) - (5 ® ;))

which is the continuous spherical surface measure on the sphere of radius A\? in R*?, so
Cf\l/ =M f\l/ 7. Note that this symbol enjoys the Fourier decay

do((€®@m)) < (1+]€ +n))"= . (3.9)

Note that the justification of this identification and the claimed decay above follows exactly

as in the proofs in [22] (see page 498 and related discussion, also see Section 3.1 in [11]).
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Summing over ¢, a, we have that

T I DI G(m,o,qm(qs—l)%(—m)%w<<g®0)_<§®%>>.

q=1aez¥ lezd meZd

4. MINOR ARCS

Here we show [P(Z%) — [P(Z%) bounds for the minor arc multiplier
~ 1
Epyx=—— | F(0,§)F(0)e(—N9)db.
©= 50 | .00

This approach follows [1] with minor changes. We sketch the details.
We proceed by showing an 12(Z?) — [?(Z%) bound for a dyadic version of the operator
E,, », with some power decay in [V, that is

| sup [Emalle@s-e@y S N7 (4.1)
AE[A,2A)

for some o > 0.
First, we adopt a proposition from [1]. Its proof is very similar, but we include a brief
sketch for completion.

Proposition 1. |supycison) [Emalli2@e—ie@ze) < ﬁ §,, SubDecra |[F(6,8)]|F(0)|d6

Proof. First note that

Ena(H)w)] < N%) | 1], Fo.0F@f€)e—u-aciar

and call h(0 = §pa F( ))f( e(—u - €)d€. Now we have
| s 1Ba(Dllees) < 571 || 11Owldblogas < 5755 [ (3 n0.w))d0
AE[A,2A)

ueZd

using Minkowski’s integral inequality. After an application of Bessel’s inequality the above

is bounded by

1 12
N(A) L(LJ”H?@F@)J‘(EN dg)"?dg

L “u FrEVI2 e\1/2
< S ) sl F@.OIF@)as(| 17©)Rde)

1 .
< F(0 F(0)|do
gl | swir@.olF0)
and after applying Plancherel we get

e s | sup [F(9.€)[F(0) .

1
N(A)



Next using the classic Weyl’s inequality (see [25]), we get sup, [Sn(0,§)] < N12+e so we
therefore have (for any ¢ > 0),

f sup | F (0, €)||F(0)]d0 < N*e = N2d-2-(d-2)+e
m &€eTd

which is (4.1) for § =d — 2 — ¢.
We also have that

H sup ‘Em,/\’||ll(Zd)~>l1(Zd) S Ng, (42)
AE[A,2A)

since

s (D)@l < 5757 ||| FO.OPO)f(€e(—u-delap

N?d )
5 uf @)l < Nl Sl

Hence we can interpolate the gain from (4.1) with (4.2) to get:

| sup !Em,xwzn(zd)alp(zd) S N
AE[A,2A)

where o, = 2(2/p —1) —0(2—-2/p). If p > ﬁg then we have that oy, < 0. We can take any
0 <9 <d-—2,so taking ¢ as close to d — 2 as we wish, we get this bound for p > d%'ll. Then

we sum up over dyadic ranges to get

Z | sup |Epallw (Z4)—1p (Z4)
IP(Z4)—1p(Z4) Nooi AE[A24)

< D N <22%J <C.

N=2i
which yields IP(Z?) — I?(Z%) bounds for E,, , for all p > %

sup |Em>\||
A

5. MAJOR ARC ERROR TERMS

Here we will show that the error incurred from using the operator M, (via By and C))
instead of A, is small, namely:

sup ’A,\ — M,\’
Ae[A/2,A)

<A (5.1)

1P (24) — 1P (Z)

for some «, > 0. This argument is standard, but for completeness we quickly sketch the
details. The estimate (5.1) is sufficient, since

<
P(ZH—IP(ZY)  Am2i

< Z 9= Wi <
J

8

sup |A,\ — MA|
Xe[A/2,A)

Slip |A>\ — MA\

I (24) 17 (Z4)



To show (5.1), we will show

S AP (5.2)
2(24)~12(2)

sup ’A,\ — M,\’
Xe[A/2,A)

which is Proposition 4 of [15]; see also [11], and interpolate this with the estimate

sup |A,\ — M,\{
AE[A/2,A)

<1 (5.3)

19 (2) 10 (2)

Given any € > 0, this will prove (5.1) for any ﬁ +¢e <p<2aslong as 8, > 0. To prove
(5.3), we simply combine the estimates

sup  |A,| <1
Ae[A/2,A) 1P (24)—1p(Z%)
and
sup | M,| sl
Ae[A/2,A) 1P(Z4)—IP(Z4)

The latter estimate is true for -4 < p < 2 due to Section 6, and the former is true by [14].

6. MAIN TERM

Here we estimate the [P — [? norm of the main term. Firstly, using the triangle inequality,

0

I'sup [My[[lp < N sup [M“l,

q=1aez}
where we recall the multiplier M®? defined in (3.8):
~a ~ I m
Mt =) Glla.g) Y, Gm,0,q) ¥ (g€ — DTs(-m)doya((€®0) — (- @ ).
lezd meZd 9 9

The multiplier M ¢ naturally splits up into the product of two multipliers as in [18]
S(&) =D, Y, Gl,a,q)G(m,0,q) V1 (g€ — 1)Us(—m)

€72 meZd
and l
$&) =Y S (g€ — W(—m)do s ((€®0) - <5®%>>
1eZ2 meZd

where W) is an appropriate cutoff function such that W)W, = U, and similarly for W}. At
this stage it is important to have the term W, present — without this localizing term (which
reduces the sum in m to a single term), we could not split the multiplier in this way, since
this splitting relies on the fact that for each &, there is only one I and one m that contribute

to the sum - see [15] for details.
Since My"? = S 0§ = S0 S5, It suffices to bound both S and sup, |S}] in P(Z9).
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To bound S’, we use the bounds for the continuous version of the bilinear spherical maximal
function from [13]. Note that due to the extra Fourier decay, we are able to get [P(Z¢) bounds
for all p > 1.

Proposition 2. | supy |S}||p@za)wp@ey < C foralld = 2,p > 1

Proof. Fist note that we have 54 (&) = Uy (€,0) where

nEn=3Y Y qu—z>%<qn—m>c’i&w<<s®n>—<§®%>>. (6.1)

1€Z4 meZd

This is now a symbol in T??. We can now apply Magyar-Stein-Wainger transference [18] to
U, followed by an application of the boundedness of the bilinear spherical maximal function
in [13] to get

H sup (U [l (z2ay < | sup | UM 2o g2ey < C,

where we have used the decay of our symbol in (3.9) to compare it to mollified bilinear
spherical averages in [13] via the method of Rubio de Francia [21].

Finally, we have that since S}(&) = Ux(€,0), then
I sup [S3(N)imcze) = [5up [UA(F, do)l [inczze
and since |dg|p(zey = 1,
I5up [UA(F, 0)llir(z2) < || sup [Uslir(z21)

which finishes the proof.
O

To bound the operator S notice that now ), ., G(m,0,q)¥s(—m) = G(0,0,q) = 1 so
that our multiplier now takes the form of those considered in [18]. We have:

Proposition 3. ||y zd)-wzd) < )
Proof. Using Proposition 2.2 of [18] with v = G(l, a, q) we have that

|5l @za)wp @y < (Slllp G(L,a,q)])> 7.

Recalling sup, |G(l, a,q)| < ¢~%?, we get the desired bound. O

Summing over q and a, we get

o0
Isup |l < 35 3 470740 <

'Q*

if and only if p > %. Therefore the arithmetic term provides the bottleneck for bound-

edness, with the restriction p > d 5, which matches the bounds in the linear setting. Note
that unlike the linear setting, we can take d > 3 instead of d > 5.
10



6.1. Proof of Theorem 1. We now complete the proof of Theorem 1. Combining the
restriction on p from the error estimates along with the sufficient conditions for the main
term, we see that the full operator T is bounded on IP(Z%) — [P(Z?) for all d > 3, p > 4.

Therefore T* is bounded on IP(Z%) x I*(Z%) — P(Z?) for all d = 3, p > J%.

By taking the example f = dy, g = 1, one can see that for A = |x|* that |T\(f, )| ) 2

p
p(zd
D ez (W)p , which converges if and only if p > Q(d;‘il), therefore for p > 1. Similarly,

one can take A = n|x|? for any natural number n, to reduce matters to estimating

1 —1 P
> (W#{v:w?: " A}) .

xeZd

The count in this sum is & |x|*~2 for d > 5 by the Hardy-Littlewood asymptotic, so we get

> (27"

xeZd
For d = 4, we use the fact that for (”T’l))\ =1 mod 8, we have the same asymptotic, and
for d = 3, use the fact that for infinitely many even A, we have that #{v : [v[* = Z=1\} is
nonzero. The most restrictive of these estimates yield p > 1. It would be interesting to see
if p > 1 is also the sharp range of boundedness.

7. MULTILINEAR RESULTS

We now mention the [-linear results that we obtain, which comes by interpolation with an
12(Z%) x -+ x [°(Z%) x IP(Z?) — IP(Z%) bound for T*(fy,..., f;). In this case, the symbol
we are analyzing is bounded by:

T*(fr, - f)(@) < | fillezay - 1 2l zey - T (1 fil ) (@) (7.1)
where we can rewrite

To(1£2]) = [filoxo,...0
(with [ — 1 zeros) with

o0l = gy D elw-€) (7.2)
u%—i—-n—&-uf:)\

The Magyar-Stein-Wainger principle applies; now the main term operator M 14 has one term
involving 1 and [ — 1 terms involving my, ... m;_; instead of simply m (and the spherical
measure involving the tensor product is adjusted accordingly). In particular, we use the
Magyar-Stein-Wainger transference principle applied to 5'1\(5) =U A(&,0,...,0) (I—1 zeros).

Our proofs carry through in this setting; we only indicate the necessary changes. Firstly,
the count N () is approximately A3l by the Hardy-Littlewood asymptotic as long as d >

4/1. Secondly, in the error term analysis, we get the dyadic 12(Z4) bound of N(d-2~(5-2-¢) _
NU=270 for § = 4 — 2 — ¢, Interpolating with the trivial I*(Z?) estimate of N?, we get I?
bounds for all p > %. For the main term (which still splits into the two operators S
and S%), we get the restriction p > min{p., ps} where p. is the infimum of p such that the
operator S} is bounded (which stems from continuous bounds for the multilinear spherical
maximal function), and py = ﬁ is still the infimum of all p such that S is bounded. So
we have that the [-linear variant is bounded on (®(Z9) x - - x [*(Z%) x [P(Z%) — ?(Z¢) for
11



all p > 4. Through interpolation this leads to bounds IP*(Z%) x ... x [P/(Z%) — I"(Z?) for

1
p—lJr...+

10.
11.

12.
13.
14.

15.
16.

17.
18.
19.
20.
21.
22.
23.

24.
25.

d—2

1< 1 d
p—l>;,r>mandp1,...,pl>1.
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