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ABSTRACT

Statistical methods are widely used to analyze the relationship between several independent variables (predictors) and a dependent variable.
As wind energy rapidly becomes an important source of renewable energy, it is prudent to deeply evaluate any potential existing
relationships among the data. This paper aims to apply the frequentist statistical approach, namely, non-Bayesian and the Bayesian approach,
to multiple linear regression to wind speed data to investigate the differences between the two methodologies. This study uses the NREL
wind speed data from fifteen different wind farms. In the proposed study, a correlation matrix was implemented to select the significantly
correlated variables among all and use it as the dependent variable. This method is followed by a Random Forest machine learning technique
for feature selection and considering the most important features that will be used for the Bayesian and non-Bayesian regression models. We
first run a multiple linear regression (non-Bayesian regression model) in which we apply the variance inflation factor to detect any multicolli-
nearity problem to get the fitted model. We then apply the Bayesian approach to the fitted model to analyze the relationship between the
dependent and independent variables. The results from both non-Bayesian and the Bayesian approaches show close coefficients and parame-
ters estimations. Moreover, using different wind speed data sample sizes of hourly, daily, and weekly data, we found that the daily data pro-
vide a strong coefficient estimator and the highest R-squared compared to the hourly and weekly data.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0056237

NOMENCLATURE

Abbreviations

ECDF empirical cumulative distribution function
K-S Kolmogorov–Smirnov

MCMC Monte Carlo Markov chain
NREL National Renewable Energy Laboratory

RF Random Forest
VIF variance inflator factor

Parameters

Dn K–S test statistics
EN ECDF function

F the theoretical cumulative distribution
fii importance of features
Ht represents Humboldt data at time tcHt the predicted value of Ht

L bo;bi;/ð Þ likelihood functions
P(A), P(B marginal probability

/ gamma prior

I. INTRODUCTION

Over the past 10 years, the wind has been used as a domestic
source of energy. Wind farms are very important as they provide wind
energy. Wind power shows a significant capacity growth of 15% in the
United States every year according to the Office of Energy Efficiency
and Renewable Energy. This fastest-growing energy source is
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explained by many factors, such as effective cost, jobs creations, com-
petitiveness among industries, and sustainability. Wind energy is gen-
erated via wind turbines and wind farms. The benefit of wind turbines
can be seen in the reduction of the amount of electricity generated
from fossil fuels, which in turn lowers air pollution and carbon dioxide
emissions. This significant increase in wind farm usage has captivated
research attention. Scientists and engineers analyze wind speed and
wind turbines to accurately measure the power output. In Ref. 1, the
impact of wind speed trends and 30-year variability about hydroelec-
tric reservoir inflows on wind power in the Pacific Northwest was ana-
lyzed. The authors used British Columbia and the Pacific Northwest as
a case study and found that clean energy and self-sufficiency policies
in British make the benefits of increased generation during low
streamflow periods particularly large. Other research emphasized by
scientists involve power forecasting,2 wind turbine detection,3,4 and
stochastic economic dispatch.5,6 In Ref. 7, to capture the uncertainty
effects in the technical decisions of optimal scheduling, a stochastic
approach based on unscented transform was developed to handle the
forecast error in electrical and thermal energy demands, market energy
prices related to the different energy layers, and the output power fore-
cast error in the renewable energy sources. The authors applied a novel
reinforcement learning-based approach to find a near-optimal solu-
tion and to facilitate the searching process with a trivial computational
burden. For the investigation of the optimal management of multi-
carrier water and energy system, Zot et al.8 used reinforcement learn-
ing and unscented transform. Their reinforcement learning-based
approach was devised for finding a near-optimal solution and facili-
tates the searching process with a trivial computational burden. Their
simulation results indicated that the proposed cooperation approach
minimized both the operation and the investment cost substantially
with an efficient computational burden based on the advanced features
coming out of the proposed reinforcement learning approach. Other
authors used a stochastic machine learning-based approach for
observability enhancement of automated smart grids.9 In their pro-
posed stochastic approach, the authors presented a strategy occurring
in several stages to micro-synchrophasor unit positioning based on the
load level and demand in the system and based on the predetermined
sectionalizing and tie switches. In Ref. 10, an effective stochastic frame-
work for smart coordinated operation of wind park and energy storage
unit has been analyzed. The authors proposed a stochastic transmis-
sion switching integrated interval robust chance-constrained approach
to assess the operation of a wind park-energy storage system in a day-
ahead electricity market considering the system’s technical constraints.

Analyzing wind speed data is quite challenging due to their
nature of uncertainty. Uncertainty regarding wind speed data has been
evaluated through probability distributions. The uncertainty of the
wind speed primarily views the distributions of the wind speed over a
wind farm as being homogeneous. However, the uncertainty about
these wind speed models has not yet been considered. In this study, we
propose a method of analysis, where we conduct the step-by-step
implementation of both Bayesian and non-Bayesian regression models
analysis applied on wind speed data.

Although many models have been applied to analyze the depen-
dencies between the wind speed, a holistic important aspect of evaluat-
ing the significant impact among wind speed data should be
addressed2–6 This regression method approach has not been consid-
ered yet. However, to attract more attention effectively on the

significant impact among the wind speed data, one can ask the follow-
ing question:

If a new development is designed to analyze independent varia-
bles, what can we expect in the dependent variable as a result? Such a
question requires a statistical concept of Bayesian and non-Bayesian
regression modeling. The Bayesian model is a statistical model based
on Bayes theorem. It is a model where probabilities are used to repre-
sent all uncertainty within the model, and both uncertainty regarding
the output (dependent variable) and the uncertainty of the input
(independent variables) to the model.11 On the other side, the non-
Bayesian regression model is a linear regression model that analyzes
the relationship between an output (dependent variable) and the input
variables (independent variables). The application of Bayesian meth-
ods in wind speed data is essential for improving the accuracy and reli-
ability of wind resource estimation and short-term forecasts. In the
case of the non-Bayesian model, it will help us determine the most
important explanatory variables and how they can be used for predict-
ing or forecasting the output.

The remainder of the paper is organized as follows: Sec. II provides
the proposed method and an overview of the theoretical and empirical
research on wind speed data. Section III gives the literature review of the
related existing studies. In Sec. IV, the data and methodology are cov-
ered. Section V presents how the experimental results of the statistics
and machine learning models are estimated from the data and the
results are interpreted. Section VI concludes the paper and future works.

II. THE PROPOSEDMETHOD

In this paper, the wind speed model analyses will be performed
in the following steps:

• Determine the most correlated variable from all wind speed data
variables (15) using the correlation matrix and rank from the
most to the lowest correlated variables

• Use the top-ranked correlated variable as the dependent variable
• Apply the random forest method on the rest of the variables to
select the features (explanatory variables) and use the first
selected feature as the most important independent variable.

• Apply the variance inflation factor (VIF) on the regression for
multicollinearity and select the fitted model

• Run the non-Bayesian and Bayesian and approaches using the
fitted model to predict and compare the results.

To better analyze the uncertainty about the wind speed data and
provide a better predictive model, we split the data into three different
categories of the dataset, namely, large, medium, and small. This paper
uses 15 wind speed data variables from different sites across the US from
the National Renewable Energy Laboratory (NREL) website.12 The varia-
bles are in hourly data (large dataset, 8760 observations), daily (medium
dataset, 365 observations), and weekly (small dataset, 53 observations).

III. LITERATURE REVIEW

Analyzing the relationship between several independent variables
(predictors) and a dependent variable is widely used by the research-
ers, scholars, and decision-makers to predict or forecast future events.
Multiple regression is designed to investigate the relative influences of
the independent variables on dependent variables. To implement this
technique, one need is to define a hypothesis test. This type of analysis
is classified as frequentist statistics and is considered a non-Bayesian
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approach. Unlike the non-Bayesian approach, the Bayesian approach
uses probabilities and prior distributions, likelihood, and predictive
posteriors. In the Bayesian approach, data are observed and prior
believes are updated to form a posterior distribution. This approach is
based on Bayes theorem, which is used to calculate the conditional
probabilities. The Bayes theorem is mathematically described as the
follows:19

P AjBð Þ ¼ P BjAð ÞP Að Þ
P Bð Þ ; (1)

where A and B are events, and P(B) is not equal to zero. P(BjA) is the
conditional probability where the likelihood of event A is occurring
given that B is true. P(BjA) is also a conditional probability where the
likelihood of event B is occurring given that A is true. Finally, P(A) and
P(B) are the probabilities of observing A and B, respectively, and are
also known as the marginal probabilities. A and Bmust be different.

The difference between the two methods is that the non-Bayesian
or frequentist statistic does not explicitly involve a prior while the
Bayesian does. Several research studies have used the two methods for
different purposes. In Ref. 13, the authors used the Bayesian learning
model approach to model the energy performance of residential build-
ings. The authors compared the Bayesian approach and the ordinary
least squared (OLS) method which is also considered as a frequentist
statistic and found that the Bayesian method outperformed the OLS
based on certain criteria, including root mean square error (RMSE),
mean-absolute-percentage error (MAPE), and median absolute devia-
tion (MAD). Many statisticians in the past found that the Bayesian
technique was not a satisfactory method to use because the choice of
prior distribution was unfounded and varied among statisticians.
Today, the advancement of computers allows for the implementation
of the Bayesian model approach. Bayesian modeling is widely used as
it allows for the interpretation of probability as a measure of the degree
of belief concerning actual data observed.14 To analyze the change
point models in hydrometeorological variables, researchers in Ref. 11
applied Bayesian multivariable linear regression to allow simultaneous
single change point detection in a multivariate sample and accounted
for missing data in the response variables and/or in the explicative var-
iables. Moreover, wind speed data forecasting can serve a wide spec-
trum of purposes, including scheduling of a power system and
dynamic control of structures. In Ref. 15, the probabilistic forecast of
wind speed based on a Bayesian emulator using monitoring data has
been analyzed. As the result of their studies, they found that the
Bayesian emulator approach not only maintained the data-driven
property which guarantees its high flexibility in modeling the com-
plexity of the target system but also allows for efficiency. Probabilistic
evaluation of the wind speed in terms of the predictive mean and vari-
ance. In this research, we have emphasized using frequentist statistics
(linear regression) and the Bayesian method to study the wind speed
data and the uncertainties associated with the developed models.

IV. METHODOLOGY AND DATA

This paper uses 15 wind speed data from different sites across the
US. As stated, the variables are hourly (8760), daily (365), and weekly
(52) formats. Daily and weekly data are obtained from the hourly data
by taking the average over the days and weeks. The descriptive statis-
tics of the hourly data are shown in Table I.

A. Correlation matrix and features selections

1. Correlation matrix

To begin our analysis, we have preprocessed all 15 variables by
using the correlation matrix. The matrix is used in this study to select
the correlation coefficients among these 15 sets of variables. The corre-
lation measures the degree of associated linearity between two contin-
uous variables. A positive correlation shows that if the value of a
continuous variable increases the value of the other continuous vari-
able increases, too. In contrast, a negative correlation indicates that as
the value of one of the continuous variables increases, the value of the
other continuous variable decreases. The standard method of correla-
tion (Pearson) is used to evaluate the correlation. The Pearson’s for-
mula is described as follows:

r ¼

Xn
i¼1

xi � xð Þ yi � yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi � xð Þ2
Xn
i¼1

yi � yð Þ2
s ; (2)

where r is the Pearson’s correlation coefficient that can only take values
between�1 and 1, while x and y represent the two continuous variables.

We imposed a cutoff of 0.5 in our correlation matrix to obtain
the rank of correlation among the data. The goal of this method is to
determine which variable could be considered as the dependent vari-
able for the regression model. From the correlation matrix method,
9 out of the 15 variables were ranked with a correlation value of at least
0.5. Figure 1 shows the alignment of the data based on their associativ-
ity linear relationship with the other data. The Humboldt wind site is
the first variable that we used as the dependent variable.

After the correlation matrix was applied and the highest depen-
dent (Humboldt) variable was determined, we continued our data pre-
processing by using the Random Forest machine learning technique to
select the features based on their important effect on the selected
dependent variable.

2. Features selections

Feature selection, or importance, is a statistical technique that is cal-
culated as the decrease in node impurity weighted by the probability of
reaching that node. The node probability is then calculated by the num-
ber of samples that reach the node and then divided by the total number
of samples. The higher the value, the more important the feature.16

The RF technique was used for the feature selection process. RF
is an ensemble technique that constructs many individual decision
trees as training. The final predictions are obtained from all trees, and
then, the mode of the classes for classification or the mean prediction
regression is acquired.17 For each decision tree, we first assume only
two binary trees:17

nij ¼ wjIj � wleft jð ÞIleft jð Þ � wright jð ÞIright jð Þ; (3)

where nij represents the importance of node j, wj is the weighted num-
ber of samples that reach node j, Ij is the impurity value of the node j,
left(j) represents the child node from the left split on node j, and finally
right(j) represents the child node from right split on node j.

We then calculate the importance of each feature on the decision
tree using the following:17
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fii ¼

X
j:node j splits on feature i

nijX
k2all nodes

nik
; (4)

where fii is described as the importance of features.
To normalize the value between 0 and 1, we divide the sum of all

feature importance values from the following:17

normfii ¼
fiiX

j2 all features

fij
: (5)

Finally, at the RF level, the feature importance is determined by the
average of overall trees. The sum of the feature’s importance value of
each tree is calculated then divided by the total number of trees applied
by this formula,17

RFfii ¼

X
j2all trees

normfiij

T
; (6)

where RFfii is the importance of feature i calculated from all trees in
the RF model and T the total number of trees.

TABLE I. Descriptive statistics of hourly wind speed data.

Summary Bear Creek Frey Farm Criterion Wind Park Ned Power Humboldt

Count 8760 8760 8760 8760 8760
Mean 7.66 5.73 8.23 7.66 7.66
Std 3.64 3.32 4.42 3.94 3.58
Min 0.21 0.04 0.15 0.15 0.12
25% 5.03 3.19 4.85 4.76 5.04
50% 7.27 5.35 7.6 7.15 7.36
75% 9.86 7.95 10.98 10.09 9.89
Max 28.51 22.17 26.02 23.28 26.66

Summary Locust Ridge Roth Rock Talbot Mountaineer Buffalo Mountain

Count 8760 8760 8760 8760 8760
Mean 5.41 7.05 6.63 8.75 7.55
Std 3.36 3.81 3.25 5.42 4.02
Min 0.05 0.1 0.1 0.16 0.16
25% 3.03 4.19 4.19 4.5 4.47
50% 4.85 6.58 6.4 7.68 7
75% 7.15 9.41 8.81 11.86 10.06
Max 26.23 22.3 23.95 29.1 24.99
Summary Bit Works Mt Peak Utility Anacacho Dry Lake Kingman

Count 8760 8760 8760 8760 8760
Mean 7.04 7.73 7.37 6 7.16
Std 3.48 3.48 3.18 3.43 3.7
Min 0.08 0.1 0.06 0.09 0.06
25% 4.46 4.98 4.97 3.31 4.36
50% 6.92 7.85 7.32 5.52 6.89
75% 9.43 10.36 9.71 8.23 9.61
Max 20.66 19.15 21.61 25.12 21.19

FIG. 1. Correlation matrix of wind speed data.
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The features based on their importance regarding the dependent
variables are shown in Fig. 2. From the highest ranked to the lowest-
ranked, we have Bear Creek, Frey Farm, Locust Ridge, Ned Power,
Criterion Wind Park, Mountaineer, Roth Rock, and Mt Peak Utility
sites.

Data preprocessing is now completed, and we selected Humboldt
as the independent variable and Bear Creek as the most important
explanatory variable among the nine variables obtained after applying
the correlation matrix. Hence, the study was conducted on the non-
Bayesian and Bayesian regression models based on the selected data.

B. Non-Bayesian regression models

The present study applies the non-Bayesian model, which is
described as a linear regression model. In the model, we use the
explanatory variables (Bear Creek, Frey Farm, Locust Ridge, Ned
Power, Criterion Wind Park, Mountaineer, Roth Rock, and Mt Peak
Utility) to predict the outcome of the response variable (Humboldt).
The linear regression model is specified as

Ht ¼ aþ b1BCt þ b2FFt þ b3LRt þ b4NPt þ b5CWPt

þ b6Mt þ b7RRt þ b8MPUt þ et ; (7)

where at the time t, Ht is Humboldt, BCt is Bear Creek, FFt is Frey
Farm, LRt is Locust Ridge, NPt is Ned Power, CWPt is Criterion,
Mt is Mountaineer t, RRt is Roth Rock, and MPUt is Mt Peak
Utility. The et is the error term, a is the intercept, and b1; b2; b3;
b4; b5; b6; b7, and b8 are the respective coefficients of the predic-
tive variables.

To determine the fitted model, we applied the variance inflation
factor (VIF) on the different linear regression models to measure the
amount of multicollinearity. Mathematically, the VIF is the ratio of the
overall model variance to the variance of a model that includes only
that single independent variable. The ratio is calculated for each inde-
pendent variable. The high VIF indicates that the associated indepen-
dent variable is highly correlated with the other variables in the model.

After the imposition of the VIF to the different models, we finally
came up with a fitted model that only includes Bear Creek and Mt
Peak Utility as the selected explanatory variables, and then we applied
the Bayesian approach.

C. Bayesian regression models

This research also applies the Bayesian multiple linear regression.
The model assumes that a specific observation has a mean ut for the
ith response variableHt specified as

18

Hijui; r � ind Normalðui;rÞ; i ¼ 1;…; n; (8)

where i ¼1, …, n, where n¼ 8760 is the number of wind speed
observations. This equation shows that each response of the depen-
dent variable independently (indÞ follows the normal density func-
tion. The standard deviation r is also distributed among all
responses.

The Bayesian multiple regression models is expressed as

li ¼ aþ b1BCi þ b8MPUi: (9)

The slope parameters b can be interpreted as the change in the
expected response ui when one predictor increases by one unit if the
other predictors stay constant.

To implement the Bayesian model, we assign a prior distribution
that can have an impact on the posterior distribution. If we assume or
believe that the coefficients a and the bs are independent of r, then the
joint prior density for the coefficients, including the parameter r, will
be written as18

pða; b1; b8; rÞ ¼ p a; b1; b8ð Þp rð Þ: (10)

It is essential to use normal priors by assuming that

a � Normal l0; s0ð Þ; b1 � Normal l1; s1ð Þ;

b8 � Normal l8; s8ð Þ;
(11)

where sj is the standard deviation in the normal prior and shows how
we can believe in a prior of bj. For the prior on sampling the standard
deviation r, we assume Eq. (7), and r represents the variability of
Humboldt wind speed data about the regression line. A Gamma prior
for the precision parameter with small values of the shape and rate
parameters are written as18

/ ¼ 1
r2

� Gamma 1; 1ð Þ: (12)

In our sampling model, H1, …, Hn are assumed to be independent
with Eq. (7). Suppose that we have a sampling model in which Y , …,
Yn are independent with Yi � Normalðui; rÞwith ui ¼ bo þ bixi
with bo; bi; r representing the parameters. If we assume that
ðx1; y1Þ;…; ðxn; ynÞ are observed, the likelihood in the cases will be
the joint density of the observations described as a function of
(bo; b1; r). The likelihood function is specified as20

Lðbo;bi;/Þ ¼
Yn
i¼1

ffiffiffiffi
/

pffiffiffiffiffi
2p

p exp �/
2

yi � bo � bixið Þ2
� �" #

/ /
n
2exp �/

2

Xn
i¼1

yi � bo � bixið Þ2
( )

(13)

The posterior is determined by the multiplication of the prior
and the likelihood. The posterior density expression is written
as20

FIG. 2. Feature’s selections of wind speed data.
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p b0;bi;/jy1;…; ynð Þ / /
n
2exp �/

2

Xn
i¼1

yi � bo � bixið Þ2
( )

�exp � 1
2s20

bo � l0ð Þ2
� �

� exp � 1
2s2i

bi � lið Þ2
� �

�/a�1exp �b/ð Þ:

(14)

To obtain valid inferences from the posterior, convergence of the
Monte Carlo Markov Chain (MCMC) should be assessed. MCMC
methods are used to approximate the posterior distribution of a
parameter of interest by random sampling in a probabilistic space.20

D. Kolmogorov–Smirnov goodness of fit test

In this study, the Kolmogorov–Smirnov (K–S) test was applied
for hypothesis testing. It is based on the empirical distribution function
(ECDF). Given N-ordered data points Y1;Y2;…;YN , the ECDF is
defined as21

EN ¼ n ið Þ=N; (15)

where n ið Þ is the number of points less than Yi and the Yi are ordered
from smallest to largest value.

This step-function increases by 1/N at the value of each ordered
data point. The K–S test quantifies a distance between the cumulative
distribution function of the given reference distribution and the empirical
distribution of the given two samples. The K–S Test is only applied to
continuous distribution. The test is defined by the following hypothesis:

H0: The data follow a specified distribution
Ha: The data do not follow the specified distribution

The K-S Test statistics is defined as21

TABLE II. Multiple regression results. Bold values mean that variables are significant or impacted the dependent variable since their P-Value is less than 0.05.

Humboldt Humboldt Humboldt

Predictors Estimates CI p Estimates CI p Estimates CI p

(Intercept) 0.05 �0.04–0.15 0.284 0.44 0.34–0.54 <0.001 0.67 0.56–0.78 <0.001
Ned Power 0.04 0.02–0.06 0.001
Criterion WP 0.07 0.05–0.09 <0.001
Roth Rock 0.03 0.01–0.06 0.004
Mountaineer 0.01 �0.00–0.02 0.051
Frey Farm 0.20 0.18–0.21 <0.001 0.29 0.27–0.30 <0.001
Locust Ridge 0.08 0.06–0.09 <0.001 0.06 0.04–0.07 <0.001
Bear Creek 0.59 0.58–0.61 <0.001 0.64 0.62–0.65 <0.001 0.87 0.86–0.87 <0.001
Mt Peak Utility 0.04 0.03–0.04 <0.001 0.05 0.04–0.06 <0.001 0.05 0.04–0.06 <0.001
Observations 8760 8760 8760
R2/R2 adjusted 0.838/0.838 0.819/0.819 0.780/0.780

TABLE III. Variance inflation factor.

Dependent variable: Humboldt

Independent Variables VIF 1 VIF 2 VIF 3

Ned Power 9.24
Criterion WP 6.70
Roth Rock 8.85
Mountaineer 2.79
Frey Farm 2.69 2.32
Locust Ridge 2.66 2.59
Bear Creek 2.99 2.88 1.00
Mt Peak Utility 1.04 1.03 1.00

TABLE IV. Multiple linear regression results from a different sample size. Bold values mean that variables are significant or impacted the independent variables. When P-value
is less than 0.05, we reject the null Hypothesis.

Humboldt Humboldt Humboldt

Predictors Estimates CI p Estimates CI p Estimates CI p

(Intercept) 0.67 0.56–0.78 <0.001 �0.03 �0.39–0.33 0.851 �0.12 �1.30–1.07 0.843
Bear Creek 0.87 0.86–0.87 <0.001 0.95 0.92–0.98 <0.001 0.95 0.83–1.06 <0.001
Mt Peak Utility 0.05 0.04–0.06 <0.001 0.05 0.02–0.09 0.002 0.08 �0.07–0.22 0.297
Observations 8760 365 53
R2/R2 adjusted 0.780/0.780 0.912/0.911 0.869/0.863
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Dn ¼ max1�i�N F Yi �
i� 1
N

;
i
N
� F Yið Þ

� �
;

�
(16)

where F is the continuous theoretical cumulative distribution being
tested.

Another measurement of the test is the P-value. The hypothesis
of the distributional form is rejected if the D value is greater than the
P-value. Another explanation of the K–S test is its P. value. If its P-
value is less than the significant level (0.05), we reject the null hypothe-
sis that the two samples were drawn from the same distribution.

V. RESULTS
A. Multiple linear regression model results

In this study, the first inferential analysis implemented using
the wind speed data is the multiple linear regression (non-
Bayesian). Equation (7) is used to evaluate the impact of the predic-
tors on the dependent variable. All eight predictors are first incor-
porated into the model. After getting the first results from the
model (Table II), VIF was applied for the multi-collinearity effect
among the predictors.

FIG. 3. Posterior prediction results.
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Table III depicts that three of the variables (Ned Power, Roth
Rock, and Criterion Wind Park) have their VIFs respective values of
9.24, 8.85, and 6.70, which are large. For example, the VIF of Ned
Power is very high and is highly correlated with at least one of the
other predictors. The same interpretation is also applied to Roth Rock
and Criterion Wind Park. Mountaineer is not significant to the model
after running Eq. (7). After removing the variables with a high vari-
ance inflator factor, we run a second model that only includes Frey
Farm, Locust Ridge, Beak Creek, and Mt Peak Utility. As a result, all
predictors have shown a significant impact on Humboldt, but the
problem of multicollinearity among the predictors was still present.
VIF was once again applied to the model and we found that Frey
Farm, Locust Ridge, and Bear Creek have a respective value of 2.32,
2.66, and 2.99, but as stated earlier, Bear Creek was kept in the model
because it is our variable of interest based on its important impact on
the dependent variable.

Finally, the obtained fitted model that is used for the rest of the
study is expressed as

Ht ¼ aþ b1BCt þ b2MPUt þ etcHt ¼ 0:67þ 0:87BCt þ 0:05WPUt :
(17)

cHt is defined as the predicted value of Ht (Humboldt) in regression
Eq. (17).

In this model, the remaining VIF is very satisfactory. Both Bear
Creek and Mt Peak Utility, respectively, have 1.00 and 1.00, which
means there is no multi-correlation. From the result, both predictors
are statistically significant because of their respective P-values which
are less than 0.05.

From the fitted model, we see that a one-unit shift in Bear Creek
increases Humboldt by 0.87 on average while holding Mt Peak Utility
as a constant. Same for Mt Peak Utility which increases Humboldt on
average by 0.05 while Bear Creek remains constant.

This study also considered the sensitivity analysis to measure the
uncertainties associated with the wind speed data sample sizes (hourly
with 8760 observations, daily with 365 observations, and weekly data

with 53 observations). We then run the multiple linear regression
using Eq. (17). As shown in Table IV, Bear Creek’s coefficient is posi-
tive and statistically significant in all regression results and pretty high
in the daily and weekly data sample sizes with a value of 0.95 in both.
Mt Peak Utility, instead, is positive and statistically significant in only
two regression results, respectively, for the hourly and daily datasets.
Additionally, the R2 value (0.91) from the daily data is pretty high
compared to that of hourly data (0.78) and weekly data (0.86).

This value of %91 indicates that the model explains all the vari-
ability of the response data around its mean when using the daily data.
Figure 3 shows less uncertainty on the daily data.

1. Bayesian and MCMC regression results

The second inferential model that we have explored in our study
is the Bayesian multiple regression model. As a part of the Bayesian
inference process, priors must be defined for the regression
coefficients.

From Table V, the regression parameters are alike to the ones we
obtained from our non-Bayesian model where priors were not con-
structed. The marginal posterior probability for Bear Creek and Mt
Peak is around 0.87 and 0.05, respectively.

Three priors were used for all three datasets: an uninformative
gamma prior, a uniform prior, and an informative normal prior. This
was done to examine the effect of priors and observation sizes on the esti-
mation of regression coefficients. It is expected that the estimated regres-
sion coefficients would deviate from the non-Bayesian estimates using
the gamma prior. Moreover, the weekly dataset with the least number of
observations is expected to showmore uncertainty in estimation.

As shown in Fig. 4, the choice of prior has more effect on the
smaller dataset than the larger ones in coefficient estimation. When
there are many observations, the priors do not have a significant effect
on the estimation of regression coefficients. Regardless of the prior, the
estimated regression parameters stay within a certain range of values
close to the non-Bayesian coefficients.

TABLE V. Bayesian regression model.

Bayesian regression model

Deviation Residuals:
Min 1Q Median 3Q Max
�11.149 �1.0214 �0.1376 0.9528 13.1351
Coefficients:

Estimate Std. error t value Pr(>jtj)
(Intercept) 0.671 201 0.056 393 11.902 <2 � 10�16���

Bear Creek 0.865 158 0.004 938 175.194 <2 � 10�16���

Mt Peak Utility 0.045 658 0.005 166 8.838 <2 � 10�16���

Signif. codes 0 “���” 0.001 “��” 0.01“�” 0.05 “.” 0.1 “ ” 1
(Dispersion parameter for Gaussian family taken to be 2.826 083)

Null deviance: 112 482 on 8759 degrees of freedom
Residual deviance: 24 748 on 8757 degrees of freedom
AIC: 33 965
Number of Fisher scoring iterations: 4
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FIG. 4. Priors’ effects on different wind speed data size.
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TABLE VI. MCMC regression model results.

MCMC regression model

Iterations¼ 1001:2000
Thinking interval¼ 1
Number of chains¼ 1
Sample size per chain¼ 1000
1. Empirical mean and standard deviation for each variable plus standard error of the mean:

Mean SD Naive SE Time - series SE
(Intercept) 0.6754 0.055 516 0.00 017 556 0.0 015 056
Bear Creek 0.8649 0.004 737 0.0001498 0.0 001 498
Mt Peak Utility 0.0455 0.005 229 0.0 001 653 0.0 001 511
Sigma2 2.8262 0.043 548 0.0 013 771 0.0 013 771
2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
(Intercept) 0.56 712 0.63 751 0.67 503 0.7134 0.78 038
Bear Creek 0.85 498 0.86 171 0.86 494 0.8681 0.87 383
Mt Peak Utility 0.03 538 0.04 199 0.04 562 0.049 0.05 596
Sigma2 2.73 911 2.79 707 2.82 646 2.8573 2.91 005

FIG. 5. Trace plot of the posterior distribution.
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Our Bayesian model is followed by a diagnostic Monte Carlo
Markov Chain (MCMC) simulation. From the MCMC, we obtained
valid inferences from the posterior. We used the default interactions of
2000. When expecting the location of the 90% probability interval, the
interval for the estimated parameter corresponding to Bear Creek is
(0.8549, 0.87383) and the corresponding estimate for Mt Peak Utility
is (0.035, 0.055). Table VI indicates that both Bear Creek and Mt
Utility Peak help to predict Humboldt. The diagnostic results obtained
from the density plot providing the view of the posterior distribution
of the parameters are well seen in Fig. 5. For example, the mean of the
posterior distribution of Bear Creek lies between 0.86 and 0.87.

2. Kolmogorov–Smirnov results

We used the Kolmogorov–Smirnov test in this research to see if
the two groups of selected wind speed data variables, such as
Humboldt vs Bear Creek, and Mt peak Utility vs Bear Creek, were

sampled from populations with different distributions. This test is
designed to evaluate if there is a difference in median, variability, or
the shape of the distribution.

From Table VII, the P-values resulted from the respective
Humboldt and Bear Creek distribution are greater than the significant
value (0.05), which means that the population may not differ in the
median, variability, or the shape of their distribution. The case is not
seen with Humboldt and Mt Peak Utility where the P-values are lower
than the significant P-value (0.05).

We graphically used the empirical cumulative distribution func-
tions (ECDF) (see Fig. 6) to analyze the distribution of the data. This
further validates our interpretation of the distribution of Humboldt
and Bear Creek. The distributions are the same and the distance from
the two distributions is not visible between Humboldt and Bear Creek.

VI. CONCLUSION

Statistical methods are widely used to analyze the relationship
between several independent variables (predictors) and a dependent
variable. As wind energy rapidly becomes an important source of
renewable energy, it is very important to deeply evaluate any potential
existing relationships among the data. This paper aimed to apply the
non-Bayesian and the Bayesian approaches to multiple linear regres-
sions for wind speed data and investigated the differences between the
two statistical methods. The NREL wind speed data were used for fif-
teen different wind farms. In the proposed study, a correlation matrix
was implemented to select the most correlated variables and determine
the highest correlated variable among them, and used it as the

TABLE VII. K–S Test results.

K–S test results

Wind speed data D P-Value

Humboldt/Bear Creek 0.0141 0.344
Humboldt/Mt Peak Utility 0.0699 < 2.2 � 10�16

FIG. 6. Empirical cumulative distribution
function graph.

Journal of Renewable
and Sustainable Energy ARTICLE scitation.org/journal/rse

J. Renewable Sustainable Energy 13, 053303 (2021); doi: 10.1063/5.0056237 13, 053303-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/rse


dependent variable. This method was followed by a RF machine learn-
ing technique for the feature selection and considering the most
important features that would be used for the non-Bayesian and
Bayesian regression models. We first ran a multiple linear regression
on the non-Bayesian regression model in which we applied the VIF to
detect the multicollinearity problem to get the fitted model. We then
applied the Bayesian approach to the fitted model to analyze the rela-
tionship between the dependent and independent variables. Even
though several studies based on the Bayesian development models
have shown better results than the non-Bayesian methods, our study
showed both the non-Bayesian and the Bayesian approaches are very
much alike in the coefficients/parameters estimations. Moreover, we
analyzed data with different sample sizes (hourly, daily, and weekly),
and the daily data provided a strong coefficient estimator and highest
R-squared compared to the hourly and weekly datasets.

Regardless of the prior, the estimated regression parameters
stayed within a certain range close to the non-Bayesian coefficients. In
the future, we will implement vine copula approaches, such as R, C,
and D-vines, to analyze the high-dimensional dependency modeling
in wind speed data. We will also investigate the vine copula model
uncertainties using the Bayesian vine copula approaches. Eventually,
the proposed non-Bayesian and Bayesian models will be examined on
the famous power systems’ problems, such as DC and AC optimal
power flow, stochastic unit commitment, stochastic economic dis-
patch, and power systems’ resiliency.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation
under Grant No. 1900462.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1B. D. Cross, K. E. Kohfeld, J. Bailey, and A. B. Cooper, “The impact of wind
speed trends and 30-year variability in relation to hydroelectric reservoir
inflows on wind power in the Pacific Northwest,” PloS One 10(8), e0135730
(2015).
2Z. Wang, W. Wang, C. Liu, Z. Wang, and Y. Hou, “Probabilistic forecast for
multiple wind farms based on regular vine copulas,” IEEE Trans. Power Syst.
33(1), 578–589 (2017).

3S. Gill, B. Stephen, and S. Galloway, “Wind turbine condition assessment
through power curve copula modeling,” IEEE Trans. Sustainable Energy 3(1),
94–101 (2011).

4Q. Xu, Z. Fan, W. Jia, and C. Jiang, “Fault detection of wind turbines via multi-
variate process monitoring based on vine copulas,” Renewable Energy 161,
939–955 (2020).

5W. Zhaol, Y. Fu, Z. Zheng, B. Chen, Q. Liao, W. Xie, and B. Yang, “Correlation
analysis of wind power based on mixed copula model and its application into
stochastic dispatch,” in International Conference on Power System Technology
(POWERCON) (IEEE, 2018), pp. 1062–1069.

6M. S. Li, Z. J. Lin, T. Y. Ji, and Q. H. Wu, “Dispatch considering dependence of
multiple wind farms using paircopula,” Appl. Energy 226, 967–978 (2018).

7M. A. Mohamed, A. Hajjiah, K. A. Alnowibet, A. F. Alrasheedi, E. M. Awwad,
and S. M. Muyeen, “A secured advanced management architecture in peer-to-
peer energy trading for multi-microgrid in the stochastic environment,” IEEE
Access 9, 92083–92100 (2021).

8H. Zou, J. Tao, S. K. Elsayed, E. E. Elattar, A. Almalaq, and M. A. Mohamed,
“Stochastic multi-carrier energy management in the smart islands using rein-
forcement learning and unscented transform,” Int. J. Electr. Power Energy
Syst. 130, 106988 (2021).

9L. Min, K. A. Alnowibet, A. F. Alrasheedi, F. Moazzen, E. M. Awwad, and M.
A. Mohamed, “A stochastic machine learning based approach for observability
enhancement of automated smart grids,” Sustainable Cities Soc. 72, 103071
(2021).

10M. A. Mohamed, T. Jin, and W. Su, “An effective stochastic framework for
smart coordinated operation of wind park and energy storage unit,” Appl.
Energy 272, 115228 (2020).

11O. Seidou, J. J. Asselin, and T. B. M. J. Ouarda, “Bayesian multivariate linear
regression with application to changepoint models in hydrometeorological vari-
ables,” Water Resour. Res 43, W08401 (2007).

12See https://data.nrel.gov/submissions for “data used in the paper.”
13D. Syarifah and T. Heruna, “Linear regression model using Bayesian approach
for energy performance of residential building,” Elsevier Procedia Comput. Sci.
135, 671–677 (2018).

14D. Birkes and Y. Dogde, Alternative Methods of Regression (John Wiley and
Sons, Inc, 1993).

15X.-W. Ye, Y. Ding, and H.-P. Wan, “Probabilistic forecast of wind speed based
on Bayesian emulator using monitoring data,” Struct Control Health Monit. 28,
2650 (2021).

16T. K. Ho. “Random decision forests (PDF),” in Proceedings of the 3rd
International Conference on Document Analysis and Recognition, Montreal,
Quebec (Tin Kam Ho, 1995) pp. 14–16.

17R. Stacey, see https://towardsdatascience.com/the-mathematics-of-decision-trees-
random-forest-and-feature-importance-in-scikit-learn-and-spark-f2861df67e3 for
“The Mathematics of Decision Trees, Random Forest and Feature Importance in
Scikit-Learn and Spark, Toward Data Science” (last accessed May 11, 2018).

18J. Albert and J. Hu, Probability and Bayesian Modeling (Chapman and Hall/
CRC, 2019), Chap. 12–12.2.

19I. M. Chakravarti, R. G. Laha, and J. Roy, Handbook of Methods of Applied
Statistics (John Wiley and Sons, 1967), Vol. 1, pp.392–394.

20J. Albert and J. Hu, Probability and Bayesian Modeling (Chapman and Hall/CRC,
2019), Chap. 10–10.2.3.

21NIST SEMATECH, see http://www.itl.nist.gov/div898/handbook, for
“e-Handbook of Statistical Methods.”

Journal of Renewable
and Sustainable Energy ARTICLE scitation.org/journal/rse

J. Renewable Sustainable Energy 13, 053303 (2021); doi: 10.1063/5.0056237 13, 053303-12

Published under an exclusive license by AIP Publishing

https://doi.org/10.1371/journal.pone.0135730
https://doi.org/10.1109/TPWRS.2017.2690297
https://doi.org/10.1109/TSTE.2011.2167164
https://doi.org/10.1016/j.renene.2020.06.091
https://doi.org/10.1016/j.apenergy.2018.05.128
https://doi.org/10.1109/ACCESS.2021.3092834
https://doi.org/10.1109/ACCESS.2021.3092834
https://doi.org/10.1016/j.ijepes.2021.106988
https://doi.org/10.1016/j.ijepes.2021.106988
https://doi.org/10.1016/j.scs.2021.103071
https://doi.org/10.1016/j.apenergy.2020.115228
https://doi.org/10.1016/j.apenergy.2020.115228
https://doi.org/10.1029/2005WR004835
https://data.nrel.gov/submissions
https://doi.org/10.1016/j.procs.2018.08.219
https://doi.org/10.1002/stc.2650
https://towardsdatascience.com/the-mathematics-of-decision-trees-random-forest-and-feature-importance-in-scikit-learn-and-spark-f2861df67e3
https://towardsdatascience.com/the-mathematics-of-decision-trees-random-forest-and-feature-importance-in-scikit-learn-and-spark-f2861df67e3
http://www.itl.nist.gov/div898/handbook
https://scitation.org/journal/rse

	s1a
	s1
	s2
	s3
	d1
	s4
	s4A
	s4A1
	d2
	s4A2
	d3
	d4
	d5
	d6
	t1
	f1
	s4B
	d7
	s4C
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	f2
	s4D
	d15
	d16
	t2
	t3
	t4
	s5
	s5A
	f3
	d17
	s5A1
	t5
	f4
	t6
	f5
	s5A2
	s6
	t7
	f6
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21

