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Modelling the uncertainty of wind speed is essential in power flow analysis. Having abun-
dant knowledge of the wind speed in an area is critical. A low volume of data can increase
uncertainty in wind speed analysis. Spatial dependencies are often modelled before running
probabilistic power flow and load flow analysis. Copulas are a popular way of capturing
spatial dependence between multiple wind farms. Using NREL data from seven North-
eastern United States wind farm sites, Bayesian inference will be used to determine the
copula parameter uncertainty between weekly, daily, and houtly wind speed observations.
This approach will be used on elliptical and single parameter Archimedean copulas. For
each possible wind farm pair, an uninformative prior will be placed on the copula parame-
ter. The resulting posterior will contain a distribution of copula parameter values based on
the prior and the observed wind speed data. The posteriot’s credible interval is reviewed to
determine the uncertainty in parameter estimation. The results show that using a data vol-
ume considerably more petite than 8760 hourly data points will result in more uncertainty
in parameter estimation and inaccuracies in wind speed forecasting if using non-Bayesian

1 | INTRODUCTION

Studying the random behaviour of wind energy sources is of
great importance as it influences cascading failures within a
power system [1] and adversely affects reliability and security
[2]. Various studies of power analysis concerning the random
behaviour of wind speed have been published, specifically using
probabilistic models such as probabilistic power flow, optimal
power flow, and power load flow [3-6]. More probabilistic
models are often required to captute the various dependencies
among wind farms prior to probabilistic flow analysis of wind
resources. Copulas can reliably model pair-wise spatial depen-
dence [7, 8], multiple spatial dependence using vine copulas [9],
and temporal correlation [10] of the wind farms prior to power
flow and load flow analysis.

While higher dimensional copulas can be hard to simulate
or computationally demanding [10, 11], pairwise copulas can
be reliably modelled and manipulated in many coding envi-
ronments such as MATLAB, Python, and R. Because there is
a fair amount of support for pairwise copulas, one can easily

methods for copula parameter estimation.

build and simulate bivariate distributions to simulate wind speed
data points for power flow analysis. Distributions using pair-
wise copulas require the proper marginal distributions to fit the
wind speed data. In literature, the Weibull distribution is com-
monly accepted as the distribution to model wind speed data
[12—14], while some use the lognormal and gamma distributions
[11, 15]. For copula modelling, the best copula and its parame-
ter for dependence modelling is often selected based on max-
imum likelihood estimation, the Akaike information criterion
(AIC) and/or Bayesian information critetion (BIC). As a result,
a singular copula parameter is expected to capture dependence
among two wind farms.

A smaller volume of data will bring far more uncertainty
in choosing the parameter than using large data sets because
smaller data sets do not provide enough observations to form a
distinctive dependence structure. To capture the uncertainty of
parameter selection, distribution of likely parameters is required
instead of a single value. This distribution will depend on the
wind speed data available and some knowledge about the cop-
ula parameter in question. The best method that could provide
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such a distribution is Bayesian inference. Using some knowl-
edge about the parameter (prior) and the available wind speed
data (likelihood), a distribution of parameters from the posterior
can be obtained. To capture the uncertainty, the credible inter-
val (CI) of the posterior is examined to assess the deviation of
values from the mean.

Bayesian inference returns a distribution of values to analyse.
Furthermore, the certainty of the returned parameters can be
assessed based on the deviation from the posterior mean, and
the certainty in copula parameter selection can be assessed for
data sets with varying number of observations. In this paper,
Bayesian inference will be used to analyse the effect of wind
speed data volume on copula parameter estimation for ellipti-
cal copulas and single-parameter Archimedean copulas. Wind
speed data from several wind farm sites within the Northeastern
Unites States will be used in this study. The uncertainty of each
copula parameter calculated for each wind farm pair from the
postetior’s CI will be examined. The rationale of using Bayesian
inference instead of likelihood estimation is threefold:

1. The Bayesian inference process will return the possible
choices of copula parameters for a certain wind farm pair
that can all be examined. This is advantageous for smaller
data sets with a low observation count.

2. Using weekly, daily and houtly observations, the Bayesian
process will confirm the effect of data set size on the cop-
ula parameter estimation process.

3. Bayesian inference will determine what data set size is
suitable for copula parameter point-estimation using non-
Bayesian techniques (i.e. maximum likelihood, AIC, BIC).

The rest of this paper is organized as follows: Section 2
will provide background on the copulas used in this study and
Bayesian inference. Section 3 will provide an overview of the
data used. Section 4 will provide the simulation and results. We
conclude our work in Section 5.

2 | BACKGROUND

2.1 | Bayesian inference

To model uncertainty in out estimation of the copula parame-
ter, we turn to Bayesian inference: the process of updating our
beliefs with the data presented.

There are three elements involved in Bayesian inference:
ptior, likelihood and the posterior. The prior is a distribution
that represents what we know about the parameter. Depend-
ing on the distribution chosen as the prior, our knowledge of
the parameter can be accurately represented. The likelihood is
an equation that is used to model the data with each value
from the prior distribution. In our case, the likelihood equa-
tion will be the copula density function of the intended cop-
ula. The result of the prior and likelihood is the postetior —
which reflects our updated beliefs given the data. From the
postetior, the CI is examined for the deviation from the pos-
terior mean. Bayesian inference is based on the Bayes Theorem:

7 (0)L(x,0)

mT0|x) = TAOL00 - 7 (6) L (x,0) 1
whete 77 (8|x) tepresents the posterior and the right side is the
prior times the likelihood. While the equation in the middle
is the true formula for Bayesian inference, the denominator
(marginal data) is often left out as it is hard to estimate. Markov
Chain Monte Carlo (MCMC) algorithms ate used to sample
from the posterior when a closed-form equation is unavail-
able. Simply multiplying the prior and the likelihood may not
give exact results for the postetior, so many iterations must be
performed for MCMC for a large distribution of values to be
returned.

Using Equation (1), we can mathematically model our
Bayesian approach for copula parameter estimation. To build
the model, a suitable prior and likelihood is required. An infor-
mative or an uninformative prior can be chosen to represent
our knowledge of the parameters. Since there is little knowl-
edge of the parameter, a uniform (flat) prior, £,/ (©6; 4, ), will
be used to represent an uninformative prior. For the likelihood
density function, the copula density function ***** will be used.
Since the copula density function is a joint probability distri-
bution function of uniform margins # and »#, this function can
be used to determine which sampled parameter best models the
data # and ». The general formula for Bayesian copula parameter
estimation will be:

N
T@ln0) = frir ©;a,b) % Y logleu,nl0) (@)

i=1

where 7 (8|u,v) is the desired postetior, NV is the number of
observations in the data, and f,,,/(6, 4, b) is the uniform prior
with 2 and & boundaries. The copula density function can vary
based on the copula used. For certain copulas, the association
parameter has bounds that must be adhered to. For example,
the normal and #copulas use Spearman’s rho as the association
parameter. Rho has values between 0 and 1 so the priot’s bounds
must adhere to that. For Archimedean copulas, the association
parameter can be infinite. For this study, the uniform prior will
be used.

2.2 | Bayesian approach to copula modelling
The copula is based on Sklar’s Theorem [16] which states the
following:

Let H be a joint distribution function with margins /"and G.
Then there exists a copula, C; such that for all x and y:

H (x,9) = C(F (x),G () €)

As a linking function between marginal distributions and
joint distributions, the copula captures linear correlation,
tail dependence [17] and central dependence. Only three
single-parameter copulas are used for Bayesian inference in
this study: Normal, Student-# and Frank. Other copulas were
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selected as the best copula for some wind farm pairs (BB1,
BB8), but Bayesian inference was not performed. These cop-
ulas are defined in the Appendix.

Two important consequences of a Bayesian predictive copula
model are as follows:

a. Inclusion of uncertainty about the parameters of the depen-
dent wind speed distribution (copula) results in using a more
prudent predictive multivariant distribution for the corre-
lated wind speeds. That means, on average, the Bayesian pre-
dictive copula probability distribution is more dispersed than
the non-Bayesian copula probability distributions when the
uncertainty about the parameters is ignored. Consequently,
for example, for a range of the wind speed with a given
probability, the range under the Bayesian predictive cop-
ula distribution is wider than that of ignoring the param-
eter uncertainty. Conversely, the wind speed range under
the Bayesian predictive copula distribution is narrower than
that of neglecting the parameter uncertainty for a given
probability.

b. The probability distributions of the copula parameters can be
viewed in terms of the heterogeneity of the dependent wind
speed distribution over the wind farms. The dependent wind
speed distributions for vatious locations (farms) may belong
to the same family of models (copula), such as normal, #
Frank, BB1, and BB8 copulas, but the model parameters may
vary randomly according to some probability distributions
(prior distributions) instead of being fixed values. Hence, the
Bayesian predictive copula distribution aggregates the non-
homogeneous copula distributions into a single copula dis-
tribution that captures the variation among the probability
distributions of the dependent wind speeds at the farms’
locations.

2.3 | Eliptical copulas

The normal (Gaussian) and Student-# copulas ate known as the
elliptical copulas due to their symmetrical nature [18].

23.1 | Normal copula

The normal copula utilizes the bivariate normal distribution
(and the linear correlation coefficient p) on # and » after both

variables have been inversely transformed using the standard
normal inverse CDF. So the equation will be:

Cp (n,0) =@, ((1)_1 (), ®! (p)) “)

Denoting s as @' (#) and 7 as @71 (»), the copula density
function that will be used as the likelihood is defined as:

= [ ) e <—szz + %2 - an‘> .
o Vi) h 20— p?)

Using the normal copula density and the uniform prior, the
equation to estimate the normal copula parameter will be:

N
1
w(E|u,v) = fr (0sa,b) loo| ———
? o ,-; g(vl—p2>

—p*(5)” + P*(1)° — 205,
“m<pm Pt pf) ©

2(1=p?)

2.3.2 | Student-7copula

Much like the normal copula, the Student-# copula utilizes trans-
formed # and » variables to form its structure. Instead of stan-
dard normal transformations, # and » will be inversely trans-
formed using the ~distribution, with 7) degrees of freedom, and
will then be used as arguments in a bivariate ~distribution. The
equation for the ~copula will be:

G (,0) = Top (177" (), T () @

The copula density function is defined as:

2 2

r()0(e) ()00
+1

\/1_p21~2<%) (1 4 e B

n(1-p?)

n+1
2

9o (”’ ”) =

C)
where I is the gamma function (# — 1)!. The Bayesian equation
for estimating o will be:

T <p|”’i/’)=ﬁwij (p’d’b)

2+l

L or()r(e) (+5)(04)
2 2 n n
*/leog — ZFZ(E)* = O
r 2 (1 N <»r/>2+</,>2—2px,/,> 2
n(1-p2)

2.4 | Archimedean copulas

Unlike the elliptical copulas, Archimedean copulas utilize genet-
ator functions to work. Generator functions are strictly decreas-
ing functions that map values from [0, 1] to values between
[0,00) [18]. Much like how distributions were used to transform
# and » within elliptical copulas, generators have the same func-
tion within Archimedean copulas. In this study, the Frank cop-
ula is the only Archimedean copula used.

2.4.1 | Frank copula

The Frank copula is defined by the following generator and cop-
ula equations:



4 HENDERSON ET AL.
D L e — SN ke
/ \\ Corr Corr Corr Corr Cor: § N\ Corr ;
3 776%** 0.930°** 0.908"** 0765 0.850"* } ) = 0.870 T
A=
Corr Corr Corr Corr Comr: § ¥ ':" \ Corr
\_ 0.790°** 0.904%** 0.921*** 0.773*** 0.850*§ f \.‘ - ;
7\ = il [~ - =t iy
\Q Corr C,?rr Corr nrr g o "
. 0.899*** 0.674"** 0.908E 0842 g ! ’
f,. E ‘;‘,\‘\ Corr Corr Corr i 3 = -
3 N 0.843*** 0.896°** 0.851** / ,
s e poslropill ; -
‘3 .,..}}..‘,_ PN 0.681° 0.844% I' ﬂ'
-~ -h . " Cor ‘ - o
. ./ Corr 8 d
P AN B A
% &% s Y b =
o e ]
S s R T T :
>
»
»
FIGURE 1  Scatterplots for wind speed under different volumes of data. In each scatterplot, the correlation between each wind farm is shown. Moreover, the

marginal distribution for each wind farm is shown in the diagonal. For the weekly and daily wind speed data, the marginals can be represented by a lognormal or

gamma distribution. For the hourly data set, the Weibull is used as the marginal distribution. In total, 21 possible wind farm pairs under each data set can be
examined for spatial correlation. (Top Left) Weekly (53 points) wind speed data (Top Right) Daily (365) wind speed data (Bottom Centre) Hourly (8760 points) wind

speed data
-6/
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where the association parameter 8 # 0. The density function is
defined as:

0 (1 _ 6_6) (e—e(zz+1’))
T (1) (P 17)

g (uy0) = (12)

The Bayesian equation to estimate Frank copula parameters

will be:
71'(6'%, ”) = fmzz/ (e;ﬂa b)
N 2] (1 _ 6—9) (6—9(/4,»+i/,'))

*z log

i=1 (e_e -1+ (e“e(”) - 1) (e_e(l’i) - 1)2)

(13)

Unlike the other copulas, the Frank copula does not model
tail dependence but only central dependence.

3 | METHODOLOGY

Wind speed data from seven sites within Virginia, West Vir-
ginia, Maryland, and Pennsylvania have been gathered from the
NREL Wind Prospector site for the year 2012. Using 8760-
point wind speed data, a smaller data set is created by averag-
ing values every 24 h to obtain a representation of daily (365-
point) wind speed data. From the newly created daily data, we
average values every 7 days to obtain a representation of weekly
(53-point) wind speed data. These three data sets will be used
in the uncertainty analysis of copula parameter estimation. Fig-
ure 1 shows the difference between each volume of data based
on scatterplots.

Since both marginal distributions and a best-fitting copula are
needed to build a multivariate distribution for each wind farm
pair, a distribution must be first fitted to the wind speed distribu-
tions of each wind farm. This process must be done for all seven
wind farms under all three data sets. This process can be done
by first examining the skewness and kurtosis to get candidate
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FIGURE 2

Cullen and Frey (Skewness vs Kurtosis) plots were used for determining the best-fitted distribution for Mountaineer — the seventh wind farm in

this study. Under each data set, a reiterative process is done to create a thousand possible choices of distributions - represented by small orange dots. The large blue

dot represents the optimal choice. As the volume of data increases, the certainty of distribution selection increases as shown in (c) (Top Left) weekly wind speed data

for Mountaineer (Top Right) daily wind speed data for Mountaineer (Bottom Centre) hourly wind speed data for Mountaineer
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FIGURE 3
approach for elliptical and single-parameter Archimedean copulas

Flowchart of the complete methodology of the Bayesian

distributions, and then using likelihood, AIC and BIC to choose
the best distribution to fit the wind speed data. The Weibull
distribution is commonly used to model wind speed distribu-
tions, while gamma or lognormal can model others. The Cullen—
Frey plots in Figure 2 show a level of uncertainty in selecting a
proper distribution for smaller data sets, but not for the 8760
hourly data points. The flowchart in Figure 3 depicts the com-

TABLE 1  Selected wind farm locations

Wind

farm

number Name Location

1 Bear Creck Bear Creck, PA
2 Frey Farm Conestonga, PA
3 Criterion Wind Park Garrett Co.,, MD
4 Humboldt Hazleton, PA

5 Locust Ridge Seltzer, PA

6 Roth Rock Red House, MD
7 Mountaineer Thomas, WV

plete methodology of the Bayesian approach for elliptical and
single-parameter Archimedean copulas.

After determining proper distributions to fit the wind speed
data, copula selection is performed for every possible wind farm
pair. The relationship between copula selection, distance and
wind farm correlation is examined. As each wind farm pair is
within 480 kilometres apart from each other, the correlation is
moderately high between each wind farm pair. The importance
of spatial correlation has been studied in [19, 20], so such cor-
relation will impact copula selection. It is expected that strong
upper tail and central dependence will be captured. Copulas
such as the normal, % Frank, BB1 and BB8 may be used heav-
ily as they can capture the dependence structure for such close
wind farms.
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TABLE 2  Bayesian copula estimation table
365-point 8760-point
52-point copula 52-point data copula & 365-point copula & 8760-point
Distance & confidence posterior confidence posterior confidence posterior
(km) interval mean interval mean interval mean
48.2 Normal 0.88 Student-# 0.868 Student-# 0.715
(0.84-0.91) (0.85-0.89, (0.71-0.72,
df=11) df=13)
478.5 Frank (7.15-12.9) 9.89 Normal 0.6 Student-# 0.45
(0.58-0.63) (0.43-0.46,
df= 30)
490.5 Normal 0.84 Normal 0.685 Student-# 0.54
(0.79-0.88) (0.66-0.707) (0.53-0.506,
df = 30)
366 Normal 0.673 Normal 0.536 Normal 0.397
(0.613-0.73) (0.51-0.562) (0.394-0.4006)
40.2 Normal 0.982 Student-7 (0.97, 0.97 Frank 14.26
(0.972-0.988) df=11) (13.97-14.56)
62.8 Normal 0.84 Normal 0.75 Normal 0.655
(0.79-0.87) (0.74-0.78) (0.65-0.66)
446 Normal 0.835 Normal 0.72 Student-# 0.6
(0.79-0.873) (0.707-0.75) (0.593-0.614,
d=18)
393 Frank (4.28-8.64) 6.4 Normal 0.54 Normal (0.393— 0.397
(0.51-0.56) 0.4006)
23 Frank 11.17 Normal 0.75 Student-# 0.67
(8.18-14.43) (0.74-0.77) (0.66-0.677,
dr=18)
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FIGURE 4  Trace plots of estimated copula parameters (left column) and
prior versus posterior plots (right column) for the 1-6 (Bear Creek/Roth Rock)
wind farm pair under each wind speed data set. The traceplots show the
MCMC chains containing sampled copula parameters for each copula. The
prior vs posterior plot shows the resulting posterior plotted against the prior
(blue) to illustrate the confidence interval. While the Frank copula parameter
can take values between 0 and 00, the confidence integtal is noticeably wide.
The normal and #copula parameters can only take values between 0 and 1.
However, the confidence integral is small as shown in the posterior plots

Once the copulas have been selected, copula parameters for
each wind farm pair under each data set are estimated. Only
select single parameter copulas (normal, 4 Gumbel, Frank) can
be estimated - wind farm pairs that have other copulas selected
have been omitted from the estimation process. Table 2 reflects
the omission by only including wind farm pairs that have been

Weekly Observations

Daily Observations Hourly Observations

FIGURE 5 Multivariate distributions for the weekly (left), daily(middle)
and houtly (right) of the 1-6 (Bear Creek/Roth Rock) wind farm pair using the
chosen copulas for this pair. These distributions will be used to simulate weekly
(Frank MVD), daily (normal MVD) and houtly (# MVD) wind speed data

estimated. Estimating the parameter means estimating the level
of dependence between wind farms. Uncertainty in the associ-
ation parameter means uncertainty in the dependence structure
between wind farms. Such uncertainty will be reflected in the
accuracy of the joint distribution that will be created from the
copula and marginal distributions.

Aside from a posterior’s confidence integral, the uncertainty
can also be shown graphically when using the modified pre-
dictive posterior to forecast the wind speed for different wind
farms. This predictive posterior is used to assess the accuracy of
the joint distribution by comparing various simulated distribu-
tions to the original wind speed data for each wind farm. Once
parameters are estimated, a looping method is used to create
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FIGURE 6 Point samples from the multivariate distributions created for

the 1-6 wind farm pair. In these point plots, Bear Creek and Roth Rock are
plotted against each other to form a two-dimensional plot of wind speed data.
The black points represent original data while the coloured points represent
simulated wind speed data from the multivariate distributions. The simulated
data for weekly wind speed is very inaccurate compared to the simulated data
for the larger sets

numerous distributions of predicted wind speed from tempo-
rary joint distributions using the estimated patameters from the
postetior. These predictions are then compared to the original
wind farm data for accuracy, and can later be used as input for
power flow analysis.

4 | SIMULATION AND RESULTS

As the volume of wind speed data increases, the certainty in
parameter estimation increases. For the medium data set, there
is more certainty in parameter estimation than in the small data
set. The copula certainty is the best using the hourly (8760) data
set. The choices of copulas in Table 2 reflect strong depen-
dence between wind farms due to the close spatial relationship.
The normal, # Frank, BB1, and BB8 copulas were selected to
model the dependence structures of the wind farms. However,
the copulas estimated under Bayesian Estimation are the nor-
mal, Student-# and Frank copulas.

When examining the smaller data sets for each wind farm
pair, there is a noticeable deviation from the posterior mean in
every pair. The two copulas most used for wind farm pairs under
the small data set were the normal and Frank copulas. There is
not enough data to make out a structure to properly represent
these copulas. In Table 2, the CI is wide, denoting much uncer-
tainty about the ideal association parameter for each copula. For
wind farm pairs 3-5, the normal copula represents the small vol-
ume of data. The Cl is between 0.613 and 0.73 — a wide interval.
For another pair, 1-6, the Frank copula is chosen to represent
its small data. The Cl is very wide, with values between 7.15 and
12.9 for the Frank copula parameter.

Roth Rock Predictive Posterior using Frank MVD
Actual Data (Black), MVD Predictions (Orange)

Bear Creek Predictive Posterior using Frank MVD
Actual Data (Black), MVD Predictions (Orange)
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FIGURE 7

Predictive postetior plots for the 1-6 wind farm pair under each data volume.

Predictive posterior for all datasets for the 1-6 W pair data.

These plots represent wind speed distributions sampled from the multivariate
distributions (MVD). The top row show sampled weekly data from the Frank
MVD, the middle row represents sampled data from the normal MVD and the
bottom row represents data from the Student-s MVD. The MVD with the
weekly data set cannot capture the original wind speed data as well as the other
MVDs can

The uncertainty is also shown in the resulting multivariate
distribution created from the copula for wind farm pair 1-6
in Figure 5. The multivariate distribution’s forecasting ability
is determined by the reiterative predictive posterior method,
where each parameter value from the posterior is used to cre-
ate multivariate distribution predictions to be compared to the
original data. As shown in Figure 7, the predictive posterior
shows that the distributions do not come close to predicting
wind speed accurately using small data sets.

Under medium data sets, the CI for each posterior is much
smaller compared to using a small data set. The copula selec-
tions are different as the normal copula was mostly chosen.
Such a choice shows an equal amount of similarities between
wind farms at the tails and on the diagonal. As the normal
copula was chosen numerous times, the other copula chosen
often was the BB1. Although the parameters of the BB1 cop-
ula could not be estimated using Bayesian inference, this cop-
ula shows that some wind farms have asymmetrical tail depen-
dence between one another. The amount of data in the medium
data set is enough to see a dependence structure between
two wind farms. Due to more certainty in the copula param-
etet, the forecasting power of 1-6's multivariate distribution
in Figures 6 and 7 are much better. However, there is still a
level of uncertainty that should be captured when using such a
data set.

For the 8760 data, there is very little to no uncertainty in the
copula parameter estimation. The CI is very small — resulting in
the posterior mean equalling the initial chosen copula parameter
from non-Bayesian methods. The choice of copulas is much
different from the other data sets because of the large volume
of data. Unlike the copulas found in the smaller data sets, the
Student-# copula was the most selected. This copula captutes
extreme wind speed observations between two wind farms.
Other copulas selected that model extreme tails to include
the Tawn copula, BB1 and BB8 copulas. The large data set
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has more than enough data to model a noticeable dependence
structure. The forecasting power of the multivariate distribu-
tions using this data set is nearly perfect, as shown in Figures 6
and 7. This shows that the larger data sets provide enough
observations to safely use non-Bayesian techniques to estimate
copula parameters.

5 | CONCLUSION

In this paper, Bayesian inference was used to estimate the cop-
ula parameter for each wind farm pair under weekly, daily,
and houtly wind speed observations. The Bayesian approach
was successfully utilized for elliptical and single-parameter
Archimedean copulas. Due to the close proximity of each wind
farm, strong tail and central dependence were captured using
the normal, # Frank, BB1 and BB8 copulas. In estimating the
copula parameter for each wind farm pair, the posterior’s CI was
examined to determine the uncertainty in parameter estimation.
The results show that a smaller volume of data will have more
uncertainty in copula parameter estimation than 8760 hourly
data points. From the results, we conclude that non-Bayesian
parameter estimation can be used for hourly wind speed data
with certainty in the estimated value.
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APPENDIX
The BBx copulas are a set of bivariate Archimedean copulas that
combine the properties of two single-parameter Archimedean
copulas. The BB1 and BB8 will be reviewed as these are the
two-parameter copulas chosen outside of the other copulas for
this experiment.
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BB1 copula

Referred to as the Clayton-Gumbel copula, the BB1 copula cap-
tures asymmetric tail dependence. The copula function for the
BBl is defined as:

1

Cos 0) = (L+ (G0 — 1P + (PO —1HE)T (14

where d > 1and 6 > 0.

BBS8 copula
The BBS8 copula, or the Joe-Frank copula, captures upper tail
and central dependence. The BB8 copula is defined as follows:

1

, 1 1
Cos (n,1) = 3 <1 - <1 “TTasaF (1-@-3dn°q —5;/)9)> s)
(15)
where 6 > 1 and 6§ € [0, 1].



	Bayesian estimation of copula parameters for wind speed models of dependence
	Abstract
	1 | INTRODUCTION
	2 | BACKGROUND
	2.1 | Bayesian inference
	2.2 | Bayesian approach to copula modelling
	2.3 | Elliptical copulas
	2.3.1 | Normal copula
	2.3.2 | Student-t copula

	2.4 | Archimedean copulas
	2.4.1 | Frank copula


	3 | METHODOLOGY
	4 | SIMULATION AND RESULTS
	5 | CONCLUSION
	FUNDING
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	APPENDIX
	BB1 copula
	BB8 copula



