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ABSTRACT. We prove an asymptotic formula for the Fourier transform of the arithmetic sur-
face measure associated to the Waring—Goldbach problem and provide several applications,
including bounds for discrete spherical maximal functions along the primes and distribution
results such as ergodic theorems.

1. INTRODUCTION

In this paper, we study several questions on the interface between harmonic analysis and
analytic number theory. Our results are motivated in part by the study of discrete maximal
functions in harmonic analysis, in part by applications of those maximal functions in ergodic
theory, and in part by connections to classical problems in analytic number theory—in
particular, the Waring—Goldbach problem.

The harmonic analytic motivation behind our work comes from celebrated results by Bour-
gain [4, 5] on ergodic averages over certain sequences of integers and later work of Magyar,
Stein and Wainger [24] on discrete spherical maximal functions. Driven by applications in
ergodic theory, Bourgain [4] initiated the study of discrete maximal functions. A key feature
of Bourgain’s approach is his use of the circle method from analytic number theory. With
this in mind, Magyar [20] provided some partial results on discrete maximal functions related
to Waring’s problem, leading to Magyar, Stein and Wainger’s consideration of the discrete
spherical averages

80 = ez yE= 0, )

lyl3=x
along with their maximal function

S.1(x) = sup |8,/
AeN

Here, f : Z" — C and | - |, denotes the Euclidean norm on R" (thus, |y|3 = y3 + -+ + 32).

Magyar, Stein and Wainger [24] provided a complete answer to the question of ¢’-bound-
edness for the maximal operator S: they proved that, when n > 5, S, is bounded on *(Z")
when p > n/(n — 2) and unbounded when p < n/(n — 2). Furthermore, it is shown that this
result cannot hold when n < 5. In their work, they took the symbiosis between harmonic
analysis and number theory a step further by using a full-fledged application of the circle
method to analyze the Fourier transform of the arithmetic surface measure underlying the
discrete averages S\ f. Particularly, define

ox(§) =

#Hixe Z” I3 = Z
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where € € T™ and, as usual, e(z) := e*™*. Magyar, Stein and Wainger established the
following approximation formula for &y (€).

Theorem (Magyar—Stein—Wainger). When n =5, one has the decomposition

() =D D) e(=aMg) Y Gla,q;b) (g€ — b)dor(€ — ¢~ 'b) + EA(€),
q=1 1<a<q bezZnr
(a,g)=1

where doy, is the continuous Fourier transform of the surface measure of the sphere of radius

(\/X7
alx|3+b-x
Gla.gb) = Y (—
xe(Z/q7)" 1
is an n-dimensional Gauss sum, and WV is a smooth bump function which is 1 on [—1/8,1/8]"
and supported in [—1/4,1/4]". The convolution operators E\ associated with the error terms
E\ satisfy the maximal inequality

C(2r)—2(Zn)

sup ||
A<SA<2A

for all A > 0.

This theorem has served as a model for several authors [21, 2, 23, 15] who have studied
the maximal functions of the discrete surface measures on other arithmetic surfaces over the
integers. It is also the inspiration for one of the results of the present paper—see Theorem 1
below. However, in contrast to earlier work on discrete maximal functions, we study the
more singular maximal function of the “prime points” on the k-sphere. The goal of this
paper is to study the distribution of points with prime coordinates on the algebraic surface

f(x)i=af +.. 42k =)\ (1.1)

for A € N. By combining number-theoretic techniques from the study of the Waring—
Goldbach problem with ideas from harmonic analysis, we are able to prove several results
on the distribution of such points, including: an equidistribution theorem, an L2-ergodic
theorem, and a pointwise ergodic theorem. A quantitative version of our equidistribution
theorem, Theorem 3 below, is another main result: we take the spherical maximal function
in a new direction by proving ¢?(Z") bounds for a discrete variant along the primes.

While restrictions of results about integer sequences to the primes are common in both
number theory and ergodic theory, the study of maximal functions related to the primes
has been limited to sequential averages (e.g. [6, 32, 27, 25, 26]); this paper appears to
be the first work on such restricted problems in harmonic analysis related to prime points
on forms in many variables. The new obstacles arising in these problems require further
development of the Bourgain-Magyar—Stein—Wainger paradigm of using the circle method to
decompose the maximal operator and thus to reduce the problem to estimates for exponential
sums and integrals. Earlier works have been able to employ a classical variant of the circle
method which uses the Poisson summation formula to estimate the major arc contribution.
The restriction to primes forces us to draw on our knowledge about equidistribution of
primes in arithmetic progressions and to employ more primitive tools (compared to Poisson

summation) to do so. Therefore, in order to be able to obtain any result at all, we blend mean
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value theorems of Vinogradov’s type into our minor arc analysis. In contrast, in problems
over unrestricted integers previous approaches were able to rely merely on L* bounds for
the relevant exponential sums. Indeed, insights gained from this present work have already
led us to improve (in [1]) on the results of the third author [15, 16] on (unrestricted) integer
points on the k-sphere.

The study of prime points p = (p1,...,pn) € P* (here P is the set of primes) on the
surface (1.1) is known in number theory as the Waring-Goldbach problem. Classic work
by Hua [14] established the asymptotic for the number of representations of a large natural
number A\ as a sum of n kth powers of primes when k and n are positive integers such
that n > 2% and \ belongs to an appropriate infinite arithmetic progression I', ;. Write
logx = (logzy)---(logx,), and let R(\) denote the number of prime solutions of (1.1),
counted with logarithmic weights:

R(\) = )] logp,

f(p)=XA

where (and through the remainder of the paper) p denotes a vector in P". Using the Hardy—
Littlewood circle method, Hua proved that when A\ — oo, one has the asymptotic

R(\) ~ &, (M)A (1.2)

where G,, () is a product of local densities:

Snk(A) = H fp(A).
PO
Here p1,(A\) with p < oo is related to the solubility of (1.1) over the p-adic field Q,,, and jig ()
to solubility over the reals. In particular, the set I',, j, is determined by the requirement that
fp(A) > 0 for all primes p. Some examples of progressions I',, , (see Chapter VIII in Hua [14]
for more details, including the full definition of I, ;) include:

o I', i is the residue class A =n (mod 2) when £ is odd;
o I'55 is the residue class A = 5 (mod 24);
o I'y74 is the residue class A = 17 (mod 240).

The starting point to our main results lies in extending (1.2) to an approximation formula
for the Fourier transform of the arithmetic probability measure

1
wi(x) 1= RO HPEP i (0)=A) (x)logx,

defined when R(A) > 0. The Fourier transform of this measure is the exponential sum

Gi(E) = ﬁf&(l@gme(p ©). (1.3)

We note that wy is defined only for sufficiently large A € I',, . and n sufficiently large in terms
of k. Based on the current state of affairs in the Waring—Goldbach problem [17, 18], the
latter means that for large k, the value of n must be at least as large as 4k log k. In reality,
the true size of R(\) is only known for n > k? — k + O(+v/k), so it only makes sense to study
the Fourier transform @ (€) when n > k* — k.

Our first theorem is a variant of the Magyar—Stein—Wainger theorem above for the Fourier

transform (1.3). Before stating the result, we need to introduce some notation. Given an
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integer ¢ > 1, we write Z, = Z/qZ and U, = Z}, the group of units. If q = (q1,...,¢.) € Z",
with q > 1 (by which we mean that ¢; > 1 for all i), we write Uy = Uy, x --- x U,,; it is
also convenient to set a/q = (a1/qi, .. .,a,/q,) and aq = (a1q1, - . ., a,q,) if a = (ay,...,a,)
is another vector in Z". Given A € Z and a,q € Z", with q > 1, we now define

g(a,¢;b,7) = m > e(a—ﬁer?x),

:L‘EU[q r] q
n

Q0
S(\a,q) = ZZ ~Xa/q) | [ 9(a, ¢; a1, ),

q=1a€el, i=1

where ¢ is Euler’s totient function and [g,r] = lem[q, r]. We fix a smooth bump function 1)
such that

Lo(x) < ¥(x) < 1g(x/2),
where 14 is the indicator function of the cube Q = [—1,1]", and we write ¥y, (x) = ¥(hx)
for h > 0. We also define n(k) := min(2*, k? + k) + 3.

Theorem 1 (Approximation Formula). Let k = 2 and n = ny(k). Also, let X € T',, . be large,
and suppose that \Y* < N < A\Vk. For any fized B > 0, there exists a C = C(B) > 0 such
that one has the decomposition

n/k—1 .
A Z Y. 6(\a,q)vnga - a)doy (€ — a/q) + Ex(£), (1.4)

1<q<Q aclUq

—~

(.U)\(

where Q = (log N)©, da,\ 1s the Fourier transform of the k-spherical surface measure on the
surface defined by (1.1) in R% (cf. (3.12)), and the convolution operators Ey associated with

the error terms E\(€) satisfy the mazimal inequality

< (logA)™% (1.5)
C(Zm) (")

sup | Ej|
AA<2A

for all A > 0.
Note that (1.5) implies that

-B
HE )LW (log \)~E. (1.6)
We remark that the proof of Theorem 1 allows us to establish (1.6) in a slightly wider range
of dimension n than the theorem does for the stronger bound (1.5). Namely, if 2m is any
even integer such that one can apply the circle method to establish the asymptotic formula
in Waring’s problem for 2m kth powers, then (1.6) holds for n = 2m + 1. In particular,
using recent advances by Bourgain [7] and Wooley [33], we obtain (1.6) for n = ng(k), where
no(k) = 2% + 1 when k = 2,3 or 4, and

kj —min(27, j* + j)
_ 1.2 _ )
no(k) = k*+3 | nax [

when k£ > 5. These observations are useful in our next result, which describes the decay of
Wy at irrational frequencies.

Theorem 2. Let k=2 and n = no(k). If & ¢ Qn, then wx(&) — 0 as A — o along Ty .



Let 7(\) denote the number of prime points on the k-sphere (1.1). It follows readily from
Theorem 2 that, when & ¢ Q", one has

lim LA S e(p-£) - 0. (1.7)

/\/\e?fk r(A) f(p)=A

This gives a pair of interesting corollaries. The first is obtained by noting that (1.7) is
precisely the Weyl criterion for uniform distribution on a torus.

Corollary 1. Let k =2, n = ng(k), and ac € (R\Q)". The sets
{(alplv SRR C(npn) : f(p) = )\}

become uniformly distributed with respect to the Lebesgue measure on the n-dimensional torus
T" as A — oo along I',, .

Our second corollary is an L2-convergence result regarding certain ergodic averages; as in
Section 4 of [21], where the analogous ‘integral’ result is proven, this follows from the spectral
theorem for unitary operators. To state this corollary, let (X, u) denote a probability space
with a commuting family of n invertible measure preserving transformations 7' = (71, ..., T,,).
Such a family is referred to as a fully ergodic family of transformations if the hypothesis

Bf=5f=--=1f =,
where s € N and f € L?(X, u), implies that f is constant. Here T'f should be interpreted
as foT. As observed in [21], the notion of full ergodicity is actually a condition on the
joint spectrum of the T;. More precisely, full ergodicity implies that given f e L?(X,p), if
T;f = e(\;)f holds with \; rational for all i < n, then f is constant almost everywhere. For
a function f: X — C, AeI',,; and x € X, define the Waring-Goldbach ergodic averages on
X with respect to T' by
1

Arf(x) = 5o Y, (logp) f(TPa), (1.8)
R(A)
f(p)=A
where T™x := 17" - - T g for m = (mq,...,m,) € Z".

Corollary 2 (L*mean ergodic theorem). Let k > 2, n > no(k), and let (X, pn) be a prob-
ability space with a fully ergodic family of transformations T = (Ty,...,T,). Then for all
f e L3(X, u), the ergodic averages of f defined by (1.8) converge in L*(X,p) to the space
average of f; that is, one has that

lim Avf = | Fdu
Aely i X
in L*(X, p).

Remark 1. As observed in Section 3 of [21], this result does not hold in general if one omits
the full ergodicity condition.

To prove the ergodic theorems, we consider the convolution operator A, with Fourier
multiplier wy: for functions f : Z™ — C, we write

A/\f = QJ)\*f. (19)
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This is our discrete spherical averaging operator along the primes. We will use the Approx-
imation Formula to prove a maximal theorem, stated below. In the remaining theorems,
define ny(k) := k*(k — 1) + 1 for k = 7, no(k) := k2" + 1 for 3 < k < 6, and ny(2) = 5;
k) 2n

also define py, =1+ 2n"_27(12(k) = T

Theorem 3. Let k > 2 and n = max{n(k),nz(k)}. The mazimal function given by
Ay f == sup [Ayf] (1.10)

>\€Fn,k
is bounded on (P(Z") for all p > py,. Moreoever, when k =2 and n = 7, the above mazimal
function is bounded for all p > n/(n — 2).

Remark 2. In sufficiently large dimensions, the maximal function A, is unbounded on ¢ (Z")
for p < 4. This can readily be seen by testing the maximal function on a delta function
at the origin and using the asymptotic for R(A\) as A — o in I', ;. With this in mind,
we conjecture that A, should be bounded on (P(Z") for all p > -~ in sufficiently large
dimensions; this is the same conjectured range of p as for the integral maximal function. We
refer the reader to [15] for more information on the conjectured range of ¢?(Z™)-boundedness

for the integral maximal function.

Remark 3. In the quadratic case, the Magyar—Stein—Wainger theorem holds for n > 5
whereas ours only holds for n > 7. (Theorem 3 matches the Magyar—Stein—Wainger theorem
in the range of p, and both ranges are sharp.) An aspect of this work is that improvements
to the analogues of ny(k) and pg, in the integer setting automatically translate to corre-
sponding improvements to ns(k) and pg,, in the present setting. Indeed, after the present
work was completed, we used some of the techniques developed in this paper to obtain such
improvements in the integer setting. That improvement, which has already appeared in print
in [1], lets one replace the above choice of ny(k), for k > 3, by

kj —min(2’ + 2, 52 + §)
kE—j+1 '

The value of p, ; can also be somewhat improved. The interested reader can find the details

in [1].

no(k) = k* — max
2<j<k—1

We take this moment to describe the proof of our maximal theorem and to compare it with
previous works. Throughout the paper we follow the paradigms of [4] as embellished in the
integral version of our averages in [24] and [21]. In particular we assume that the reader is
familiar with the transference technology of [24]. As in [24], our maximal theorem will exploit
the Approximation Formula which decomposes wy = ]\/4\)\ + l/?:\ into the sum of a main term
and error term. We will use separate techniques to get good bounds on the suprema over A
of both the main term and error term. As in all previous works, our decomposition requires a
major arc/minor arc decomposition of the degree k frequency variable. Unlike previous works
we require an additional major arc/minor arc decomposition of the linear frequency variables.
For the main term we will use estimates for relevant exponential sums and oscillatory integrals
in addition to the transference results of [24] to bound the main term. However, as already
mentioned, the methods in previous works such as [24, 15, 16] are insufficient to handle the
error term from our circle method approximation in the Approximation Formula. This is

due to the logarithmic decay in (1.5) as opposed to power savings that appeared in previous
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works. To overcome this obstacle, we introduce a hybrid sup and mean value bound to control
the relevant exponential sums on our set of minor arcs and consequently bound the error
term in #2; this is one of the novel aspects of our paper. From this, the known bounds for the
integer case in [24], and the bounds we are able to proe for the main term on 7, we are able
to bound the analogue of the Magyar—Stein—Wainger discrete spherical maximal function
along the primes.

Following Magyar [22] and Bourgain [4], we will use our maximal theorem to prove the
following pointwise ergodic theorem along the primes.

Theorem 4. Let k = 2, n = max{ny(k),n2(k)}, and let (X, p) be a probability space with
a fully ergodic family of transformations T = (T4,...,T,). Then for all f € L*(X,pu), the
ergodic averages of f defined by (1.8) converge almost everywhere to the space average of f;
that is,

lim A, f =f fdu (1.11)
A—00 X

)\EFnyk
p-almost everywhere.

Again, a standard argument (see for instance [32]) implies the same result without the
logarithmic weights.

Corollary 3. Suppose that (X, 1) is a probability space with n commuting measure-preserving
operators Tt ..., T, satisfying the conditions of Theorem 4. Then, for all f € L*(X, u), one
has

1
lim —— E TPx) = d 1.12

u-almost everywhere.

Combining our pointwise ergodic theorem on ¢? with our maximal function bounds, we
immediately obtain, via standard approximation arguments, the following corollary.

Corollary 4. Suppose that (X, u) is a probability space with n commuting measure-preserving
transformations T, ..., T, as in Theorem 4. Then, for p > pg, and for all f € LP(X,u),
one has

lim Ay f = Lfdu (1.13)

/\EFn’k
p-almost everywhere.

The paper is organized as follows. In Section 2, we collect some needed number theoretic
facts. Then in Section 3, we use the circle method to decompose wy into a main term and
an error term; we also prove ¢? bounds on the error in this section. One key additional
technical difficulty here compared with the work in [24] is that the precise shape of our error
terms is more complicated than in the integral case; in particular, we need to perform a
major and minor arc analysis of the linear phases (in addition to the higher degree phases).
In Section 4, we develop a careful analysis and interpolation argument to get ¢’ bounds
on the main term, since we cannot apply the techniques in [24] directly. In Section 5, we
compare the averages along the primes to the integral ones to control the error terms and

prove Theorem 3. Finally, we prove the ergodic theorems in Section 6.
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2. BOUNDS FOR EXPONENTIAL SUMS AND INTEGRALS
Here we recall and prove some results from analytic number theory.

Lemma 1. Let a,b,q be integers with ged(a,b,q) = 1. Then, for any fized € > 0, one has

k
2 e(a:v +b:B> < e

xeUq q
Proof. This is a special case of Theorem 1 of Shparlinski [28]. O

Lemma 2. Let f(x) = ax® + - + ayz € R[z], with k > 2, and suppose that there exist
integers a,q such that (a,q) =1 and |qa — a| < ¢~'. Then

S (logp)e(f(p) < NL (g7 + N2 4 gN)* 7

p<N

where L =log N and ¢ = ¢ 1s a constant.

Proof. This is a variant of Theorem 1 in Harman [13], where the exponent of 2172 is replaced
by 4'7% at the expense of replacing the factor L¢ above by N¢. The present version is
well-known to the experts, but since we were unable to locate it in the literature, we will
provide a brief sketch of the argument. The proof requires small adjustments to the proofs
of Lemmas 2—4 in [13]. Those proofs use the inequality

> m(@)min (Y, |6z 7') £ X° )" min (Y, 6] "), (2.1)
<X <X

where 7,.(z) is the r-fold divisor function. However, in most places the above inequality is
used for convenience rather than by necessity. The places where this inequality is really
needed occur towards the ends of the proofs of Lemmas 3 and 4 in [13], when one wants to
apply a standard estimate (e.g., Lemma 2.2 in Vaughan [31]) to the sum on the right side
of (2.1). In those places, we can replace (2.1) with

> 7(e) min (Y, 6] 7") < (XY)l/Q(logX)C{ > min (Y, 0x|_1)}1/2.

<X <X

We can then follow the rest of Harman’s proof. 0

Lemma 3. Let a,b,q,r, be integers such that (a,q) = (b,7) =1 and |« —a/q| < 2N~'. Then
> (logple(ap) < NL* (g7 + NP 4 gN )

p<N
p=b (mod r)

1/2



Proof. This is the main result of Balog and Perelli [3], with some of the terms slightly
simplified for use in the present context. 0

When 1 < Q < X, we define the set of major arcs M(X, Q) by

MX,Q) = | ([ J{0eT:le0—al <@X'}.

q<Q aely

The complement of a set of major arcs, m(X, Q) = T\9M(X, Q), is the respective set of minor
arcs. When working with a particular choice of major and minor arcs, we may write 9,/
for the major arc centered at the rational a/q. Note that when 2Q) < X, the set M(X, Q) is
the disjoint union of closed intervals of total measure O(QX ).

Our analysis of @, (&) will depend on the exponential sum

Sn(0,€) = > (logp)e(6p” + &p), (2.2)

p<N

where the summation is over the prime numbers p < N. In particular, we need to ap-
proximate Sy(6,&) when both 6 and & are near rationals with small denominators. The
approximations involve the exponential sum g(a,q;b,r) defined above and the oscillatory
integral

N

In(d,1n) = J e(d2* + nz) da. (2.3)

0
We note that, by Lemma 1,

g(a,q:b,7) < [g,7] 7", (2.4)
and that the kth-derivative estimate for oscillatory integrals (Proposition 2 on p. 332 in
Stein [29]) yields

N

<

(2.5)
Furthermore, since
In(6,n) =k'N Jl ul/k’le(&)u + noul/k) du,
0
where 6y = IN* and 7y = 7N, we can also apply the second-derivative estimate (the case

k = 2 of the corollary on p. 334 of [29]) to deduce the bound

N

In (0 < ——.
VO S TN

(2.6)

Our next lemma uses the Siegel-Walfisz theorem to approximate Sy (0,§).

Lemma 4. Let Q, R < (log N)¢ for some fized C > 0, let 6 € M, ), for some major arc of
the set M = M(N*,Q), and let & € My, for some major arc of the set N = M(N, R). Then

Sn(0,&) = g(a,q;b,7m)IN(0 — g/q,& —b/r) + O(N(QR)’lO).



Proof. We write 6 = 60 —a/q, n =& —b/r, and s = [¢,r]. When we partition the exponential
sum Sy (6,&;) into sums over primes in fixed arithmetic progressions, we find that

Sn(@.6)=> > (logp)ff((g + 5)1?’“ + <$ + n>p> +0(s)

heUs p<N
p=h (mod s)
ah®  bh
=) €<— + —) >, (logp)e(sp* +np) + O(QR). (2.7)
q r
heUg p<N
p=h (mod s)

Since s < QR < (log N)?“ and h € Uy, the Siegel-Walfisz theorem yields
Z logp = Ty O(N(QR)™"?)

= w(s)
p=h (mod s)

for all z < N. Using this asymptotic formula and partial summation, we obtain

Y, (logp)e(p* +np) = ¢(s) In(6,7) + O(N(QR) ™). (2.8)
thp(gnl]\Cid s)
The lemma follows from (2.7) and (2.8). O

Lemma 5. Let k > 2 and 2s = min(2* k* + k) + 2. Then
f sup |Sn (0, €)% df < N*F L2, (2.9)
T ¢

where L = log N.
Proof. Set H; = sN’ and define

an(0) = >, (logp)e(6f.4(p)),

D1y Ps <N
pi+-+ps=h

so that
Sn(0,6)° = Y an(0)e(éh).

h<H;
By applying Cauchy’s inequality, we deduce that

sup |Sn (0,€)|* < Hy Y. |an(0)]*.
3 h<H;

Hence,

Ls%p|SN(0,§)|2sd9<H1 3 L 0 (0)an () do. (2.10)

h<H;
By orthogonality,
| anom@do = 3 (ogp)logs),
T p,p’:(2.11)

where p,p’ < N and satisfy the conditions
fs,k(p) = fs,k(p/>7 fs,l(p) = fs,l(p,) = h. (211>
10



Thus,
> f an(0)do < L*I,,(N), (2.12)

h<H;

where I (V) denotes the number of integer solutions of the system

fs,k(x) = fs,k(Y)a fs,l(x) = fs,l(Y)a (213)
with 1 < x,y < N. The lemma follows from (2.10), (2.12) and the inequality
L (N) s N7 (2.14)

which we establish next.

Under the hypothesis 2s > 2% + 2, the bound (2.14) is a direct consequence of the main
result of Briidern and Robert [9]. On the other hand, by grouping the solutions of (2.13)
according to the values of the expressions f, ;j(x) — f5;(y), 1 < j < k, we find that

La(N)< D1 - > Jak(N50, b, g, 0), (2.15)
|h2|<H> |hjo—1]<Hp—1
where J ,(N; h) is the generalized Vinogradov integral

Z e(ozka:k + -+ oqx)

k
<N

2s

Jo(N:h) = f ¢(—a - h) da.

We can now refer to the recent work by Bourgain, Demeter and Guth [8] on the classic
Vinogradov integral Js x(N) = Js£(N;0) to get

Js,kz(N; h) < Js,k(N) < N28_k(k+1)/2,

provided that 2s > k(k + 1) (see §5 in [8]). Inserting this bound into the right side of (2.15)
yvields (2.14) for 2s > k? + k. O

In §4, we will need some more refined estimates for g(a, ¢; b, ) and its averages; we establish
those in the next lemma. Here, p(n) denotes the Mébius function from number theory (see
§16.3 in Hardy and Wright [12]).

Lemma 6. Let a,b,q,r, be integers with (a,q) = (b,r) = 1, and write qo = q/(q,7) and
ro =1r/(q,r). Then:

(i) if (ro.q) > 1, one has g(a, q;b,r) = 0;
(ii) if (ro,q) = 1, one has

gla,q;b,r) = ZEZZ%Q(W&Q;ZNJO,Q);
(iii) one has
Z Z gla,q;b,r)e(—ub/r)| < ;((7;); (2.16)
ueZy | bel, 0

Proof. (i) Suppose that (rg,q) > 1. Then there is a prime number p and positive integers
a, B, with a < 3, such that

g, p*rg, PP PP

11



Let ¢ = p®q; and r = pPry. By a change of the summation variable = € Uy, in g(a,q;b,7)
to x = p’y + [q1,71]z, where y € Ujgi,r) and z € Uys, we can factor the exponential sum
gla,q;b,r) as

gla, ¢;b,r) = glap™=*, qi;0,m1)g(ar, p*; b1, p”), (2.17)
where a; = a[qy,71]%q; " and by = b[qy,71]r; . We note that (ay,p) = (b1,p) = 1. Next, we
write the variable z € Uys in g(ar, p®;b1,p”°) as z = u + p®v, where u € Upe and v € Z,
v = f — a. This gives

k
(&) o, B8y _ au blu blv
gp(p )g(alap b1, p )— Z 6( i +_p5) Z 6<_p’Y .

uelUpo VELyy

Since (by,p) = 1, the last sum over v vanishes. Together with the factorization (2.17), this
proves (i).

(ii) When (gq,79) = 1, we change the summation variable z € Uy, in g(a,q;b,r) to
x = 1oy + qz, where y € U, and z € U,,,. Similarly to (2.17), we have

olaair) = glark b aer el 3 e 225

7
ZEUTO 0

We now note that the last exponential sum is a Ramanujan sum modulo 7 and (bgg, o) = 1.
Hence, the claim follows from a classical expression for the Ramanujan sum (see Theorem 272
in Hardy and Wright [12]).

(iii) Let h(a, q;u,r) denote the sum over b on the left side of (2.16). By part (i), we may
assume that (g,79) = 1. We can then use part (ii) to rewrite h(a, q;u,r) as

h(a, g u,r) = 0 3 e<“7’§xk> 3 e<(m‘cr—_“>b)

#(r0)(q) vel, q beU,

Since the inner sum is a Ramanujan sum, we deduce that

|h(a, q;u,r)| < Z d Z 1.

d|r zeUy
d|(rox—u)
We remark that a divisor d of r factors uniquely as d = dyds, where d; | (q,7) and ds | 7.
When dy t u, the sum over x vanishes. On the other hand, when ds | u, the condition

d | (rox — u) restricts h to a single residue class modulo di; hence, the inner sum is then
bounded by ¢(q)/d;. We conclude that

5.2 % aa(5l) -5 5 4

d1 |(g,r) da2|(ro,u) d|(ro,u)

h(a,q;u,r)| <
[ ( )< 90(

Summing the last bound over u, we deduce

Z]haq,ur Z Zd— Zle—

UELy u€y d|(ro,u) d|ro uelZT
dlu

90( 0)

where we have used that 7((q,7))7(ro) = 7(r). O
12



3. PROOF OF THE APPROXIMATION FORMULA

In this section, we use the circle method to prove Theorem 1. However, before we proceed
with that, we establish a lemma that allows us to leverage our estimates for exponential
sums to bound various dyadic maximal functions, including the maximal function of the
error term.

Lemma 7. Let L be a set of integers. For X € L, let Ty be a convolution operator on (*(Z4)
with Fourier multiplier my(€) given by

- | K@ @00 aue)
X
where (X, ) is a measure space, ® : Z x X — R, and K(;€) € LY (X,pu) is a kernel

independent of A. Let
(T3 f)(x) = sup [(TAf)(x)]-

Then
1Tl gty ooy < f sup |K(6; €)| dyu(6).

X geTd

Proof. Suppose that f € £2(Z%). We first exchange the order of integration to get

NI = | [ | K@:0f@e@0.0) ~x- &) duo)a

= L L KB:9](©e(—x-¢) dﬁ‘ dj =: L 19(0; %) dps(0).

Note that since the last integral is independent of A, the same bound holds for (T f)(x).
Consequently,

1T flle2(zay < (0; )| du(0)
02(74)
1/2
<[ { S woor} auo
JX xeZ4

r

<[{], |K<e;s>f<e>\2ds}l/2 au6)

JX

< | sup [K(6; )| 7] o gay drr(6),
X &eTd

[

on using Minkowski’s and Bessel’s inequalities. The lemma follows by applying Plancherel’s
theorem to f and f. O

Let A € [\ » [A, 2A]. Suppose that N* > X\ and write L = log N. By orthogonality,

RONG(E) = 3] ogple(p-€) | el(f(p) - XIo)as

1<p<N T

= L{ﬁsjv(e,gj)}e(—w) do =: LF(G;s)e(—Aé’) de, (3.1)

13



where Sy (6,€) is the exponential sum defined in (2.2). To analyze the last integral, we

partition the torus into major and minor arcs. Let Q = LY, where C' > 0 is a sufficiently
large constant to be described later. We set 9 = M(N*, Q) and m = m(N*, Q).

3.1. The minor arc contribution. The minor arc contribution to the integral (3.1) will
be part of the error term in the Approximation Formula. Let

EﬂaA>=fu»{fzw&syx—Amd&

m

Since R(\) = N™" 7% for A € T',,;,, the estimate (1.5) for E; will follow from Lemma 7 if we
show that for any B > 1, we have

f sup | F(0: €)|db < N"*LP. (3.2)
m &eTn

When 6 € m, it has a rational approximation a/q such that Q < ¢ < N*Q™!, (a,q) = 1 and
lq0 — a| < ¢7'. By Lemma 2 with f(z) = 02* + £, we have

sup Sy (6,6)| < NQ2 " Lo, (3.3)
(0,£)emxT

where ¢ is the constant in the statement of Lemma 2. Using this bound and Holder’s
inequality, we get

| sup #0510 < NG e | supls(o: )t as.
m §eT™ T &€T
Hence, when n > ny(k), we obtain from Lemma 5 that

f sup |F(0;€)|d < N"*Q=2"" Lo,

m &eT
We can therefore choose C; = C1(B, k,n) > 0 such that when C' > () in the definition of
@, the last inequality yields (3.2).
3.2. The major arc contribution, I. Let R = Q? and define

9%:ST‘TI(J\LR)? m:m(NvQ)u 'sz(N,R), ﬂ:m(N,Q>

We will show that when & ¢ 91", the contribution of the major arcs 91 to the integral (3.1)
can be estimated similarly to the minor arc contribution.
Suppose that 6 € M, , and write 6 = § — a/q. Then, by partial summation,

[Sx(@,61< > | D>, el +&p)|+4q
helUq p<N
p=h mod ¢q

< q(1 + N¥|5]) sup
M

3 «M, (3.4

p<M
p=h mod ¢q

where the supremum is over 2 < M < N and h € U,. When ¢ € v, it has a rational
approximation b/r such that

R<r<NR™* (br)=1, [ré—b <RN' (3.5)
14



Hence, we may use Lemma 3 to show that

sup|Sy(0,6)| < RV2NQL? < NQ Y2, (3.6)
feMm

On the other hand, if { € R, for some major arc in R, Lemma 4 yields

Sn(0,€) = gla, g;b,7)In(0,1) + O(NQ™),
where n = & — b/r. When £ ¢ M, we have either 7 > Q or r|n| = QN~'. When r > Q, (2.4)
yields
gla,q;b,r) £ QY
and when 7 < Q and r|n| = QN~!, (2.4) and (2.6) yield

ga, q;b,7)In(6,m) < v HHE(N/In])? < NQ™V2,

We conclude that inequality (3.6) holds whenever £ ¢ .

Thus, unless £ € 91", we have the bound (3.6) for some exponential sum Sy(6,&;). Using
that bound in place of (3.3) in the argument of §3.1, we conclude that when C' > Cy(B, n, k)
in the definition of @), the estimate (1.5) holds for

Balg:)) = ROVW(E) | F(B:)e(=20) ab,

where (&) is any bounded function that is supported outside D9t". In particular, the above
inequality holds for

TE)=1- > > tngla€ —a),

1<q<Q aclq

where ¢ is the bump function appearing in the statement of the Approximation Formula.

3.3. The major arc contribution, II. We now proceed to approximate the contribution
of the major arcs to (3.1) when & lies close to 91". For vectors a,q with 1 < q < @ and
a € Ug, let D,/q denote the support of ¢y /p(q€ — a), and let I denote the union of all
the different sets Da/q. Suppose that & = (&1,...,&,) € Majg. When 0 € M,/,, we write
d=60—a/qand n; =& —a;/q;. By Lemma 4,

Sn(0,&5) = gla, ¢ a5, ¢;)In(6,1;) + O(NQ™).

Since the major arcs are disjoint, we may define the function

F*(6;€) = | [ 9(a, q: a5, 4;) In (6, ;)

j=1
on all of M x DT. This function satisfies

sup  |F(0;€) — F*(6;€)| < N"Q™™.
(6,€)eM =M

Since || < QN~F, we can use the above inequality and Lemma 7 to show that (1.5) holds
for the error term

Ey(&0) =RV DD D yjolag —a)f [F(0;8) — F*(0:€)]e(—0) db.
1<q<Q aclUq m
15



By (3.1) and the above analysis, we have
GNE) = RN 3 ) wN/Q(qs—a>J F(0;€)e(-20) 0 + Ea(&:X), (37
1<q<Q aclq m
with an error term E(ﬁ; A) that satisfies (1.5). Next, let
=J U {0eT:10—-a/q <@NF}.
q<Q aely

We want to extend the integral on the right side of (3.7) to the set 9. The hypothesis on n
implies readily that n > 3k. We now apply once again Lemma 7 together with the inequality

N™d§
sup |F*(0;€)| df < qn/2+sj B e
sz'\fm ¢em q;g 1<qu Q/(anwy (14 NEG)m/
< QQ—n/k-i-aNn—k < Q—H—aNn—k
where we have used (2.4) and (2.5). Combining these estimates and (3.7), we obtain
DO RN XY violag —a) | F0:e(-30) 0 + Fr(gi)
1<q<Q aclq !

with an error term Ejs(&; \) that satisfies (1.5).
We now identify

f F*(0: €)e(—)\0) do (3.8)

as an integral over a subset of Q x R with respect to the product measure pu(r,d) = v(r) x dd,
where v is the counting measure on Q and dd is the Lebesgue measure on R. Then one final
appeal to Lemma 7 allows us to replace (3.8) by

Z 2 J {Hg a, q; a;, 4;)In (9, m)} (—Ala/q + 9)) dé. (3.9)

q=1aely

This step requires an estimate for the quantity

+ su a 1a, I 5 ds. 310
{;q:fﬂ% §j5|>QN—k} pl—“g 45 a5, 45) In (6, 15)] (3.10)

56‘31
>Q
Using (2.4) and (2.5), we can bound the quantity (3.10) by

N™dé N™dd
-2 -2 < lenfk'
S i 5 [ i <

We remark that the integral (3.9) equals S(N;a,q)Jx(n), where

f {HINdn] } —\0) do.

GE) =RMNT DT D] S(ha, q)twglal — a)Ii(E —a/q) + Ex(€), (3.11)

1<q<Q aclUq
16



an error term E'\)\(ﬁ) that satisfies (1.5). To complete the proof of Theorem 1, we note that
by the discussion on p. 498 in [29] (see also §3.1 in [15]), one has

JJ [0.N] -x)e(6(f(x) — ) dxds

_ k-1 J Lo (X)e(r ) dos(x) = doa (1), (3.12)

since the surface measure do is supported in the cube [0, N]".

3.4. Remarks on the proof of (1.6). We now take a moment to substantiate our claim,
made in the introduction, that the L*-bound (1.6) holds under a weaker assumption on the
dimension. The key observation is that to prove (1.6) one does not need to refer to Lemma 7,
and therefore, the inequality

J |F(0;€)|do < N FL™B (3.13)

can replace (3.2) in the treatment of the minor arcs. We can now use (3.3) and the trivial

majorization
| Iswto.can < 2 [ | 37 etomt)
T m<N
to deduce (3.13) from the results in §6 of [7], provided that & > 5 and n > ng(k). When
k < 4, the same conclusion follows a sharp form of Hua’s lemma, such as Lemma 1 in
Vaughan [30].

2s

do

4. LP BOUNDS FOR THE MAIN TERM MULTIPLIER

In this section, we consider the maximal function of the convolution operator whose mul-
tiplier is the main term in the approximation formula. Given a sufficiently large A € I, 1, let
j be the unique integer such that 2/=! < X\ < 27. Let M, denote the convolution operator
with Fourier multiplier

-2 T el (—afg) 3 MIE(g),
q=1acl,

qQ<Q

where

o —

M) = 3 { T otan i) onola€ — aidoa(e — a/a)

aclq

with N = 2//k @ = (log N)¢ for some large fixed C' > 0. We write M, for the maximal
operator defined pointwise as

M, f(x) := sup |M,f(x)|.

)\EFnyk

Our main objective in this section is to prove the following theorem.

Theorem 5. Let k > 2. Ifn > max{5,k/2 + 2} and p > "5, then the mazimal operator

M, is bounded on (P(Z™).
17



Remark 4. Note that ny(k),na(k) = k/2 + 2 so that these restrictions on the dimension n
dominate in Theorem 3. In terms of the exponent p, our range of /P-spaces is independent of
the degree k > 2 and match those of the quadratic case (when k& = 2) for the integral spherical
maximal function of Magyar, Stein and Wainger [24]. In contrast, from [15] we know that the
integral k-spherical maximal functions of Magyar [20] are unbounded on LP(R") for p < -
for each £ > 3. The difference is that in our current setup the analytic piece of the operator
(see below) is more localized in Fourier space than it is in previous works; this improves its

boundedness properties.
If D < R%, we introduce the maximal functions

Z M;/q;qf(x)

asQ
qeD

M/%P f(x) := sup
)\anyk

)

so that we have the pointwise inequality
e}
a/q;D;
Mo f(x) < Y3 3 M f(x), (4.1)
q=1aeUq jeZ7
where Dj = {x eR": i~ < g < 2 1 <i < n} Applying the triangle inequality on

(P(Z") in (4.1), we see that

o0
IM.flom < 35 D 2 IMEB F] gy (42)
=1aelU, jeZ

q

+3

Next, we estimate HMf/q;DfHZP(Zn) for a fixed rational number a/q and a dyadic box D.

Suppressing the dependence on a/q, we write My for the convolution operator M;L/ 4 Sim-

ilarly to [4, 24], we first decompose each Fourier multiplier M} into an analytic piece and
an arithmetic piece. Let 1) be the bump function from the statement of the Approximation

Formula. For q € Z", we define the function ¥4(§) = ¢(16g€) and note that, when A is

large and q < @), one has

Un/g(ag —a) = Y (a€ —a)Vq(ag — a).

We also write
n

G(a) = G(a,q;a,q) := | [ 9(a, ¢; ai, ¢1)-

i=1
We now define the Fourier multipliers

Sa(g) == Y Gla,q:a,q) V(g€ — a),

aelq
T3(e) == > vnjglat — a)dox(€ — a/q),
aczZn

so that

M(g) = TY(€)54(€).
18



Hence,
M2 g < 25 TS |ongany (4.3)

qeD

where the maximal function T3 is defined by

Taf(x):= sup |TYf(x)].
Aely,

The estimation of the sum on the right side of (4.3) is broken into three lemmas. First,
we note that when q < @, the supports of the functions 1n,q(q€ — a) are disjoint, which
puts the multipliers T\! and 7! into the form considered by Magyar, Stein and Wainger in
Section 2 of [24]. In particular, Corollary 2.1 in [24] allows us to transfer the bound in the
next lemma to the maximal operators Ti. (There is a technical difference in that our g
is composed of different ¢;; that is, in Magyar—Stein—-Wainger they consider q = (g, ..., q)
whereas we are considering more general q where often ¢; # ¢; for @ # j. This however does
not present a problem as we apply the Magyar—Stein—Wainger transference principle in each
variable separately).

Lemma 8. Ifn > k/2 + 2 and p > 1, the mazimal operator
T f(x) = iull\? |f * (Q/})\l/k(log)\)*c * doy ) (x)]
€
is bounded on LP(R™).

The proof of this lemma appears in the appendix.
From this lemma and Corollary 2.1 in [24], we deduce that

T3S oy < 15%F oy
Thus, (4.3) yields
[V iy © 25 15l (44)

qeD
Note that Corollary 2.1 in [24] requires an appropriate choice of Banach spaces in order
to apply it, hence our chosen decomposition of the multiplier and the application of their
Corollary 2.1 at this point in the proof.

Lemma 9. Let D be either a dyadic box of the form Dj above or a singleton in Z. Then
for all a,q and € > 0, one has

1/2
ZW%ﬂ@wgaq%W{zy%mﬁf}|fwmﬁ (4.5)
qeD qeD
where
i1 &

Lemma 10. For all a,q,q and € > 0, one has

|5 1 gy e @ w0a(@) 21 f e amy. (4.6)
19



Now, we will use the lemmas to complete the proof of Theorem 5; we prove Lemmas 9
and 10 later in the section and Lemma 8 in Appendix A. First, we note that when 1 < p < 2,
interpolation between Lemma 10 and the singleton case of Lemma 9 yields

HSquzp(ZTz) Se qa_n/p/wq(Q)l_aHfHZP(Z")a (4.7)

where p’ is the conjugate exponent of p, defined by the relation 1/p + 1/p’ = 1. Using (4.4)
and (4.7), we obtain

M Pl < 2515 vy <2 qa‘”“”{ > wq<q>1—f}||f|zp<zn> (4.8)
qeD qeD
for all p > 1. On the other hand, using (4.4) and Lemma 9, we have
1/2
M F gy © 25 15 Ly = qe_m{ 2 wq(Q)H} [l (49)
qeD qeD

When 1 < p < 2, we can interpolate between (4.9) and (4.8) with p; = (p +1)/2. If 6 is
defined so that 1/p = (1 —0)/p1 + 0/2, we get

[MEEP £y e SO e, (4.10)

where

¥, = { > wq(q)‘s‘g}l/s-

qeD

Recall that we are interested in the case when D is the Cartesian product of intervals
[29:71271), j; € Z, and write D; = 2%. We have

<] { Dl rm} <] { > (d/DZ-)Sle}.
i=1 dlq r~D; =1 d|q
d|T d<D;
Hence, by the well-known inequality 7(¢) <. ¢°,

21 Ss (qDl e Dn>€

and
n 7 1/2
Yy <e (qDl"'Dn)EH (q+Di> =: (¢D1 -+ Dy) (g, D).
Applying these bounds to the right side of (4.10), we finally obtain
M f] i S 7 (Dy -+~ DT, DY flincan (4.11)

provided that p > 1.

We now apply (4.11) to all boxes D; that appear on the right side of (4.2) and then sum

the resulting bounds over j to find that

0 je ,0/2 n
a/q;D; 2e—n/p' 2%q
M. J < P —_— ny. 4.12
jeZZ;’ H gy 2 {Z (q+23)9/2} I hercany (.12)
+

7j=1

20



Let jo = jo(g) be the unique index for which 270 < ¢ < 270! and note that (4.12) is uniform
in a € U,. By splitting the series over j at jo, we deduce that

a/q;D; —n/p’ j (6= '
3 HM faiDy 4 <. g +2€{ DE g2 Y 0/2)} | £ len 2y

aeUq jeZ’ J<jo J>Jjo

er(zm)
<o QI Flzny Se @V F oz, (4.13)

provided that 0 < ¢ < 6/2. After choosing ¢ > 0 sufficiently small, Theorem 5 is an
immediate consequence of (4.2) and (4.12), provided that n/p’ > 2, that is, p > 5.

4.1. Proofs of the lemmas.

Proof of Lemma 9. Note that the functions ¥4(q€ — a) with distinct central points a/q,
where q € D, have disjoint supports. Indeed, if ¥ (q'€ — &)Uy (q"€ — a”) # 0, with
a'/q # a”/q", then for some index i, 1 <i < n, we have

a, al al

1 1 7 7 7
A A A

a contradiction. Hence, Plancherel’s theorem gives

- S IG@E | Vaag - arlfe)f a¢

< (maxlG@P) | el e (4.14)

aclq

/ " / "

a; 1 1 1
q; 8(%) 8(% ) 47i

~

159 Tz = | 5],

L2 ’]I‘n

where

= 2 Uy(a€ — a).

aclq

Applying Lemmas 1 and 6 to each factor g(a, q; a;, ¢;) in G(a), we find that

n —1

e—n q; c—n —c

I | () I i (1.15)
i=1 » i

where we have used the well-known inequality
o(m)™' < m 'loglogm. (4.16)
Combining (4.14), (4.15) and Cauchy’s inequality (in q), we obtain

e | o) ] (goceraral

qeD qeD qeD

1/2
<. qe—n/Q{ Z wq(q)Q—s}

qeD

f

L2(T™)’

by our earlier observation about the supports of the functions W(q€—a). The lemma follows

by another appeal to Plancherel’s theorem. 0]
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Proof of Lemma 10. For b,q € Z" and f : Z" — C, let fy denote the restriction of f to
the residue class b modulo q in Z": i.e., fyq(x) = f(b + gx). We remark that it suffices to
prove the lemma for functions fy 4. Indeed, if the inequality

1S foqllerzny < M| foqlezm

holds for all restrictions fy q, then also

1S fla@zm = D, 15%vale@y <M D | foalaan = Ml flo@-

beZqg beZqg

We now proceed to establish (4.6) for restrictions fp 4. Note that
foa(§+a/q) =e(b-a/q) - fuq()

From this we can deduce that
Squ,q(y) = H(aa q;yY — b> q) (\Ijq * fb,Q) (}’),

where \Tf; denotes the inverse Fourier transform of VUq4(q€) and
H(a,q;u,q) = Y| G(a,¢;a,q)e(—u-a/q).
aclUq

(Note that H(a,q;u,q) is a multidimensional version of the sum h(a, ¢;u,r) that appears in
the proof of Lemma 6.) We now have

15 fo.ql e zny) = Z |H(a,q;y —b,q) (‘1\’; * fo.q) (¥)]-

yezZ”

We rearrange the last sum according to the residue class of y modulo q. Since H(a, ¢; y—b, q)
depends only on the residue class of y modulo q, we get

159 foqlzn = D [H(a,gir —b, )| Y |[(Tg * fog)(az +1)]

reZqg zZEL™

= Z ‘H(a,q;r—b,q)‘ Z Z \Tf;(qurr—x)fb,q(x)
reZqg zeZ™ ' XeL"

< Y |H(a,gr —b,a)| Y. [foa®)| Y. [Falaz + 1 —x)|. (4.17)
reZqg XEZL™ ZEL"

The sum over z on the right side of (4.17) is g-periodic in r — x, so we may assume that
—3 < (r—x)/q < 3. Since ¥q(m) = ¥q(m), we find that

M Tqlqz+1—x) = >

q(169€)e((qz + r —x) - £) dE|

zeZ" zZEL™ R™
1 ~ (z+ (r —x)/q
= 2 2 9 wlﬁ
sezn 177 n q

1 3 1 _ 1
Taa G+ =x)/a)/aP T g

zZEL™
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Inserting the last bound into the right side of (4.17), we deduce the estimate

|fo.qller@zn
15 foqlrzn) < q—;> > |H(a,q;x —b.q)].

reZq

Since

Z‘H(CMZ; bq‘-ZHHaq,uq :H{Z ‘h(a,q;u,qi)‘},

reZqg UEZq J=1 % u€lZq,

Lemma 6(iii) now yields

1S fo.qllerzny < | fo.qlle@n H (%)

j=1
The desired estimate follows from (4.16) and the bound 7(m) <. m®. O

5. COMPARISON WITH THE INTEGRAL MAXIMAL FUNCTION

In this section, we show that the maximal function of the error term is bounded on
(P(Z™) for a range of p by comparing the averages A, for A € I, ;, with the bounds for the
corresponding integral operators. This combined with the boundedness of the main term
shows that the maximal function A, is bounded on ¢*(Z"). As we will see, our range of
(P-boundedness for the averages A, matches that of the integral maximal function B, below,
possibly up to endpoints.

For f:7Z" — C and x € Z", define the integral averages by

Buf(x) = (f + 02)() = ey D) flx-y),

along with their maximal function
B, f(x) := sup By f(x)].
AeN
The operator B, is equivalent to Magyar—Stein—Wainger’s discrete spherical maximal func-
tion. Our goal is to prove the following comparison between the integral maximal function
and the Waring—Goldbach maximal function.

Theorem 6. Suppose that 1 < py < 2 andn = ny(k). If B, and M, are bounded on ¢*°(Z"),
then A, is bounded on (P(Z") for p > py.

Proof. Recall from the Approximation Formula that for each A € I',, ;, we have

Arf(x) = Myf(x) + Exf(x).

We will use the decay of the dyadic maximal function of the error term on ¢*(Z"). By (1.5),
we have
H <5 N e (5.1)
=27 zr)
for an arbitrarily large, fixed K > 0, pr0v1ded that the parameter C' in Theorem 1 is chosen
sufficiently large. Our first order of business is to establish the following matching bound on
P (Z™):

. < 3" fllevo 2y (5.2)
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For each x € Z™ we have

[Anf (x)] < (log A)" (Bl f])(x).
Thus,
[Exf(X)| < [Myf(x)] + (log A)"(Ba| f])(x)

for each A e I'), , and all x € Z". In turn,

sup [Exf(x)] < sup [Myf(x)[ + 5" sup (B[ f]) (%).

A=27 A=27 A=27
Taking ¢7°(Z") norms and applying the hypotheses, we deduce (5.2).

For py < p < 2, let # be such that 1/p = (1 — 0)/py + /2, and then choose K sufficiently

large to ensure that n(1—6) — K6 < —2. Then interpolation between (5.1) and (5.2) reveals
that

s 1], <3718,
A=2i
Summing over j € N, we find that

| sw |EAf|H < floen

for all py < p < 2. Combining this W1th our hypothesis that M, is bounded on ¢P°(Z") (and
hence, also on ¢?(Z")—by interpolation with the trivial ¢*°(Z") bound), we are done. O

Proof of Theorem 3. For k = 2, the main theorem of [24] shows that B, is bounded on ¢*(Z")
for p > 5 and n > 5. For k > 3, Theorem 1 of [16] we have that B, is bounded on ¢*(Z")

St k[giZ]HkQ, 1+ [5"1] -} and n = max{k(k +2), k*(k —1)}. Thus the

theorem is true for p > 1 + 3 ,Eg[kl] = 2n7k227fk71] and n > k*(k —1). O

for p > max{-"- 1+

6. APPLICATIONS

In this section, we prove Theorems 2 and 4. Recall that in what follows, (X, ;1) denotes a
probability space with a commuting family of invertible measure preserving transformations
T = (Ti,...,T,) without any non-zero rational points in their spectrum. For a function
f + X — C the Waring-Goldbach ergodic averages on X with respect to T" for A € I, ;, are
defined by (1.8).

6.1. Proof of Theorem 2. Fix ¢ > 0 and let 6 > 0 be a parameter to be chosen later (in
terms of €). Since & ¢ Q", we may assume without loss of generality that & ¢ Q. Then, we
can choose a convergent b/r to the continued fraction of & with r > 2671

Now, for a large A € Ty, let N = A% and Q = (log N)¢, where C = C(1) > 0 is the
power in the Approximation Formula corresponding to having (1.6) for B = 1. We note that
for sufficiently large A, there is at most one rational point a/q such that

< q < Q? ac Uqa wN/Q<q£ - a) > 0. (61)
If such a rational point does not exist, the main term in (1.4) vanishes, and we have
©A(€) < (log )7
Otherwise, (1.4) yields

x(€) < [&(N;a, q)cfi?l(é\i(ﬁ —a/q))| + (log \) !,



where a/q satisfies (6.1). Using (2.4) with € = 1/(4n), we deduce that, for n > 5,

o0 o0
S(ha,q) < q 0D VT (g )2 < g VP D RN R < g

q=1 d|q1 q=1
dlq

Hence, .
D&)< ¢, 7°|dor(N (& — a/q))| + (log \) .

Using the decay of doy (see for example [10]), we may now choose § so that

a Aoy (N (€~ a/q) <&,
unless

1 < q1 < 5_1 and |€1 - CL1/Q1| < (5N)_1 (62)

Thus, we have
x(§) S e+ (log\)7,
unless a1, q; and & satisfy (6.2). To complete the proof of the theorem, we will show that
for sufficiently large A, inequalities (6.2) are inconsistent with the choice of b/r.
Suppose that conditions (6.2) do hold and recall that |ré; — b| < r~!. Then

rqr i r 1
b —arr| < 2+ o 4 <,
b —arl < s+ <Gyt

as N — oo. Since b/r and a;/q; are reduced fractions, we conclude that a; = b and ¢; = r.
The latter, however, contradicts the inequalities ¢; < d=* < r/2. O]

Remark 5. We comment that a shorter proof of Theorem 2 exists by using the decay of the
error term in (1.5), but this proof has the advantage of not relying on the bound (1.5) and
instead uses (1.6).

6.2. The Pointwise Ergodic Theorem. To prove Theorem 4 we will utilize the Calderén
transference principle and in doing so, we need to introduce some notation. Let K be a large
natural number and define the discrete cube

C(K):={meZ":|m| <K fori=1,...,n}
For a p-measurable function f: X — C, define its truncated transfer function,
F(z,m) = f(T™x)1¢n)(m).
For A e I'), i, also define the transferred averages
1

A\F(z,m) := o) f(;)\log(p)F(x, m + p)

and their tail maximal function

A-pF(z,m) := sup |A\F(z,m)|.
A>R
We endow the transfer space X x Z" with the product measure of ;z on X and the counting
measure on Z". As in [15], we deduce Theorem 4 from the tail oscillation inequality below.
We refer to [15] for the details of this reduction, which relies on the Calderén transference
principle.
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Proposition 1 (Transferred Oscillation Inequality). Let f be a bounded function of mean
zero on X and F' its transfer function. For each € > 0, there exists a sufficiently large radius
R = R(e, f) such that
[ ASRF | 2 x xzm) < €1F | 2(x 20y - (6.3)
The proof of the transferred oscillation inequality requires a few steps, which we carry
out in succession. First, we extend the Approximation Formula to the lifted averages. For
& € T, define the partial Z"-Fourier transform as

F(z,£):= ) F(z,m)e(m-§).
mezZn
The reader may verify that - ~
ANF(z, &) = Wx(&)F(x,§). (6.4)
Equation (6.4) allows us to extend the multipliers on Z" to multiplers on X xZ". Suppressing
the dependence on a, ¢, we define the convolution operators M by the multipliers

MF (x,€) := MI(€)F(x,€),

where ]\/J\;’ is the Fourier multiplier from Section 4 with N = A% and Q = (log \)¢. Similarly,
define the error term by
Also define their tail maximal functions similarly to A~ grF.

Our estimates on the error term in Theorem 1 transfer over to show that

< (log R)™PY|F | p2(x xzm) (6.6)
L2(X xZ")

sup |EF|
A>R

for all large By > 0, so that choosing R sufficiently large we may make this arbitrarily small.
This shows that the averages are equiconvergent with the main term. Lemmas 8 and 9 and
a version of (4.12) for p = 2 combine to give

2, 2, MIF

ga q>Q

< Z IMERF | 12 (x xzm)

L2 (XXZ™)  q,qa,q>Q
< Q_CQHFHL?(szn)

for some positive Cy when n > max{n;(k), n2(k)}.
Our final proposition completes the proof of Theorem 4. This is the only place where the
vanishing of the rational spectrum is used.

sup
A>R

Proposition 2. If € > 0, then there ezists a radius R = R(f;¢€,Q) € 'y i sufficiently large
such that for all g,q < Q, a€ U, and a € Ug,

IMERF 2 xzny S €NF | 2(xwzm) (6.7)
with implicit constants independent of a, a; q, q.

As this is the essential part, we include the proof. Our proof will follow that of Proposi-
tion 9.2 in [15] for the integral k-spherical maximal function. Unlike the integral maximal
function where the localizing bump function depends on the modulus ¢, our current local-
izing bump function depends on the radius so that the continuous part of the multiplier

behaves like a smooth Hardy—Littlewood averaging operator. This simplifies our exposition.
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Proof. By Lemma 8, the tail maximal function of the multipliers

Y1k (log ) —C c(a€ — a)da)\o( (§ —a/q))
is bounded on L?(X x Z") with the bound

(]_[g a q,az,qz> MAxF

where R’ := R(log R)~¢. To prove Proposition 2 it suffices to show that

‘ 2R

for each a, q and sufficiently large R depending on e. Plancherel’s Theorem and the Spectral
Theorem imply

IMERF 2(x xzmy S

L2(X xZ™)

S ”FHLQ(XXZ") (6.8)
L2(X xZ")

a/q*F

2 (X xz) ff Wr(a€ —a)l® >, e((mi—my)[n+E]) ddvy(n).

ml,mgeC(K)
Once again, see [21] for this derivation. Collecting m; — my = m, we define the sequence
#{(m;,my) € C(K) x C(K) : m; —my = m}

Bulm) = #C(K)

The above becomes

Note that Ax — 1 as K — oo. This implies that Z\K(E) — 0p(&) tends pointwise to the
Dirac delta function on T" as K — co. Therefore,

— :Tn Jn [Yr(q€ — a)|? Z Ax(m) - e(m - [€ + n]) d€ dvs(n)

L2(X xZ") J T meZnr

[ f [ (a€ — a)” - A (€ + ) d€ dvg(n)
T Jn

a/q*F

Jan|¢R/ CI€_a ‘2 Z #C ( ) e(m'[5+ﬂ])d€dvf(n).

2(X xZ™) mezZm"

—~—

HC(K) ™ [+ F

— [ (ar- — 2/ * Br)(m) drs(m)

Jn
where the convolution is on the torus. Now we make use of the fact that multiplier is localized
to low frequencies. For all € > 0, there exists K. € N such that |[Ax — do| < € for all K > K,

and
»J;Tn

(- = a/a)[ « Arc(m)dvs ()
< [ Wanl — /)« [Bx —dol(m)] + [[dan(- ~ a/a)? = o) iy ()
~ | /)« (B = Goltm) ) + [ fontan )Py

<€l fliax) + vi(ln—a/al < |qR|™).
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For a/q = 0, vf(In| < |qR|™") — vf(0) as R — o, but v(0) = | fdu[* = 0 since f has
mean zero. For a/q # 0, vs(In —a/q| < |qR|™') — vs(a/q) as R — oo, but ve(a/q) = 0
by our assumption on the rational spectrum. Since there are finitely many a/q and a/q, we
can finish by choosing R large enough. Note that our parameter R depends on the spectral
measure vy and consequently on the function f, in addition to € and Q. O

APPENDIX A. ESTIMATES FOR MOLLIFIED CONTINUOUS k-SPHERICAL AVERAGES

In this appendix, we sketch the LP(R™)-boundedness of the maximal functions
T.f(x) := sup [T3 f (x)]
AeN

defined by the averages

Tnf = (¥njq * dox) * f,
where N = AV/F and Q satisfies 1 < Q < (log\)¢ for some constant C' > 0. In Section 4 we
applied the Magyar-Stein-Wainger transference principle to this maximal function in order

to obtain ?(Z")-bounds.
We will need the following two propositions in our proof.

Proposition 3. Let K e N. For all A\ > 1 and Q = 1, one has
— QN—TL
Uy * doy(X) Sgk ——————.
“ (1+ Ixl/NDF
Proof. By rescaling, we only need to prove that

_@
(1 + D™
This is well-known for the spherical measure (see for example, equation (6.5.12) on page

480 in [11]), but there is essentially no difference in the proof for the remaining k-spherical
measures when k > 3. O

1;?/22 * dUl(X> $K

Let P; denote the smooth Littlewood-Paley projection operator adpated to frequencies of
size approximately 27; that is,

Pf(€) == (¥(&/27Y) — (&/27)) [ (€).

Proposition 4. Forn > 2 and k > 2, we have that

—_— .1 n—1
Sup |Pif * (¥n)q * doy)| S (T +27)27 7% | fllre ey (A.2)
(S

L2(R)

Proof. From [15] we obtain the bounds
dor(€) < (1+ VR
£ V(don)() < (1+ [ Nig)"F
The frequency localization induced by P; implies the bounds
Pydoy(€) < (1+ N2 )

£ V(Pdon)(€) < (1+ [AVR2I )15
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The maximal function estimate (A.2) now follows from almost orthogonality of the Littlewood—
Paley projections and a standard Sobolev embedding argument in the field. For the details
of this Sobolev embedding argument, see the proof of Lemma 6.5.2 on page 478 of [11]. One
only needs to change the number (n — 1)/2 therein to (n — 1)/k. Alternatively, see Lemma
1.3 of [19] for a self-contained statement (where the role of the interval I there is played by
the cutoff function W). O

Proof of Lemma 8. Fix C' > 0. Since Ty is trivially bounded L*(R"), we only need to show
that it is also bounded on LP(R") for all 1 < p < 2.

We introduce a frequency decomposition of our multipliers depending on a fixed parameter
A > 1 to be chosen later:

~

Pflo\/"vf(é) 1= Ypikaogay-c () F(E),
and
phighf._ ¢ _ plowyf

With this decomposition if A > A, then (P f) *w)\l//k(l\()g:\)—c = P f Proposition 3 implies
the following pointwise bound:

SUp [ f % (rikogay—c * don)(@)] S (log M) M f(x), (A.3)

A<A

and we also have for all A € N the bound

SUD | P f % (1110 ny-c * 40 )(2)] Sc (log A)°M £ (x). (A.4)

AeN

We first prove a restricted weak-type inequality via interpolation, splitting up |[{T,f > a}|
into three sets where we use (A.4), (A.3), and (A.2). Let ' < R" and f := 1p denote its
indicator function so that

{T.f > o}l < [{sup [P f % (Y17t (10g ay-c * don)| > /2]
+ Hi‘;g | PPt f (l/fxl/?(;j\)fc *doy)| > a/2}]
< I{igg [P f s (31710 )¢ * don)| > /2]
+ {5up [P S (Yt y-e * dorn)| > a/4)]
+ [{sup | PYERf s (4311 1og ) * dOy )| > /4
< (log M| flha™ + {5 PP F o (1o y-c * doy)| > a/4}].

Observe that for each x € R™, we have

up [PV f o (s * do)(@) < 3 (p By + (g * dm)(wﬂ)

A>A j=logy A A>27
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so that

{Tef > a} < (og NI flha™ + { ), <SUP [P f > (a1 og )< *dU,\)\) > a/4}]
A

Jj=log, A

< (log N flhat+a™? D1 (1425 £

j=logy A

by Chebychev’s inequality and Proposition 4. Therefore
{Tef > a}] < (log )°[flra™ + A% | fpa™
= (log N)C|Fla™! + Ai_nk;?l|F|a_2.

Here |F'| denotes the Lebesgue measure of the set F.

To interpolate between L! and L? we need i — ”k—_Ql < 0 which occurs precisely when

n > k/2+ 1. For any 1 < p < 2 we choose A > 0 depending on 0 < « < 1 so that both
summands are dominated by |F|a~P, which yields the restricted weak-type inequality. The
Marcinkiewicz interpolation theorem gives the strong-type inequality. 0
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