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Abstract. We prove an asymptotic formula for the Fourier transform of the arithmetic sur-
face measure associated to the Waring–Goldbach problem and provide several applications,
including bounds for discrete spherical maximal functions along the primes and distribution
results such as ergodic theorems.

1. Introduction

In this paper, we study several questions on the interface between harmonic analysis and
analytic number theory. Our results are motivated in part by the study of discrete maximal
functions in harmonic analysis, in part by applications of those maximal functions in ergodic
theory, and in part by connections to classical problems in analytic number theory—in
particular, the Waring–Goldbach problem.

The harmonic analytic motivation behind our work comes from celebrated results by Bour-
gain [4, 5] on ergodic averages over certain sequences of integers and later work of Magyar,
Stein and Wainger [24] on discrete spherical maximal functions. Driven by applications in
ergodic theory, Bourgain [4] initiated the study of discrete maximal functions. A key feature
of Bourgain’s approach is his use of the circle method from analytic number theory. With
this in mind, Magyar [20] provided some partial results on discrete maximal functions related
to Waring’s problem, leading to Magyar, Stein and Wainger’s consideration of the discrete
spherical averages

Sλfpxq :“
1

#ty P Zn : |y|22 “ λu

ÿ

|y|22“λ

fpx´ yq,

along with their maximal function

S˚fpxq :“ sup
λPN

|Sλfpxq|.

Here, f : Zn Ñ C and | ¨ |2 denotes the Euclidean norm on Rn (thus, |y|22 “ y2
1 ` ¨ ¨ ¨ ` y2

n).
Magyar, Stein and Wainger [24] provided a complete answer to the question of `p-bound-

edness for the maximal operator S˚: they proved that, when n ě 5, S˚ is bounded on `ppZnq
when p ą n{pn´ 2q and unbounded when p ď n{pn´ 2q. Furthermore, it is shown that this
result cannot hold when n ă 5. In their work, they took the symbiosis between harmonic
analysis and number theory a step further by using a full-fledged application of the circle
method to analyze the Fourier transform of the arithmetic surface measure underlying the
discrete averages Sλf . Particularly, define

xσλpξq :“
1

#tx P Zn : |x|22 “ λu

ÿ

|x|22“λ

epx ¨ ξq,
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where ξ P Tn and, as usual, epzq :“ e2πiz. Magyar, Stein and Wainger established the
following approximation formula for xσλpξq.

Theorem (Magyar–Stein–Wainger). When n ě 5, one has the decomposition

xσλpξq “
8
ÿ

q“1

ÿ

1ďaďq
pa,qq“1

ep´aλ{qq
ÿ

bPZn
Gpa, q;bqΨpqξ ´ bqĄdσλpξ ´ q

´1bq ` xEλpξq,

where Ądσλ is the continuous Fourier transform of the surface measure of the sphere of radius?
λ,

Gpa, q;bq “
ÿ

xPpZ{qZqn
e

ˆ

a|x|22 ` b ¨ x

q

˙

is an n-dimensional Gauss sum, and Ψ is a smooth bump function which is 1 on r´1{8, 1{8sn

and supported in r´1{4, 1{4sn. The convolution operators Eλ associated with the error terms
xEλ satisfy the maximal inequality

›

›

›

›

sup
Λďλď2Λ

|Eλ|

›

›

›

›

`2pZnqÑ`2pZnq
À Λ1´n{4

for all Λ ą 0.

This theorem has served as a model for several authors [21, 2, 23, 15] who have studied
the maximal functions of the discrete surface measures on other arithmetic surfaces over the
integers. It is also the inspiration for one of the results of the present paper—see Theorem 1
below. However, in contrast to earlier work on discrete maximal functions, we study the
more singular maximal function of the “prime points” on the k-sphere. The goal of this
paper is to study the distribution of points with prime coordinates on the algebraic surface

fpxq :“ xk1 ` ¨ ¨ ¨ ` xkn “ λ, (1.1)

for λ P N. By combining number-theoretic techniques from the study of the Waring–
Goldbach problem with ideas from harmonic analysis, we are able to prove several results
on the distribution of such points, including: an equidistribution theorem, an L2-ergodic
theorem, and a pointwise ergodic theorem. A quantitative version of our equidistribution
theorem, Theorem 3 below, is another main result: we take the spherical maximal function
in a new direction by proving `ppZnq bounds for a discrete variant along the primes.

While restrictions of results about integer sequences to the primes are common in both
number theory and ergodic theory, the study of maximal functions related to the primes
has been limited to sequential averages (e.g. [6, 32, 27, 25, 26]); this paper appears to
be the first work on such restricted problems in harmonic analysis related to prime points
on forms in many variables. The new obstacles arising in these problems require further
development of the Bourgain–Magyar–Stein–Wainger paradigm of using the circle method to
decompose the maximal operator and thus to reduce the problem to estimates for exponential
sums and integrals. Earlier works have been able to employ a classical variant of the circle
method which uses the Poisson summation formula to estimate the major arc contribution.
The restriction to primes forces us to draw on our knowledge about equidistribution of
primes in arithmetic progressions and to employ more primitive tools (compared to Poisson
summation) to do so. Therefore, in order to be able to obtain any result at all, we blend mean
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value theorems of Vinogradov’s type into our minor arc analysis. In contrast, in problems
over unrestricted integers previous approaches were able to rely merely on L8 bounds for
the relevant exponential sums. Indeed, insights gained from this present work have already
led us to improve (in [1]) on the results of the third author [15, 16] on (unrestricted) integer
points on the k-sphere.

The study of prime points p “ pp1, . . . , pnq P Pn (here P is the set of primes) on the
surface (1.1) is known in number theory as the Waring–Goldbach problem. Classic work
by Hua [14] established the asymptotic for the number of representations of a large natural
number λ as a sum of n kth powers of primes when k and n are positive integers such
that n ą 2k and λ belongs to an appropriate infinite arithmetic progression Γn,k. Write
log x “ plog x1q ¨ ¨ ¨ plog xnq, and let Rpλq denote the number of prime solutions of (1.1),
counted with logarithmic weights:

Rpλq “
ÿ

fppq“λ

logp,

where (and through the remainder of the paper) p denotes a vector in Pn. Using the Hardy–
Littlewood circle method, Hua proved that when λÑ 8, one has the asymptotic

Rpλq „ Sn,kpλqλ
n{k´1, (1.2)

where Sn,kpλq is a product of local densities:

Sn,kpλq “
ź

pď8

µppλq.

Here µppλq with p ă 8 is related to the solubility of (1.1) over the p-adic field Qp, and µ8pλq
to solubility over the reals. In particular, the set Γn,k is determined by the requirement that
µppλq ą 0 for all primes p. Some examples of progressions Γn,k (see Chapter VIII in Hua [14]
for more details, including the full definition of Γn,k) include:

‚ Γn,k is the residue class λ ” n pmod 2q when k is odd;
‚ Γ5,2 is the residue class λ ” 5 pmod 24q;
‚ Γ17,4 is the residue class λ ” 17 pmod 240q.

The starting point to our main results lies in extending (1.2) to an approximation formula
for the Fourier transform of the arithmetic probability measure

ωλpxq :“
1

Rpλq
1tpPPn:fn,kppq“λupxq log x,

defined when Rpλq ą 0. The Fourier transform of this measure is the exponential sum

xωλpξq “
1

Rpλq

ÿ

fppq“λ

plogpqepp ¨ ξq. (1.3)

We note that xωλ is defined only for sufficiently large λ P Γn,k and n sufficiently large in terms
of k. Based on the current state of affairs in the Waring–Goldbach problem [17, 18], the
latter means that for large k, the value of n must be at least as large as 4k log k. In reality,
the true size of Rpλq is only known for n ě k2 ´ k`Op

?
kq, so it only makes sense to study

the Fourier transform xωλpξq when n ě k2 ´ k.
Our first theorem is a variant of the Magyar–Stein–Wainger theorem above for the Fourier

transform (1.3). Before stating the result, we need to introduce some notation. Given an
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integer q ě 1, we write Zq “ Z{qZ and Uq “ Z˚q , the group of units. If q “ pq1, . . . , qnq P Zn,
with q ě 1 (by which we mean that qi ě 1 for all i), we write Uq “ Uq1 ˆ ¨ ¨ ¨ ˆ Uqn ; it is
also convenient to set a{q “ pa1{q1, . . . , an{qnq and aq “ pa1q1, . . . , anqnq if a “ pa1, . . . , anq
is another vector in Zn. Given λ P Z and a,q P Zn, with q ě 1, we now define

gpa, q; b, rq “
1

ϕprq, rsq

ÿ

xPUrq,rs

e

ˆ

axk

q
`
bx

r

˙

,

Spλ; a,qq “
8
ÿ

q“1

ÿ

aPUq

ep´λa{qq
n
ź

i“1

gpa, q; ai, qiq,

where ϕ is Euler’s totient function and rq, rs “ lcmrq, rs. We fix a smooth bump function ψ
such that

1Qpxq ď ψpxq ď 1Qpx{2q,

where 1Q is the indicator function of the cube Q “ r´1, 1sn, and we write ψhpxq “ ψphxq
for h ą 0. We also define n1pkq :“ minp2k, k2 ` kq ` 3.

Theorem 1 (Approximation Formula). Let k ě 2 and n ě n1pkq. Also, let λ P Γn,k be large,
and suppose that λ1{k ď N À λ1{k. For any fixed B ą 0, there exists a C “ CpBq ą 0 such
that one has the decomposition

xωλpξq “
λn{k´1

Rpλq

ÿ

1ďqďQ

ÿ

aPUq

Spλ; a,qqψN{Qpqξ ´ aqĄdσλpξ ´ a{qq ` xEλpξq, (1.4)

where Q “ plogNqC, Ądσλ is the Fourier transform of the k-spherical surface measure on the
surface defined by (1.1) in Rn

` pcf. (3.12)q, and the convolution operators Eλ associated with

the error terms xEλpξq satisfy the maximal inequality
›

›

›

›

sup
Λďλď2Λ

|Eλ|

›

›

›

›

`2pZnqÑ`2pZnq
À plog Λq´B (1.5)

for all Λ ą 0.

Note that (1.5) implies that
›

›

›

xEλ

›

›

›

L8pTnq
À plog λq´B. (1.6)

We remark that the proof of Theorem 1 allows us to establish (1.6) in a slightly wider range
of dimension n than the theorem does for the stronger bound (1.5). Namely, if 2m is any
even integer such that one can apply the circle method to establish the asymptotic formula
in Waring’s problem for 2m kth powers, then (1.6) holds for n ě 2m ` 1. In particular,
using recent advances by Bourgain [7] and Wooley [33], we obtain (1.6) for n ě n0pkq, where
n0pkq “ 2k ` 1 when k “ 2, 3 or 4, and

n0pkq “ k2
` 3´ max

1ďjďk´1

R

kj ´minp2j, j2 ` jq

k ´ j ` 1

V

when k ě 5. These observations are useful in our next result, which describes the decay of
xωλ at irrational frequencies.

Theorem 2. Let k ě 2 and n ě n0pkq. If ξ R Qn, then xωλpξq Ñ 0 as λÑ 8 along Γn,k.
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Let rpλq denote the number of prime points on the k-sphere (1.1). It follows readily from
Theorem 2 that, when ξ R Qn, one has

lim
λÑ8
λPΓn,k

1

rpλq

ÿ

fppq“λ

epp ¨ ξq “ 0. (1.7)

This gives a pair of interesting corollaries. The first is obtained by noting that (1.7) is
precisely the Weyl criterion for uniform distribution on a torus.

Corollary 1. Let k ě 2, n ě n0pkq, and α P pRzQqn. The sets

tpα1p1, . . . , αnpnq : fppq “ λu

become uniformly distributed with respect to the Lebesgue measure on the n-dimensional torus
Tn as λÑ 8 along Γn,k.

Our second corollary is an L2-convergence result regarding certain ergodic averages; as in
Section 4 of [21], where the analogous ‘integral’ result is proven, this follows from the spectral
theorem for unitary operators. To state this corollary, let pX,µq denote a probability space
with a commuting family of n invertible measure preserving transformations T “ pT1, ..., Tnq.
Such a family is referred to as a fully ergodic family of transformations if the hypothesis

T s1 f “ T s2 f “ ¨ ¨ ¨ “ T snf “ f,

where s P N and f P L2pX,µq, implies that f is constant. Here Tf should be interpreted
as f ˝ T . As observed in [21], the notion of full ergodicity is actually a condition on the
joint spectrum of the Ti. More precisely, full ergodicity implies that given f P L2pX,µq, if
Tif “ epλiqf holds with λi rational for all i ď n, then f is constant almost everywhere. For
a function f : X Ñ C, λ P Γn,k and x P X, define the Waring–Goldbach ergodic averages on
X with respect to T by

Aλfpxq :“
1

Rpλq

ÿ

fppq“λ

plogpqfpT pxq, (1.8)

where Tmx :“ Tm1
1 ¨ ¨ ¨Tmnn x for m “ pm1, . . . ,mnq P Zn.

Corollary 2 (L2-mean ergodic theorem). Let k ě 2, n ě n0pkq, and let pX,µq be a prob-
ability space with a fully ergodic family of transformations T “ pT1, ..., Tnq. Then for all
f P L2pX,µq, the ergodic averages of f defined by (1.8) converge in L2pX,µq to the space
average of f ; that is, one has that

lim
λÑ8
λPΓn,k

Aλf “

ż

X

f dµ

in L2pX,µq.

Remark 1. As observed in Section 3 of [21], this result does not hold in general if one omits
the full ergodicity condition.

To prove the ergodic theorems, we consider the convolution operator Aλ with Fourier
multiplier xωλ: for functions f : Zn Ñ C, we write

Aλf :“ ωλ ‹ f. (1.9)
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This is our discrete spherical averaging operator along the primes. We will use the Approx-
imation Formula to prove a maximal theorem, stated below. In the remaining theorems,
define n2pkq :“ k2pk ´ 1q ` 1 for k ě 7, n2pkq :“ k2k´1 ` 1 for 3 ď k ď 6, and n2p2q “ 5;

also define pk,n :“ 1` n2pkq
2n´n2pkq

“ 2n
2n´n2pkq

.

Theorem 3. Let k ě 2 and n ě maxtn1pkq, n2pkqu. The maximal function given by

A˚f :“ sup
λPΓn,k

|Aλf | (1.10)

is bounded on `ppZnq for all p ą pk,n. Moreoever, when k “ 2 and n ě 7, the above maximal
function is bounded for all p ą n{pn´ 2q.

Remark 2. In sufficiently large dimensions, the maximal function A˚ is unbounded on `ppZnq
for p ă n

n´k
. This can readily be seen by testing the maximal function on a delta function

at the origin and using the asymptotic for Rpλq as λ Ñ 8 in Γn,k. With this in mind,
we conjecture that A˚ should be bounded on `ppZnq for all p ą n

n´k
in sufficiently large

dimensions; this is the same conjectured range of p as for the integral maximal function. We
refer the reader to [15] for more information on the conjectured range of `ppZnq-boundedness
for the integral maximal function.

Remark 3. In the quadratic case, the Magyar–Stein–Wainger theorem holds for n ě 5
whereas ours only holds for n ě 7. (Theorem 3 matches the Magyar–Stein–Wainger theorem
in the range of p, and both ranges are sharp.) An aspect of this work is that improvements
to the analogues of n2pkq and pk,n in the integer setting automatically translate to corre-
sponding improvements to n2pkq and pk,n in the present setting. Indeed, after the present
work was completed, we used some of the techniques developed in this paper to obtain such
improvements in the integer setting. That improvement, which has already appeared in print
in [1], lets one replace the above choice of n2pkq, for k ě 3, by

n2pkq “ k2
´ max

2ďjďk´1

"

kj ´minp2j ` 2, j2 ` jq

k ´ j ` 1

*

.

The value of pn,k can also be somewhat improved. The interested reader can find the details
in [1].

We take this moment to describe the proof of our maximal theorem and to compare it with
previous works. Throughout the paper we follow the paradigms of [4] as embellished in the
integral version of our averages in [24] and [21]. In particular we assume that the reader is
familiar with the transference technology of [24]. As in [24], our maximal theorem will exploit

the Approximation Formula which decomposes xωλ “ xMλ ` xEλ into the sum of a main term
and error term. We will use separate techniques to get good bounds on the suprema over λ
of both the main term and error term. As in all previous works, our decomposition requires a
major arc/minor arc decomposition of the degree k frequency variable. Unlike previous works
we require an additional major arc/minor arc decomposition of the linear frequency variables.
For the main term we will use estimates for relevant exponential sums and oscillatory integrals
in addition to the transference results of [24] to bound the main term. However, as already
mentioned, the methods in previous works such as [24, 15, 16] are insufficient to handle the
error term from our circle method approximation in the Approximation Formula. This is
due to the logarithmic decay in (1.5) as opposed to power savings that appeared in previous
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works. To overcome this obstacle, we introduce a hybrid sup and mean value bound to control
the relevant exponential sums on our set of minor arcs and consequently bound the error
term in `2; this is one of the novel aspects of our paper. From this, the known bounds for the
integer case in [24], and the bounds we are able to proe for the main term on `p, we are able
to bound the analogue of the Magyar–Stein–Wainger discrete spherical maximal function
along the primes.

Following Magyar [22] and Bourgain [4], we will use our maximal theorem to prove the
following pointwise ergodic theorem along the primes.

Theorem 4. Let k ě 2, n ě maxtn1pkq, n2pkqu, and let pX,µq be a probability space with
a fully ergodic family of transformations T “ pT1, ..., Tnq. Then for all f P L2pX,µq, the
ergodic averages of f defined by (1.8) converge almost everywhere to the space average of f ;
that is,

lim
λÑ8
λPΓn,k

Aλf “

ż

X

f dµ (1.11)

µ-almost everywhere.

Again, a standard argument (see for instance [32]) implies the same result without the
logarithmic weights.

Corollary 3. Suppose that pX,µq is a probability space with n commuting measure-preserving
operators T1, . . . , Tn satisfying the conditions of Theorem 4. Then, for all f P L2pX,µq, one
has

lim
λÑ8
λPΓn,k

1

rpλq

ÿ

fppq“λ

fpT pxq “

ż

X

f dµ (1.12)

µ-almost everywhere.

Combining our pointwise ergodic theorem on `2 with our maximal function bounds, we
immediately obtain, via standard approximation arguments, the following corollary.

Corollary 4. Suppose that pX,µq is a probability space with n commuting measure-preserving
transformations T1, . . . , Tn as in Theorem 4. Then, for p ą pk,n and for all f P LppX,µq,
one has

lim
λÑ8
λPΓn,k

Aλf “

ż

X

f dµ (1.13)

µ-almost everywhere.

The paper is organized as follows. In Section 2, we collect some needed number theoretic
facts. Then in Section 3, we use the circle method to decompose xωλ into a main term and
an error term; we also prove `2 bounds on the error in this section. One key additional
technical difficulty here compared with the work in [24] is that the precise shape of our error
terms is more complicated than in the integral case; in particular, we need to perform a
major and minor arc analysis of the linear phases (in addition to the higher degree phases).
In Section 4, we develop a careful analysis and interpolation argument to get `p bounds
on the main term, since we cannot apply the techniques in [24] directly. In Section 5, we
compare the averages along the primes to the integral ones to control the error terms and
prove Theorem 3. Finally, we prove the ergodic theorems in Section 6.
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2. Bounds for exponential sums and integrals

Here we recall and prove some results from analytic number theory.

Lemma 1. Let a, b, q be integers with gcdpa, b, qq “ 1. Then, for any fixed ε ą 0, one has

ÿ

xPUq

e

ˆ

axk ` bx

q

˙

À q1{2`ε.

Proof. This is a special case of Theorem 1 of Shparlinski [28]. �

Lemma 2. Let fpxq “ αxk ` ¨ ¨ ¨ ` α1x P Rrxs, with k ě 2, and suppose that there exist
integers a, q such that pa, qq “ 1 and |qα ´ a| ď q´1. Then

ÿ

pďN

plog pqepfppqq À NLc
`

q´1
`N´1{2

` qN´k
˘21´2k

,

where L “ logN and c “ ck is a constant.

Proof. This is a variant of Theorem 1 in Harman [13], where the exponent of 21´2k is replaced
by 41´k at the expense of replacing the factor Lc above by N ε. The present version is
well-known to the experts, but since we were unable to locate it in the literature, we will
provide a brief sketch of the argument. The proof requires small adjustments to the proofs
of Lemmas 2–4 in [13]. Those proofs use the inequality

ÿ

xďX

τrpxqmin
`

Y, }θx}´1
˘

À Xε
ÿ

xďX

min
`

Y, }θx}´1
˘

, (2.1)

where τrpxq is the r-fold divisor function. However, in most places the above inequality is
used for convenience rather than by necessity. The places where this inequality is really
needed occur towards the ends of the proofs of Lemmas 3 and 4 in [13], when one wants to
apply a standard estimate (e.g., Lemma 2.2 in Vaughan [31]) to the sum on the right side
of (2.1). In those places, we can replace (2.1) with

ÿ

xďX

τrpxqmin
`

Y, }θx}´1
˘

À pXY q1{2plogXqc
"

ÿ

xďX

min
`

Y, }θx}´1
˘

*1{2

.

We can then follow the rest of Harman’s proof. �

Lemma 3. Let a, b, q, r, be integers such that pa, qq “ pb, rq “ 1 and |α´a{q| ď 2N´1. Then
ÿ

pďN
p”b pmod rq

plog pqepαpq À NL3
`

q´1
`N´2{5

` qN´1
˘1{2

.
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Proof. This is the main result of Balog and Perelli [3], with some of the terms slightly
simplified for use in the present context. �

When 1 ď Q ď X, we define the set of major arcs MpX,Qq by

MpX,Qq “
ď

qďQ

ď

aPUq

 

θ P T : |qθ ´ a| ď QX´1
(

.

The complement of a set of major arcs, mpX,Qq “ TzMpX,Qq, is the respective set of minor
arcs. When working with a particular choice of major and minor arcs, we may write Ma{q

for the major arc centered at the rational a{q. Note that when 2Q ă X, the set MpX,Qq is
the disjoint union of closed intervals of total measure OpQX´1q.

Our analysis of xωλpξq will depend on the exponential sum

SNpθ, ξq “
ÿ

pďN

plog pqepθpk ` ξpq, (2.2)

where the summation is over the prime numbers p ď N . In particular, we need to ap-
proximate SNpθ, ξq when both θ and ξ are near rationals with small denominators. The
approximations involve the exponential sum gpa, q; b, rq defined above and the oscillatory
integral

INpδ, ηq “

ż N

0

e
`

δxk ` ηx
˘

dx. (2.3)

We note that, by Lemma 1,

gpa, q; b, rq À rq, rs´1{2`ε, (2.4)

and that the kth-derivative estimate for oscillatory integrals (Proposition 2 on p. 332 in
Stein [29]) yields

INpδ, ηq À
N

p1`Nk|δ|q1{k
. (2.5)

Furthermore, since

INpδ, ηq “ k´1N

ż 1

0

u1{k´1e
`

δ0u` η0u
1{k

˘

du,

where δ0 “ δNk and η0 “ ηN , we can also apply the second-derivative estimate (the case
k “ 2 of the corollary on p. 334 of [29]) to deduce the bound

INpδ, ηq À
N

p1`N |η|q1{2
. (2.6)

Our next lemma uses the Siegel–Walfisz theorem to approximate SNpθ, ξq.

Lemma 4. Let Q,R ď plogNqC for some fixed C ą 0, let θ P Ma{q for some major arc of
the set M “MpNk, Qq, and let ξ P Nb{r for some major arc of the set N “MpN,Rq. Then

SNpθ, ξq “ gpa, q; b, rqINpθ ´ a{q, ξ ´ b{rq `O
`

NpQRq´10
˘

.
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Proof. We write δ “ θ´ a{q, η “ ξ´ b{r, and s “ rq, rs. When we partition the exponential
sum SNpθ, ξjq into sums over primes in fixed arithmetic progressions, we find that

SNpθ, ξq “
ÿ

hPUs

ÿ

pďN
p”h pmod sq

plog pqe

ˆˆ

a

q
` δ

˙

pk `

ˆ

b

r
` η

˙

p

˙

`Opsq

“
ÿ

hPUs

e

ˆ

ahk

q
`
bh

r

˙

ÿ

pďN
p”h pmod sq

plog pqepδpk ` ηpq `O
`

QR
˘

. (2.7)

Since s ď QR ď plogNq2C and h P Us, the Siegel–Walfisz theorem yields
ÿ

pďx
p”h pmod sq

log p “
x

ϕpsq
`O

`

NpQRq´12
˘

for all x ď N . Using this asymptotic formula and partial summation, we obtain
ÿ

pďN
p”h pmod sq

plog pqepδpk ` ηpq “ ϕpsq´1INpδ, ηq `O
`

NpQRq´11
˘

. (2.8)

The lemma follows from (2.7) and (2.8). �

Lemma 5. Let k ě 2 and 2s ě minp2k, k2 ` kq ` 2. Then
ż

T
sup
ξ
|SNpθ, ξq|

2s dθ À N2s´kL2s, (2.9)

where L “ logN .

Proof. Set Hj “ sN j and define

ahpθq “
ÿ

p1,...,psďN
p1`¨¨¨`ps“h

plogpqepθfs,kppqq,

so that
SNpθ, ξq

s
“

ÿ

hďH1

ahpθqepξhq.

By applying Cauchy’s inequality, we deduce that

sup
ξ
|SNpθ, ξq|

2s
ď H1

ÿ

hďH1

|ahpθq|
2.

Hence,
ż

T
sup
ξ
|SNpθ, ξq|

2s dθ ď H1

ÿ

hďH1

ż

T
ahpθqahpθq dθ. (2.10)

By orthogonality,
ż

T
ahpθqahpθq dθ “

ÿ

p,p1:(2.11)

plogpqplogp1q,

where p,p1 ď N and satisfy the conditions

fs,kppq “ fs,kpp
1
q, fs,1ppq “ fs,1pp

1
q “ h. (2.11)

10



Thus,
ÿ

hďH1

ż

T
ahpθqahpθq dθ À L2sIs,kpNq, (2.12)

where Is,kpNq denotes the number of integer solutions of the system

fs,kpxq “ fs,kpyq, fs,1pxq “ fs,1pyq, (2.13)

with 1 ď x,y ď N . The lemma follows from (2.10), (2.12) and the inequality

Is,kpNq À N2s´k´1, (2.14)

which we establish next.
Under the hypothesis 2s ě 2k ` 2, the bound (2.14) is a direct consequence of the main

result of Brüdern and Robert [9]. On the other hand, by grouping the solutions of (2.13)
according to the values of the expressions fs,jpxq ´ fs,jpyq, 1 ă j ă k, we find that

Is,kpNq ď
ÿ

|h2|ăH2

¨ ¨ ¨
ÿ

|hk´1|ăHk´1

Js,kpN ; 0, h2, . . . , hk´1, 0q, (2.15)

where Js,kpN ;hq is the generalized Vinogradov integral

Js,kpN ;hq “

ż

Tk

ˇ

ˇ

ˇ

ˇ

ÿ

xďN

e
`

αkx
k
` ¨ ¨ ¨ ` α1x

˘

ˇ

ˇ

ˇ

ˇ

2s

ep´α ¨ hq dα.

We can now refer to the recent work by Bourgain, Demeter and Guth [8] on the classic
Vinogradov integral Js,kpNq “ Js,kpN ;0q to get

Js,kpN ;hq ď Js,kpNq À N2s´kpk`1q{2,

provided that 2s ą kpk` 1q (see §5 in [8]). Inserting this bound into the right side of (2.15)
yields (2.14) for 2s ą k2 ` k. �

In §4, we will need some more refined estimates for gpa, q; b, rq and its averages; we establish
those in the next lemma. Here, µpnq denotes the Möbius function from number theory (see
§16.3 in Hardy and Wright [12]).

Lemma 6. Let a, b, q, r, be integers with pa, qq “ pb, rq “ 1, and write q0 “ q{pq, rq and
r0 “ r{pq, rq. Then:

(i) if pr0, qq ą 1, one has gpa, q; b, rq “ 0;
(ii) if pr0, qq “ 1, one has

gpa, q; b, rq “
µpr0q

ϕpr0q
gpark0 , q; bq0, qq;

(iii) one has
ÿ

uPZr

ˇ

ˇ

ˇ

ˇ

ÿ

bPUr

gpa, q; b, rqep´ub{rq

ˇ

ˇ

ˇ

ˇ

ď
τprqr

ϕpr0q
. (2.16)

Proof. (i) Suppose that pr0, qq ą 1. Then there is a prime number p and positive integers
α, β, with α ă β, such that

pα | q, pα`1 - q, pβ | r, pβ`1 - r.
11



Let q “ pαq1 and r “ pβr1. By a change of the summation variable x P Urq,rs in gpa, q; b, rq
to x “ pβy ` rq1, r1sz, where y P Urq1,r1s and z P Upβ , we can factor the exponential sum
gpa, q; b, rq as

gpa, q; b, rq “ gpapkβ´α, q1; b, r1qgpa1, p
α; b1, p

β
q, (2.17)

where a1 “ arq1, r1s
kq´1

1 and b1 “ brq1, r1sr
´1
1 . We note that pa1, pq “ pb1, pq “ 1. Next, we

write the variable z P Upβ in gpa1, p
α; b1, p

βq as z “ u ` pαv, where u P Upα and v P Zpγ ,
γ “ β ´ α. This gives

ϕppβqgpa1, p
α; b1, p

β
q “

ÿ

uPUpα
e

ˆ

a1u
k

pα
`
b1u

pβ

˙

ÿ

vPZpγ
e

ˆ

b1v

pγ

˙

.

Since pb1, pq “ 1, the last sum over v vanishes. Together with the factorization (2.17), this
proves (i).

(ii) When pq, r0q “ 1, we change the summation variable x P Urq,rs in gpa, q; b, rq to
x “ r0y ` qz, where y P Uq and z P Ur0 . Similarly to (2.17), we have

gpa, q; b, rq “ gpark0 , q; b, pq, rqqϕpr0q
´1

ÿ

zPUr0

e

ˆ

bq0z

r0

˙

.

We now note that the last exponential sum is a Ramanujan sum modulo r0 and pbq0, r0q “ 1.
Hence, the claim follows from a classical expression for the Ramanujan sum (see Theorem 272
in Hardy and Wright [12]).

(iii) Let hpa, q;u, rq denote the sum over b on the left side of (2.16). By part (i), we may
assume that pq, r0q “ 1. We can then use part (ii) to rewrite hpa, q;u, rq as

hpa, q;u, rq “
µpr0q

ϕpr0qϕpqq

ÿ

xPUq

e

ˆ

ark0x
k

q

˙

ÿ

bPUr

e

ˆ

pr0x´ uqb

r

˙

.

Since the inner sum is a Ramanujan sum, we deduce that

|hpa, q;u, rq| ď
1

ϕpr0qϕpqq

ÿ

d|r

d
ÿ

xPUq
d|pr0x´uq

1.

We remark that a divisor d of r factors uniquely as d “ d1d2, where d1 | pq, rq and d2 | r0.
When d2 - u, the sum over x vanishes. On the other hand, when d2 | u, the condition
d | pr0x ´ uq restricts h to a single residue class modulo d1; hence, the inner sum is then
bounded by ϕpqq{d1. We conclude that

|hpa, q;u, rq| ď
1

ϕpr0qϕpqq

ÿ

d1|pq,rq

ÿ

d2|pr0,uq

d1d2

ˆ

ϕpqq

d1

˙

“
τppq, rqq

ϕpr0q

ÿ

d|pr0,uq

d.

Summing the last bound over u, we deduce

ÿ

uPZr

|hpa, q;u, rq| ď
τppq, rqq

ϕpr0q

ÿ

uPZr

ÿ

d|pr0,uq

d “
τppq, rqq

ϕpr0q

ÿ

d|r0

d
ÿ

uPZr
d|u

1 “
τprqr

ϕpr0q
,

where we have used that τppq, rqqτpr0q “ τprq. �
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3. Proof of the Approximation Formula

In this section, we use the circle method to prove Theorem 1. However, before we proceed
with that, we establish a lemma that allows us to leverage our estimates for exponential
sums to bound various dyadic maximal functions, including the maximal function of the
error term.

Lemma 7. Let L be a set of integers. For λ P L, let Tλ be a convolution operator on `2pZdq
with Fourier multiplier xmλpξq given by

xmλpξq “

ż

X

Kpθ; ξqepΦpλ, θqq dµpθq,

where pX,µq is a measure space, Φ : Z ˆ X Ñ R, and Kp¨; ξq P L1pX,µq is a kernel
independent of λ. Let

pT˚fqpxq “ sup
λPL

|pTλfqpxq|.

Then

}T˚}`2pZdqÑ`2pZdq ď

ż

X

sup
ξPTd

|Kpθ; ξq| dµpθq.

Proof. Suppose that f P `2pZdq. We first exchange the order of integration to get

|pTλfqpxq| “

ˇ

ˇ

ˇ

ˇ

ż

Td

ż

X

Kpθ; ξq pfpξqepΦpλ, θq ´ x ¨ ξq dµpθqdξ

ˇ

ˇ

ˇ

ˇ

ď

ż

X

ˇ

ˇ

ˇ

ˇ

ż

Td
Kpθ; ξq pfpξqep´x ¨ ξq dξ

ˇ

ˇ

ˇ

ˇ

dθ “:

ż

X

|gpθ;xq| dµpθq.

Note that since the last integral is independent of λ, the same bound holds for pT˚fqpxq.
Consequently,

}T˚f}`2pZdq ď

›

›

›

›

ż

X

|gpθ; ¨q| dµpθq

›

›

›

›

`2pZdq

ď

ż

X

"

ÿ

xPZd
|gpθ;xq|2

*1{2

dµpθq

ď

ż

X

"
ż

Td
|Kpθ; ξq pfpξq|2 dξ

*1{2

dµpθq

ď

ż

X

sup
ξPTd

|Kpθ; ξq|
›

› pf
›

›

L2pTdq dµpθq,

on using Minkowski’s and Bessel’s inequalities. The lemma follows by applying Plancherel’s
theorem to f and f̂ . �

Let λ P Γn,k X rΛ, 2Λs. Suppose that Nk ě λ and write L “ logN . By orthogonality,

Rpλqxωλpξq “
ÿ

1ďpďN

plogpqepp ¨ ξq

ż

T
eprfppq ´ λsθq dθ

“

ż

T

" n
ź

j“1

SNpθ, ξjq

*

ep´λθq dθ “:

ż

T
F pθ; ξqep´λθq dθ, (3.1)

13



where SNpθ, ξq is the exponential sum defined in (2.2). To analyze the last integral, we
partition the torus into major and minor arcs. Let Q “ LC , where C ą 0 is a sufficiently
large constant to be described later. We set M “MpNk, Qq and m “ mpNk, Qq.

3.1. The minor arc contribution. The minor arc contribution to the integral (3.1) will
be part of the error term in the Approximation Formula. Let

xE1pξ;λq “ Rpλq´1

ż

m

F pθ; ξqep´λθq dθ.

Since Rpλq Á Nn´k for λ P Γn,k, the estimate (1.5) for xE1 will follow from Lemma 7 if we
show that for any B ą 1, we have

ż

m

sup
ξPTn

|F pθ; ξq| dθ ÀB N
n´kL´B. (3.2)

When θ P m, it has a rational approximation a{q such that Q ď q ď NkQ´1, pa, qq “ 1 and
|qθ ´ a| ă q´1. By Lemma 2 with fpxq “ θxk ` ξx, we have

sup
pθ,ξqPmˆT

|SNpθ, ξq| À NQ´21´2k

Lck , (3.3)

where ck is the constant in the statement of Lemma 2. Using this bound and Hölder’s
inequality, we get

ż

m

sup
ξPTn

|F pθ; ξq| dθ À NQ´21´2k

Lck
ż

T
sup
ξPT
|SNpθ; ξq|

n´1 dθ.

Hence, when n ě n1pkq, we obtain from Lemma 5 that
ż

m

sup
ξPTn

|F pθ; ξq| dθ À Nn´kQ´21´2k

Ln`ck .

We can therefore choose C1 “ C1pB, k, nq ą 0 such that when C ě C1 in the definition of
Q, the last inequality yields (3.2).

3.2. The major arc contribution, I. Let R “ Q3 and define

R “MpN,Rq, N “MpN,Qq, r “ mpN,Rq, n “ mpN,Qq.

We will show that when ξ R Nn, the contribution of the major arcs M to the integral (3.1)
can be estimated similarly to the minor arc contribution.

Suppose that θ PMa{q and write δ “ θ ´ a{q. Then, by partial summation,

|SNpθ, ξq| ď
ÿ

hPUq

ˇ

ˇ

ˇ

ˇ

ÿ

pďN
p”h mod q

epδpk ` ξpq

ˇ

ˇ

ˇ

ˇ

` q

À qp1`Nk
|δ|q sup

M,h

ˇ

ˇ

ˇ

ˇ

ÿ

pďM
p”h mod q

epξpq

ˇ

ˇ

ˇ

ˇ

, (3.4)

where the supremum is over 2 ď M ď N and h P Uq. When ξ P r, it has a rational
approximation b{r such that

R ď r ď NR´1, pb, rq “ 1, |rξ ´ b| ď RN´1. (3.5)
14



Hence, we may use Lemma 3 to show that

sup
θPM

|SNpθ, ξq| À R´1{2NQL3
À NQ´1{3. (3.6)

On the other hand, if ξ P Rb{r for some major arc in R, Lemma 4 yields

SNpθ, ξq “ gpa, q; b, rqINpδ, ηq `O
`

NQ´10
˘

,

where η “ ξ ´ b{r. When ξ R N, we have either r ě Q or r|η| ě QN´1. When r ě Q, (2.4)
yields

gpa, q; b, rq À Q´1{2`ε,

and when r ď Q and r|η| ě QN´1, (2.4) and (2.6) yield

gpa, q; b, rqINpδ, ηq À r´1{2`ε
pN{|η|q1{2 À NQ´1{2`ε.

We conclude that inequality (3.6) holds whenever ξ R N.
Thus, unless ξ P Nn, we have the bound (3.6) for some exponential sum SNpθ, ξjq. Using

that bound in place of (3.3) in the argument of §3.1, we conclude that when C ě C2pB, n, kq
in the definition of Q, the estimate (1.5) holds for

xE2pξ;λq “ Rpλq´1Ψpξq

ż

M

F pθ; ξqep´λθq dθ,

where Ψpξq is any bounded function that is supported outside Nn. In particular, the above
inequality holds for

Ψpξq “ 1´
ÿ

1ďqďQ

ÿ

aPUq

ψN{Qpqξ ´ aq,

where ψ is the bump function appearing in the statement of the Approximation Formula.

3.3. The major arc contribution, II. We now proceed to approximate the contribution
of the major arcs to (3.1) when ξ lies close to Nn. For vectors a,q with 1 ď q ď Q and
a P Uq, let Na{q denote the support of ψN{Qpqξ ´ aq, and let N denote the union of all
the different sets Na{q. Suppose that ξ “ pξ1, . . . , ξnq P Na{q. When θ P Ma{q, we write
δ “ θ ´ a{q and ηj “ ξj ´ aj{qj. By Lemma 4,

SNpθ, ξjq “ gpa, q; aj, qjqINpδ, ηjq `O
`

NQ´20
˘

.

Since the major arcs are disjoint, we may define the function

F ˚pθ; ξq “
n
ź

j“1

gpa, q; aj, qjqINpδ, ηjq

on all of MˆN. This function satisfies

sup
pθ,ξqPMˆN

|F pθ; ξq ´ F ˚pθ; ξq| À NnQ´20.

Since |M| À QN´k, we can use the above inequality and Lemma 7 to show that (1.5) holds
for the error term

xE3pξ;λq “ Rpλq´1
ÿ

1ďqďQ

ÿ

aPUq

ψN{Qpqξ ´ aq

ż

M

“

F pθ; ξq ´ F ˚pθ; ξq
‰

ep´λθq dθ.
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By (3.1) and the above analysis, we have

xωλpξq “ Rpλq´1
ÿ

1ďqďQ

ÿ

aPUq

ψN{Qpqξ ´ aq

ż

M

F ˚pθ; ξqep´λθq dθ `xE4pξ;λq, (3.7)

with an error term xE4pξ;λq that satisfies (1.5). Next, let

M1
“

ď

qďQ

ď

aPUq

 

θ P T : |θ ´ a{q| ď QN´k
(

.

We want to extend the integral on the right side of (3.7) to the set M1. The hypothesis on n
implies readily that n ě 3k. We now apply once again Lemma 7 together with the inequality

ż

M1zM

sup
ξPN

|F ˚pθ; ξq| dθ À
ÿ

qďQ

ÿ

1ďaďq

q´n{2`ε
ż 8

Q{pqNkq

Nn dδ

p1`Nkδqn{k

À Q2´n{k`εNn´k
À Q´1`εNn´k,

where we have used (2.4) and (2.5). Combining these estimates and (3.7), we obtain

xωλpξq “ Rpλq´1
ÿ

1ďqďQ

ÿ

aPUq

ψN{Qpqξ ´ aq

ż

M1

F ˚pθ; ξqep´λθq dθ `xE5pξ;λq,

with an error term xE5pξ;λq that satisfies (1.5).
We now identify

ż

M1

F ˚pθ; ξqep´λθq dθ (3.8)

as an integral over a subset of QˆR with respect to the product measure µpr, δq “ νprqˆdδ,
where ν is the counting measure on Q and dδ is the Lebesgue measure on R. Then one final
appeal to Lemma 7 allows us to replace (3.8) by

8
ÿ

q“1

ÿ

aPUq

ż

R

" n
ź

j“1

gpa, q; aj, qjqINpδ, ηjq

*

ep´λpa{q ` δqq dδ. (3.9)

This step requires an estimate for the quantity
"

ÿ

a,q
qąQ

ż

R
`
ÿ

a,q

ż

|δ|ěQN´k

*

sup
ξPN

n
ź

j“1

|gpa, q; aj, qjqINpδ, ηjq| dδ. (3.10)

Using (2.4) and (2.5), we can bound the quantity (3.10) by

ÿ

qąQ

q´2

ż

R

Nn dδ

p1`Nk|δ|qn{k
`

8
ÿ

q“1

q´2

ż 8

QN´k

Nn dδ

p1`Nkδqn{k
À Q´1Nn´k.

We remark that the integral (3.9) equals Spλ; a,qqIλpηq, where

Iλpηq “

ż

R

" n
ź

j“1

INpδ, ηjq

*

ep´λδq dδ.

Hence,

xωλpξq “ Rpλq´1
ÿ

1ďqďQ

ÿ

aPUq

Spλ; a,qqψN{Qpqξ ´ aqIλpξ ´ a{qq ` xEλpξq, (3.11)
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an error term xEλpξq that satisfies (1.5). To complete the proof of Theorem 1, we note that
by the discussion on p. 498 in [29] (see also §3.1 in [15]), one has

Iλpηq “

ż

R

ż

Rn
1r0,Nsnpxqepη ¨ xqepδpfpxq ´ λqq dxdδ

“ λn{k´1

ż

Rn
1r0,Nsnpxqepη ¨ xq dσλpxq “: Ądσλpηq, (3.12)

since the surface measure dσλ is supported in the cube r0, N sn.

3.4. Remarks on the proof of (1.6). We now take a moment to substantiate our claim,
made in the introduction, that the L8-bound (1.6) holds under a weaker assumption on the
dimension. The key observation is that to prove (1.6) one does not need to refer to Lemma 7,
and therefore, the inequality

ż

m

|F pθ; ξq| dθ À Nn´kL´B (3.13)

can replace (3.2) in the treatment of the minor arcs. We can now use (3.3) and the trivial
majorization

ż

T
|SNpθ, ξq|

2s dθ À L2s

ż

T

ˇ

ˇ

ˇ

ˇ

ÿ

mďN

epθmk
q

ˇ

ˇ

ˇ

ˇ

2s

dθ

to deduce (3.13) from the results in §6 of [7], provided that k ě 5 and n ě n0pkq. When
k ď 4, the same conclusion follows a sharp form of Hua’s lemma, such as Lemma 1 in
Vaughan [30].

4. Lp bounds for the main term multiplier

In this section, we consider the maximal function of the convolution operator whose mul-
tiplier is the main term in the approximation formula. Given a sufficiently large λ P Γn,k, let
j be the unique integer such that 2j´1 ď λ ă 2j. Let Mλ denote the convolution operator
with Fourier multiplier

xMλpξq “
8
ÿ

q“1

ÿ

aPUq

e p´λa{qq
ÿ

qďQ

{

M
a{q;q
λ pξq,

where
{

M
a{q;q
λ pξq :“

ÿ

aPUq

" n
ź

i“1

gpa, q; ai, qiq

*

ψN{Qpqξ ´ aqĄdσλpξ ´ a{qq,

with N “ 2j{k, Q “ plogNqC for some large fixed C ą 0. We write M˚ for the maximal
operator defined pointwise as

M˚fpxq :“ sup
λPΓn,k

|Mλfpxq|.

Our main objective in this section is to prove the following theorem.

Theorem 5. Let k ě 2. If n ě maxt5, k{2 ` 2u and p ą n
n´2

, then the maximal operator
M˚ is bounded on `ppZnq.
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Remark 4. Note that n1pkq, n2pkq ě k{2 ` 2 so that these restrictions on the dimension n
dominate in Theorem 3. In terms of the exponent p, our range of `p-spaces is independent of
the degree k ě 2 and match those of the quadratic case (when k “ 2) for the integral spherical
maximal function of Magyar, Stein and Wainger [24]. In contrast, from [15] we know that the
integral k-spherical maximal functions of Magyar [20] are unbounded on LppRnq for p ď n

n´k

for each k ě 3. The difference is that in our current setup the analytic piece of the operator
(see below) is more localized in Fourier space than it is in previous works; this improves its
boundedness properties.

If D Ă Rn
`, we introduce the maximal functions

Ma{q;D
˚ fpxq :“ sup

λPΓn,k

ˇ

ˇ

ˇ

ˇ

ÿ

qďQ
qPD

M
a{q;q
λ fpxq

ˇ

ˇ

ˇ

ˇ

,

so that we have the pointwise inequality

M˚fpxq ď
8
ÿ

q“1

ÿ

aPUq

ÿ

jPZn`

M
a{q;Dj
˚ fpxq, (4.1)

where Dj “
 

x P Rn : 2ji´1 ď xi ă 2ji , 1 ď i ď n
(

. Applying the triangle inequality on
`ppZnq in (4.1), we see that

}M˚f}`ppZnq ď
8
ÿ

q“1

ÿ

aPUq

ÿ

jPZn`

›

›M
a{q;Dj
˚ f

›

›

`ppZnq. (4.2)

Next, we estimate
›

›M
a{q;D
˚ f

›

›

`ppZnq for a fixed rational number a{q and a dyadic box D.

Suppressing the dependence on a{q, we write Mq
λ for the convolution operator M

a{q;q
λ . Sim-

ilarly to [4, 24], we first decompose each Fourier multiplier yMq
λ into an analytic piece and

an arithmetic piece. Let ψ be the bump function from the statement of the Approximation
Formula. For q P Zn`, we define the function Ψqpξq “ ψp16qξq and note that, when λ is
large and q ď Q, one has

ψN{Qpqξ ´ aq “ ψN{Qpqξ ´ aqΨqpqξ ´ aq.

We also write

Gpaq “ Gpa, q; a,qq :“
n
ź

i“1

gpa, q; ai, qiq.

We now define the Fourier multipliers

xSqpξq :“
ÿ

aPUq

Gpa, q; a,qqΨqpqξ ´ aq,

xT q
λ pξq :“

ÿ

aPZn
ψN{Qpqξ ´ aqĂdσλpξ ´ a{qq,

so that
yMq
λ pξq “

xT q
λ pξq

xSqpξq.
18



Hence,
›

›Ma{q;D
˚ f

›

›

`ppZnq ď
ÿ

qPD

›

›T q
˚ pS

qfq
›

›

`ppZnq, (4.3)

where the maximal function T q
˚ is defined by

T q
˚ fpxq :“ sup

λPΓn,k

|T q
λ fpxq|.

The estimation of the sum on the right side of (4.3) is broken into three lemmas. First,
we note that when q ď Q, the supports of the functions ψN{Qpqξ ´ aq are disjoint, which
puts the multipliers T q

λ and T q
˚ into the form considered by Magyar, Stein and Wainger in

Section 2 of [24]. In particular, Corollary 2.1 in [24] allows us to transfer the bound in the
next lemma to the maximal operators T q

˚ . (There is a technical difference in that our q
is composed of different qi; that is, in Magyar–Stein–Wainger they consider q “ pq, . . . , qq
whereas we are considering more general q where often qi ‰ qj for i ‰ j. This however does
not present a problem as we apply the Magyar–Stein–Wainger transference principle in each
variable separately).

Lemma 8. If n ě k{2` 2 and p ą 1, the maximal operator

T˚fpxq :“ sup
λPN

|f ‹ p ­ψλ1{kplog λq´C ‹ dσλqpxq|

is bounded on LppRnq.

The proof of this lemma appears in the appendix.
From this lemma and Corollary 2.1 in [24], we deduce that

›

›T q
˚ pS

qfq
›

›

`ppZnq À
›

›Sqf
›

›

`ppZnq.

Thus, (4.3) yields
›

›Ma{q;D
˚ f

›

›

`ppZnq À
ÿ

qPD

›

›Sqf
›

›

`ppZnq. (4.4)

Note that Corollary 2.1 in [24] requires an appropriate choice of Banach spaces in order
to apply it, hence our chosen decomposition of the multiplier and the application of their
Corollary 2.1 at this point in the proof.

Lemma 9. Let D be either a dyadic box of the form Dj above or a singleton in Zn`. Then
for all a, q and ε ą 0, one has

ÿ

qPD

›

›Sqf
›

›

`2pZnq Àε q
ε´n{2

"

ÿ

qPD
wqpqq

2´ε

*1{2

}f}`2pZnq, (4.5)

where

wqpqq “
n
ź

i“1

pq, qiq

qi
.

Lemma 10. For all a, q,q and ε ą 0, one has
›

›Sqf
›

›

`1pZnq Àε q
εwqpqq

1´ε
}f}`1pZnq. (4.6)
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Now, we will use the lemmas to complete the proof of Theorem 5; we prove Lemmas 9
and 10 later in the section and Lemma 8 in Appendix A. First, we note that when 1 ă p ă 2,
interpolation between Lemma 10 and the singleton case of Lemma 9 yields

›

›Sqf
›

›

`ppZnq Àε q
ε´n{p1wqpqq

1´ε
}f}`ppZnq, (4.7)

where p1 is the conjugate exponent of p, defined by the relation 1{p ` 1{p1 “ 1. Using (4.4)
and (4.7), we obtain

›

›Ma{q;D
˚ f

›

›

`ppZnq À
ÿ

qPD

›

›Sqf
›

›

`ppZnq Àε q
ε´n{p1

"

ÿ

qPD
wqpqq

1´ε

*

}f}`ppZnq (4.8)

for all p ą 1. On the other hand, using (4.4) and Lemma 9, we have

›

›Ma{q;D
˚ f

›

›

`2pZnq À
ÿ

qPD

›

›Sqf
›

›

`2pZnq Àε q
ε´n{2

"

ÿ

qPD
wqpqq

2´ε

*1{2

}f}`2pZnq. (4.9)

When 1 ă p ă 2, we can interpolate between (4.9) and (4.8) with p1 “ pp ` 1q{2. If θ is
defined so that 1{p “ p1´ θq{p1 ` θ{2, we get

›

›Ma{q;D
˚ f

›

›

`ppZnq Àε q
ε´n{p1Σ1´θ

1 Σθ
2}f}`ppZnq, (4.10)

where

Σs “

"

ÿ

qPD
wqpqq

s´ε

*1{s

.

Recall that we are interested in the case when D is the Cartesian product of intervals
r2ji´1, 2jiq, ji P Z`, and write Di “ 2ji . We have

Σs
s ď

n
ź

i“1

"

ÿ

d|q

ds´ε
ÿ

rhDi
d|r

r´s`ε
*

Àε

n
ź

i“1

"

ÿ

d|q
dďDi

pd{Diq
s´1´ε

*

.

Hence, by the well-known inequality τpqq Àε q
ε,

Σ1 Àε pqD1 ¨ ¨ ¨Dnq
ε

and

Σ2 Àε pqD1 ¨ ¨ ¨Dnq
ε

n
ź

i“1

ˆ

q

q `Di

˙1{2

“: pqD1 ¨ ¨ ¨Dnq
εΠpq,Dq.

Applying these bounds to the right side of (4.10), we finally obtain
›

›Ma{q;D
˚ f

›

›

`ppZnq Àε q
2ε´n{p1

pD1 ¨ ¨ ¨Dnq
εΠpq,Dqθ}f}`ppZnq, (4.11)

provided that p ą 1.
We now apply (4.11) to all boxes Dj that appear on the right side of (4.2) and then sum

the resulting bounds over j to find that

ÿ

jPZn`

›

›

›
M

a{q;Dj
˚ f

›

›

›

`ppZnq
Àε q

2ε´n{p1
" 8
ÿ

j“1

2jεqθ{2

pq ` 2jqθ{2

*n

}f}`ppZnq. (4.12)
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Let j0 “ j0pqq be the unique index for which 2j0 ď q ă 2j0`1 and note that (4.12) is uniform
in a P Uq. By splitting the series over j at j0, we deduce that

ÿ

aPUq

ÿ

jPZn`

›

›

›
M

a{q;Dj
˚ f

›

›

›

`ppZnq
Àε q

1´n{p1`2ε

"

ÿ

jďj0

2jε ` qθ{2
ÿ

jąj0

2jpε´θ{2q
*n

}f}`ppZnq

Àε q
1´n{p1`2ε2nj0ε}f}`ppZnq Àε q

1´n{p1`2nε
}f}`ppZnq, (4.13)

provided that 0 ă ε ă θ{2. After choosing ε ą 0 sufficiently small, Theorem 5 is an
immediate consequence of (4.2) and (4.12), provided that n{p1 ą 2, that is, p ą n

n´2
.

4.1. Proofs of the lemmas.

Proof of Lemma 9. Note that the functions Ψqpqξ ´ aq with distinct central points a{q,
where q P D, have disjoint supports. Indeed, if Ψq1pq

1ξ ´ a1qΨq2pq
2ξ ´ a2q ‰ 0, with

a1{q1 ‰ a2{q2, then for some index i, 1 ď i ď n, we have

1

4ji
ă

1

q1iq
2
i

ď

ˇ

ˇ

ˇ

ˇ

a1i
q1i
´
a2i
q2i

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

a1i
q1i
´ ξi

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

a2i
q2i
´ ξi

ˇ

ˇ

ˇ

ˇ

ď
1

8pq1iq
2
`

1

8pq2i q
2
ď

1

4ji
;

a contradiction. Hence, Plancherel’s theorem gives

}Sqf}2`2pZnq “
›

›

›

ySqf
›

›

›

2

L2pTnq
“

ÿ

aPUq

|Gpaq|2
ż

Tn
Ψqpqξ ´ aq2

ˇ

ˇf̂pξq
ˇ

ˇ

2
dξ

À

´

max
aPUq

|Gpaq|2
¯

ż

Tn
Φqpξq

ˇ

ˇf̂pξq
ˇ

ˇ

2
dξ, (4.14)

where

Φqpξq “
ÿ

aPUq

Ψqpqξ ´ aq.

Applying Lemmas 1 and 6 to each factor gpa, q; ai, qiq in Gpaq, we find that

|Gpaq| Àε q
ε´n{2

n
ź

i“1

ϕ

ˆ

qi
pq, qiq

˙´1

Àε q
ε´n{2wqpqq

1´ε, (4.15)

where we have used the well-known inequality

ϕpmq´1
À m´1 log logm. (4.16)

Combining (4.14), (4.15) and Cauchy’s inequality (in q), we obtain

ÿ

qPD
}Sqf}`2pZnq Àε q

ε´n{2

"

ÿ

qPD
wqpqq

2´2ε

*1{2"ż

Tn

ˆ

ÿ

qPD
Φqpξq

˙

ˇ

ˇf̂pξq
ˇ

ˇ

2
dξ

*1{2

Àε q
ε´n{2

"

ÿ

qPD
wqpqq

2´ε

*1{2
›

›f̂
›

›

L2pTnq,

by our earlier observation about the supports of the functions Ψqpqξ´aq. The lemma follows
by another appeal to Plancherel’s theorem. �
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Proof of Lemma 10. For b,q P Zn and f : Zn Ñ C, let fb,q denote the restriction of f to
the residue class b modulo q in Zn: i.e., fb,qpxq “ fpb` qxq. We remark that it suffices to
prove the lemma for functions fb,q. Indeed, if the inequality

}Sqfb,q}`1pZnq ďM}fb,q}`1pZnq

holds for all restrictions fb,q, then also

}Sqf}`1pZnq “
ÿ

bPZq

}Sqfb,q}`1pZnq ďM
ÿ

bPZq

}fb,q}`1pZnq “M}f}`1pZnq.

We now proceed to establish (4.6) for restrictions fb,q. Note that

yfb,qpξ ` a{qq “ epb ¨ a{qq ¨yfb,qpξq.

From this we can deduce that

Sqfb,qpyq “ Hpa, q;y ´ b,qq
`

|Ψq ‹ fb,q
˘

pyq,

where |Ψq denotes the inverse Fourier transform of Ψqpqξq and

Hpa, q;u,qq “
ÿ

aPUq

Gpa, q; a,qqep´u ¨ a{qq.

(Note that Hpa, q;u,qq is a multidimensional version of the sum hpa, q;u, rq that appears in
the proof of Lemma 6.) We now have

}Sqfb,q}`1pZnq “
ÿ

yPZn

ˇ

ˇHpa, q;y ´ b,qq
`

|Ψq ‹ fb,q
˘

pyq
ˇ

ˇ.

We rearrange the last sum according to the residue class of y modulo q. Since Hpa, q;y´b,qq
depends only on the residue class of y modulo q, we get

}Sqfb,q}`1pZnq “
ÿ

rPZq

ˇ

ˇHpa, q; r´ b,qq
ˇ

ˇ

ÿ

zPZn

ˇ

ˇ

`

|Ψq ‹ fb,q
˘

pqz` rq
ˇ

ˇ

“
ÿ

rPZq

ˇ

ˇHpa, q; r´ b,qq
ˇ

ˇ

ÿ

zPZn

ˇ

ˇ

ˇ

ˇ

ÿ

xPZn

|Ψqpqz` r´ xqfb,qpxq

ˇ

ˇ

ˇ

ˇ

ď
ÿ

rPZq

ˇ

ˇHpa, q; r´ b,qq
ˇ

ˇ

ÿ

xPZn
|fb,qpxq|

ÿ

zPZn

ˇ

ˇ|Ψqpqz` r´ xq
ˇ

ˇ. (4.17)

The sum over z on the right side of (4.17) is q-periodic in r´ x, so we may assume that

´1
2
ď pr´ xq{q ď 1

2
. Since |Ψqpmq “ xΨqpmq, we find that

ÿ

zPZn
||Ψqpqz` r´ xq| “

ÿ

zPZn

ˇ

ˇ

ˇ

ˇ

ż

Rn
ψqp16qξqeppqz` r´ xq ¨ ξq dξ|

“
ÿ

zPZn

1

q2
1 ¨ ¨ ¨ q

2
n

ˇ

ˇ

ˇ

ˇ

xψ16

ˆ

z` pr´ xq{q

q

˙
ˇ

ˇ

ˇ

ˇ

À
1

q2
1 ¨ ¨ ¨ q

2
n

ÿ

zPZn

1

1` |pz` pr´ xq{qq{q|2n
À

1

q1 ¨ ¨ ¨ qn
.
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Inserting the last bound into the right side of (4.17), we deduce the estimate

}Sqfb,q}`1pZnq À
}fb,q}`1pZnq
q1 ¨ ¨ ¨ qn

ÿ

rPZq

ˇ

ˇHpa, q; r´ b,qq
ˇ

ˇ.

Since
ÿ

rPZq

ˇ

ˇHpa, q; r´ b,qq
ˇ

ˇ “
ÿ

uPZq

ˇ

ˇHpa, q;u,qq
ˇ

ˇ “

n
ź

j“1

"

ÿ

uPZqi

ˇ

ˇhpa, q;u, qiq
ˇ

ˇ

*

,

Lemma 6(iii) now yields

}Sqfb,q}`1pZnq À }fb,q}`1pZnq

n
ź

j“1

ˆ

τpqiq

ϕpqi{pq, qiqq

˙

.

The desired estimate follows from (4.16) and the bound τpmq Àε m
ε. �

5. Comparison with the integral maximal function

In this section, we show that the maximal function of the error term is bounded on
`ppZnq for a range of p by comparing the averages Aλ for λ P Γn,k with the bounds for the
corresponding integral operators. This combined with the boundedness of the main term
shows that the maximal function A˚ is bounded on `ppZnq. As we will see, our range of
`p-boundedness for the averages A˚ matches that of the integral maximal function B˚ below,
possibly up to endpoints.

For f : Zn Ñ C and x P Zn, define the integral averages by

Bλfpxq :“ pf ‹ σλqpxq “
1

#ty P Zn` : fpyq “ λu

ÿ

fpyq“λ

fpx´ yq,

along with their maximal function

B˚fpxq :“ sup
λPN

|Bλfpxq|.

The operator B˚ is equivalent to Magyar–Stein–Wainger’s discrete spherical maximal func-
tion. Our goal is to prove the following comparison between the integral maximal function
and the Waring–Goldbach maximal function.

Theorem 6. Suppose that 1 ă p0 ă 2 and n ě n1pkq. If B˚ and M˚ are bounded on `p0pZnq,
then A˚ is bounded on `ppZnq for p ą p0.

Proof. Recall from the Approximation Formula that for each λ P Γn,k we have

Aλfpxq “Mλfpxq ` Eλfpxq.

We will use the decay of the dyadic maximal function of the error term on `2pZnq. By (1.5),
we have

›

›

›
sup
λh2j

|Eλf |
›

›

›

`2pZnq
À j´K}f}`2pZnq (5.1)

for an arbitrarily large, fixed K ą 0, provided that the parameter C in Theorem 1 is chosen
sufficiently large. Our first order of business is to establish the following matching bound on
`p0pZnq:

›

›

›
sup
λh2j

|Eλf |
›

›

›

`p0 pZnq
À jn}f}`p0 pZnq. (5.2)
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For each x P Zn we have

|Aλfpxq| À plog λqnpBλ|f |qpxq.

Thus,
|Eλfpxq| À |Mλfpxq| ` plog λqnpBλ|f |qpxq

for each λ P Γn,k and all x P Zn. In turn,

sup
λh2j

|Eλfpxq| À sup
λh2j

|Mλfpxq| ` jn sup
λh2j

pBλ|f |qpxq.

Taking `p0pZnq norms and applying the hypotheses, we deduce (5.2).
For p0 ă p ă 2, let θ be such that 1{p “ p1´ θq{p0 ` θ{2, and then choose K sufficiently

large to ensure that np1´ θq´Kθ ď ´2. Then interpolation between (5.1) and (5.2) reveals
that

›

›

›
sup
λh2j

|Eλf |
›

›

›

`ppZnq
À j´2

}f}`ppZnq.

Summing over j P N, we find that
›

›

›
sup
λPΓn,k

|Eλf |
›

›

›

`ppZnq
À }f}`ppZnq

for all p0 ă p ă 2. Combining this with our hypothesis that M˚ is bounded on `p0pZnq (and
hence, also on `ppZnq—by interpolation with the trivial `8pZnq bound), we are done. �

Proof of Theorem 3. For k “ 2, the main theorem of [24] shows that B˚ is bounded on `ppZnq
for p ą n

n´2
and n ě 5. For k ě 3, Theorem 1 of [16] we have that B˚ is bounded on `ppZnq

for p ą maxt n
n´k

, 1` k2

2pn´krk`2sq`k2
, 1` k

2n
krk´1s

´k
u and n ě maxtkpk` 2q, k2pk´ 1qu. Thus the

theorem is true for p ą 1` k2rk´1s
2n´k2rk´1s

“ 2n
2n´k2rk´1s

and n ě k2pk ´ 1q. �

6. Applications

In this section, we prove Theorems 2 and 4. Recall that in what follows, pX,µq denotes a
probability space with a commuting family of invertible measure preserving transformations
T “ pT1, ..., Tnq without any non-zero rational points in their spectrum. For a function
f : X Ñ C the Waring–Goldbach ergodic averages on X with respect to T for λ P Γn,k are
defined by (1.8).

6.1. Proof of Theorem 2. Fix ε ą 0 and let δ ą 0 be a parameter to be chosen later (in
terms of ε). Since ξ R Qn, we may assume without loss of generality that ξ1 R Q. Then, we
can choose a convergent b{r to the continued fraction of ξ1 with r ą 2δ´1.

Now, for a large λ P Γn,k, let N “ λ1{k and Q “ plogNqC , where C “ Cp1q ą 0 is the
power in the Approximation Formula corresponding to having (1.6) for B “ 1. We note that
for sufficiently large λ, there is at most one rational point a{q such that

1 ď q ď Q, a P Uq, ψN{Qpqξ ´ aq ą 0. (6.1)

If such a rational point does not exist, the main term in (1.4) vanishes, and we have

xωλpξq À plog λq´1.

Otherwise, (1.4) yields

xωλpξq À
ˇ

ˇSpλ; a,qqĄdσ1pNpξ ´ a{qqq
ˇ

ˇ` plog λq´1,
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where a{q satisfies (6.1). Using (2.4) with ε “ 1{p4nq, we deduce that, for n ě 5,

Spλ; a,qq À q
´9{20
1

8
ÿ

q“1

q21{20´n{2
pq, q1q

1{2
À q

´9{20
1

ÿ

d|q1

d1{2
8
ÿ

q“1
d|q

q21{20´n{2
À q

´2{5
1 .

Hence,

xωλpξq À q
´2{5
1

ˇ

ˇĄdσ1pNpξ ´ a{qqq
ˇ

ˇ` plog λq´1.

Using the decay of Ądσ1 (see for example [10]), we may now choose δ so that

q
´2{5
1

Ądσ1pNpξ ´ a{qqq À ε,

unless
1 ď q1 ď δ´1 and |ξ1 ´ a1{q1| ď pδNq

´1. (6.2)

Thus, we have
xωλpξq À ε` plog λq´1,

unless a1, q1 and ξ1 satisfy (6.2). To complete the proof of the theorem, we will show that
for sufficiently large λ, inequalities (6.2) are inconsistent with the choice of b{r.

Suppose that conditions (6.2) do hold and recall that |rξ1 ´ b| ă r´1. Then

|bq1 ´ a1r| ď
rq1

δN
`
q1

r
ă

r

δ2N
`

1

2
ă 1,

as N Ñ 8. Since b{r and a1{q1 are reduced fractions, we conclude that a1 “ b and q1 “ r.
The latter, however, contradicts the inequalities q1 ď δ´1 ă r{2. �

Remark 5. We comment that a shorter proof of Theorem 2 exists by using the decay of the
error term in (1.5), but this proof has the advantage of not relying on the bound (1.5) and
instead uses (1.6).

6.2. The Pointwise Ergodic Theorem. To prove Theorem 4 we will utilize the Calderón
transference principle and in doing so, we need to introduce some notation. Let K be a large
natural number and define the discrete cube

CpKq :“
 

m P Zn : |mi| ď K for i “ 1, . . . , n
(

.

For a µ-measurable function f : X Ñ C, define its truncated transfer function,

F px,mq “ fpTmxq1CpNqpmq.

For λ P Γn,k, also define the transferred averages

AλF px,mq :“
1

Rpλq

ÿ

fppq“λ

logppqF px,m` pq

and their tail maximal function

AąRF px,mq :“ sup
λąR

|AλF px,mq| .

We endow the transfer space XˆZn with the product measure of µ on X and the counting
measure on Zn. As in [15], we deduce Theorem 4 from the tail oscillation inequality below.
We refer to [15] for the details of this reduction, which relies on the Calderón transference
principle.
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Proposition 1 (Transferred Oscillation Inequality). Let f be a bounded function of mean
zero on X and F its transfer function. For each ε ą 0, there exists a sufficiently large radius
R “ Rpε, fq such that

}AąRF }L2pXˆZnq ă ε }F }L2pXˆZnq . (6.3)

The proof of the transferred oscillation inequality requires a few steps, which we carry
out in succession. First, we extend the Approximation Formula to the lifted averages. For
ξ P Tn, define the partial Zn-Fourier transform as

pF px, ξq :“
ÿ

mPZn
F px,mqe pm ¨ ξq .

The reader may verify that
zAλF px, ξq “ xωλpξq pF px, ξq. (6.4)

Equation (6.4) allows us to extend the multipliers on Zn to multiplers on XˆZn. Suppressing
the dependence on a, q, we define the convolution operators Mq

λ by the multipliers

{Mq
λF px, ξq :“yMq

λ pξq
pF px, ξq,

where yMq
λ is the Fourier multiplier from Section 4 with N “ λ1{k and Q “ plog λqC . Similarly,

define the error term by
yEλF px, ξq “ xEλpξq pF px, ξq. (6.5)

Also define their tail maximal functions similarly to AąRF .
Our estimates on the error term in Theorem 1 transfer over to show that

›

›

›

›

sup
λąR

|EλF |
›

›

›

›

L2pXˆZnq
À plogRq´B1}F }L2pXˆZnq (6.6)

for all large B1 ą 0, so that choosing R sufficiently large we may make this arbitrarily small.
This shows that the averages are equiconvergent with the main term. Lemmas 8 and 9 and
a version of (4.12) for p “ 2 combine to give

›

›

›

›

sup
λąR

ˇ

ˇ

ˇ

ˇ

ÿ

q,a

ÿ

qąQ

Mq
λF |

›

›

›

›

L2pXˆZnq
ď

ÿ

a,q,a,qąQ

}Mq
ąRF }L2pXˆZnq

À Q´C2}F }L2pXˆZnq

for some positive C2 when n ě maxtn1pkq, n2pkqu.
Our final proposition completes the proof of Theorem 4. This is the only place where the

vanishing of the rational spectrum is used.

Proposition 2. If ε ą 0, then there exists a radius R “ Rpf ; ε, Qq P Γn,k sufficiently large
such that for all q,q ď Q, a P Uq and a P Uq,

}Mq
ąRF }L2pXˆZnq À ε }F }L2pXˆZnq (6.7)

with implicit constants independent of a, a; q,q.

As this is the essential part, we include the proof. Our proof will follow that of Proposi-
tion 9.2 in [15] for the integral k-spherical maximal function. Unlike the integral maximal
function where the localizing bump function depends on the modulus q, our current local-
izing bump function depends on the radius so that the continuous part of the multiplier
behaves like a smooth Hardy–Littlewood averaging operator. This simplifies our exposition.
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Proof. By Lemma 8, the tail maximal function of the multipliers

ψλ1{kplog λq´C pqξ ´ aqĄdσλ0pNpξ ´ a{qqq

is bounded on L2pX ˆ Znq with the bound

}Mq
ąRF }L2pXˆZnq À

›

›

›

›

›

˜

n
ź

i“1

gpa, q; ai, qiq

¸

}

ψ
a{q
R1 ‹ F

›

›

›

›

›

L2pXˆZnq

where R1 :“ RplogRq´C . To prove Proposition 2 it suffices to show that
›

›

›

›

}

ψ
a{q
R1 ‹ F

›

›

›

›

L2pXˆZnq
À ε }F }L2pXˆZnq (6.8)

for each a,q and sufficiently large R depending on ε. Plancherel’s Theorem and the Spectral
Theorem imply

›

›

›

›

}

ψ
a{q
R1 ‹ F

›

›

›

›

2

L2pXˆZnq
“

ż

Tn

ż

Tn
|ψR1pqξ ´ aq|2

ÿ

m1,m2PCpKq

e ppm1 ´m2qrη ` ξsq dξ dνf pηq.

Once again, see [21] for this derivation. Collecting m1 ´m2 “m, we define the sequence

∆Npmq :“
#tpm1,m2q P CpKq ˆ CpKq : m1 ´m2 “mu

#CpKq
.

The above becomes
›

›

›

›

}

ψ
a{q
R ‹ F

›

›

›

›

2

L2pXˆZnq
“

ż

Tn

ż

Tn
|ψR1pqξ ´ aq|2

ÿ

mPZn
#CpKq∆Kpmq ¨ epm ¨ rξ ` ηsq dξ dνf pηq.

Note that ∆K Ñ 1 as K Ñ 8. This implies that y∆Kpξq Ñ δ0pξq tends pointwise to the
Dirac delta function on Tn as K Ñ 8. Therefore,

#CpKq´1

›

›

›

›

}

ψ
a{q
R ‹ F

›

›

›

›

2

L2pXˆZnq
“

ż

Tn

ż

Tn
|ψR1pqξ ´ aq|2

ÿ

mPZn
∆Kpmq ¨ epm ¨ rξ ` ηsq dξ dνf pηq

“

ż

Tn

ż

Tn
|ψR1pqξ ´ aq|2 ¨y∆Kpξ ` ηq dξ dνf pηq

“

ż

Tn
p|ψqRp¨ ´ a{qq|2 ‹y∆Kqpηq dνf pηq

where the convolution is on the torus. Now we make use of the fact that multiplier is localized

to low frequencies. For all ε ą 0, there exists Kε P N such that |y∆K ´ δ0| ă ε for all K ą Kε

and
ż

Tn

ˇ

ˇ

ˇ
|ψqRp¨ ´ a{qq|2 ‹y∆Kpηqdνf pηq

ˇ

ˇ

ˇ

ď

ż

Tn
||ψqRp¨ ´ a{qq|2 ‹ |y∆K ´ δ0|pηq| `

ˇ

ˇ|ψqRp¨ ´ a{qq|2 ‹ δ0pηq
ˇ

ˇ dνf pηq

“

ż

Tn
|ψqRp¨ ´ a{qq|2 ‹ |y∆K ´ δ0|pηq dνf pηq `

ż

Tn
|ψRpqη ´ aq|2dνf pηq

À ε }f}2L2pXq ` νf p|η ´ a{q| À |qR|´1
q.
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For a{q “ 0, νf p|η| À |qR|
´1q Ñ νf p0q as R Ñ 8, but νf p0q “ |

ş

X
fdµ|2 “ 0 since f has

mean zero. For a{q ‰ 0, νf p|η ´ a{q| À |qR|´1q Ñ νf pa{qq as R Ñ 8, but νf pa{qq “ 0
by our assumption on the rational spectrum. Since there are finitely many a{q and a{q, we
can finish by choosing R large enough. Note that our parameter R depends on the spectral
measure νf and consequently on the function f , in addition to ε and Q. �

Appendix A. Estimates for mollified continuous k-spherical averages

In this appendix, we sketch the LppRnq-boundedness of the maximal functions

T˚fpxq :“ sup
λPN

|Tλfpxq|

defined by the averages

Tλf “ pĆψN{Q ‹ dσλq ‹ f,

where N “ λ1{k and Q satisfies 1 ď Q ď plog λqC for some constant C ą 0. In Section 4 we
applied the Magyar-Stein-Wainger transference principle to this maximal function in order
to obtain `ppZnq-bounds.

We will need the following two propositions in our proof.

Proposition 3. Let K P N. For all λ ą 1 and Q ě 1, one has

ĆψN{Q ‹ dσλpxq ÀK
QN´n

p1` |x|{N |qK
. (A.1)

Proof. By rescaling, we only need to prove that

Ąψ1{Q ‹ dσ1pxq ÀK
Q

p1` |x|qK
.

This is well-known for the spherical measure (see for example, equation (6.5.12) on page
480 in [11]), but there is essentially no difference in the proof for the remaining k-spherical
measures when k ě 3. �

Let Pj denote the smooth Littlewood–Paley projection operator adpated to frequencies of
size approximately 2j; that is,

ĄPjfpξq :“ pψpξ{2j`1
q ´ ψpξ{2jqq rfpξq.

Proposition 4. For n ě 2 and k ě 2, we have that
›

›

›

›

sup
λPN

|Pjf ‹ pĆψN{Q ‹ dσλq|

›

›

›

›

L2pRnq
À p1` 2jq

1
2
´n´1

k }f}L2pRnq. (A.2)

Proof. From [15] we obtain the bounds

Ądσλpξq À p1` |λ
1{kξ|q´

n´1
k ,

ξ ¨∇pĄdσλqpξq À p1` |λ1{kξ|q1´
n´1
k .

The frequency localization induced by Pj implies the bounds

ČPjdσλpξq À p1` |λ
1{k2j|q´

n´1
k ,

ξ ¨∇pČPjdσλqpξq À p1` |λ1{k2j|q1´
n´1
k .
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The maximal function estimate (A.2) now follows from almost orthogonality of the Littlewood–
Paley projections and a standard Sobolev embedding argument in the field. For the details
of this Sobolev embedding argument, see the proof of Lemma 6.5.2 on page 478 of [11]. One
only needs to change the number pn ´ 1q{2 therein to pn ´ 1q{k. Alternatively, see Lemma
1.3 of [19] for a self-contained statement (where the role of the interval I there is played by
the cutoff function Ψ). �

Proof of Lemma 8. Fix C ą 0. Since T˚ is trivially bounded L8pRnq, we only need to show
that it is also bounded on LppRnq for all 1 ă p ď 2.

We introduce a frequency decomposition of our multipliers depending on a fixed parameter
Λ " 1 to be chosen later:

ČP lowfpξq :“ ψΛ1{kplog Λq´C pξq rfpξq,

and

P highf :“ f ´ P lowf.

With this decomposition if λ ą Λ, then pP lowfq‹ Čψλ1{kplog λq´C “ P lowf . Proposition 3 implies
the following pointwise bound:

sup
λďΛ

|f ‹ p Čψλ1{kplog λq´C ‹ dσλqpxq| ÀC plog ΛqCMfpxq, (A.3)

and we also have for all λ P N the bound

sup
λPN

|P lowf ‹ p Čψλ1{kplog λq´C ‹ dσλqpxq| ÀC plog ΛqCMfpxq. (A.4)

We first prove a restricted weak-type inequality via interpolation, splitting up |tT˚f ą αu|
into three sets where we use (A.4), (A.3), and (A.2). Let F Ă Rn and f :“ 1F denote its
indicator function so that

|tT˚f ą αu| ď |tsup
λPN

|P lowf ‹ p Čψλ1{kplog λq´C ‹ dσλq| ą α{2u|

` |tsup
λPN

|P highf ‹ p Čψλ1{kplog λq´C ‹ dσλq| ą α{2u|

ď |tsup
λPN

|P lowf ‹ p Čψλ1{kplog λq´C ‹ dσλq| ą α{2u|

` |tsup
λďΛ

|P highf ‹ p Čψλ1{kplog λq´C ‹ dσλq| ą α{4u|

` |tsup
λąΛ

|P highf ‹ p Čψλ1{kplog λq´C ‹ dσλq| ą α{4u|

À plog ΛqC}f}1α
´1
` |tsup

λąΛ
|P highf ‹ p Čψλ1{kplog λq´C ‹ dσλq| ą α{4u|.

Observe that for each x P Rn, we have

sup
λąΛ

|P highf ‹ p Čψλ1{kplog λq´C ‹ dσλqpxq| ď
ÿ

jělog2 Λ

ˆ

sup
λą2j

|Pjf ‹ p Čψλ1{kplog λq´C ‹ dσλqpxq|

˙
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so that

|tT˚f ą αu| À plog ΛqC}f}1α
´1
` |t

ÿ

jělog2 Λ

ˆ

sup
λą2j

|Pjf ‹ p Čψλ1{kplog λq´C ‹ dσλq|

˙

ą α{4u|

À plog ΛqC}f}1α
´1
` α´2

ÿ

jělog2 Λ

p1` 2j{kq
1
2
´n´1

k }f}22

by Chebychev’s inequality and Proposition 4. Therefore

|tT˚f ą αu| À plog ΛqC}f}1α
´1
` Λ

1
2k
´n´1

k2 }f}22α
´2

“ plog ΛqC |F |α´1
` Λ

1
2k
´n´1

k2 |F |α´2.

Here |F | denotes the Lebesgue measure of the set F .
To interpolate between L1 and L2 we need 1

2k
´ n´1

k2
ă 0 which occurs precisely when

n ą k{2 ` 1. For any 1 ă p ă 2 we choose Λ ą 0 depending on 0 ă α ď 1 so that both
summands are dominated by |F |α´p, which yields the restricted weak-type inequality. The
Marcinkiewicz interpolation theorem gives the strong-type inequality. �
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