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Abstract. In this paper, we prove a sharp Mei’s Lemma with assuming the

bases of the underlying general dyadic grids are different. As a byproduct, we

specify all the possible cases of adjacent general dyadic systems with different
bases. The proofs have connections with certain number-theoretic properties.

1. Introduction

The purpose of this paper is to give an optimal description of the adjacency of
general dyadic systems in Rd with different bases. The study of describing dyadic
systems in a refined manner dates back to the work [7] of Conde Alonso, in which, he
proved d+1 is the optimal number of dyadic systems in Rd to guarantee adjacency.

However, Conde Alonso’s result only implies the existence of such a collection of
d+1 dyadic systems. Our goal is to understand for a given collection of d+1 dyadic
grids (or more general, n-dyadic grids), what the necessary and sufficient conditions
are so that such a collection is adjacent. In our recent paper [4] joint with Jiang,
Olson and Wei, we answered this question when d = 1, and later in [2] we extended
this result to higher dimensions by studying the fundamental structures of d + 1
n-adic systems in Rd. Note that in both [4] and [2], the bases of the given d + 1
grids are the same.

In this paper, we further generalize these results to the case when the bases of
these d+ 1 grids are different. Moreover, we are also able to specify all the possible
cases for adjacent systems with different bases. This type of generalization has
connections to the recent works [5] and [3], among others. Let us begin with the
definition of n-adic systems in Rd, which is our main object of interest in this paper.

Definition 1.1. Given n ∈ N, n ≥ 2, a collection G of left-closed and right-open
cubes on Rd (that is, a collection of cubes in Rd of the form

[a1, a1 + `)× · · · × [ad, ad + `), ai ∈ R, i = 1, . . . , d,

where ` > 0 is the sidelength of such a cube) is called a general dyadic grid with
base n (or n-adic grid) if the following conditions are satisfied:

(i). For any Q ∈ G, its sidelength `(Q) is of the form nk, k ∈ Z;
(ii). Q ∩R ∈ {Q,R, ∅} for any Q,R ∈ G;

(iii). For each fixed k ∈ Z, the cubes of a fixed sidelength nk form a partition of
Rd.

Note that when n = 2, the above definition refers to the classical dyadic system in
Rd, which we denote by D.
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An important property for such a structure is the following optimal dyadic cov-
ering theorem due to Conde [7], which is also known as the optimal Mei’s lemma.

Theorem 1.2. [7, Theorem 1.1] There exists d+1 dyadic grids D1, . . . ,Dd+1 (with
base 2) of Rd such that every Euclidean ball B (or every cube) is contained in some

cube Q ∈
d+1⋃
i=1

Di satisfying that diam(Q) ≤ Cddiam(B). The number of dyadic

systems is optimal.

The origin of the adjacency of dyadic systems is obscure but we believe that
credit should be given to Okikiolu [19] and, for a somewhat weaker version, to
Chang, Wilson and Wolff [6]. Later in 2013, Hytönen and Peréz [14] proved that
Mei’s lemma holds 2d dyadic grids with the constant Cd = 6, and in the same
year, Conde Alonso [7] showed the optimal number of the dyadic systems needed
is d + 1 but with a larger constant Cd ' d. Moreover in 2014, Cruz-Uribe [10]
gave a short proof of Mei’s lemma for 3d dyadic grids with a better constant Cd =
3. We would also refer the reader for [16, 17, 20, 13] and the references there
in for more detailed information about the development of this property. The
adjacency of dyadic systems are crucially used in harmonic analysis (for instance,
by Lerner to prove the A2 theorem in [15], among many other recent papers on
sparse domination), functional analysis [8], [11], [17], [20] and measure theory [9].

Theorem 1.2 motivates the following definition of the adjacency of a collection
of d + 1 general dyadic grids with different bases. Note that the adjacency we are
considering in this note is more general than the one in [2] and [4].

Definition 1.3. Given d + 1 general dyadic grids G1, . . . ,Gd+1, where the base of
Gi is ni, i = 1, . . . , d+ 1, we say they are adjacent if for any open cube Q ⊆ Rd (or
any ball), there exists i ∈ {1, . . . , d+ 1}, and D ∈ Gi, such that Q is comparable to
D, in the sense that

(1). Q ⊆ D;
(2). `(D) ≤ C`(Q), where the constant C only allows to depend on n1, . . . , nd+1

and d, in particular, it is independent of the sidelength of the cubes Q and
D.

The new feature of the adjacency of general dyadic systems with different bases
comes from the fact that the cubes from different grids living in different genera-
tions start interacting with each other, in both small scale case (where the cube
has sidelength less than or equal to 1) and large scale case (where the cube has
sidelength great than 1). This leads to the fact that some generations of the general
dyadic grids make a significant contribution to the adjacency, while some make no
contributions. This is quite different from the case considered in [4] and [2] where
there is only one base; the adjacency there is decided by cubes from all generations
in different grids.

Example 1.4. Here is an easy way to produce adjacent general dyadic systems with
different bases.

To start with, we can take a known example of adjacent grids with the same
bases (see, e.g., [7, Page 786–787]), and then change bases by deleting specific
generations. For example, let D1 and D2 be two dyadic grids which are adjacent
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on R, then we define G1 := D1 and

(1.1) G2 :=
⋃
i∈Z
{I ∈ (D2)4i} .

Here are some remarks for the above example.

(1). It is easy to check that G1 and G2 are also adjacent on R, while G2 is of
base 16;

(2). This construction easily suggests to the following fact: the optimal number
that is needed to guarantee the adjacency for grids with different bases is
also d+ 1

(3). It turns out that this “changing bases trick” is the only possible case for
adjacent systems with different bases (see, Theorem 1.14).

Finally, note that not all generations in G1 make a contribution to the adjacency.
Indeed, let us define

G′1 :=
⋃
i∈Z
{I ∈ (D1)4i}

Note that by [4, Theorem 3.8], G′1 and G2 are adjacent on R (note that both G′1 and
G2 are of base 16). This suggests that in the adjacent pair {G1,G2}, only the cubes
in (G1)4i , i ∈ Z (that is, cubes only every four levels) contribute to the adjacency,
while the cubes from other generations are redundant.

Let us make the above phenomenon in a quantitative way. To do this, we first
introduce the following auxiliary function: for any n, n′ ∈ N with n, n′ ≥ 2, φn;n′ :
N→ N is given by

φn;n′(j) :=

⌊
j log n

log n′

⌋
.

Note that φn,n(j) = j for all j ∈ N and n ≥ 2.
This auxiliary function allows us to extend the concept of “far” considered in

[2] and [4], which is the first ingredient that we need for our main result. Such a
generalization is two-fold: first of all, we are able to define “far number with respect
to a finite collection of integers” (see, Definition 1.5); second, we also describe the
“far pair of integer-valued functions with respect to a finite collection of integers”
(see, Definition 1.7). Now let us turn to some details.

Definition 1.5. Let N := {n1, . . . , nL} be a collection of positive integers where
each n` ≥ 2, ` = 1, . . . , L. Given any δ ∈ R and n, n′ ∈ N with n, n′ ≥ 2, we say
δ is a (n, n′)-far number with respect to N if there exists C > 0 such that for any
n` ∈ N , there holds that

(1.2)

∣∣∣∣∣δ − k1

nφn`;n(m)
− k2

(n′)
φn`;n′

(m)

∣∣∣∣∣ ≥ C

nm`
, ∀m ≥ 0, k1, k2 ∈ Z,

where C only depends on n, n′, δ, N , L and any dimension constants, but is
independent of m, k1 and k2.

Remark 1.6. (1). The concept of far numbers with respect to a set will be used
to deal with the small scale case in most of our applications later, and we
will only consider the case when n, n′ ∈ N and L = d + 1, which is the
optimal number of general dyadic systems that needed to guarantee the
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adjacency in Rd. Therefore, the constant C in (1.2) later will only depend
on δ,N and any dimensional constants;

(2). When N = {n0} and n = n′ = n0, Definition 1.5 coincides with the
classical definition of n0-far number, which was considered in [4] and [2].
The concept of far numbers, where N = {2}, was introduced by Mei [18] to
prove that the one-parameter space BMO(T), which is the space of bounded
mean oscillation on the torus T, can be written as the intersection of two
dyadic product BMO(T) spaces, with equivalent norms. In 2013, Li, Pipher
and Ward [17] generalized Mei’s result to multi-parameter case and a vast
class of function spaces via a more careful study of far numbers. For a
systematic study of far numbers, we refer the interested reader to [4] for
more details.

Next, we define the “far pairs of integer-valued functions with respect to a finite
set”.

Definition 1.7. Let N and L be defined as above. Given any integer valued
functions L,L′ : N→ N and n, n′ ∈ N with n, n′ ≥ 2, we say (L,L′) is a (n, n′)-far
pair of integer-valued functions with respect to N if there exists a C ′ > 0 and J ∈ N
sufficiently large, such that for any n` ∈ N , any j ≥ J and any k3, k4 ∈ Z, there
holds that

(1.3)
∣∣∣L (φn`,n(j)) + k3n

φn`;n(j) − L′ (φn`,n′(j))− k4 (n′)
φn`;n′

(j)
∣∣∣ ≥ C ′nj` ,

where C ′ only depends on n, n′,L,L′,N , L, J and any dimensional constants, but
independent of j, k3 and k4.

Remark 1.8. The concept of far pairs of integer-valued functions with respect to
a finite set will be used to deal with the large scale case in our application later,
where again, we will only consider the case when n, n′ ∈ N and L = d+ 1.

The second concept that we need is the representation of general dyadic systems.
The setting is as follows.

(1). δ ∈ Rd, which can be interpreted as the “initial point” to build the grid;
(2). n ∈ N with n ≥ 2, which is the base of the grid;
(3). An infinite matrix

(1.4) ~a := {~a0, . . . ,~aj , . . . } ,

where ~aj ∈ {0, 1, . . . , n− 1}d, j ≥ 1;
(4). The location function associated to ~a:

L~a : N 7−→ Zd,

which is defined by

L~a(j) :=


j−1∑
i=0

ni~ai, j ≥ 1;

~0, j = 0.

Definition 1.9. Let δ ∈ Rd, n ≥ 2 be an integer, ~a and L~a be defined as above.
Let G(n, δ,L~a) be the collection of the following cubes:
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(1). For m ≥ 0, the m-th generation of G(δ,L~a) is defined as

G(n, δ)m :=

{[
(δ)1 +

k1

nm
, (δ)1 +

k1 + 1

nm

)
× . . .

×
[
(δ)d +

kd
nm

, (δ)d +
kd + 1

nm

) ∣∣∣∣(k1, . . . , kd) ∈ Zd
}
,

where here and in the sequel, we use (δ)s to denote the s-th component of
a vector δ ∈ Rd.

Note that all the positive generations (that is, the collection of cubes
with sidelength less or equal to 1) are uniquely determined by the initial
point δ, and hence the location function L~a does not make any contribution
for positive generations;

(2). For m < 0, the m-th generation is defined as

G(n, δ,L~a)m :=

{[
(δ)1 + [L~a(−m)]1 +

k1

nm
, (δ)1 + [L~a(−m)]1 +

k1 + 1

nm

)
× . . .

×
[
(δ)d + [L~a(−m)]d +

kd
nm

, (δ)d + [L~a(−m)]d +
kd + 1

nm

) ∣∣∣∣(k1, . . . , kd) ∈ Zd
}
.

To this end, for each m ∈ N, we denote b [G (n, δ,L~a)m] as the collection of all
the boundaries of the cubes in G (n, δ,L~a)m.

Remark 1.10. 1. The term δ + L~a(−m) in Definition 1.9 can be interpreted
as the location of δ after choosing n-adic parents (with respect to the 0-th
generation) m times;

2. G(n, δ,L~a) is a n-adic grid; on the other hand, for any n-adic grid G, it
can be represented as G(n, δ,L~a), for some δ ∈ Rn and infinite matrix ~a
defined in (1.4) (see, [2, Proposition 3.2 and Proposition 3.3]). Moreover,
although the representation of a n-adic grid in general is not unique, they
are essentially the “same” from the view of adjacency (see, [4, Theorem 3.14]
for both the real line case and [2, Corollary 2.5] for the higher dimensional
case).

We are ready to state our main result, which generalizes [2, Theorem 1.5].

Theorem 1.11. Let Gi := G(ni, δi,L~ai), i = 1, . . . , d + 1 be a collection of gen-
eral dyadic grids, where d, ni, δi and ~ai are defined as above. Let further, N :=
{n1, . . . , nd+1}. Then G1, . . . ,Gd+1 are adjacent if and only if the following condi-
tions hold:

(1). For any `1, `2 ∈ {1, . . . , d+ 1} where `1 6= `2, and s ∈ {1, . . . , d},
(δ`1)s − (δ`2)s

is a (n`1 , n`2)-far number with respect to N ;

(2). For any `3, `4 ∈ {1, . . . , d + 1}, `3 6= `4, and s ∈ {1, . . . , d}, the pairs of
integer valued function([

L~a`3 (·)
]
s
,
[
L~a`4 (·)

]
s

)
is a (n`3 , n`4)-far pair of integer-valued functions with respect to N .
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Remark 1.12. 1. Theorem 1.11 is sharp, in the sense that the number of the
general dyadic systems needed to guarantee the adjacency cannot be re-
duced;

2. Let us include some motivation for the auxiliary function φ. As we have
pointed out earlier, the new feature for the general dyadic systems with
different bases is that adjacency is given by cubes with different sidelengths
from different grids. For example, in [2], the term we have for the second
condition in our main result is∣∣∣∣∣∣

[
L~ak1

(j)
]
s
−
[
L~ak2

(j)
]
s

nj

∣∣∣∣∣∣ .
However, if the general dyadic grids are allowed to have different bases, it
is no longer correct to compare the location functions at the same “level”
j (that is, (−j)-th generation), for instance, consider a term like

(1.5)

∣∣∣∣∣∣
[
L~ak1

(j)
]
s
−
[
L~ak2

(j)
]
s

njk1

∣∣∣∣∣∣ .
Heuristically, let us assume nk1

≥ nk2
, and ~ak1

is an infinite matrix such
that [

L~ak1
(j)
]
s
∼ njk1

when j is large. However, 0 ≤
[
L~ak2

(j)
]
s
< njk2

, which is negligible com-

pared to the term
[
L~ak1

(j)
]
s
. In other words, (1.5) suggests that the adja-

cency for the large scale only depends on grids with a larger base, which is
not correct since we can always do the “changing base trick” as in (1.1) to
make the base as large as we want. A similar observation suggests that for
the small scale case, one has to extend the definition of “far with respect
to a number” to “far with respect to a set” (see, Definition 1.5).

These phenomena suggest that when the bases are different, it is more
reasonable to explore how the cubes from different grids with comparable
size interact with each other, rather than the from the same generations.
This motivates us to introduce φ to quantify such a phenomenon.

To this end, we make a comment that another possible approach to
study the geometry underlying Theorem 1.11 is to consider the fundamental
structures of d+1 general dyadic dyadic systems with different bases, which
were introduced in [2] to study the adjacency of general dyadic grids with
the same base. It is not hard to see that when the bases are different, these
structures make sense if and only if the cubes used to build these structures
from different grids are of comparable sizes.

The following corollary is straightforward from the main result Theorem 1.11
(see [2] for a more detailed explanation).

Corollary 1.13. Let G1, . . . ,Gd+1 be defined as in Theorem 1.11. G1, . . . ,Gd+1 is
adjacent in Rd if and only if the projection of any two of them onto any coordinate
axis is adjacent in R.
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A second application of our main result Theorem 1.11 is that the typical examples
provided by the “changing bases trick” in Example 1.4 are actually the only possible
cases for adjacent general dyadic systems with different bases. More precisely, we
have the following result.

Theorem 1.14. Let G1, . . . ,Gd+1 be adjacent on Rd. Then there exists an integer
n ≥ 2, and si ∈ N, si ≥ 1, i = 1, . . . , d+ 1, such that

ni = nsi , i = 1, . . . , d+ 1.

Remark 1.15. Note that if such an n does not exist, then this means that logni
lognj

is irrational for some i 6= j, whereas if n does exist, then logni
lognj

is always rational.

This is related to numbers normal to different bases, that is, logn1

logn2
is rational if and

only if every number that is normal to base n1 is also normal to base n2 [21]. Also,

via work of Wu [22], logn1

logn2
being rational means that the null sets for the n1-adic

doubling measures and n2-adic doubling measures are equal. This in turn loosely
relates to our recent work [3].

The structure of the paper is as follows: Section 2 is devoted to prove the main
result Theorem 1.11. Moreover, we also show Theorem 1.11 is independent of
the representation. While in Section 3, we prove Theorem 1.14 and connect the
discoveries therein with other recent work.

2. Proof of Theorem 1.11

In this section, we prove our main result Theorem 1.11.

2.1. Necessity. Suppose G1 = G(n1, δ1,L~a1
), . . . ,Gd+1 = G(nd+1, δd+1,L~ad+1

) are
adjacent. We prove the result by contradiction.

Assume condition (1) fails. This means we can take some `1, `2 ∈ {1, . . . , d+ 1}
with `1 6= `2 and s ∈ {1, . . . , d}, such that for each N1 ≥ 1, there exists some m ≥ 0,
K1,K2 ∈ Z and n` ∈ N , such that

(2.1)

∣∣∣∣∣∣(δ`1)s − (δ`2)s −
K1

n
φn`;n`1

(m)

`1

− K2

n
φn`;n`2

(m)

`2

∣∣∣∣∣∣ < 1

N1nm`
.

This implies the distance between the hyperplane

{
(x)s = (δ`1)s − K1

n
φn`;n`1

(m)

`1

}

and the hyperplane

{
(x)s = (δ`2)s + K2

n
φn`;n`2

(m)

`2

}
is less than 1

N1nm`
.

Observe that(x)s = (δ`1)s −
K1

n
φn`;n`1

(m)

`1

 ⊂ b [(G`1)φn`;n`1 (m)

]
and (x)s = (δ`2)s +

K2

n
φn`;n`2

(m)

`2

 ⊂ b [(G`2)φn`;n`2 (m)

]
.
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Therefore, the estimate (2.1) suggests that we can take two sufficiently close points,

with the first one located on b
[
(G`1)φn`;n`1 (m)

]
, and the second one on b

[
(G`2)φn`;n`2 (m)

]
,

respectively. More precisely, we may assume s = ` = `1 = 1 and `2 = 2 for sim-
plicity. We consider the points p1 and p2, which are given by intersection of d
non-parallel hyperplanes as follows:

p1 :=

{
(x)1 = (δ1)1 −

K1

nm1

}
∩ {(x)2 = (δ3)2} ∩ · · · ∩ {(x)d = (δd+1)d}

and

p2 :=

{
(x)1 = (δ2)1 +

K2

n
φn1;n2

(m)
2

}
∩ {(x)2 = (δ3)2} ∩ · · · ∩ {(x)d = (δd+1)d}}.

Note that p1 and p2 enjoy the following properties:

(a). p1 ∈ b [(G1)m] ∩
(
d+1⋂
t=3

b [(Gt)0]

)
and p2 ∈ b

[
(G2)φn1;n2

(m)

]
∩
d+1⋂
t=3

b [(Gt)0];

(b). dist(p1, p2) < 1
N1nm1

.

Note that the second property above allows us to choose an open cube Q of side-
length 1

N1nm1
containing both p1 and p2 as interior points; while the first property

asserts that if there is a dyadic cube D ∈ G`, ` ∈ {1, . . . , d + 1} covering Q, then
the sidelength of D is at least 1

2nm1
. Indeed, if D ∈ G1, then since D∩ b [(G1)m] 6= ∅,

D has to belong to (G1)m′ for some m′ > m, this suggests `(D) > 1
nm1

; if D ∈ G2,

then similarly we have

`(D) >
1

n
φn1;n2 (m)
2

=
1

e
logn2·

⌊
m log n1
log n2

⌋
≥ 1

elogn2·m log n1
log n2

=
1

nm1
.(2.2)

Finally, if D ∈ Gi, i ∈ {3, . . . d + 1}, a similar argument suggests that `(D) ≥ 1.
Hence

`(D) >
N1

2
· `(Q).

This will contradict adjacency if we choose N1 sufficiently large.

Next, we assume condition (2) fails. This means that there is some `3, `4 ∈
{1, . . . , d + 1} with `3 6= `4 and s ∈ {1, . . . , d}, such that for each N2 ≥ 1, there
exists some n` ∈ N , j sufficiently large and K3,K4 ∈ Z, such that
(2.3)∣∣∣∣[L~a`3 (φn`;n`3 (j)

)]
s

+K3n
φn`;n`3

(j)

`3
−
[
L~a`4

(
φn`;n`4 (j)

)]
s
−K4n

φn`;n`4
(j)

`4

∣∣∣∣ < nj`
N2

.

Without loss of generality, we consider the case when s = ` = `3 = 1 and `4 = 2.
Therefore, (2.3) can be simplified as

(2.4)
∣∣∣[L~a1

(j)]1 +K3n
j
1 − [L~a2

(φn1;n2
(j))]1 −K4n

φn1;n2
(j)

2

∣∣∣ < nj1
N2

.

This gives∣∣∣[δ1 + L~a1
(j)]1 +K3n

j
1 − [δ2 + L~a2

(φn1;n2(j))]1 −K4n
φn1;n2 (j)
2

∣∣∣ < 2nj1
N2

,
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since we can pick j is sufficiently large. To this end, let us rewrite the above estimate
as follows
(2.5)∣∣∣[δ1 + L~a1

(j) +K3n
j
1~e1

]
1
−
[
δ2 + L~a2

(φn1;n2(j)) +K4n
φn1;n2

(j)
2 ~e1

]
1

∣∣∣ < 2nj1
N2

,

where for s ∈ {1, . . . , d}, ~es is the standard unit vector in Rd with s-th entry being
1.

Similarly as (2.1), the estimate (2.5) can also be interpreted geometrically. In-
deed, let

q1 :=
{

(x)1 =
[
δ1 + L~a1

(j) +K3n
j
1~e1

]
1

}
∩

d⋂
t=2

{
(x)t =

[
δt+1 + L~at+1

(
φn1;nt+1(j)

)]
t

}
and

q2 :=
{

(x)1 =
[
δ2 + L~a2

(φn1;n2(j)) +K4n
φn1;n2

(j)
2 ~e1

]
1

}
∩

d⋂
t=2

{
(x)t =

[
δt+1 + L~at+1

(
φn1;nt+1

(j)
)]
t

}
.

which satisfies the following properties:

(a). q1 ∈ b
[
(G1)−j

]
∩
(
d+1⋂
k=3

b
[
(Gk)−φn1;nk

(j)

])
and q2 ∈

d+1⋂
k=2

b
[
(Gk)−φn1;nk

(j)

]
;

(b). dist(q1, q2) <
2nj1
N2

.

Note that the reason for us to consider the negative generations in property (a)
above is that the cubes underlying the condition (2) is of side length greater than
1 (namely, the large scale case).

To derive the desired contradiction, we again start from the second condition

above by taking a cube Q containing both q1 and q2, with `(Q) =
2nj1
N2

. Now we let

D ∈ Gi for some i ∈ {1, . . . , d+ 1} which contains Q. However, since

Q ∩ b
[
(Gi)−φn1;ni

(j1)

]
6= ∅,

(note that φn;n(j) = j for j large), it follows that

`(D) > n
φn1;ni

(j1)

i = exp

(
log ni ·

⌊
j1 log n1

log ni

⌋)
≥ exp

(
log ni ·

(
j1 log n1

log ni
− 1

))
=
nj11
ni
.(2.6)

Therefore, we have

`(D) >
N2`(Q)

2ni
,

which is again a contradiction if we choose N2 sufficiently large.

The proof for the necessity is complete.
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2.2. Sufficiency. Suppose conditions (1) and (2) hold, that is,

(1). For any `1, `2 ∈ {1, . . . , d + 1} where `1 6= `2, and s ∈ {1, . . . , d}, there
exists some constant C(`1, `2, s) > 0, such that for any m ≥ 0, any n` ∈ N
and k1, k2 ∈ Z, there holds

(2.7)

∣∣∣∣∣∣(δ`1)s − (δ`2)s −
k1

n
φn`;n`1 (m)

`1

− k2

n
φn`;n`2 (m)

`2

∣∣∣∣∣∣ ≥ C(`1, `2, s)

nm`
.

(2). For any `3, `4 ∈ {1, . . . , d + 1}, `3 6= `4, and s ∈ {1, . . . , d}, there exists a
C ′(`3, `4, s) > 0 and J(`3, `4, s) ∈ N sufficiently large, such that for any
n` ∈ N , j > J(`3, `4, s) and any k3, k4 ∈ Z, there holds that∣∣∣∣ [L~a`3 (φn`,n`3 (j)

)]
s

+ k3n
φn`,n`3

(j)

`3

−
[
L~a`4

(
φn`,n`4 (j)

)]
s
− k4n

φn`,n`4
(j)

`4

∣∣∣∣ ≥ C ′(`3, `4, s) · nj` .(2.8)

Denote

C1 := min
1≤`1 6=`2≤d+1

1≤s≤d

C(`1, `2, s), C ′1 := min
1≤`3 6=`4≤d+1

1≤s≤d

C ′(`3, `4, s).

and

(2.9) J = max
1≤`3 6=`4≤d+1

1≤s≤d

J(`3, `4, s).

It is clear that C1, C
′
1 > 0.

Recall the goal is to show the collection G1, . . . ,Gd+1 is adjacent on Rd. Take
some C > 0 be a constant such that

0 < C < min

{
C1,

C ′1
2

}
.

Let Q be any cube in Rd and let m0 ∈ Z, such that

(2.10)
C

nm0+1
1

≤ `(Q) <
C

nm0
1

.

Let us consider several cases.

Case I: m0 > 0. We have the following claim: there exists some ` ∈ {1, . . . , d+1},
such that

Q ∈ (G`)φn1;n`(m0)
.

Proof of the claim: We prove the claim by contradiction. If Q is not contained
in any cubes from (G`)φn1;n`

(m0) for any ` ∈ {1, . . . , d + 1}, then for each ` ∈
{1, . . . , d+ 1}, we can find a s` ∈ {1, . . . , d}, such that

Ps`(Q) ∩ Ps`
(
V`,φn1;n`

(m0)

)
6= ∅,

where Ps is the orthogonal projection onto the s-th coordinate axis in Rd for s ∈
{1, . . . , d}, and for ` ∈ {1, . . . , d+ 1} and m > 0,

V`,m :=

{
δ` +

~v

nm`
: ~v ∈ Zd

}
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is the collection of all the vertices of the cubes in (G`)m. By pigeonholing, there
exists some `1, `2 ∈ {1, . . . , d+ 1} with `1 6= `2, but s∗ := s`1 = s`2 , such that

Ps∗(Q) ∩ Ps∗
(
V`1,φn1;n`1

(m0)

)
, Ps∗(Q) ∩ Ps∗

(
V`2,φn1;n`2

(m0)

)
6= ∅,

which implies that there exists some K1,K2 ∈ Z, such that∣∣∣∣∣∣(δ`1)s∗ +
K1

n
φn1;n`1

(m0)

`1

− (δ`2)s∗ −
K2

n
φn1;n`2

(m0)

`2

∣∣∣∣∣∣ ≤ `(Q) <
C

nm0
1

<
C(`1, `2, s∗)

nm0
1

,

which contradicts (2.7).

Case II: m0 ≤ −J , where J is defined in (2.9). In this case, our goal is to show
that

Q ∈ (Gk)−φn1;n`
(−m0)

for some ` ∈ {1, . . . , d + 1}. We prove it by contradiction again. Following the
argument in Case I above, we see that there exists some `3, `4 ∈ {1, . . . , d+ 1} with
`3 6= `4 and s∗ ∈ {1, . . . , d}, such that

Ps∗(Q) ∩ Ps∗(V`3,−φn1;n`3
(−m0)), Ps∗(Q) ∩ Ps∗(V`4,−φn1;n`4

(−m0)) 6= ∅.

This implies there exists some K3,K4 ∈ Z, such that∣∣∣∣ [δ`3 + L~a`3
(
−φn1;n`3

(−m0)
)]
s∗

+K3n
φn1;n`3

(−m0)

`3
−[

δ`4 + L~a`4
(
−φn1;n`3

(−m0)
)]
s∗
−K4n

φn1;n`4
(−m0)

`4

∣∣∣∣ < C

nm0
1

.

Note that since we can always choose J sufficiently large, we can indeed reduce the
above estimate to∣∣∣∣ [L~a`3 (−φn1;n`3

(−m0)
)]
s∗

+K3n
φn1;n`3

(−m0)

`3
−[

L~a`4
(
−φn1;n`3

(−m0)
)]
s∗
−K4n

φn1;n`4
(−m0)

`4

∣∣∣∣ < 2C

nm0
1

.

This gives the desired contradiction to (2.8), since C <
C′1
2 ≤

C′1(`3,`4,s
∗)

2 .

Case III: −J < m0 ≤ 0. Indeed, we can “pass” the third case to the second case,
by taking a cube Q′ containing Q with the sidelength is nJ1 . Applying the second
case to Q′, we find that there exists some D ∈ Gk for some k ∈ {1, . . . , d+ 1}, such
that Q′ ⊂ D and `(D) ≤ C4`(Q

′), which clearly implies

(1). Q ⊂ D;
(2). `(D) ≤ C4n

J
1 `(Q).

The proof is complete. �

Finally, we make a remark that Theorem 1.11 is independent of the choice of the
representation. Note that by Corollary 1.13, it suffices to consider the case when
d = 1. Let G1 = G (n1, δ1,La) and G2 := G (n2, δ2,Lb), where a = (a1, . . . , ai, . . . )
is an infinite sequence of integers where ai ∈ {0, . . . , n1 − 1} and b can be defined
similarly with n1 being replaced by n2. Then Theorem 1.11 asserts that G1 and G2

are adjacent on R if and only if
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(1). there exists some C > 0, such that for any m ≥ 0 and k1, k2 ∈ Z, there
holds

(2.11)

∣∣∣∣∣δ1 − δ2 − k1

n
φn`;n1 (m)

1

− k2

n
φn`;n2 (m)

2

∣∣∣∣∣ ≥ C

nm`
, ` = 1, 2;

(2). there exists some C ′ > 0 and J ∈ N sufficiently large, such that for any
j > J and any k3, k4 ∈ Z, there holds∣∣∣La (φn`;n1

(j)) + k3n
φn`;n1

(j)

1 − Lb (φn`;n2
(j))− k4n

φn`;n2
(j)

2

∣∣∣ ≥ C ′nj` , ` = 1, 2,

in other words,∣∣δ1 + La (φn`;n1
(j)) + k3n

φn`;n1
(j)

1

−δ2 − Lb (φn`;n2
(j))− k4n

φn`;n2
(j)

2

∣∣ ≥ C ′nj`
2

, ` = 1, 2.(2.12)

The goal now is to show that the constants C and C ′ defined in above, respec-
tively, are independent of the choice of the representation. Let G(n1, δ

′
1,La′) and

G(n2, δ
′
2,Lb′) be some other representations of G1 and G2, respectively. Note the

following two facts:

δ′1 = δ1 +N1, δ′2 = δ2 +N2

for some N1, N2 ∈ N, and

La′(j) = La(j)−N1 + d1(j)nj1, Lb′(j) = Lb(j)−N2 + d2(j)nj2,

where d1(·), d2(·) : N → Z; the result follows from plugging these new quantities
appropriately into the above quantities (2.12), and we leave the details to the
interested reader.

3. Proof of Theorem 1.14

The goal of this section is to prove Theorem 1.14, which states that if G1, . . . ,Gd+1

are adjacent on Rd, then their bases are closely related.

Definition 3.1. Let {n1, . . . , nd+1} be a collection of integers with ni ≥ 2, i =
1, . . . , d + 1. We call such a collection fine if there exists an adjacent collection
of general dyadic systems {G1, . . . ,Gd+1} on Rd, where Gi = G(ni, δi,L~ai), i =
1, . . . , d+ 1.

Note that Theorem 1.14 then asserts that if {n1, . . . , nd+1} is fine, then there
exists an integer n ≥ 2, and si ∈ N, si ≥ 1, i = 1, . . . , d+ 1, such that

ni = nsi , i = 1, . . . , d+ 1.

We begin with the case when d = 1.

Proposition 3.2. If {n1, n2} is fine, then there exists some n ∈ N, n ≥ 2, such
that

ni = nsi , i = 1, 2,

for some integers s1, s2 ≥ 1.
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Proof. We prove by contradiction by assuming such an n does not exist, which
means that logn2

logn1
is irrational (see the related comments following the theorem

statement in the Introduction). We will crucially use this fact in the proof.
Since {n1, n2} is fine, by Theorem 1.11, for any k1, k2 ∈ Z, we know the estimate

(2.11) holds, in particular, this implies that there exists some C > 0, such that for
any m ≥ 0 and k1, k2 ∈ Z,

(3.1)
∣∣∣δnm2 nφn2;n1

(m)
1 − k1n

m
2 − k2n

φn2;n1
(m)

1

∣∣∣ ≥ Cnφn2;n1
(m)

1 ,

where we denote δ := δ1 − δ2. Let us consider the following set

A(n1, n2;m) :=
{
k1n

m
2 + k2n

φn2;n1 (m)
1 : k1, k2 ∈ Z

}
.

Note that

A(n1, n2;m) =
{
k · gcd

(
nm2 , n

φn2;n1 (m)
1

)
: k ∈ Z

}
,

which suggests that we can find K1,K2 ∈ Z such that

(3.2)
∣∣∣δnm2 nφn2;n1

(m)
1 −K1n

m
2 −K2n

φn2;n1
(m)

1

∣∣∣ ≤ gcd
(
nm2 , n

φn2;n1
(m)

1

)
.

To use this, let us write

n1 = pa1
1 pa2

2 . . . paLL

and

n2 = p
a′1
1 p

a′2
2 . . . p

a′L
L ,

where {p1, . . . , pL} is a finite collection of primes and a`, a
′
` ∈ N, ` = 1, . . . , L. Note

that the ai’s and a′i’s only depend on n1 and n2, and independent of m.
We now consider two different cases.

Case I: There exists infinitely many m ∈ N and some ` ∈ {1, . . . , L} such that

(1). a` ≥ 1;

(2). p
a`φn2;n1

(m)

` ≥ pa
′
`m
` .

We make a remark that here one may presumably assume that ` may depend on
the choice of m. However, since there are only finitely many choices for `, by
pigeonholing, simply pick a fixed ` ∈ {1, . . . , L} and restrict attention to the sub-
sequence of m which satisfy Case I.

For simplicity, denote

CI := {m ∈ N : m satisfies the assumption of Case I}.

For Case I, we note that contribution of the prime p` to the term gcd
(
nm2 , n

φn2;n1 (m)
1

)
is at most p

a′`m
` . On the other hand, we define a function Ψ1 : N→ Z given by

Ψ1(m) = a`φn2;n1(m)− a′`m.

Note that if m ∈ CI , then

(a). Ψ1(m) ≥ 0;

(b). gcd
(
nm2 , n

φn2;n1
(m)

1

)
≤ n

φn2;n1
(m)

1

p
Φ1(m)

`

.
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We have the following claim: Ψ1(m) is unbounded.

Proof of the claim: Since,

Ψ1(m) = a` ·
⌊
m log n2

log n1

⌋
− a′`m

we have

(3.3)

(
a` log n2

log n1
− a′`

)
·m− a` ≤ Ψ1(m) ≤

(
a` log n2

log n1
− a′`

)
·m

however, since logn2

logn1
is irrational, using assertion (a), we can indeed conclude that

a` log n2

log n1
− a′` > 0.

This, together with the estimate (3.3), clearly implies the desired claim.

By (a) and the claim above, there exists a m ∈ CI sufficiently large, such that

(3.4) p
−Ψ1(m)
` <

C

2
,

where we recall that C is defined in (3.1). Therefore, we have∣∣∣δnm2 nφn2;n1
(m)

1 −K1n
m
2 −K2n

φn2;n1
(m)

1

∣∣∣ ≤ gcd
(
nm2 , n

φn2;n1
(m)

1

)
≤ n

φn2;n1 (m)
1

p
Ψ1(m)
`

<
Cn

φn2;n1
(m)

1

2
,

where in the first line above, we use (3.2), in the second to last estimate, we use
assertion (b) above and in the last estimate, we use (3.4). This clearly contradicts
(3.1).

Case II: Suppose Case I fails. This means there exists infinitely many m ∈ N
and some s ∈ {1, . . . , L} (independent of the choice of m), such that

(i). a′s ≥ 1;

(ii). p
a′sm
s ≥ pasφn2;n1

(m)
s .

Similarly, we denote

CII := {m ∈ N : m satisfies the assumption of Case II } .

The proof for the second case is similar to the first one, and we only sketch it here.
We define Ψ2 : N→ Z by

Ψ2(m) := a′sm− asφn2;n1(m)

Note that if m ∈ CII , then

(c). Ψ2(m) ≥ 0;

(d). gcd
(
nm2 , n

φn2;n1
(m)

1

)
≤ nm2

p
Ψ2(m)
s

.
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Similar as above, we can show that Ψ2(m) is unbounded. Now to use the assertion
(d) above, we rewrite (3.1) a little bit by

(3.5)
∣∣∣δnm2 nφn2;n1

(m)
1 − k1n

m
2 − k2n

φn2;n1
(m)

1

∣∣∣ ≥ C̃nm2 .
This is because n

φn2;n1 (m)
1 ≥ nm2

n1
and we may let C̃ = C

n1
.

Finally, let us take m ∈ CII sufficiently large, such that

(3.6) p−Ψ2(m)
s ≤ C̃

2

The desired contradiction will then follow from assertion (d), (3.2), (3.5) and (3.6).
The proof is complete. �

Finally we turn to the proof of Theorem 1.14.

Proof of Theorem 1.14. Theorem 1.14 is an easy consequence of Proposition 3.2 and
Corollary 1.13, and we would like to leave the details to the interested reader. �

Remark 3.3. Notice that (3.1) reduces to∣∣∣δnm2 nφn2;n1
(m)

1 − k · gcd
(
n
φn2;n1

(m)
1 , nm2

)∣∣∣ , for some k ∈ Z.

If we assume adjacency, this means that

δ · lcm
(
n
φn2;n1

(m)
1 , nm2

)
− k 6= 0,

that is, δ 6= k

lcm
(
n
φn2;n1 (m)

1 ,nm2

) , a natural analogue of our previous work [4]. Since

we now know that n1 and n2 are powers of the same base, this exactly replicates
the fact that k

nm are not n-far, which appeared in ([4], Corollary 2.10).
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