SHARP MEI'S LEMMA WITH DIFFERENT BASES

THERESA C. ANDERSON AND BINGYANG HU

ABSTRACT. In this paper, we prove a sharp Mei’s Lemma with assuming the
bases of the underlying general dyadic grids are different. As a byproduct, we
specify all the possible cases of adjacent general dyadic systems with different
bases. The proofs have connections with certain number-theoretic properties.

1. INTRODUCTION

The purpose of this paper is to give an optimal description of the adjacency of
general dyadic systems in R? with different bases. The study of describing dyadic
systems in a refined manner dates back to the work [7] of Conde Alonso, in which, he
proved d+ 1 is the optimal number of dyadic systems in R? to guarantee adjacency.

However, Conde Alonso’s result only implies the existence of such a collection of
d+1 dyadic systems. Our goal is to understand for a given collection of d+1 dyadic
grids (or more general, n-dyadic grids), what the necessary and sufficient conditions
are so that such a collection is adjacent. In our recent paper [4] joint with Jiang,
Olson and Wei, we answered this question when d = 1, and later in [2] we extended
this result to higher dimensions by studying the fundamental structures of d + 1
n-adic systems in R?. Note that in both [4] and [2], the bases of the given d + 1
grids are the same.

In this paper, we further generalize these results to the case when the bases of
these d+ 1 grids are different. Moreover, we are also able to specify all the possible
cases for adjacent systems with different bases. This type of generalization has
connections to the recent works [5] and [3], among others. Let us begin with the
definition of n-adic systems in R?, which is our main object of interest in this paper.

Definition 1.1. Given n € N,n > 2, a collection G of left-closed and right-open
cubes on R? (that is, a collection of cubes in R% of the form

[a1,a1 +€) X -+ X [ag,aq +£), a; €Ri=1,...,d,

where ¢ > 0 is the sidelength of such a cube) is called a general dyadic grid with
base n (or n-adic grid) if the following conditions are satisfied:

(i). For any Q € G, its sidelength £(Q) is of the form n* k € Z;
(i). QN R € {Q, R,0} for any Q, R € G;
(iii). For each fixed k € Z, the cubes of a fixed sidelength n* form a partition of
R¢,
Note that when n = 2, the above definition refers to the classical dyadic system in
R?, which we denote by D.
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An important property for such a structure is the following optimal dyadic cov-
ering theorem due to Conde [7], which is also known as the optimal Mei’s lemma.

Theorem 1.2. [7, Theorem 1.1] There exists d+1 dyadic grids Dy, ...,Day1 (with
base 2) of R such that every Euclidean ball B (or every cube) is contained in some

d+1

cube Q € |J D; satisfying that diam(Q) < Cqdiam(B). The number of dyadic
i=1

systems is optimal.

The origin of the adjacency of dyadic systems is obscure but we believe that
credit should be given to Okikiolu [19] and, for a somewhat weaker version, to
Chang, Wilson and Wolff [6]. Later in 2013, Hytonen and Peréz [14] proved that
Mei’s lemma holds 2¢ dyadic grids with the constant Cy = 6, and in the same
year, Conde Alonso [7] showed the optimal number of the dyadic systems needed
is d + 1 but with a larger constant Cy ~ d. Moreover in 2014, Cruz-Uribe [10]
gave a short proof of Mei’s lemma for 3¢ dyadic grids with a better constant Cy =
3. We would also refer the reader for [16, 17, 20, 13] and the references there
in for more detailed information about the development of this property. The
adjacency of dyadic systems are crucially used in harmonic analysis (for instance,
by Lerner to prove the Ay theorem in [15], among many other recent papers on
sparse domination), functional analysis [8], [11], [17], [20] and measure theory [9].

Theorem 1.2 motivates the following definition of the adjacency of a collection
of d + 1 general dyadic grids with different bases. Note that the adjacency we are
considering in this note is more general than the one in [2] and [4].

Definition 1.3. Given d + 1 general dyadic grids Gy, ...,Gg+1, where the base of
Giisng,i=1,...,d+ 1, we say they are adjacent if for any open cube Q C R? (or
any ball), there exists i € {1,...,d+ 1}, and D € G;, such that Q is comparable to
D, in the sense that

(1). Q € D;

(2). ¢(D) < CU(Q), where the constant C' only allows to depend on nq, ..., ng41
and d, in particular, it is independent of the sidelength of the cubes @ and
D.

The new feature of the adjacency of general dyadic systems with different bases
comes from the fact that the cubes from different grids living in different genera-
tions start interacting with each other, in both small scale case (where the cube
has sidelength less than or equal to 1) and large scale case (where the cube has
sidelength great than 1). This leads to the fact that some generations of the general
dyadic grids make a significant contribution to the adjacency, while some make no
contributions. This is quite different from the case considered in [4] and [2] where
there is only one base; the adjacency there is decided by cubes from all generations
in different grids.

Ezxample 1.4. Here is an easy way to produce adjacent general dyadic systems with
different bases.

To start with, we can take a known example of adjacent grids with the same
bases (see, e.g., [7, Page 786-787]), and then change bases by deleting specific
generations. For example, let D; and Dy be two dyadic grids which are adjacent



on R, then we define G; := D; and
(1.1) Gy = U {1 € (Da)y}-

i€Z
Here are some remarks for the above example.

(1). Tt is easy to check that G; and Gy are also adjacent on R, while Gs is of
base 16;

(2). This construction easily suggests to the following fact: the optimal number
that is needed to guarantee the adjacency for grids with different bases is
also d + 1

(3). It turns out that this “changing bases trick” is the only possible case for
adjacent systems with different bases (see, Theorem 1.14).

Finally, note that not all generations in G; make a contribution to the adjacency.

Indeed, let us define
G1:=J{I € (D)}
i€Z

Note that by [4, Theorem 3.8], Gi and G5 are adjacent on R (note that both G and
Go are of base 16). This suggests that in the adjacent pair {G1,Gs}, only the cubes
in (G1)y,;,% € Z (that is, cubes only every four levels) contribute to the adjacency,
while the cubes from other generations are redundant.

Let us make the above phenomenon in a quantitative way. To do this, we first
introduce the following auxiliary function: for any n,n’ € N with n,n’ > 2, ¢,/ :

N — N is given by
. |Jlogn
d)nm’(]) T \‘logn/ J .

Note that ¢, ,(j) = j for all j € Nand n > 2.

This auxiliary function allows us to extend the concept of “far” considered in
[2] and [4], which is the first ingredient that we need for our main result. Such a
generalization is two-fold: first of all, we are able to define “far number with respect
to a finite collection of integers” (see, Definition 1.5); second, we also describe the
“far pair of integer-valued functions with respect to a finite collection of integers”
(see, Definition 1.7). Now let us turn to some details.

Definition 1.5. Let N := {ny,...,nr} be a collection of positive integers where
eachng > 2,/ =1,...,L. Given any § € R and n,n’ € N with n,n’ > 2, we say
8 is a (n,n’)-far number with respect to N if there exists C' > 0 such that for any
ng € N, there holds that

k‘1 k2
a n®nein(m) - (n/)%[;n/(m)

(1.2) ) VYm >0, k1, ks € Z,

C
g
where C only depends on n, n’, §, N, L and any dimension constants, but is
independent of m, ki and ks.

Remark 1.6. (1). The concept of far numbers with respect to a set will be used
to deal with the small scale case in most of our applications later, and we
will only consider the case when n,n’ € N and L = d + 1, which is the
optimal number of general dyadic systems that needed to guarantee the
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adjacency in R?. Therefore, the constant C in (1.2) later will only depend
on 6, N and any dimensional constants;

(2). When N = {ng} and n = n’ = ng, Definition 1.5 coincides with the
classical definition of no-far number, which was considered in [4] and [2].
The concept of far numbers, where N' = {2}, was introduced by Mei [18] to
prove that the one-parameter space BMO(T), which is the space of bounded
mean oscillation on the torus T, can be written as the intersection of two
dyadic product BMO(T) spaces, with equivalent norms. In 2013, Li, Pipher
and Ward [17] generalized Mei’s result to multi-parameter case and a vast
class of function spaces via a more careful study of far numbers. For a
systematic study of far numbers, we refer the interested reader to [4] for
more details.

Next, we define the “far pairs of integer-valued functions with respect to a finite
set”.

Definition 1.7. Let A and L be defined as above. Given any integer valued
functions £, £ : N — N and n,n’ € N with n,n’ > 2, we say (£,£') is a (n,n’)-far
pair of integer-valued functions with respect to N if there exists a C’ > 0 and J € N
sufficiently large, such that for any n, € NV, any j > J and any ks, ks € Z, there
holds that

(13) L (Gnpn(h)) + ksn®en @) = L' (¢, e (7)) = ka (n) e D | > O

where C” only depends on n,n’, L, L', N, L,J and any dimensional constants, but
independent of j, ks and ky.

Remark 1.8. The concept of far pairs of integer-valued functions with respect to
a finite set will be used to deal with the large scale case in our application later,
where again, we will only consider the case when n,n’ € N and L =d + 1.

The second concept that we need is the representation of general dyadic systems.
The setting is as follows.

(1). 6 € RY, which can be interpreted as the “initial point” to build the grid;

(2). n € N with n > 2, which is the base of the grid,;

(3). An infinite matrix

(14) 5::{60,...,&j,...},

where @; € {0,1,...,n—1}4,j > 1;
(4). The location function associated to &:

Ls:N+— 79,
which is defined by
j—1
Z nlaia .7 2 1;
La(j) ="
0, j=0.

Definition 1.9. Let 6 € R% n > 2 be an integer, a and Lz be defined as above.
Let G(n,d, Lz) be the collection of the following cubes:



(1). For m > 0, the m-th generation of G(4, Lz) is defined as

91, O)m = { {@1 b ot ’“ln‘;l) x

k kqg+1
x {(5)# Ti’(‘s)“ C;lm) ’(k;l,...,kd) € Zd}7

where here and in the sequel, we use (§)s to denote the s-th component of
a vector § € R,

Note that all the positive generations (that is, the collection of cubes
with sidelength less or equal to 1) are uniquely determined by the initial
point &, and hence the location function Lz does not make any contribution
for positive generations;

(2). For m < 0, the m-th generation is defined as

G(n,0, La)m = { {(5)1 +[La(=m)]; + :—; (O + [La(—m)], + T 1) x

nm

x [(a)d + [La(—m)], + j—i (0)a + [Cal—m)], + Fat 1) ‘(/ﬁ, k) € Zd}.

nm

To this end, for each m € N, we denote b[G (n,d, Lz), ] as the collection of all

the boundaries of the cubes in G (n, 9, Lz),,,.

m ]

Remark 1.10. 1. The term § + Lz(—m) in Definition 1.9 can be interpreted
as the location of § after choosing n-adic parents (with respect to the 0-th
generation) m times;

2. G(n,0,Lz) is a n-adic grid; on the other hand, for any n-adic grid G, it
can be represented as G(n,d, Lz), for some 6 € R™ and infinite matrix &
defined in (1.4) (see, [2, Proposition 3.2 and Proposition 3.3]). Moreover,
although the representation of a m-adic grid in general is not unique, they
are essentially the “same” from the view of adjacency (see, [4, Theorem 3.14]
for both the real line case and [2, Corollary 2.5] for the higher dimensional
case).

We are ready to state our main result, which generalizes [2, Theorem 1.5].

Theorem 1.11. Let G; := G(n;,0;,L5,), i = 1,...,d + 1 be a collection of gen-
eral dyadic grids, where d,n;,d; and d@; are defined as above. Let further, N =
{ni1,...,ngy1}. Then Gy,...,Gqr1 are adjacent if and only if the following condi-
tions hold:

(1). For any £1,02 € {1,...,d+ 1} where £ # £y, and s € {1,...,d},
(6él)5 - (5€2)s
is a (ng, , Mg, )-far number with respect to N';

(2). For any l3,0y € {1,...,d 4+ 1},03 # 44, and s € {1,...,d}, the pairs of
integer valued function

(£ 0]+ [2a.0])

is a (ng,, ne, )-far pair of integer-valued functions with respect to N
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Remark 1.12. 1. Theorem 1.11 is sharp, in the sense that the number of the

general dyadic systems needed to guarantee the adjacency cannot be re-
duced;

. Let us include some motivation for the auxiliary function ¢. As we have

pointed out earlier, the new feature for the general dyadic systems with
different bases is that adjacency is given by cubes with different sidelengths
from different grids. For example, in [2], the term we have for the second
condition in our main result is

[£a., (j)L - [£a, (J')L

nJ

However, if the general dyadic grids are allowed to have different bases, it
is no longer correct to compare the location functions at the same “level”
J (that is, (—j)-th generation), for instance, consider a term like

|£a, )] = [£a, )]

J
g,

S S

Heuristically, let us assume ng, > ng,, and a8y, is an infinite matrix such
that

[ﬁakl (j)} L .,
when j is large. However, 0 < [ﬁ% (])} < ”iw which is negligible com-

pared to the term [ﬁakl (])} . In other words, (1.5) suggests that the adja-

cency for the large scale only depends on grids with a larger base, which is
not correct since we can always do the “changing base trick” as in (1.1) to
make the base as large as we want. A similar observation suggests that for
the small scale case, one has to extend the definition of “far with respect
to a number” to “far with respect to a set” (see, Definition 1.5).

These phenomena suggest that when the bases are different, it is more
reasonable to explore how the cubes from different grids with comparable
size interact with each other, rather than the from the same generations.
This motivates us to introduce ¢ to quantify such a phenomenon.

To this end, we make a comment that another possible approach to
study the geometry underlying Theorem 1.11 is to consider the fundamental
structures of d+1 general dyadic dyadic systems with different bases, which
were introduced in [2] to study the adjacency of general dyadic grids with
the same base. It is not hard to see that when the bases are different, these
structures make sense if and only if the cubes used to build these structures
from different grids are of comparable sizes.

The following corollary is straightforward from the main result Theorem 1.11
(see [2] for a more detailed explanation).

Corollary 1.13. Let Gi,...,Gq4+1 be defined as in Theorem 1.11. Gi,...,Ga41 1S
adjacent in Re if and only if the projection of any two of them onto any coordinate
axis is adjacent in R.



A second application of our main result Theorem 1.11 is that the typical examples
provided by the “changing bases trick” in Example 1.4 are actually the only possible
cases for adjacent general dyadic systems with different bases. More precisely, we
have the following result.

Theorem 1.14. Let Gy,...,G411 be adjacent on R<. Then there exists an integer
n>2 ands; €EN,s; >1,i=1,...,d+ 1, such that

n;=n%, i=1,...,d+1.

Remark 1.15. Note that if such an n does not exist, then this means that ll;’g%
J

is irrational for some i # j, whereas if n does exist, then 1§§ ™ is always rational.
J

This is related to numbers normal to different bases, that is, }gg =

only if every number that is normal to base n; is also normal to base ny [21]. Also,
via work of Wu [22], igg s being rational means that the null sets for the nj-adic
doubling measures and ns-adic doubling measures are equal. This in turn loosely
relates to our recent work [3].

is rational if and

The structure of the paper is as follows: Section 2 is devoted to prove the main
result Theorem 1.11. Moreover, we also show Theorem 1.11 is independent of
the representation. While in Section 3, we prove Theorem 1.14 and connect the
discoveries therein with other recent work.

2. PROOF OF THEOREM 1.11

In this section, we prove our main result Theorem 1.11.

2.1. Necessity. Suppose G1 = G(n1,61,L5,),.-.,9a+1 = G(nat1,0a+1, L, ,) are
adjacent. We prove the result by contradiction.

Assume condition (1) fails. This means we can take some (1,0 € {1,...,d+ 1}
with ¢; # ¢5 and s € {1,...,d}, such that for each N; > 1, there exists some m > 0,
Ki,K5 € Z and ny, € N, such that

Kl K2 1
2.1 é —(6 - — .
( ) ( fl)s ( ﬁz)s brging, (M) brging, (M) < Nmz"
ny, ny,
This implies the distance between the hyperplane < (z)s = (d¢,)s — %l%(m)}
ey
g,

and the hyperplane {(x)é = (0¢,)s + d,ne{{j()} is less than ﬁ
TE2 14
L
Observe that ’
K
(x)s = (00, )s — e ) cbh {(Qel)(j)%wl (m)]
Ny,
and

K,
((E)S = (542)5 + W cb |:<ge2)¢"eme2 (m)} .

TLZZ
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Therefore, the estimate (2.1) suggests that we can take two sufficiently close points,
with the first one located on b {(Q@l) (m)} , and the second one on b [(ggz )o |
nging,

respectively. More precisely, we may assume s = £ = ¢; = 1 and {5 = 2 for sim-
plicity. We consider the points p; and ps, which are given by intersection of d
non-parallel hyperplanes as follows:

pi= { @ = G = b @ = G0} 00 {0 = G

1

rging,

and

Py = {<x>1 = (a1 + 2

<f>m-nz(m)} N{(@)2 = (83)2} N --- N {(2)a = (dat1)a}}-
ng '

Note that p; and po enjoy the following properties:

d+1

d+1
@- m €00(6),10 (121G ) and 2 € 5[] 0 1 PG

t=3
(b). dist(p1,p2) < ;-

Note that the second property above allows us to choose an open cube @ of side-
1

length N containing both p; and ps as interior points; while the first property
1

asserts that if there is a dyadic cube D € G, ¢ € {1,...,d + 1} covering @, then
the sidelength of D is at least 51~. Indeed, if D € Gy, then since DNb[(G1),,] # 0,

2nT
D has to belong to (G1),,, for some m' > m, this suggests ¢(D) > %; if D € Gy,
1
then similarly we have

m’

1 1
(D) > =
ngnl ing (M) elog ng- [rr;;;a"? J
1 1
(2.2) 2 e =
e %82 Togny n

Finally, if D € G;, ¢ € {3,...d + 1}, a similar argument suggests that ¢(D) > 1.

Hence N
D) > 71 Q).

This will contradict adjacency if we choose N; sufficiently large.

Next, we assume condition (2) fails. This means that there is some (3,04, €
{1,...,d+ 1} with ¢35 # ¢4 and s € {1,...,d}, such that for each Ny > 1, there
exists some ny € N, j sufficiently large and K3, K4 € Z, such that
(2.3)

. ¢n,;n,, (]) . bn in (]) ’I’Lj
’ {ﬁae'*" (¢n[;né3 (]))} s * KSnEB o o [£5£4 (¢ne;nz4 (])):| s - K4ng4 Fr Fi

Without loss of generality, we consider the case when s = ¢ = {3 =1 and ¢4 = 2.
Therefore, (2.3) can be simplified as

: . j
(2.4) )[Cal ()] + K3nd = [Lay (brrins (4))];, — Kang™" (1)’ - %12

This gives

. ] . nyino (7 ond
81+ Lay (D], + Kan = [82 + La, (Sngma ()] — Kamg™ 2| < T
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since we can pick j is sufficiently large. To this end, let us rewrite the above estimate
as follows
(2.5)

. i . ot ims (3) o on?
[[61+ £, () + Kanier | = [62 4 Lay (G0 () + Kan ™ 2Ven] | < T,
2
where for s € {1,...,d}, & is the standard unit vector in R? with s-th entry being

1.
Similarly as (2.1), the estimate (2.5) can also be interpreted geometrically. In-
deed, let

o = {(m)l - [51 + La () + K?,n{a]l} N
ﬁ {@) = [6011 + Lar, (Pnimen (1))],}
and -
@ = {@h = [0+ Lay Guma () + Kang 2V 10
m (@) = [ens + L Bmmns D)1}

which satisfies the following properties:

(a). a1 €b[(G)_,] 0 C{ib [(gk)_%nk(j)}) and ¢ € Z(ib [ A—

. 2nd
(b). dist(q1,q2) < F-
Note that the reason for us to consider the negative generations in property (a)
above is that the cubes underlying the condition (2) is of side length greater than
1 (namely, the large scale case).
To derive the desired contradiction, we again start from the second condition

above by taking a cube @ containing both ¢; and gq, with £(Q) = % Now we let
D € G, for some i € {1,...,d+ 1} which contains ). However, since

QB[(G) s, 0] # 0
(note that ¢y,.,(j) = j for j large), it follows that

s (G jp 1
D) > nf”l’"i(h) = exp <1og n; - Vl 8 nlJ)

logn;
i1 J1
(2.6) > exp (logni . (‘hOgnl — 1)) =M
10g n; n;
Therefore, we have
N2£(Q)
L(D —
( )> QTLZ ’

which is again a contradiction if we choose Ny sufficiently large.

The proof for the necessity is complete.
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2.2. Sufficiency. Suppose conditions (1) and (2) hold, that is,
(1). For any £1,€ € {1,...,d + 1} where £; # {5, and s € {1,...,d}, there

exists some constant C({1,£3,5s) > 0, such that for any m > 0, any ny € N
and k1, ko € Z, there holds

k1 ) S C(ly,4a,s)

¢ng;ng1(m) n¢ﬂg;n52(m) - nzn
01 £2

(2.7) (0e,)g = (02,) 5 —

(2). For any ¢3,¢4 € {1,...,d+ 1},035 # 44, and s € {1,...,d}, there exists a
C'(l3,04,8) > 0 and J(¢3,44,5) € N sufficiently large, such that for any
ng €N, j > J(l3,04,5) and any k3, ks € Z, there holds that

bngngy ()

‘ ['Céfs (qs"“% (J))} s kg,

. ¢n 3T (]) ]
(2.8) ~ (Lo, Gnine, )] = hang, 4| = €l 0, 9) .
Denote
Cy = min  C(fy,0a,8), C}:= min  C'({3,44,5).
1<0 £ <d+1 1<l3#Ls<d+1
1<s<d 1<s<d
and
(2.9) J= Lopmax J(ls, 0y, 8).
1<s<d
It is clear that C1,C] > 0.
Recall the goal is to show the collection Gi,...,Gqy1 is adjacent on RY. Take

some C > 0 be a constant such that
C/
0<C<min{C1,21}.

Let Q be any cube in R? and let mg € Z, such that

c c
. — < .
(2.10) nTMJ__KQ)<7ﬁm

Let us consider several cases.

Case I: my > 0. We have the following claim: there exists some ¢ € {1,...,d+1},
such that

Q € (Ge)

Proof of the claim: We prove the claim by contradiction. If @ is not contained
in any cubes from (gg)%_w(mo) for any ¢ € {1,...,d + 1}, then for each ¢ €

{1,...,d+ 1}, we can find a sy € {1,...,d}, such that
F)SZ (Q) N PSZ (V&Qﬁnlm( (mo)) # ®7

where P; is the orthogonal projection onto the s-th coordinate axis in R? for s €
{1,...,d}, and for £ € {1,...,d+ 1} and m > 0,

¢Wv"ﬂmo).

wm:{&+ifﬁew}
T
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is the collection of all the vertices of the cubes in (Gy),,. By pigeonholing, there
exists some f1,05 € {1,...,d+ 1} with £; # {5, but s, := sy, = Sy, such that

P, (Q) NP, <V€17¢7L1i7lzl (mo)) ) Ps* (Q) n Ps* (V€2,¢n1;w2(m0)) 7é (2)7
which implies that there exists some K7, Ko € Z, such that

K K, c C(ly,0a,54)
Oe)s + e ~ Vel — 5 | SUQ < G < —m
n£1 ’I’LZ2

which contradicts (2.7).

Case II: mg < —J, where J is defined in (2.9). In this case, our goal is to show
that

Q € (gk)_qﬁnl;n[(_mo)

for some £ € {1,...,d + 1}. We prove it by contradiction again. Following the
argument in Case I above, we see that there exists some 3,04 € {1,...,d+ 1} with
l3 # 04 and s* € {1,...,d}, such that

Poe(@) 0 P Ve, o)) Por (@) 0 PV () 0.
This implies there exists some K3, K4 € Z, such that

¢77/1;"[3 (=mo)

‘ |:§f3 + £§@3 (792/)"1;"43 (*mo))} o + KB”gg -

C

mo *°
ny

¢n1;n[4 (_m())

|:5€4 + ‘6544 (_¢n1;n53 (_mO))} o K4ng4

Note that since we can always choose J sufficiently large, we can indeed reduce the
above estimate to

¢n1;ng3 (7m0)

|:£§z3 (_¢n1;ne3 (_mO))} o + K3n53 -

¢n1;n ( mO) QC
Lo, (=Onins, (=m0))| = Kamg™ " o

This gives the desired contradiction to (2.8), since C' < % < M.

Case III: —J < mg < 0. Indeed, we can “pass” the third case to the second case,
by taking a cube @’ containing ) with the sidelength is n{. Applying the second
case to @', we find that there exists some D € Gy, for some k € {1,...,d+ 1}, such
that Q" C D and ¢(D) < C4l(Q’), which clearly implies

(1). @ C D;

(2). 4(D) < Canfl(Q).

The proof is complete. U

Finally, we make a remark that Theorem 1.11 is independent of the choice of the
representation. Note that by Corollary 1.13, it suffices to consider the case when
d=1. Let Gy = G (n1,1,La) and Gy := G (ng, 02, Lp), where a = (a1,...,a;,...)
is an infinite sequence of integers where a; € {0,...,n7 — 1} and b can be defined
similarly with n, being replaced by ng. Then Theorem 1.11 asserts that G; and G
are adjacent on R if and only if
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(1). there exists some C' > 0, such that for any m > 0 and kq, ks € Z, there
holds

k1 ko

n(fnz;nl (m) - ngﬁnzznz (m)

01 — 02 — > £=1,2;

C
m7
Ty

(2). there exists some C' > 0 and J € N sufficiently large, such that for any
j > J and any ks, k4 € Z, there holds

La (¢nz;n1 (J)) + k3nfwnbl(]) — Ly (¢ne;n2 (])) - k4n§wm2(ﬂ‘ Z C/n? 0=1,2,
in other words,

81+ La (dn,m (7)) + anf

< C'n;,

- 2 )
The goal now is to show that the constants C' and C’ defined in above, respec-

tively, are independent of the choice of the representation. Let G(ny,d], La/) and

G(ng, 04, L) be some other representations of G; and Go, respectively. Note the
following two facts:

(2.12) 8y = Ly (nyiny () — kan 72| 0=1,2.

01 =01+ N1, 05=10+N,
for some Ny, N € N, and

Lar(§) = La(d) = N1 +di(§)n1, Li(§) = Lu(j) — Na +da(j)ns

where di(-),d2(-) : N — Z; the result follows from plugging these new quantities
appropriately into the above quantities (2.12), and we leave the details to the
interested reader.

3. PROOF OF THEOREM 1.14

The goal of this section is to prove Theorem 1.14, which states that if Gy, ..., Gg11
are adjacent on R?, then their bases are closely related.

Definition 3.1. Let {n,...,n411} be a collection of integers with n; > 2,i =
1,...,d+ 1. We call such a collection fine if there exists an adjacent collection
of general dyadic systems {Gi,...,Gar1} on R? where G; = G(n;,6;,Lz,),1 =
1,...,d+ 1.

Note that Theorem 1.14 then asserts that if {ni,...,ng441} is fine, then there
exists an integer n > 2, and s; € N;s; > 1,i=1,...,d + 1, such that

n;=n%, i=1,...,d+ 1.
We begin with the case when d = 1.

Proposition 3.2. If {ni,n2} is fine, then there exists some n € N, n > 2, such
that

n;=n%, i=12,

for some integers sy,s9 > 1.
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Proof. We prove by contradiction by assuming such an n does not exist, which
means that 132 ZT is irrational (see the related comments following the theorem
statement in the Introduction). We will crucially use this fact in the proof.

Since {n1,no} is fine, by Theorem 1.11, for any k1, ko € Z, we know the estimate
(2.11) holds, in particular, this implies that there exists some C' > 0, such that for

any m > 0 and ky, ks € Z,

(3.1) 5n31n(f"2;"1(m) — kind* — kzn(f”“l(m)‘ > Cn(f"”"l(m),
where we denote § := §; — d2. Let us consider the following set
A(ny, ng;m) == {kln;” + Ean ™ gk € Z} .

Note that
A(ny,n9;m) = {k - ged (ngm, nf”ml(m)) ke Z} ,

which suggests that we can find K7, Ko € Z such that
(32 [ongnden ) - Kng - Ko | < ged (g nfe ).

To use this, let us write

ni=py'ps? ... pt
and
ny = piipst Py,
where {p1,...,pr} is a finite collection of primes and a¢,a; € N,£ =1,..., L. Note

that the a;’s and a.’s only depend on n; and ns, and independent of m.
We now consider two different cases.
Case I: There exists infinitely many m € N and some ¢ € {1, ..., L} such that
(1). ag > 1;
(2). p @ 2 py,
We make a remark that here one may presumably assume that ¢ may depend on
the choice of m. However, since there are only finitely many choices for ¢, by
pigeonholing, simply pick a fixed ¢ € {1,..., L} and restrict attention to the sub-

sequence of m which satisfy Case I
For simplicity, denote

Cr := {m € N : m satisfies the assumption of Case I}.

For Case I, we note that contribution of the prime p, to the term ged (ng”, nf”z;”l (m))

is at most pzfzm' On the other hand, we define a function ¥; : N — Z given by
U1(m) = aedpyin, (M) — agm.
Note that if m € Cy, then
(a). Wy(m) = 0;

TLfnz inq (m)

(b). ged (nﬁn,n(fngm(m)) < —Em
£
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We have the following claim: ¥ (m) is unbounded.

Proof of the claim: Since,

1
U, (m) = ag - V“)g”?J —aym

log nq
we have
aglogng , aglogng ,
3.3 ———ay | m—a, <Y (m) | —————a, | -m
(3:3) ( log ny e) ¢ < ¥a(m) < ( log nq ¢
however, since 12§ Zf is irrational, using assertion (a), we can indeed conclude that
aglogn
Zng — a% > O
log nq
This, together with the estimate (3.3), clearly implies the desired claim. 0

By (a) and the claim above, there exists a m € C; sufficiently large, such that

wm  C
(3.4) p, ><5,

where we recall that C' is defined in (3.1). Therefore, we have

sngndmem (M _ gy — Kznfnzml(m)‘ < ged (nén, nj"e (m)>

n‘fnzml (m)

IN

<

where in the first line above, we use (3.2), in the second to last estimate, we use
assertion (b) above and in the last estimate, we use (3.4). This clearly contradicts
(3.1).

Case II: Suppose Case [ fails. This means there exists infinitely many m € N
and some s € {1,...,L} (independent of the choice of m), such that

(i). a.. > 1;
(i). pie"" > plfrm (™,
Similarly, we denote

Cir := {m € N : m satisfies the assumption of Case II}.

The proof for the second case is similar to the first one, and we only sketch it here.
We define ¥y : N — Z by
o (m) = aym — asPpyin, (M)
Note that if m € C;y, then
(c). Wa(m) > 0;

m

qbn in
(@). ged (ng,n{™m ™) < o
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Similar as above, we can show that ¥5(m) is unbounded. Now to use the assertion
(d) above, we rewrite (3.1) a little bit by

(3.5) ong'n ¢"2 na (M) — kingy® — k2n¢"2 i1 (m) > éng’l

This is because n¢”2 (M) 5 73" ond we may let C' = ng

Finally, let us take m € Cyy 1sui‘ﬁmently large, such that

(36) prvam < €
The desired contradiction will then follow from assertion (d), (3.2), (3.5) and (3.6).
The proof is complete. O

Finally we turn to the proof of Theorem 1.14.

Proof of Theorem 1.14. Theorem 1.14 is an easy consequence of Proposition 3.2 and
Corollary 1.13, and we would like to leave the details to the interested reader. [J

Remark 3.3. Notice that (3.1) reduces to
‘57@71?"2 mlm) g gcd( Ona "1(m) 2)

, for some k € Z.
If we assume adjacency, this means that
5lcm( Pny; nl(m) ) I<s7é0

that is, § # 1 %Q;ﬁ ) m) , a natural analogue of our previous work [4]. Since
cm | ny ,ny

we now know that n1 and ng are powers of the same base, this exactly replicates
the fact that —% are not n-far, which appeared in ([4], Corollary 2.10).
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