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Abstract

Global warming potential (GWP) has been widely used in the Life Cycle Assessment (LCA) to
quantify the climate impacts of energy technologies. Most LCAs are static analyses without
considering the dynamics of Greenhouse Gas (GHG) emissions and changes in background GHG
concentrations. This study presents a dynamic approach to analyze the life-cycle GWP of energy
technologies in different timeframes and representative GHG concentration pathways. Results
show that higher atmospheric GHG concentrations lead to higher life-cycle GWP for long-term
analysis. The impacts of background GHG concentrations are more significant for technologies
with large operational emissions or CH4 emissions than technologies with low operational
emissions. The case study for the U.S. electricity sector in 2020—2050 shows the impacts of
background GHG concentrations and different LCA methods on estimating national climate
impacts of different energy technology scenarios. Based on the results, it is recommended for
future LCAs to incorporate temporal effects of GHG emissions when (1) technology has large
operational GHG emissions or CH4 emissions; (2) the analysis timeframe is longer than 50 years;
(3) when LCA results are used for policymaking or technology comparisons for mitigating climate

change.
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Synopsis

This study developed a dynamic life cycle assessment approach to incorporate the temporal

dynamics of atmospheric GHG concentrations and GHG emissions into Global Warming Potential

accounting of energy technologies.
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1. INTRODUCTION

The energy sector is one of the largest contributors to greenhouse gas (GHG) emissions in the
world and accounts for 73% of total global GHG emissions in 2016."! To reduce GHG emissions,
different climate change mitigation scenarios have been proposed by adopting emerging
technologies such as carbon capture and sequestration (CCS) and renewable energy (e.g., solar
and wind) for the energy sector.””’ Quantifying and comparing the climate change mitigation
potentials of different technologies and adoption scenarios from a holistic, life-cycle perspective
is critical for energy policymaking and technology development.® Such comparison is challenging
given the dynamic nature of both climate and GHG emission profiles of energy technologies.”!°
Global Warming Potential (GWP) is a standard metric widely used in Life Cycle Assessment
(LCA) to compare the climate impacts of different technologies.!!"'> GWP is calculated by the
integrated radiative forcing of an emitted GHG and the reference gas carbon dioxide (CO2).!!3
The radiative forcing of a GHG over a time horizon is given by multiplying radiative efficiency
and GHG remaining in the atmosphere after the pulse emission (well known as the impulse
response function (IRF)).!"'* Most LCA studies are static analyses and they use fixed GWP
conversion factors for non-CO2 GHG emissions. Several studies proposed dynamic frameworks

8,9,22-24,13,15-21 and a

considering the temporal effects of GHG emissions and varied time horizons,
few of them applied the dynamic approaches to LCA.%!315-17:2324 Several studies also presented
dynamic GWP characterization factors with considering the temporal effects of GHG emissions,
most of which focused on biogenic carbon issues.'®!7?>24 Other studies developed correction
methods for the fixed GWP factors (e.g., GWP*) to consider the warming equivalent effects of

short-lived climate pollutants (e.g., CH4).2>?” The detailed review is available in Supporting

Information (SI) Section 1. However, few studies have included the temporal changes of future
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background atmospheric GHG concentrations that have significant impacts on GWP results given
its large correlation with radiative efficiency, a key parameter used in the radiative forcing
calculation.'®?® Quantitative understandings of the life cycle GWP impact of diverse energy
technologies are essential to determine and compare the net climate change mitigation potential of
different technologies. The static LCA method excludes dynamic factors such as the future
changes in the atmospheric GHG concentrations that impact the life cycle GWP results, limiting
the understandings of prospective climate implications of different energy technologies. In the
current context of decarbonization, considering the dynamics of GHG emissions, decay, and
atmospheric concentration changes in GWP accounting contributes to a fuller picture in the policy-
relevant analysis (e.g., analyzing GWP reduction target’), especially in the analysis with emission
profiles over a long time (typically longer than 20 years).!*!8

To address the challenge, we developed a dynamic method integrated with LCA that is capable
of modeling temporal dynamics of background GHG concentrations in the atmosphere and GHG
emissions associated with energy systems. The method was used to analyze the dynamic life-cycle
GWP of energy technologies under different trajectories of atmospheric GHG concentrations. In
this method, the radiative efficiency is dependent on atmospheric GHG concentrations by using
Representative Concentration Pathway (i.e., RCP2.6, RCP4.5, RCP6, RCP8.5),% instead of being
fixed values in traditional GWP estimations. To understand the impacts of varied future
atmospheric GHG concentration pathways on life-cycle GWP of energy technologies, this
dynamic method was applied to nine power generation technologies (e.g., coal, natural gas, wind)
and then scaled up for the U.S. electricity generation projection from 2020 to 2050 under varied

CCS technology adoption scenarios. The results of the dynamic method in this study are compared
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to two common approaches in current LCAs to exhibit the significance of considering the changes

of background GHG concentrations and the temporal effects of GHG emissions.

2. MATERIALS AND METHODS

In this study, a dynamic GWP accounting method was developed to incorporate the dynamic
profiles of atmospheric GHG concentrations and GHG emissions (Section 2.1).% This method
allows for dynamic assessment of climate impact in LCA. The method was first used to analyze
the life-cycle GWP of various energy technologies on the basis of 1 kWh of electricity generated
(functional unit) using the Life Cycle Inventory (LCI) data collected from the literature (Section
2.2). The GWP results of energy technologies were then scaled up using the projection of U.S.
electricity generation by different fuel types and technology adoption from 2020 to 2050 (Section
2.3), providing national-level insights on prospective climate implications of different energy
technology scenarios. To better understand the importance of considering GHG concentration in
GWP accounting, the method developed by this study was compared with another two common
approaches under different adoption scenarios of CCS technology. One is the traditional LCA
approach that considers no temporal impacts of GHG emissions and uses GWP conversion factors
for different GHGs over a fixed time horizon (e.g., 20 or 100 years).?® The other is the dynamic
method used in previous LCAs that only considers the decay of GHG species with fixed radiative
efficiency.”'>"'7 In this study, the modeling work of dynamic GWP accounting is performed in

Excel with VBA programming.

2.1. Dynamic GWP Accounting Method.
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According to the Intergovernmental Panel on Climate Change (IPCC) 2013 report,'' the GWP

for gas i can be derived by eq 1:

H
AGWP;(H) [, RFi(t)dt
AGWPco,(H) [ RFco, (Dt

GWP;(H) = (1)

where AGWPi(H) is the absolute global warming potential (AGWP) (W yr m™ kg!) due to the 1
kg pulse emission of gas i in the time horizon H (year), RF: is the radiative forcing (RF) due to

pulse emission of gas i. RFi can be given by:

RF; = A;C; (2)

where A; is the RF; per unit mass increase of species i (or so-called radiative efficiency (RE)), Ci
is the fraction of species i remaining in the atmosphere after the pulse emission (or so-called
impulse response function, IRF).!! 4; depends on the atmosphere concentration of gas i that is
time-dependent and have been predicted by different concentration pathways.?’

As RF related data is usually reported on an annual basis (e.g., GHG atmospheric
concentration), this study adapted the discrete accounting method developed by Levasseur et al.’
This method uses dynamic characterization factor DCFi(k)inst, to quantify the RF occurring in 1

year after k years of 1 kg pulse emission for gas i by eq 3.9

DCF(K)inst = [, Ai(R)Ci(D)dt 3)
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where Ai(k) is the radiative efficiency at k years after the pulse emission. 4i(k) is time-dependent
and varies for different GHG atmospheric concentrations. C;(t) is the time-dependent C; during

year k. The cumulative DCF for gas i with a time horizon H will be equal to AGWP:

DCF; (H)cumu = 25:0 DCFi(k)inst = AGWPi(H) 4)

For GHG emitted in year j, gi(j) in kg, the instantaneous global warming impact in year £,

GWlinsi(k), can be derived from the instantaneous RF as shown in eq 5.7

GWlins (k) = ZiZ?:O 9i() X DCF(k = J)inse (5

The cumulative global warming impact for a time horizon H, GWlins(H), can be calculated by

summing up GWling(k) as shown in eq 6.!”

GWIcumu(H) = g:o GWIinst(k) (6)

The global warming potential of the GHG in the reference of CO2, GWP (kgCOz2-eq), can be
derived by eq 7.1° DC Fco,(H) cyumy is the cumulative DCF for 1 kg CO2 pulse emission in year 0

and calculated from eq 4.

DCFco,(H)cumu

GWP = (7
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Two important parameters in the calculations presented above are A; (k) and C;(t) that need be
calculated for individual GHG.

For COz, the IRF (Cco:) is approximated by the summation of exponentials:!!-*

t t ¢
CC02 (t) =Qay + ale(_fl) + aze(_‘rz) + a3e( 1.3) (8)
where 7 is the lifetime of perturbation (year), ao = 0.2173, a; = 0.2240, a> = 0.2824, a3 = 0.2763,

71=394.4 year, 12= 36.54 year, 73 = 4.304 year. Aco: is approximated by using the derivative of

COz RF based on work by Myhre el at.!!-3!

dRFCOz

Aco, = =g = dic[a In (C%)] :% ©)

where C is the CO2 concentration in the atmosphere (in ppm), Co is the reference concentration. In

this study, a = 5.35 W m™ based on the IPCC report.!' Hence, in year k, the Aco:(k) is:

Aco, (k) = 7o5 (10)

Using eq 3, the instantaneous DCF of CO:z is:

k
DCFco, (k) inst = fk_lAcoz (k)Cco, ()dt (11)
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For CH4, the IRF (Ccus) is expressed as exponential decay by using CHa lifetime of

perturbation 7y, = 12.4 year."!

=)
Cen,(t) = e "CHa (12)

Similar to the calculations for CO2, the Acwu. is given by using the derivative of RF as shown in eq

13 and 14.113!

ACH4 = Hen, _ %(a(\/ﬁ - \/ﬁo) - (f(M’ No) — f(Mo:No))) = ﬁ(“m) -

aM
d
L (f(M,Ny)) (13)
F(M,N) = 047 In (1 + 2.01 x 1075 x (MN)®75 + 5.31 x 10715 x M x (MN)152) (14)

where M is the CHs concentration in the atmosphere (in ppb), Moy is the CHa reference
concentration, Ny is the N>O reference concentration, o = 0.036 W m™=.!' Then the instantaneous

DCF of CHz4 is given by:

DCFey, (W) inst = (L + fo + £5) [, Acu, (K)Cen, ()t (15)

where f1= 0.5 reflecting the indirect effects on ozone, f2= 0.15 reflecting the indirect RF from CH4

via changes in stratospheric H20.'!-3*73¢
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For N20, the IRF (Cw.0) is expressed as exponential decay by using N20 lifetime of

perturbation 7y, = 121 year."!

t

Cu,o() = &' ™20 (16)

Anzo 1s given by using the derivative of RF as shown in eq 17 using the function f{M,N) in eq

14.11,31

Anyo = 020 = L (@(VN = Vo) = (F (Mo, N) = (Mo, No)) ) = 75z (V) -

aM
= (f (Mo, N)) (17)

where N is the N2O concentration in the atmosphere (in ppb), & = 0.12 W m™2.!" Then the

instantaneous DCF of N2O is given by:

An,0(k)
ACH4_ ®)

DCFy,o(K)inse = (1= 0.36(1 + f, + f5) ) i Anyo (R)Cxyo (D) dt (18)

where f7 and f> are the same as that in eq 15.

In this study, the GHG atmospheric concentrations in four widely recognized prediction
pathways (RCP2.6, RCP4.5, RCP6, RCP8.5) were used to assign the projected values for C (CO2
concentration in the atmosphere), M (CH4 concentration in the atmosphere), and N (N20

concentration in the atmosphere).?’

2.2. GHG Emission Profiles of Energy Technologies.

10
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In this study, nine types of power generation technologies are included: coal and natural gas (NG)
with and without CCS, nuclear, hydropower, geothermal, photovoltaic (PV), and wind. The energy
technologies that account for less than 0.5% of total U.S. electricity generation from 2020 to 2050
were excluded.” The U.S. electricity generation from 2020 to 2050 follows the reference case
projection of the U.S. Energy Information Administration (EIA) Annual Energy Outlook (AEO)
2019 (see Section 2.3 for details).> For each power generation technology, two life-cycle stages
were included for the LCI data: upstream stage in year 0 (i.e., raw materials extraction and
production, transportation, and on-site construction) and operational stage (i.e., fuel combustion,
plant operations and maintenance) (see Figure S1 in SI for the system boundary).?”-*® Based on the
LCI data of various power generation technologies harmonized by the U.S. National Renewable
Energy Laboratory (U.S. NREL),?’ the life span of energy technologies was selected to be 30-year
that was frequently used in the literature.’”** The cradle-to-gate LCI data of GHG emissions (i.e.
CO2, CH4, and N20) for different electricity generation technologies (including coal and NG with
CCS) were collected from the literature based on 1 kWh (functional unit) of net electricity
generation (see SI Table S2 for detailed data).>*"*° As this study focuses on developing a dynamic
GWP accounting framework for LCA, the effects of future technological development, policies,
and market conditions on these LCI data are not included. However, the LCI data can be updated

and tailored by future researchers upon their needs and data availability.

2.3 Scenario Analysis for Prospective Life-cycle GWP of U.S. Electricity Generation
To understand the policy/practical implications of our method, we applied it to a case study of U.S.
electricity generation from 2020-2050 with different technology adoption scenarios. The annual

projections of total U.S. electricity generation from 2020 to 2050 by different generation

11
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technologies followed the reference case projection of the AEO 2019.? This projection represented
EIA’s assessment of how the U.S. power sector would operate through 2050 under current laws
and regulations, which could be interpreted as a baseline case.? It is noticeable that the power
sector projections are subjected to many uncertainties (e.g., technology development,
demographics, policies, regulations).? Hence, the 2020-2050 projection data used in this case
study can be further modified by researchers for future research upon different assumptions and
data availability. Other projection cases from the AEO (e.g., high or low economic growth case)
and Electrification Futures Study by U.S. NREL are also valuable data sources for future studies
in this area.>*¢

It is expected that the adoption of CCS and renewable energy will mitigate the climate impacts
of the U.S. electricity generation. CCS represents a group of promising technologies that capture
and store CO2 and in underground carbon reservoirs (e.g., saline aquifers, depleted oil and gas
formations).*’>° The questions are when and how fast those technologies should be adopted to
achieve specific climate change mitigation goals from a life-cycle perspective. As the answers are
time-dependent, considering the dynamics of both GHG emissions and background GHG
concentration in the atmosphere is necessary.

In this study, five scenarios of the CCS adoption in the electricity generation projection were
investigated, including a business-as-usual (BAU) scenario, three scenarios for adopting CCS at
low, medium, and high adoption rate respectively, and one scenario for the late adoption of CCS.5!
5> The adoption of CCS in the case study was modeled by applying an adoption ratio to net
electricity generation (kWh) of coal or NG power plants. The adoption ratio in each scenario was
assumed based on the literature data that previously investigated the projections of CCS adoption

(see Table S1 for CCS adoption ratio).’'> Using the LCI data of different electricity generation

12
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technologies, the total 2020-2050 emission profile can be derived as shown in eq 19. E(i,j)
represents the annual emission of GHG i (i includes CO2, CH4, N20); LCI(n,i) (g/kWh) is the
quantity of GHG i for technology n (documented in SI Table S2); P(n,j) is the projections of
technology » in year j (see SI Tables S3—S7). The projections of coal and natural gas power
generation with CCS were estimated using the adoption ratio mentioned above. The detailed

models were documented in SI Section 2.

E(i,J) = Xn=1 LCI(n, )P (n, ) (19)

The baseline BAU (business-as-usual) assumes that the future electricity production mix will
be the same as that in 2020 (see SI Table S3). The late adoption case assumed that the adoption of
CCS would be as late as 2035, but the adoption rate was high enough to catch up with the previous
high adoption scenario. This scenario was designed to understand the impacts of adoption time
(see SI Table S7). The adoption of renewable energy was kept to be the same with the projection
in 2050 developed by the U.S. EIA.? The assumptions of each scenario are summarized in Table
1.

In each scenario, three GWP accounting methods were used to quantify the GWP of annual
U.S. electricity generation, namely the static practice in LCA (i.e., the traditional LCA approach),
dynamic LCA with fixed GHG concentrations, and dynamic GWP accounting method in this study
with varied GHG atmospheric concentration pathways (i.e., RCP2.6, RCP4.5, RCP6, RCPS.5).
This study does not intend to project and reconcile the global GHG concentration pathways under
varied U.S. power sector scenarios. Instead, we quantify the impacts of varied GWP accounting

methods and concentration pathways on the GWP results of the U.S. power sector. In other words,
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the scenario analysis attempts to answer the “what-if” question, namely how the GWP results of
the U.S. power generation would change if the GHG concentrations follow different pathways.
Hence, this study does not consider the interdependency of future U.S. power sector scenarios and
global GHG concentration pathways. However, this can be explored in future research upon

available data or using global integrated assessment models.

Table 1. Assumptions of Five Scenarios for U.S. Electricity Generation from 2020 to 2050

Scenario Assumptions GWP accounting methods

The future electricity production mix will be the same as that in
2020 (SI Table S3). The total electricity production is based on EIA
reference case projection.

EIA reference case projection with low CCS adoption rate (22% by 1) Static practice in LCA;

2050 with linear growth) from 2020-2050 (SI Table S4). 2) dynamic LCA with fixed GHG
concentrations;

3) dynamic LCA with varied GHG

. ) atmospheric concentration
EIA reference case projection with high CCS adoption rate (86% by projections (i.e. RCP2.6, RCP4.5,

Business-as-usual
(BAU)

Low adoption

EIA reference case projection with medium CCS adoption rate

Medium adoption 300/ 5050 with lincar growth) from 2020-2050 (SI Table S5).

High adoption 2050 with linear growth) from 2020-2050 (SI Table S6). RCP6, RCP8.5).
The adoption of CCS would start as late as 2035, but the adoption
Late adoption rate (86% by 2050 with linear growth) would be high to catch up

with the high adoption scenario in year 2050 (SI Table S7).

3. RESULTS AND DISCUSSION

3.1. GWP of 1 kg of Pulse Emission in Year 0.

Figure 1 shows the GWP characterization factors calculated for 1kg of pulse emission CHa (Figure
la) and dinitrogen monoxide N2O (Figure 1b) in year 0 using the dynamic method developed in
this study compared with the traditional static approach and dynamic LCA that uses fixed GHG
concentration. The GWP results of 1 kg of pulse emission CO2, CHa4, and N20O in other years (i.e.,
year 10, 25, 50, and 75) are available in Table S8 in SI. GWP factors are shown from 20 to 100
years to be consistent with the time horizons showed by IPCC.?® The GWP characterization factors
for fixed 20- and 100-year timeframe from IPCC are shown as black crosses in year 20 and 100,

which are the factors used in traditional static LCA. The dynamic method developed by previous

14
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studies can provide time-dependent GWP, but their factors are based on fixed atmospheric GHG
concentrations (orange lines). The dynamic GWP factors developed using our method were
presented under four RCPs.?’ Figure la indicates that both static and dynamic LCA with fixed
GHG concentrations underestimate the GWP of CHa (e.g., 14.9%-29.4% lower than our method
at 100-year time horizon), although different dynamic methods showed similar trends as time
horizon increases. Among the results of our method, RCP with higher GHG concentrations shows
lower CH4 GWP factors when the time horizon is shorter than 53-year. However, this trend
reverses after a 53-year time horizon, as shown in Figure 1a. For N20O, only the results of RCP2.6
and RCP4.5 show similar trends with the results of dynamic method with fixed GHG
concentrations, while the results of RCP6 and RCP8.5 show significant increases with the longer
time horizon. Compared to the 100-year result of static LCA, the GWP factor of N20 in varied
RCP are 5.9%-45.9% larger. These large discrepancies among different methods for CH4 and N2O
indicate the necessity of including temporal impacts and background atmospheric GHG
concentrations in LCA or relevant carbon analysis, especially for those power generation

technologies with significant life-cycle CH4 and N20O emissions.
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Figure 1. GWP factors of 1 kg of pulse emission in year 0 with different time horizons: (a) CHa;
(b) N20.

3.2. GWP of Energy Technologies Under Different GHG Concentration Pathways.

Figure 2 shows the dynamic life-cycle GWP of nine energy technologies under different RCP
compared with the results using traditional methods. The results of four time horizons (35, 50, 75,
and 100 years) are presented, since the time horizon needs to be longer than the operational stage
of the LCI data (30 years) for varied generation technologies. The results of nine energy
technologies are categorized into three groups based on their GHG emission profiles, including (1)
CO2-emission-dominated systems with large operational emissions annually (i.e., coal, NG, and
nuclear that have higher life-cycle CO2 emissions compared to the CH4 and N2O emissions of the
same technology; they also have higher operational emissions than their upstream emissions); (2)
CHs-emission-dominated systems (i.e., the GWP results of coal and NG with CCS are largely
driven by CH4 emissions (see SI Table S1)); (3) CO2-emission-dominated systems with large

embedded emissions but small operational emissions (i.e., hydropower, geothermal, PV, and wind).
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Figure 2. Life-cycle GWP of energy technology (functional unit: 1 kWh) under different RCP
using our method compared with the results of traditional static and dynamic LCA approaches: (a)
COr-emission-dominated systems with large operational emissions; (b) CHs-emission-dominated
systems; (c) CO:z-emission-dominated systems with large embedded emissions but small
operational emissions.

Figure 2 indicates significant differences in the GWP results between static and dynamic LCAs,
and such differences varied by time horizons and technology groups (percentage difference results
are presented in Figure S2). For nine technologies, static LCA shows decreased GWP with longer
time horizons due to lower GWP characterization factors for non-COz gases in the longer-term
( e.g., the GWP characterization factor for CHa is 62 for 35 years, 58 for 50 years, and 28 for 100
years, see Figure 1) . However, for a specific time horizon, the current static LCA is unable to keep
a consistent timeframe for GHG emissions occurring in different years. For example, a static LCA

choosing 100-year fixed GWP characterization factors consider the impacts of all emissions for

100 years. Thus, the GWP of emission in year 50 includes the impact from year 50 to year 150;
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while the GWP of emission in year 75 includes the impact from year 75 to year 175. For an analysis
with a fixed time horizon (e.g., a climate policy analysis for the future 100 years), this static
approach includes the impacts beyond the scope of 100 years and does not distinguish earlier and
later emissions. Oppositely, the dynamic LCA method has a consistent time horizon for all GHG
emissions in the same analysis, as the GWP impacts beyond the chosen time horizon H are
excluded (see eq 1). For example, if the time horizon is set to 100 years, the impacts of emission
in year 50 are only considered for the remaining 50 years. This approach also distinguishes the
impacts of earlier and later emissions. Therefore, dynamic LCAs for operational-COz-intensive
technologies (i.e., coal, NG, and nuclear) in Figure 2a showed lower GWP than static LCA, while
the differences between static and dynamic LCAs are reduced with the longer time horizon as the
GHG decay is closer to stagnation (reflected by impulse response function with longer time
horizons?®). For later emissions, their relative contributions compared to earlier emissions increase
as the time horizon increases, which explains why all dynamic LCAs in coal and nuclear have
higher GWP with longer time horizons. For example, in Figure 2a, when expanding the time
horizon from 35 years to 100 years, the GWP of coal-based electricity generation increases 23.3%—
30.2% across varied RCP. Figure 2a shows that RCP cases have higher GWP results than the
results of dynamic LCA with fixed GHG concentrations. The higher GHG concentration, the larger
differences between the RCP case and fixed GHG concentration case. For example, for coal in
Figure 2a, RCP2.6 exhibits 1.2%4.2% higher GWP than dynamic LCA with fixed GHG
concentrations, while RCP8.5 shows a 6.4%—9.1% difference. For NG in Figure 2a, expanding the
time horizon fails to show significant increases in GWP and even shows slight decreases in some
cases (e.g., RCP2.6 and RCP4.5). This can be explained that over coal and nuclear, NG has more

GHG emissions coming from CHa4 (see SI Table S1) and gains the combined effects from the first
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group (COz2-emission-dominated systems with large operational emissions in Figure 2a) and the
second group (CHs-emission-dominated technologies).

For CHs-emission-dominated technologies, atmospheric GHG concentrations have large
impacts on the GWP in the long term, and such impacts are overlooked by static LCA and dynamic
LCA with fixed GHG concentrations. Different from Figure 2a where dynamic LCAs in coal and
nuclear have higher GWP with longer time horizons, GWP in Figure 2b by all dynamic methods
has minor changes between 35 years and 50 years, and decreases when the time horizon changes
from 50 years to 100 years, which is impacted by the trend of CH4 (similar to Figure 1a). In Figure
2b, the differences among the four RCPs are much larger at a 100-year time horizon than 35-year,
reflecting the increased impacts of both GHG decay and background GHG concentrations on the
long-term projection. In Figure 2b, at the 100-year time horizon, both current static LCA and
dynamic LCA with fixed GHG concentrations underestimate the GWP, given that both methods
rely on the present-day GHG concentrations. For example, for NG with CCS, at the 100-year time
horizon, results of RCPs are 6.8%—24.4% higher than current static LCA and 14.6%—30.1% higher
than dynamic LCA with fixed GHG concentrations. The higher atmospheric GHG concentrations
(e.g., RCP8.5), the larger the discrepancy is. For a shorter time horizon (e.g., 35 or 50 years), the
GWP results of static LCA are close to (although slightly higher than) the results of our method.
However, the GWP results of dynamic method with fixed GHG concentrations are much lower
than our method's results because the former only accounts GHG emitting timeline without
considering the changing radiative efficiency caused by the changing atmospheric GHG
concentrations.

For COz-emission-dominated technologies with large embedded emissions but small

operational emissions (i.e., PV, hydropower, geothermal, and wind in Figure 2c), the results of
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static LCA and dynamic LCA with fixed GHG concentrations are slightly lower than our method
(e.g., 2.5%—6.1% lower than our method at 100-year time horizon for PV). Compared to the first
(Figure 2a) and second (Figure 2b) groups of energy technologies, this group shows the smallest

discrepancies of the results using static and dynamic approaches.

3.3. Meeting GHG Mitigation Targets Under Different GHG Concentration Pathways.

Figure 3 shows the total accumulative GWP reduction potential from 2020 to 2050 in four climate
mitigation scenarios of projected electricity generation compared with BAU using the static LCA,
dynamic LCA with fixed GHG concentrations, and our method with four RCP projections, with a
50-year time horizon. The year-by-year GWP reduction potentials are shown in Figure 4. The
results of dynamic LCA with RCP6 are presented as an example. The results of four scenarios with

100-year time horizon are available in SI Figures S3 and S4.
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Figure 3. GWP (50-year time horizon) reduction potential by 2050 of four climate change
mitigation scenarios compared with the BAU.
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Figure 4. GWP (50-year time horizon) reduction potential of four climate change mitigation
scenarios compared with the BAU: (a) static practice in LCA; (b) dynamic LCA with fixed GHG
concentrations; (c) dynamic LCA with RCP6 projection.

Static LCA significantly overestimates the GWP mitigation potential of four scenarios
(47.3%-90.3% higher as shown in Figure 3) compared to the results of dynamic LCA with fixed
GHG concentrations and our dynamic approach. For example, in Figure 4, in the medium adoption
scenario (orange solid line in Figure 4a), the GWP mitigation potential by 2050 is 9.5 GtCOz-eq
using static LCA, while that for the same scenario is 6.0 GtCOz-eq for the dynamic method with
fixed GHG concentrations and 6.2 GtCOz-eq for the dynamic method with RCP6 projection. To
reach the same GWP mitigation goal (9.5 GtCOz-eq by 2050), the adoption rate of CCS needs to
be as high as 57.6% by 2050 using the current dynamic GWP accounting method (plotted as the
orange dashed line in Figure 4b) and 55.5% by 2050 using dynamic LCA with RCP6 (orange dash
line in Figure 4c). Such adoption rate is 92% and 85% higher than the current medium adoption
scenario, respectively.

The GWP mitigation potential of our dynamic LCA method shows differences from the current

dynamic LCA. In Figure 3, compared with the results of dynamic LCA with fixed GHG
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concentrations, the accumulative GWP reduction estimated by our dynamic LCA methods are
1.2%-2.0% smaller in RCP2.6, 1.9%-3.7% larger in RCP4.5, 2.7%—4.5% larger in RCP6, and
6.2%-9.2% larger in RCP8.5. This is caused by the differences in the atmospheric GHG
concentrations. As the RCP2.6 projection has the slightest difference with current atmospheric
GHG concentrations, the RCP2.6 results have the smallest discrepancy with the current dynamic
LCA that uses fixed atmospheric GHG concentrations.

For different RCP, the GWP reduction potential increases as RCP concentration increases, as
shown in Figure 3. For example, in the medium adoption scenario, compared to RCP2.6 results,
RCP4.5, RCP6, and RCP8.5 shows an increase of 3.8%, 4.6%, and 8.0%, respectively. This finding
is critical for decision making that uses LCA results to support energy policy (e.g., setting
mitigation goals) and technology investments (e.g., determining funding needs to accelerate the
adoption of specific technologies), especially when the future atmospheric GHG concentration is
different from current values.

Another observation is that the late adoption of CCS in the electricity sector with a high
adoption rate will take a longer time to catch up with early adoption scenarios (low and medium
adoption scenarios) in Figure 4c than Figure 4a, which leads to different comparative conclusions
when investigating different scenarios in the same year. For example, in 2050, static LCA results
indicate that the late adoption scenario leads to 8.7% more GWP reduction than the medium
adoption scenario. This is too optimistic compared with dynamic LCA with RCP6 where the late
adoption shows 7.8% less GWP reduction than the medium adoption. As the static LCA method
does not differentiate earlier and later GHG emissions, the possible negative consequences of late
adoption (e.g., reducing GWP reduction) are underestimated or overlooked. Hence, when using

dynamic LCA methods, earlier adoption is more likely to reach a similar GWP mitigation goal
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with the static LCA method, and the differences between the two methods are impacted by

different GHG concentrations in the atmosphere.

3.4. Limitations and Implications of Methods.
This study aims to provide a fuller picture of accounting life-cycle GWP in LCA by incorporating
the dynamics in the atmospheric GHG concentrations and GHG emissions, demonstrated by a case
study of the electricity generation sector in the U.S. The static method applies the same GWP
characterization for GHG emitted at different years, ignoring the impacts of later and earlier
emissions. The dynamic LCA approach in this study addresses this limitation by developing
dynamic GWP characterization factors, considering the temporal profile of GHG emissions, and
using a consistent time horizon for GWP accounting. Compared to the current dynamic LCA that
uses fixed, present GHG concentrations, our method considers the future changes of the
atmospheric GHG concentrations. The current dynamic LCA shows significant discrepancies in
the GWP results for high RCP cases (compared to our method) when the GHG concentrations are
much higher than the present. Compared to other methods such as GWP* (see SI Section 1 for
literature review details), our method does not rely on correcting fixed GWP characterization
factors by empirical parameters that are subjected to scenario assumptions and data. Instead, GHG
concentration is directly incorporated into the GWP calculation to derive dynamic GWP
characterization factors. Our dynamic approach also allows for a consistent time horizon for GWP
assessment of GHGs emitted at different years, which is particularly useful for LCA applications
in terms of keeping a coherent temporal system boundary.

As this study focuses on the U.S. only, it does not include the feedback loop between RCPs

and GHG emissions that may need to be considered for global studies. Such feedback loop can be
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added by modeling the radiative efficiency of GHG as a function of both time and emissions gi(j)
in eq 5. Such a function will need to be developed based on the dynamic and quantitative
relationship between global emissions and atmospheric GHG concentration changes. Another
research direction is integrating the impacts of prospective energy transformation pathways into
the LCI data that commonly do not consider future changes.’’*®*> One approach is leveraging
prospective scenarios from integrated assessment models (IAMs) (e.g., IMAGE®) to simulate the
LCI data of future energy technologies.’”®! For future applications, by considering the temporal
profile of emissions and the impacts of atmospheric GHG concentration changes on radiative
efficiency, the method presented in this study can be integrated into other climate change related
indicators, e.g., monetary values of GHG emissions,® social cost of GHG emissions,* and Global
Temperature change Potential (GTP)'!.

The results of this study demonstrate the importance of incorporating atmospheric GHG
concentrations into the life-cycle carbon accounting of energy technologies, especially under the
following circumstances:

e When the technology has large operational GHG emissions or CH4 emissions. Our results
show that atmospheric GHG concentrations have significant impacts on the life-cycle GWP
of COz-emission-dominated energy technologies with large operational emissions such as
coal, natural gas, and nuclear, as well as CHs-emission-dominated systems such as coal and
natural gas with CCS. For those technologies, the static practice in LCA shows remarkable
discrepancies in the GWP results compared with dynamic methods. Such discrepancies are
minimal for COz2-emission-dominated technologies with large embedded emissions but small
operational emissions (i.e., hydropower, geothermal, PV, and wind), in which most of the

emissions are released at the beginning.

24



496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

When the analysis timeframe is longer than 50 years and the GHG concentration in the
atmosphere is likely to be different from the present concentration. Compared with our
method, the dynamic LCA method using fixed present GHG concentrations underestimated
the GWP of all technologies, such underestimation is more significant under high GHG
concentration pathways such as RCP6 and RCP8.5. For the long-term time horizon (larger
than 50 years), higher atmospheric GHG concentrations result in higher life-cycle GWP.
Such trends are less significant for short-term analysis (50 years).

When LCA results will be used to support policymaking or technology development for
climate change mitigation in the future. The results of the case study for the U.S. electricity
generation sector and different climate mitigation scenarios showed a large discrepancy of
GWP mitigation potentials between our method and the static LCA approach that does not
distinguish the impacts of early and later emissions. Our results indicate the necessity of
earlier adoption of CCS to achieve the same climate change mitigation goals that use static
LCA. These findings demonstrate the importance of considering the dynamics of background
GHG concentrations in LCA and relevant environmental, policy, and technology decision

making.

SUPPORTING INFORMATION
Literature review, detailed explanation of CCS adoption rate, LCI data of energy technologies,

additional results, list of abbreviations and nomenclature, and references.
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