

1 **Dynamic life cycle assessment of energy technologies under different**
2 **greenhouse gas concentration pathways**

3 Kai Lan¹, Yuan Yao^{1,*}

4

5 ¹Center for Industrial Ecology, Yale School of the Environment, Yale University,
6 380 Edwards Street, New Haven, Connecticut, 06511, United States

7 *Email: y.yao@yale.edu

8

9 **Abstract**

10 Global warming potential (GWP) has been widely used in the Life Cycle Assessment (LCA) to
11 quantify the climate impacts of energy technologies. Most LCAs are static analyses without
12 considering the dynamics of Greenhouse Gas (GHG) emissions and changes in background GHG
13 concentrations. This study presents a dynamic approach to analyze the life-cycle GWP of energy
14 technologies in different timeframes and representative GHG concentration pathways. Results
15 show that higher atmospheric GHG concentrations lead to higher life-cycle GWP for long-term
16 analysis. The impacts of background GHG concentrations are more significant for technologies
17 with large operational emissions or CH₄ emissions than technologies with low operational
18 emissions. The case study for the U.S. electricity sector in 2020–2050 shows the impacts of
19 background GHG concentrations and different LCA methods on estimating national climate
20 impacts of different energy technology scenarios. Based on the results, it is recommended for
21 future LCAs to incorporate temporal effects of GHG emissions when (1) technology has large
22 operational GHG emissions or CH₄ emissions; (2) the analysis timeframe is longer than 50 years;
23 (3) when LCA results are used for policymaking or technology comparisons for mitigating climate
24 change.

25

26 **Keywords:** life cycle assessment, dynamic modeling, carbon analysis, greenhouse gas emissions,
27 power generation, global warming potential

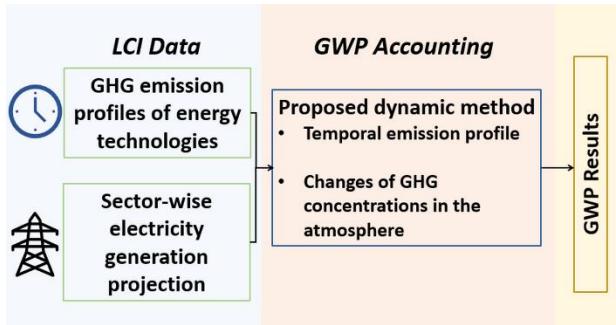
28

29 **Synopsis**

30 This study developed a dynamic life cycle assessment approach to incorporate the temporal
31 dynamics of atmospheric GHG concentrations and GHG emissions into Global Warming Potential
32 accounting of energy technologies.

33

34 **TOC/Abstract Art**



35

36 **1. INTRODUCTION**

37 The energy sector is one of the largest contributors to greenhouse gas (GHG) emissions in the
38 world and accounts for 73% of total global GHG emissions in 2016.¹ To reduce GHG emissions,
39 different climate change mitigation scenarios have been proposed by adopting emerging
40 technologies such as carbon capture and sequestration (CCS) and renewable energy (e.g., solar
41 and wind) for the energy sector.^{2–7} Quantifying and comparing the climate change mitigation
42 potentials of different technologies and adoption scenarios from a holistic, life-cycle perspective
43 is critical for energy policymaking and technology development.⁸ Such comparison is challenging
44 given the dynamic nature of both climate and GHG emission profiles of energy technologies.^{9,10}
45 Global Warming Potential (GWP) is a standard metric widely used in Life Cycle Assessment
46 (LCA) to compare the climate impacts of different technologies.^{11,12} GWP is calculated by the
47 integrated radiative forcing of an emitted GHG and the reference gas carbon dioxide (CO₂).^{11,13}
48 The radiative forcing of a GHG over a time horizon is given by multiplying radiative efficiency
49 and GHG remaining in the atmosphere after the pulse emission (well known as the impulse
50 response function (IRF)).^{11,14} Most LCA studies are static analyses and they use fixed GWP
51 conversion factors for non-CO₂ GHG emissions. Several studies proposed dynamic frameworks
52 considering the temporal effects of GHG emissions and varied time horizons,^{8,9,22–24,13,15–21} and a
53 few of them applied the dynamic approaches to LCA.^{9,13,15–17,23,24} Several studies also presented
54 dynamic GWP characterization factors with considering the temporal effects of GHG emissions,
55 most of which focused on biogenic carbon issues.^{16,17,22,24} Other studies developed correction
56 methods for the fixed GWP factors (e.g., GWP*) to consider the warming equivalent effects of
57 short-lived climate pollutants (e.g., CH₄).^{25–27} The detailed review is available in Supporting
58 Information (SI) Section 1. However, few studies have included the temporal changes of future

59 background atmospheric GHG concentrations that have significant impacts on GWP results given
60 its large correlation with radiative efficiency, a key parameter used in the radiative forcing
61 calculation.^{18,28} Quantitative understandings of the life cycle GWP impact of diverse energy
62 technologies are essential to determine and compare the net climate change mitigation potential of
63 different technologies. The static LCA method excludes dynamic factors such as the future
64 changes in the atmospheric GHG concentrations that impact the life cycle GWP results, limiting
65 the understandings of prospective climate implications of different energy technologies. In the
66 current context of decarbonization, considering the dynamics of GHG emissions, decay, and
67 atmospheric concentration changes in GWP accounting contributes to a fuller picture in the policy-
68 relevant analysis (e.g., analyzing GWP reduction target⁹), especially in the analysis with emission
69 profiles over a long time (typically longer than 20 years).^{13,18}

70 To address the challenge, we developed a dynamic method integrated with LCA that is capable
71 of modeling temporal dynamics of background GHG concentrations in the atmosphere and GHG
72 emissions associated with energy systems. The method was used to analyze the dynamic life-cycle
73 GWP of energy technologies under different trajectories of atmospheric GHG concentrations. In
74 this method, the radiative efficiency is dependent on atmospheric GHG concentrations by using
75 Representative Concentration Pathway (i.e., RCP2.6, RCP4.5, RCP6, RCP8.5),²⁹ instead of being
76 fixed values in traditional GWP estimations. To understand the impacts of varied future
77 atmospheric GHG concentration pathways on life-cycle GWP of energy technologies, this
78 dynamic method was applied to nine power generation technologies (e.g., coal, natural gas, wind)
79 and then scaled up for the U.S. electricity generation projection from 2020 to 2050 under varied
80 CCS technology adoption scenarios. The results of the dynamic method in this study are compared

81 to two common approaches in current LCAs to exhibit the significance of considering the changes
82 of background GHG concentrations and the temporal effects of GHG emissions.

83

84 **2. MATERIALS AND METHODS**

85 In this study, a dynamic GWP accounting method was developed to incorporate the dynamic
86 profiles of atmospheric GHG concentrations and GHG emissions (Section 2.1).²⁹ This method
87 allows for dynamic assessment of climate impact in LCA. The method was first used to analyze
88 the life-cycle GWP of various energy technologies on the basis of 1 kWh of electricity generated
89 (functional unit) using the Life Cycle Inventory (LCI) data collected from the literature (Section
90 2.2). The GWP results of energy technologies were then scaled up using the projection of U.S.
91 electricity generation by different fuel types and technology adoption from 2020 to 2050 (Section
92 2.3), providing national-level insights on prospective climate implications of different energy
93 technology scenarios. To better understand the importance of considering GHG concentration in
94 GWP accounting, the method developed by this study was compared with another two common
95 approaches under different adoption scenarios of CCS technology. One is the traditional LCA
96 approach that considers no temporal impacts of GHG emissions and uses GWP conversion factors
97 for different GHGs over a fixed time horizon (e.g., 20 or 100 years).²⁸ The other is the dynamic
98 method used in previous LCAs that only considers the decay of GHG species with fixed radiative
99 efficiency.^{9,15-17} In this study, the modeling work of dynamic GWP accounting is performed in
100 Excel with VBA programming.

101

102 **2.1. Dynamic GWP Accounting Method.**

103 According to the Intergovernmental Panel on Climate Change (IPCC) 2013 report,¹¹ the GWP
104 for gas i can be derived by eq 1:

105
$$GWP_i(H) = \frac{AGWP_i(H)}{AGWP_{CO_2}(H)} = \frac{\int_0^H RF_i(t)dt}{\int_0^H RF_{CO_2}(t)dt} \quad (1)$$

106
107 where $AGWP_i(H)$ is the absolute global warming potential (AGWP) ($W \text{ yr m}^{-2} \text{ kg}^{-1}$) due to the 1
108 kg pulse emission of gas i in the time horizon H (year), RF_i is the radiative forcing (RF) due to
109 pulse emission of gas i . RF_i can be given by:

110
111
$$RF_i = A_i C_i \quad (2)$$

112
113 where A_i is the RF_i per unit mass increase of species i (or so-called radiative efficiency (RE)), C_i
114 is the fraction of species i remaining in the atmosphere after the pulse emission (or so-called
115 impulse response function, IRF).¹¹ A_i depends on the atmosphere concentration of gas i that is
116 time-dependent and have been predicted by different concentration pathways.²⁹

117 As RF related data is usually reported on an annual basis (e.g., GHG atmospheric
118 concentration), this study adapted the discrete accounting method developed by Levasseur et al.⁹
119 This method uses dynamic characterization factor $DCF_i(k)_{inst}$, to quantify the RF occurring in 1
120 year after k years of 1 kg pulse emission for gas i by eq 3.^{9,15}

121
122
$$DCF_i(k)_{inst} = \int_{k-1}^k A_i(k) C_i(t)dt \quad (3)$$

123

124 where $A_i(k)$ is the radiative efficiency at k years after the pulse emission. $A_i(k)$ is time-dependent
 125 and varies for different GHG atmospheric concentrations. $C_i(t)$ is the time-dependent C_i during
 126 year k . The cumulative DCF for gas i with a time horizon H will be equal to AGWP:

127

128 $DCF_i(H)_{cumu} = \sum_{k=0}^H DCF_i(k)_{inst} = AGWP_i(H)$ (4)

129

130 For GHG emitted in year j , $g_i(j)$ in kg, the instantaneous global warming impact in year k ,
 131 $GWInst_i(k)$, can be derived from the instantaneous RF as shown in eq 5.¹⁷

132

133 $GWInst_i(k) = \sum_i \sum_{j=0}^k g_i(j) \times DCF(k-j)_{inst}$ (5)

134

135 The cumulative global warming impact for a time horizon H , $GWInst_i(H)$, can be calculated by
 136 summing up $GWInst_i(k)$ as shown in eq 6.¹⁷

137

138 $GWInst_i(H) = \sum_{k=0}^H GWInst_i(k)$ (6)

139

140 The global warming potential of the GHG in the reference of CO₂, GWP (kgCO₂-eq), can be
 141 derived by eq 7.¹⁵ $DCF_{CO_2}(H)_{cumu}$ is the cumulative DCF for 1 kg CO₂ pulse emission in year 0
 142 and calculated from eq 4.

143

144 $GWP = \frac{GWInst_i(H)}{DCF_{CO_2}(H)_{cumu}}$ (7)

145

146 Two important parameters in the calculations presented above are $A_i(k)$ and $C_i(t)$ that need be
147 calculated for individual GHG.

148 For CO₂, the IRF (C_{CO_2}) is approximated by the summation of exponentials:^{11,30}

149

150
$$C_{CO_2}(t) = a_0 + a_1 e^{(-\frac{t}{\tau_1})} + a_2 e^{(-\frac{t}{\tau_2})} + a_3 e^{(-\frac{t}{\tau_3})} \quad (8)$$

151

152 where τ is the lifetime of perturbation (year), $a_0 = 0.2173$, $a_1 = 0.2240$, $a_2 = 0.2824$, $a_3 = 0.2763$,
153 $\tau_1 = 394.4$ year, $\tau_2 = 36.54$ year, $\tau_3 = 4.304$ year. A_{CO_2} is approximated by using the derivative of
154 CO₂ RF based on work by Myhre et al.^{11,31}

155

156
$$A_{CO_2} = \frac{dRF_{CO_2}}{dC} = \frac{d}{dC} \left[\alpha \ln \left(\frac{C}{C_0} \right) \right] = \frac{\alpha}{C} \quad (9)$$

157

158 where C is the CO₂ concentration in the atmosphere (in ppm), C_0 is the reference concentration. In
159 this study, $\alpha = 5.35 \text{ W m}^{-2}$ based on the IPCC report.¹¹ Hence, in year k , the $A_{CO_2}(k)$ is:

160

161
$$A_{CO_2}(k) = \frac{\alpha}{C(k)} \quad (10)$$

162

163 Using eq 3, the instantaneous DCF of CO₂ is:

164

165
$$DCF_{CO_2}(k)_{inst} = \int_{k-1}^k A_{CO_2}(k) C_{CO_2}(t) dt \quad (11)$$

166

167 For CH₄, the IRF (C_{CH_4}) is expressed as exponential decay by using CH₄ lifetime of

168 perturbation $\tau_{CH_4} = 12.4$ year.¹¹

169

170
$$C_{CH_4}(t) = e^{(-\frac{t}{\tau_{CH_4}})} \quad (12)$$

171

172 Similar to the calculations for CO₂, the A_{CH_4} is given by using the derivative of RF as shown in eq

173 13 and 14.^{11,31}

174

175
$$A_{CH_4} = \frac{dRF_{CH_4}}{dM} = \frac{d}{dM} \left(\alpha(\sqrt{M} - \sqrt{M_0}) - (f(M, N_0) - f(M_0, N_0)) \right) = \frac{d}{dM} (\alpha\sqrt{M}) -$$

176
$$\frac{d}{dM} (f(M, N_0)) \quad (13)$$

177

178
$$f(M, N) = 0.47 \ln (1 + 2.01 \times 10^{-5} \times (MN)^{0.75} + 5.31 \times 10^{-15} \times M \times (MN)^{1.52}) \quad (14)$$

179

180 where M is the CH₄ concentration in the atmosphere (in ppb), M_0 is the CH₄ reference
181 concentration, N_0 is the N₂O reference concentration, $\alpha = 0.036 \text{ W m}^{-2}$.¹¹ Then the instantaneous
182 DCF of CH₄ is given by:

183

184
$$DCF_{CH_4}(k)_{inst} = (1 + f_1 + f_2) \int_{k-1}^k A_{CH_4}(k) C_{CH_4}(t) dt \quad (15)$$

185

186 where $f_1 = 0.5$ reflecting the indirect effects on ozone, $f_2 = 0.15$ reflecting the indirect RF from CH₄
187 via changes in stratospheric H₂O.^{11,32-36}

188 For N₂O, the IRF (C_{N_2O}) is expressed as exponential decay by using N₂O lifetime of

189 perturbation $\tau_{N_2O} = 121$ year.¹¹

190

191
$$C_{N_2O}(t) = e^{(-\frac{t}{\tau_{N_2O}})} \quad (16)$$

192

193 A_{N_2O} is given by using the derivative of RF as shown in eq 17 using the function $f(M, N)$ in eq

194 14.^{11,31}

195

196
$$A_{N_2O} = \frac{dRF_{N_2O}}{dM} = \frac{d}{dM} \left(\alpha(\sqrt{N} - \sqrt{N_0}) - (f(M_0, N) - f(M_0, N_0)) \right) = \frac{d}{dM} \left(\alpha\sqrt{N} \right) -$$

197
$$\frac{d}{dM} (f(M_0, N)) \quad (17)$$

198 where N is the N₂O concentration in the atmosphere (in ppb), $\alpha = 0.12$ W m⁻².¹¹ Then the
199 instantaneous DCF of N₂O is given by:

200

201
$$DCF_{N_2O}(k)_{inst} = (1 - 0.36(1 + f_1 + f_2) \frac{A_{N_2O}(k)}{A_{CH_4}(k)}) \int_{k-1}^k A_{N_2O}(k) C_{N_2O}(t) dt \quad (18)$$

202

203 where f_1 and f_2 are the same as that in eq 15.

204 In this study, the GHG atmospheric concentrations in four widely recognized prediction
205 pathways (RCP2.6, RCP4.5, RCP6, RCP8.5) were used to assign the projected values for C (CO₂
206 concentration in the atmosphere), M (CH₄ concentration in the atmosphere), and N (N₂O
207 concentration in the atmosphere).²⁹

208

209 **2.2. GHG Emission Profiles of Energy Technologies.**

210 In this study, nine types of power generation technologies are included: coal and natural gas (NG)
211 with and without CCS, nuclear, hydropower, geothermal, photovoltaic (PV), and wind. The energy
212 technologies that account for less than 0.5% of total U.S. electricity generation from 2020 to 2050
213 were excluded.² The U.S. electricity generation from 2020 to 2050 follows the reference case
214 projection of the U.S. Energy Information Administration (EIA) Annual Energy Outlook (AEO)
215 2019 (see Section 2.3 for details).² For each power generation technology, two life-cycle stages
216 were included for the LCI data: upstream stage in year 0 (i.e., raw materials extraction and
217 production, transportation, and on-site construction) and operational stage (i.e., fuel combustion,
218 plant operations and maintenance) (see Figure S1 in SI for the system boundary).^{37,38} Based on the
219 LCI data of various power generation technologies harmonized by the U.S. National Renewable
220 Energy Laboratory (U.S. NREL),³⁷ the life span of energy technologies was selected to be 30-year
221 that was frequently used in the literature.^{37–43} The cradle-to-gate LCI data of GHG emissions (i.e.
222 CO₂, CH₄, and N₂O) for different electricity generation technologies (including coal and NG with
223 CCS) were collected from the literature based on 1 kWh (functional unit) of net electricity
224 generation (see SI Table S2 for detailed data).^{2,37–45} As this study focuses on developing a dynamic
225 GWP accounting framework for LCA, the effects of future technological development, policies,
226 and market conditions on these LCI data are not included. However, the LCI data can be updated
227 and tailored by future researchers upon their needs and data availability.

228

229 **2.3 Scenario Analysis for Prospective Life-cycle GWP of U.S. Electricity Generation**

230 To understand the policy/practical implications of our method, we applied it to a case study of U.S.
231 electricity generation from 2020–2050 with different technology adoption scenarios. The annual
232 projections of total U.S. electricity generation from 2020 to 2050 by different generation

233 technologies followed the reference case projection of the AEO 2019.² This projection represented
234 EIA's assessment of how the U.S. power sector would operate through 2050 under current laws
235 and regulations, which could be interpreted as a baseline case.² It is noticeable that the power
236 sector projections are subjected to many uncertainties (e.g., technology development,
237 demographics, policies, regulations).² Hence, the 2020–2050 projection data used in this case
238 study can be further modified by researchers for future research upon different assumptions and
239 data availability. Other projection cases from the AEO (e.g., high or low economic growth case)
240 and Electrification Futures Study by U.S. NREL are also valuable data sources for future studies
241 in this area.^{2,46}

242 It is expected that the adoption of CCS and renewable energy will mitigate the climate impacts
243 of the U.S. electricity generation. CCS represents a group of promising technologies that capture
244 and store CO₂ and in underground carbon reservoirs (e.g., saline aquifers, depleted oil and gas
245 formations).^{47–50} The questions are when and how fast those technologies should be adopted to
246 achieve specific climate change mitigation goals from a life-cycle perspective. As the answers are
247 time-dependent, considering the dynamics of both GHG emissions and background GHG
248 concentration in the atmosphere is necessary.

249 In this study, five scenarios of the CCS adoption in the electricity generation projection were
250 investigated, including a business-as-usual (BAU) scenario, three scenarios for adopting CCS at
251 low, medium, and high adoption rate respectively, and one scenario for the late adoption of CCS.^{51–}
252 ⁵⁵ The adoption of CCS in the case study was modeled by applying an adoption ratio to net
253 electricity generation (kWh) of coal or NG power plants. The adoption ratio in each scenario was
254 assumed based on the literature data that previously investigated the projections of CCS adoption
255 (see Table S1 for CCS adoption ratio).^{51–55} Using the LCI data of different electricity generation

256 technologies, the total 2020-2050 emission profile can be derived as shown in eq 19. $E(i,j)$
257 represents the annual emission of GHG i (i includes CO₂, CH₄, N₂O); $LCI(n,i)$ (g/kWh) is the
258 quantity of GHG i for technology n (documented in SI Table S2); $P(n,j)$ is the projections of
259 technology n in year j (see SI Tables S3–S7). The projections of coal and natural gas power
260 generation with CCS were estimated using the adoption ratio mentioned above. The detailed
261 models were documented in SI Section 2.

262

$$263 E(i,j) = \sum_{n=1}^9 LCI(n,i)P(n,j) \quad (19)$$

264

265 The baseline BAU (business-as-usual) assumes that the future electricity production mix will
266 be the same as that in 2020 (see SI Table S3). The late adoption case assumed that the adoption of
267 CCS would be as late as 2035, but the adoption rate was high enough to catch up with the previous
268 high adoption scenario. This scenario was designed to understand the impacts of adoption time
269 (see SI Table S7). The adoption of renewable energy was kept to be the same with the projection
270 in 2050 developed by the U.S. EIA.² The assumptions of each scenario are summarized in Table
271 1.

272 In each scenario, three GWP accounting methods were used to quantify the GWP of annual
273 U.S. electricity generation, namely the static practice in LCA (i.e., the traditional LCA approach),
274 dynamic LCA with fixed GHG concentrations, and dynamic GWP accounting method in this study
275 with varied GHG atmospheric concentration pathways (i.e., RCP2.6, RCP4.5, RCP6, RCP8.5).
276 This study does not intend to project and reconcile the global GHG concentration pathways under
277 varied U.S. power sector scenarios. Instead, we quantify the impacts of varied GWP accounting
278 methods and concentration pathways on the GWP results of the U.S. power sector. In other words,

279 the scenario analysis attempts to answer the “what-if” question, namely how the GWP results of
280 the U.S. power generation would change if the GHG concentrations follow different pathways.
281 Hence, this study does not consider the interdependency of future U.S. power sector scenarios and
282 global GHG concentration pathways. However, this can be explored in future research upon
283 available data or using global integrated assessment models.

284

285 **Table 1. Assumptions of Five Scenarios for U.S. Electricity Generation from 2020 to 2050**

Scenario	Assumptions	GWP accounting methods
Business-as-usual (BAU)	The future electricity production mix will be the same as that in 2020 (SI Table S3). The total electricity production is based on EIA reference case projection.	
Low adoption	EIA reference case projection with low CCS adoption rate (22% by 2050 with linear growth) from 2020-2050 (SI Table S4).	1) Static practice in LCA; 2) dynamic LCA with fixed GHG concentrations;
Medium adoption	EIA reference case projection with medium CCS adoption rate (30% by 2050 with linear growth) from 2020-2050 (SI Table S5).	3) dynamic LCA with varied GHG atmospheric concentration
High adoption	EIA reference case projection with high CCS adoption rate (86% by 2050 with linear growth) from 2020-2050 (SI Table S6).	projections (i.e. RCP2.6, RCP4.5, RCP6, RCP8.5).
Late adoption	The adoption of CCS would start as late as 2035, but the adoption rate (86% by 2050 with linear growth) would be high to catch up with the high adoption scenario in year 2050 (SI Table S7).	

286

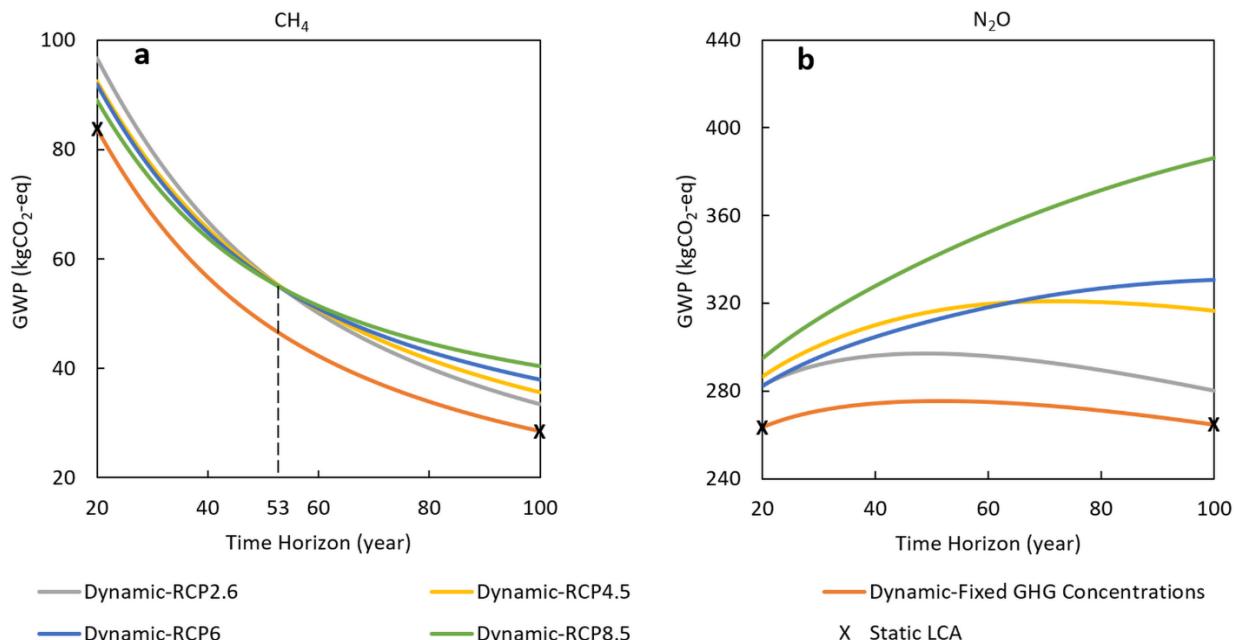
287 **3. RESULTS AND DISCUSSION**

288 **3.1. GWP of 1 kg of Pulse Emission in Year 0.**

289 Figure 1 shows the GWP characterization factors calculated for 1kg of pulse emission CH₄ (Figure
290 1a) and dinitrogen monoxide N₂O (Figure 1b) in year 0 using the dynamic method developed in
291 this study compared with the traditional static approach and dynamic LCA that uses fixed GHG
292 concentration. The GWP results of 1 kg of pulse emission CO₂, CH₄, and N₂O in other years (i.e.,
293 year 10, 25, 50, and 75) are available in Table S8 in SI. GWP factors are shown from 20 to 100
294 years to be consistent with the time horizons showed by IPCC.²⁸ The GWP characterization factors
295 for fixed 20- and 100-year timeframe from IPCC are shown as black crosses in year 20 and 100,
296 which are the factors used in traditional static LCA. The dynamic method developed by previous

297 studies can provide time-dependent GWP, but their factors are based on fixed atmospheric GHG
298 concentrations (orange lines). The dynamic GWP factors developed using our method were
299 presented under four RCPs.²⁹ Figure 1a indicates that both static and dynamic LCA with fixed
300 GHG concentrations underestimate the GWP of CH₄ (e.g., 14.9%–29.4% lower than our method
301 at 100-year time horizon), although different dynamic methods showed similar trends as time
302 horizon increases. Among the results of our method, RCP with higher GHG concentrations shows
303 lower CH₄ GWP factors when the time horizon is shorter than 53-year. However, this trend
304 reverses after a 53-year time horizon, as shown in Figure 1a. For N₂O, only the results of RCP2.6
305 and RCP4.5 show similar trends with the results of dynamic method with fixed GHG
306 concentrations, while the results of RCP6 and RCP8.5 show significant increases with the longer
307 time horizon. Compared to the 100-year result of static LCA, the GWP factor of N₂O in varied
308 RCP are 5.9%–45.9% larger. These large discrepancies among different methods for CH₄ and N₂O
309 indicate the necessity of including temporal impacts and background atmospheric GHG
310 concentrations in LCA or relevant carbon analysis, especially for those power generation
311 technologies with significant life-cycle CH₄ and N₂O emissions.

312



313
314 **Figure 1.** GWP factors of 1 kg of pulse emission in year 0 with different time horizons: (a) CH_4 ;
315 (b) N_2O .

316
317 **3.2. GWP of Energy Technologies Under Different GHG Concentration Pathways.**

318 Figure 2 shows the dynamic life-cycle GWP of nine energy technologies under different RCP
319 compared with the results using traditional methods. The results of four time horizons (35, 50, 75,
320 and 100 years) are presented, since the time horizon needs to be longer than the operational stage
321 of the LCI data (30 years) for varied generation technologies. The results of nine energy
322 technologies are categorized into three groups based on their GHG emission profiles, including (1)
323 CO₂-emission-dominated systems with large operational emissions annually (i.e., coal, NG, and
324 nuclear that have higher life-cycle CO₂ emissions compared to the CH_4 and N_2O emissions of the
325 same technology; they also have higher operational emissions than their upstream emissions); (2)
326 CH₄-emission-dominated systems (i.e., the GWP results of coal and NG with CCS are largely
327 driven by CH₄ emissions (see SI Table S1)); (3) CO₂-emission-dominated systems with large
328 embedded emissions but small operational emissions (i.e., hydropower, geothermal, PV, and wind).

329

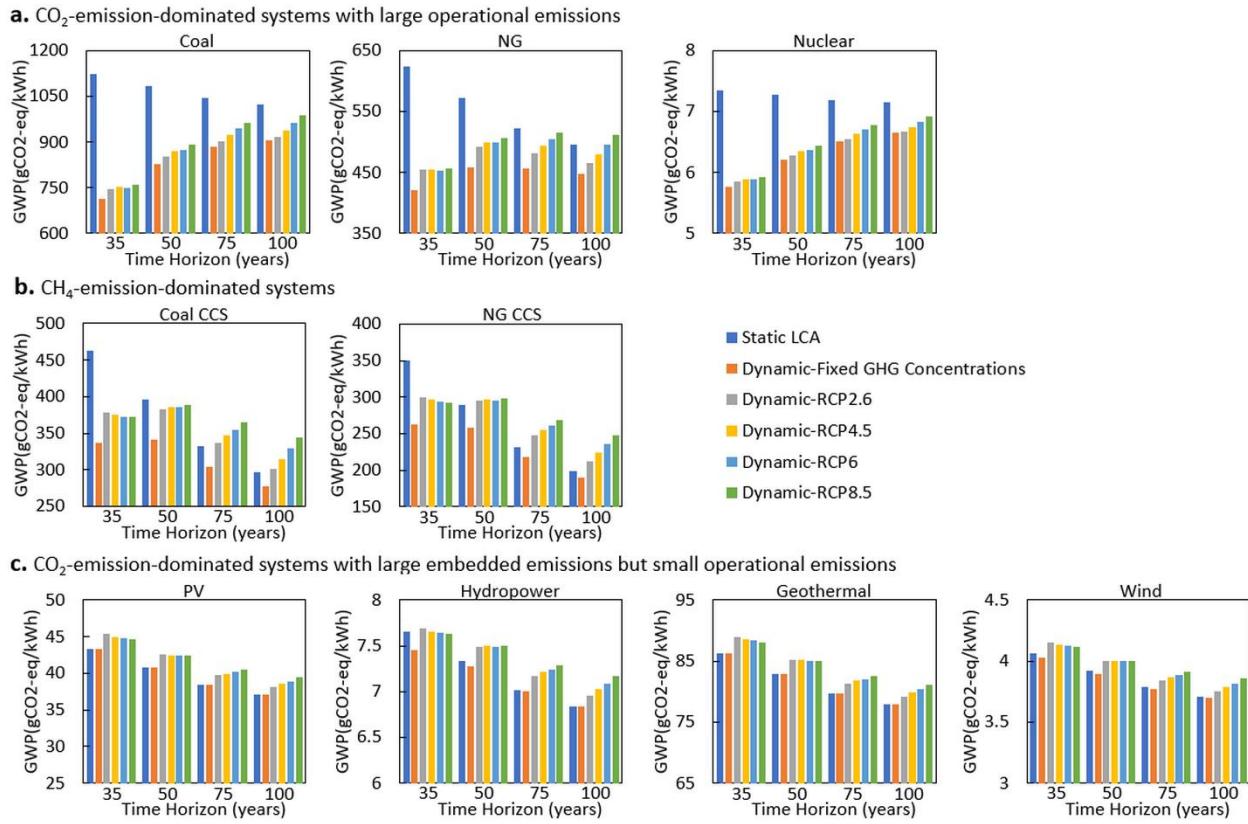


Figure 2. Life-cycle GWP of energy technology (functional unit: 1 kWh) under different RCP using our method compared with the results of traditional static and dynamic LCA approaches: (a) CO₂-emission-dominated systems with large operational emissions; (b) CH₄-emission-dominated systems; (c) CO₂-emission-dominated systems with large embedded emissions but small operational emissions.

Figure 2 indicates significant differences in the GWP results between static and dynamic LCAs,

and such differences varied by time horizons and technology groups (percentage difference results

are presented in Figure S2). For nine technologies, static LCA shows decreased GWP with longer

time horizons due to lower GWP characterization factors for non-CO₂ gases in the longer-term

(e.g., the GWP characterization factor for CH₄ is 62 for 35 years, 58 for 50 years, and 28 for 100

years, see Figure 1). However, for a specific time horizon, the current static LCA is unable to keep

a consistent timeframe for GHG emissions occurring in different years. For example, a static LCA

choosing 100-year fixed GWP characterization factors consider the impacts of all emissions for

100 years. Thus, the GWP of emission in year 50 includes the impact from year 50 to year 150;

346 while the GWP of emission in year 75 includes the impact from year 75 to year 175. For an analysis
347 with a fixed time horizon (e.g., a climate policy analysis for the future 100 years), this static
348 approach includes the impacts beyond the scope of 100 years and does not distinguish earlier and
349 later emissions. Oppositely, the dynamic LCA method has a consistent time horizon for all GHG
350 emissions in the same analysis, as the GWP impacts beyond the chosen time horizon H are
351 excluded (see eq 1). For example, if the time horizon is set to 100 years, the impacts of emission
352 in year 50 are only considered for the remaining 50 years. This approach also distinguishes the
353 impacts of earlier and later emissions. Therefore, dynamic LCAs for operational-CO₂-intensive
354 technologies (i.e., coal, NG, and nuclear) in Figure 2a showed lower GWP than static LCA, while
355 the differences between static and dynamic LCAs are reduced with the longer time horizon as the
356 GHG decay is closer to stagnation (reflected by impulse response function with longer time
357 horizons²⁸). For later emissions, their relative contributions compared to earlier emissions increase
358 as the time horizon increases, which explains why all dynamic LCAs in coal and nuclear have
359 higher GWP with longer time horizons. For example, in Figure 2a, when expanding the time
360 horizon from 35 years to 100 years, the GWP of coal-based electricity generation increases 23.3%–
361 30.2% across varied RCP. Figure 2a shows that RCP cases have higher GWP results than the
362 results of dynamic LCA with fixed GHG concentrations. The higher GHG concentration, the larger
363 differences between the RCP case and fixed GHG concentration case. For example, for coal in
364 Figure 2a, RCP2.6 exhibits 1.2%–4.2% higher GWP than dynamic LCA with fixed GHG
365 concentrations, while RCP8.5 shows a 6.4%–9.1% difference. For NG in Figure 2a, expanding the
366 time horizon fails to show significant increases in GWP and even shows slight decreases in some
367 cases (e.g., RCP2.6 and RCP4.5). This can be explained that over coal and nuclear, NG has more
368 GHG emissions coming from CH₄ (see SI Table S1) and gains the combined effects from the first

369 group (CO₂-emission-dominated systems with large operational emissions in Figure 2a) and the
370 second group (CH₄-emission-dominated technologies).

371 For CH₄-emission-dominated technologies, atmospheric GHG concentrations have large
372 impacts on the GWP in the long term, and such impacts are overlooked by static LCA and dynamic
373 LCA with fixed GHG concentrations. Different from Figure 2a where dynamic LCAs in coal and
374 nuclear have higher GWP with longer time horizons, GWP in Figure 2b by all dynamic methods
375 has minor changes between 35 years and 50 years, and decreases when the time horizon changes
376 from 50 years to 100 years, which is impacted by the trend of CH₄ (similar to Figure 1a). In Figure
377 2b, the differences among the four RCPs are much larger at a 100-year time horizon than 35-year,
378 reflecting the increased impacts of both GHG decay and background GHG concentrations on the
379 long-term projection. In Figure 2b, at the 100-year time horizon, both current static LCA and
380 dynamic LCA with fixed GHG concentrations underestimate the GWP, given that both methods
381 rely on the present-day GHG concentrations. For example, for NG with CCS, at the 100-year time
382 horizon, results of RCPs are 6.8%–24.4% higher than current static LCA and 14.6%–30.1% higher
383 than dynamic LCA with fixed GHG concentrations. The higher atmospheric GHG concentrations
384 (e.g., RCP8.5), the larger the discrepancy is. For a shorter time horizon (e.g., 35 or 50 years), the
385 GWP results of static LCA are close to (although slightly higher than) the results of our method.
386 However, the GWP results of dynamic method with fixed GHG concentrations are much lower
387 than our method's results because the former only accounts GHG emitting timeline without
388 considering the changing radiative efficiency caused by the changing atmospheric GHG
389 concentrations.

390 For CO₂-emission-dominated technologies with large embedded emissions but small
391 operational emissions (i.e., PV, hydropower, geothermal, and wind in Figure 2c), the results of

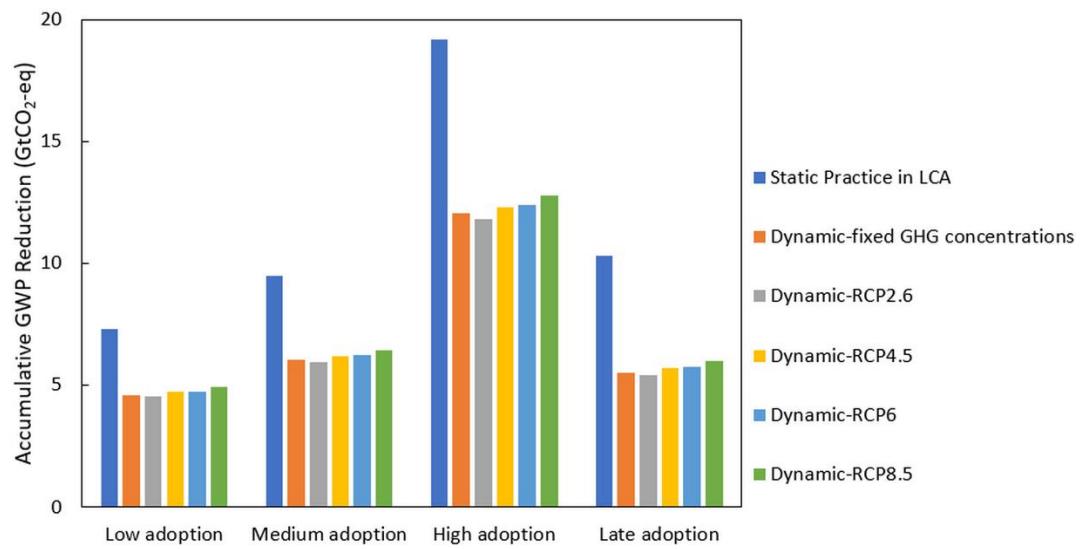
392 static LCA and dynamic LCA with fixed GHG concentrations are slightly lower than our method
393 (e.g., 2.5%–6.1% lower than our method at 100-year time horizon for PV). Compared to the first
394 (Figure 2a) and second (Figure 2b) groups of energy technologies, this group shows the smallest
395 discrepancies of the results using static and dynamic approaches.

396

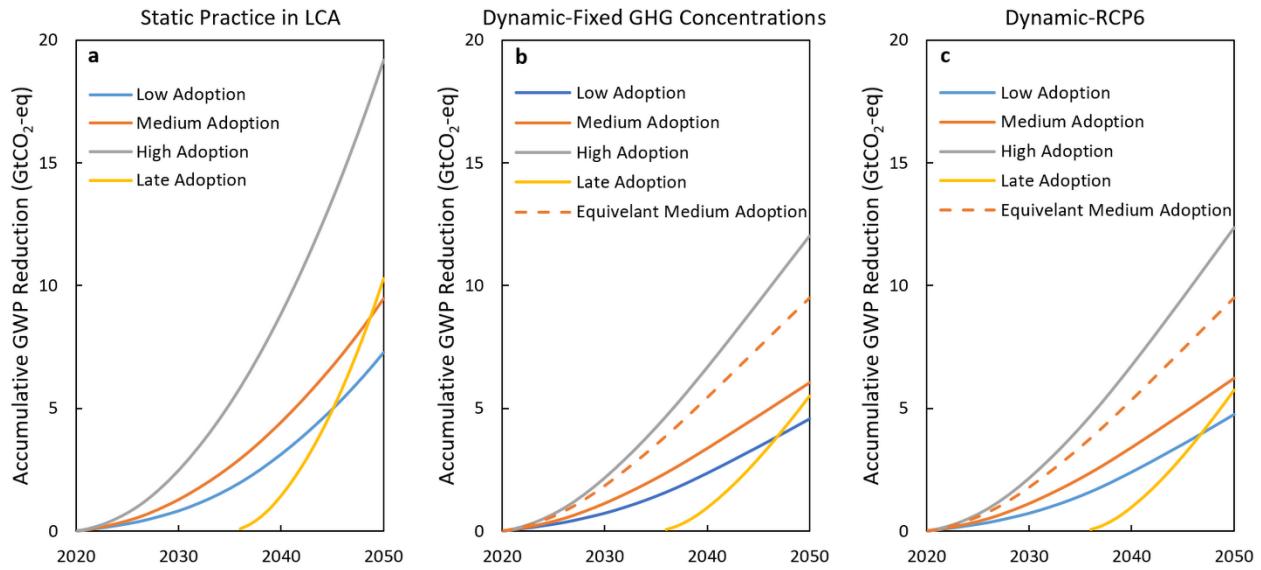
397 **3.3. Meeting GHG Mitigation Targets Under Different GHG Concentration Pathways.**

398 Figure 3 shows the total accumulative GWP reduction potential from 2020 to 2050 in four climate
399 mitigation scenarios of projected electricity generation compared with BAU using the static LCA,
400 dynamic LCA with fixed GHG concentrations, and our method with four RCP projections, with a
401 50-year time horizon. The year-by-year GWP reduction potentials are shown in Figure 4. The
402 results of dynamic LCA with RCP6 are presented as an example. The results of four scenarios with
403 100-year time horizon are available in SI Figures S3 and S4.

404



405
406 **Figure 3.** GWP (50-year time horizon) reduction potential by 2050 of four climate change
407 mitigation scenarios compared with the BAU.
408



409
410 **Figure 4.** GWP (50-year time horizon) reduction potential of four climate change mitigation
411 scenarios compared with the BAU: (a) static practice in LCA; (b) dynamic LCA with fixed GHG
412 concentrations; (c) dynamic LCA with RCP6 projection.

413

414 Static LCA significantly overestimates the GWP mitigation potential of four scenarios
415 (47.3%–90.3% higher as shown in Figure 3) compared to the results of dynamic LCA with fixed
416 GHG concentrations and our dynamic approach. For example, in Figure 4, in the medium adoption
417 scenario (orange solid line in Figure 4a), the GWP mitigation potential by 2050 is 9.5 GtCO₂-eq
418 using static LCA, while that for the same scenario is 6.0 GtCO₂-eq for the dynamic method with
419 fixed GHG concentrations and 6.2 GtCO₂-eq for the dynamic method with RCP6 projection. To
420 reach the same GWP mitigation goal (9.5 GtCO₂-eq by 2050), the adoption rate of CCS needs to
421 be as high as 57.6% by 2050 using the current dynamic GWP accounting method (plotted as the
422 orange dashed line in Figure 4b) and 55.5% by 2050 using dynamic LCA with RCP6 (orange dash
423 line in Figure 4c). Such adoption rate is 92% and 85% higher than the current medium adoption
424 scenario, respectively.

425 The GWP mitigation potential of our dynamic LCA method shows differences from the current
426 dynamic LCA. In Figure 3, compared with the results of dynamic LCA with fixed GHG

427 concentrations, the accumulative GWP reduction estimated by our dynamic LCA methods are
428 1.2%–2.0% smaller in RCP2.6, 1.9%–3.7% larger in RCP4.5, 2.7%–4.5% larger in RCP6, and
429 6.2%–9.2% larger in RCP8.5. This is caused by the differences in the atmospheric GHG
430 concentrations. As the RCP2.6 projection has the slightest difference with current atmospheric
431 GHG concentrations, the RCP2.6 results have the smallest discrepancy with the current dynamic
432 LCA that uses fixed atmospheric GHG concentrations.

433 For different RCP, the GWP reduction potential increases as RCP concentration increases, as
434 shown in Figure 3. For example, in the medium adoption scenario, compared to RCP2.6 results,
435 RCP4.5, RCP6, and RCP8.5 shows an increase of 3.8%, 4.6%, and 8.0%, respectively. This finding
436 is critical for decision making that uses LCA results to support energy policy (e.g., setting
437 mitigation goals) and technology investments (e.g., determining funding needs to accelerate the
438 adoption of specific technologies), especially when the future atmospheric GHG concentration is
439 different from current values.

440 Another observation is that the late adoption of CCS in the electricity sector with a high
441 adoption rate will take a longer time to catch up with early adoption scenarios (low and medium
442 adoption scenarios) in Figure 4c than Figure 4a, which leads to different comparative conclusions
443 when investigating different scenarios in the same year. For example, in 2050, static LCA results
444 indicate that the late adoption scenario leads to 8.7% more GWP reduction than the medium
445 adoption scenario. This is too optimistic compared with dynamic LCA with RCP6 where the late
446 adoption shows 7.8% less GWP reduction than the medium adoption. As the static LCA method
447 does not differentiate earlier and later GHG emissions, the possible negative consequences of late
448 adoption (e.g., reducing GWP reduction) are underestimated or overlooked. Hence, when using
449 dynamic LCA methods, earlier adoption is more likely to reach a similar GWP mitigation goal

450 with the static LCA method, and the differences between the two methods are impacted by
451 different GHG concentrations in the atmosphere.

452

453 **3.4. Limitations and Implications of Methods.**

454 This study aims to provide a fuller picture of accounting life-cycle GWP in LCA by incorporating
455 the dynamics in the atmospheric GHG concentrations and GHG emissions, demonstrated by a case
456 study of the electricity generation sector in the U.S. The static method applies the same GWP
457 characterization for GHG emitted at different years, ignoring the impacts of later and earlier
458 emissions. The dynamic LCA approach in this study addresses this limitation by developing
459 dynamic GWP characterization factors, considering the temporal profile of GHG emissions, and
460 using a consistent time horizon for GWP accounting. Compared to the current dynamic LCA that
461 uses fixed, present GHG concentrations, our method considers the future changes of the
462 atmospheric GHG concentrations. The current dynamic LCA shows significant discrepancies in
463 the GWP results for high RCP cases (compared to our method) when the GHG concentrations are
464 much higher than the present. Compared to other methods such as GWP* (see SI Section 1 for
465 literature review details), our method does not rely on correcting fixed GWP characterization
466 factors by empirical parameters that are subjected to scenario assumptions and data. Instead, GHG
467 concentration is directly incorporated into the GWP calculation to derive dynamic GWP
468 characterization factors. Our dynamic approach also allows for a consistent time horizon for GWP
469 assessment of GHGs emitted at different years, which is particularly useful for LCA applications
470 in terms of keeping a coherent temporal system boundary.

471 As this study focuses on the U.S. only, it does not include the feedback loop between RCPs
472 and GHG emissions that may need to be considered for global studies. Such feedback loop can be

473 added by modeling the radiative efficiency of GHG as a function of both time and emissions $g_i(j)$
474 in eq 5. Such a function will need to be developed based on the dynamic and quantitative
475 relationship between global emissions and atmospheric GHG concentration changes. Another
476 research direction is integrating the impacts of prospective energy transformation pathways into
477 the LCI data that commonly do not consider future changes.^{57,58,59} One approach is leveraging
478 prospective scenarios from integrated assessment models (IAMs) (e.g., IMAGE⁶⁰) to simulate the
479 LCI data of future energy technologies.^{57,61} For future applications, by considering the temporal
480 profile of emissions and the impacts of atmospheric GHG concentration changes on radiative
481 efficiency, the method presented in this study can be integrated into other climate change related
482 indicators, e.g., monetary values of GHG emissions,⁶² social cost of GHG emissions,⁶³ and Global
483 Temperature change Potential (GTP)¹¹.

484 The results of this study demonstrate the importance of incorporating atmospheric GHG
485 concentrations into the life-cycle carbon accounting of energy technologies, especially under the
486 following circumstances:

- 487 • When the technology has large operational GHG emissions or CH₄ emissions. Our results
488 show that atmospheric GHG concentrations have significant impacts on the life-cycle GWP
489 of CO₂-emission-dominated energy technologies with large operational emissions such as
490 coal, natural gas, and nuclear, as well as CH₄-emission-dominated systems such as coal and
491 natural gas with CCS. For those technologies, the static practice in LCA shows remarkable
492 discrepancies in the GWP results compared with dynamic methods. Such discrepancies are
493 minimal for CO₂-emission-dominated technologies with large embedded emissions but small
494 operational emissions (i.e., hydropower, geothermal, PV, and wind), in which most of the
495 emissions are released at the beginning.

496 • When the analysis timeframe is longer than 50 years and the GHG concentration in the
497 atmosphere is likely to be different from the present concentration. Compared with our
498 method, the dynamic LCA method using fixed present GHG concentrations underestimated
499 the GWP of all technologies, such underestimation is more significant under high GHG
500 concentration pathways such as RCP6 and RCP8.5. For the long-term time horizon (larger
501 than 50 years), higher atmospheric GHG concentrations result in higher life-cycle GWP.
502 Such trends are less significant for short-term analysis (50 years).

503 • When LCA results will be used to support policymaking or technology development for
504 climate change mitigation in the future. The results of the case study for the U.S. electricity
505 generation sector and different climate mitigation scenarios showed a large discrepancy of
506 GWP mitigation potentials between our method and the static LCA approach that does not
507 distinguish the impacts of early and later emissions. Our results indicate the necessity of
508 earlier adoption of CCS to achieve the same climate change mitigation goals that use static
509 LCA. These findings demonstrate the importance of considering the dynamics of background
510 GHG concentrations in LCA and relevant environmental, policy, and technology decision
511 making.

512

513 **SUPPORTING INFORMATION**

514 Literature review, detailed explanation of CCS adoption rate, LCI data of energy technologies,
515 additional results, list of abbreviations and nomenclature, and references.

516

517 **ACKNOWLEDGEMENTS**

518 The authors thank the funding support from the U.S. National Science Foundation. This material
519 is based upon work supported by the National Science Foundation under Grant No. 2038439. Any
520 opinions, findings, and conclusions or recommendations expressed in this material are those of the
521 author(s) and do not necessarily reflect the views of the National Science Foundation.

522

523 **AUTHOR INFORMATION**

524 **Corresponding Author**

525 **Yuan Yao**

526 *Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven,
527 Connecticut, 06511, United States;*

528 E-mail: y.yao@yale.edu

529

530 **Author**

531 **Kai Lan**

532 *Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven,
533 Connecticut, 06511, United States.*

534 **REFERENCES**

535 (1) World Resources Institute. World Greenhouse Gas Emissions: 2016
536 <https://www.wri.org/data/world-greenhouse-gas-emissions-2016> (accessed June 12, 2021).

537 (2) U.S. EIA. *Annual Energy Outlook 2019 with Projections to 2050*; 2019.
538 <https://www.eia.gov/outlooks/aeo/pdf/aeo2019.pdf> (accessed Apr 11, 2020).

539 (3) Buonocore, J. J.; Choma, E.; Villavicencio, A. H.; Spengler, J. D.; Koehler, D. A.; Evans,
540 J. S.; Lelieveld, J.; Klop, P.; Sanchez-Pina, R. Metrics for the Sustainable Development
541 Goals: Renewable Energy and Transportation. *Palgrave Communications* **2019**, *5*, 136.

542 (4) Cormos, C. C. Integrated Assessment of IGCC Power Generation Technology with
543 Carbon Capture and Storage (CCS). *Energy* **2012**, *42*, 434–445.

544 (5) Blanco, T.; Rivas, C.; Ferna, J.; Artal, M.; Velasco, I. Influence of Methane in CO₂
545 Transport and Storage for CCS Technology. *Environmental science & technology* **2012**,
546 *46*, 13016–13023.

547 (6) Blanco, T.; Rivas, C.; Fernández, J.; Artal, M.; Velasco, I. Discussion of the Influence of
548 CO and CH₄ in CO₂ Transport, Injection, and Storage for CCS Technology.
549 *Environmental science & technology* **2014**, *48*, 10984–10992.

550 (7) Maddali, V.; Tularam, G. A.; Glynn, P. Economic and Time-Sensitive Issues Surrounding
551 CCS : A Policy Analysis. *Environmental science & technology* **2015**, *49*, 8959–8968.

552 (8) Sathre, R.; Masanet, E. Long-Term Energy and Climate Implications of Carbon Capture
553 and Storage Deployment Strategies in the US Coal-Fired Electricity Fleet. *Environmental*
554 *science & technology* **2012**, *46*, 9768–9776.

555 (9) Levasseur, A.; Lesage, P.; Margni, M.; Deschênes, L.; Samson, R. Considering Time in
556 LCA: Dynamic LCA and Its Application to Global Warming Impact Assessments.
557 *Environmental science & technology* **2010**, *44* (8), 3169–3174.

558 (10) Pehl, M.; Arvesen, A.; Humpenöder, F.; Popp, A.; Hertwich, E. G.; Luderer, G.
559 Understanding Future Emissions from Low-Carbon Power Systems by Integration of Life-
560 Cycle Assessment and Integrated Energy Modelling. *Nature Energy* **2017**, *2*, 939–945.

561 (11) Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.;
562 Lamarque, J. F.; Lee, D.; Mendoza, B.; Nakajima, T.; Robock, A.; Stephens, G.;
563 Takemura T.; Zhang, H. Anthropogenic and Natural Radiative Forcing. In *Climate*
564 *Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth*
565 *Assessment Report of the Intergovernmental Panel on Climate Change*; Stocker, T. F.,
566 Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex,
567 V., Midgley, P. M., Eds.; Cambridge University Press: Cambridge, United Kingdom and
568 New York, NY, USA, 2013.

569 (12) Jones, C.; Gilbert, P.; Stamford, L. Assessing the Climate Change Mitigation Potential of
570 Stationary Energy Storage for Electricity Grid Services. *Environmental science &*
571 *technology* **2020**, *54*, 67–75.

572 (13) Kendall, A.; Chang, B.; Sharpe, B. Accounting for Time-Dependent Effects in Biofuel
573 Life Cycle Greenhouse Gas Emissions Calculations. *Environmental science & technology*
574 **2009**, *43* (18), 7142–7147.

575 (14) Staples, M. D.; Malina, R.; Barrett, S. R. The Limits of Bioenergy for Mitigating Global
576 Life-Cycle Greenhouse Gas Emissions from Fossil Fuels. *Nature Energy* **2017**, *2* (2), 1–8.

577 (15) Daystar, J.; Venditti, R.; Kelley, S. S. Dynamic Greenhouse Gas Accounting for
578 Cellulosic Biofuels: Implications of Time Based Methodology Decisions. *International*
579 *Journal of Life Cycle Assessment* **2017**, *22* (5), 812–826.

580 (16) Pingoud, K.; Ekholm, T.; Savolainen, I. Global Warming Potential Factors and Warming
581 Payback Time as Climate Indicators of Forest Biomass Use. *Mitigation and Adaptation*
582 *Strategies for Global Change* **2012**, *17* (4), 369–386.

583 (17) Han, J.; Canter, C.; Cai, H.; Wang, M.; Qin, Z.; Dunn, J. *Carbon Dynamics for Biofuels*
584 *Produced from Woody Feedstocks*; Argonne, IL USA, 2018.

585 (18) Bright, R. M.; Cherubini, F.; Strømman, A. H. Climate Impacts of Bioenergy: Inclusion of
586 Carbon Cycle and Albedo Dynamics in Life Cycle Impact Assessment. *Environmental*
587 *Impact Assessment Review* **2012**, *37*, 2–11.

588 (19) Levasseur, A.; Lesage, P.; Margni, M.; Samson, R. Biogenic Carbon and Temporary
589 Storage Addressed with Dynamic Life Cycle Assessment. *Journal of Industrial Ecology*
590 **2013**, *17* (1), 117–128.

591 (20) Levasseur, A.; Lesage, P.; Margni, M.; Brandão, M.; Samson, R. Assessing Temporary
592 Carbon Sequestration and Storage Projects through Land Use, Land-Use Change and
593 Forestry: Comparison of Dynamic Life Cycle Assessment with Ton-Year Approaches.
594 *Climatic Change* **2012**, *115* (3–4), 759–776.

595 (21) Edwards, M. R.; Trancik, J. E. Climate Impacts of Energy Technologies Depend on
596 Emissions Timing. *Nature Climate Change* **2014**, *4* (5), 347–352.

597 (22) Faraca, G.; Tonini, D.; Astrup, T. F. Dynamic Accounting of Greenhouse Gas Emissions
598 from Cascading Utilisation of Wood Waste. *Science of the Total Environment* **2019**, *651*,
599 2689–2700.

600 (23) Cherubini, F.; Peters, G. P.; Berntsen, T.; Strømman, A. H.; Hertwich, E. CO₂ Emissions
601 from Biomass Combustion for Bioenergy: Atmospheric Decay and Contribution to Global
602 Warming. *GCB Bioenergy* **2011**, *3*, 413–426.

603 (24) Dyckhoff, H.; Kasah, T. Time Horizon and Dominance in Dynamic Life Cycle
604 Assessment. *Journal of Industrial Ecology* **2014**, *18* (6), 799–808.

605 (25) Lynch, J.; Cain, M.; Pierrehumbert, R.; Allen, M. Demonstrating GWP: A Means of
606 Reporting Warming-Equivalent Emissions That Captures the Contrasting Impacts of
607 Short- and Long-Lived Climate Pollutants. *Environmental Research Letters* **2020**, *15* (4),
608 044023.

609 (26) Cain, M.; Lynch, J.; Allen, M. R.; Fuglestvedt, J. S.; Frame, D. J.; Macey, A. H. Improved
610 Calculation of Warming-Equivalent Emissions for Short-Lived Climate Pollutants. *npj*
611 *Climate and Atmospheric Science* **2019**, *2* (1), 1–7.

612 (27) Allen, M. R.; Shine, K. P.; Fuglestvedt, J. S.; Millar, R. J.; Cain, M.; Frame, D. J.; Macey,
613 A. H. A Solution to the Misrepresentations of CO₂-Equivalent Emissions of Short-Lived
614 Climate Pollutants under Ambitious Mitigation. *npj Climate and Atmospheric Science*
615 **2018**, *1* (1), 1–8.

616 (28) IPCC. *Climate Change 2013: The Physical Science Basis. Contribution of Working Group*
617 *I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*;
618 Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A.,
619 Xia, Y., Bex, V., Midgley, P. M., Eds.; Cambridge University Press: Cambridge, United
620 Kingdom and New York, NY, USA, 2013.

621 (29) The International Institute for Applied Systems Analysis (IIASA). RCP Database (version
622 2.0) [https://www.iiasa.ac.at/web-](https://www.iiasa.ac.at/web-apps/tnt/RcpDb/dsd?Action=htmlpage&page=welcome#intro)
623 [apps/tnt/RcpDb/dsd?Action=htmlpage&page=welcome#intro](https://www.iiasa.ac.at/web-apps/tnt/RcpDb/dsd?Action=htmlpage&page=welcome#intro) (accessed Aug 9, 2018).

624 (30) Joos, F.; Roth, R.; Fuglestvedt, J. S.; Peters, G. P.; Enting, I. G.; Von Bloh, W.; Brovkin,
625 V.; Burke, E. J.; Eby, M.; Edwards, N. R.; Friedrich, T.; Frölicher, T. L.; Halloran, P. R.;
626 Holden, P. B.; Jones, C.; Kleinen, T.; Mackenzie, F. T.; Matsumoto, K.; Meinshausen, M.;
627 Plattner, G. K.; Reisinger, A.; Segschneider, J.; Shaffer, G.; Steinacher, M.; Strassmann,
628 K.; Tanaka, K.; Timmermann, A.; Weaver, A. J. Carbon Dioxide and Climate Impulse
629 Response Functions for the Computation of Greenhouse Gas Metrics: A Multi-Model
630 Analysis. *Atmospheric Chemistry and Physics* **2013**, *13* (5), 2793–2825.

631 (31) Myhre, G.; Highwood, E. J.; Shine, K. P. New Estimates of Radiative Forcing Due to
632 Well Mixed Greenhouse Gases. *Geophysical Research Letters* **1998**, *25* (14), 2715–2718.

633 (32) Shindell, D. T.; Faluvegi, G.; Bell, N.; Schmidt, G. A. An Emissions-Based View of
634 Climate Forcing by Methane and Tropospheric Ozone. *Geophysical Research Letters*
635 **2005**, *32* (4), 1–4.

636 (33) Shindell, D. T.; Faluvegi, G.; Koch, D. M.; Schmidt, G. a; Unger, N.; Bauer, S. E.
637 Improved Attribution of Climate Forcing to Emissions. *Science* **2009**, *326* (5953), 716–
638 718.

639 (34) Collins, W. J.; Fry, M. M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J. Global
640 and Regional Temperature-Change Potentials for near-Term Climate Forcers.
641 *Atmospheric Chemistry and Physics* **2013**, *13* (5), 2471–2485.

642 (35) Holmes, C. D.; Prather, M. J.; Søvde, O. A.; Myhre, G. Future Methane, Hydroxyl, and
643 Their Uncertainties: Key Climate and Emission Parameters for Future Predictions.
644 *Atmospheric Chemistry and Physics* **2013**, *13* (1), 285–302.

645 (36) Stevenson, D. S.; Young, P. J.; Naik, V.; Lamarque, J. F.; Shindell, D. T.; Voulgarakis,
646 A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold,
647 S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; Van Noije, T. P.C.;
648 Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz,
649 L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.;
650 Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.; Archibald, A. Tropospheric Ozone
651 Changes, Radiative Forcing and Attribution to Emissions in the Atmospheric Chemistry
652 and Climate Model Intercomparison Project (ACCMIP). *Atmospheric Chemistry and*
653 *Physics* **2013**, *13* (6), 3063–3085.

654 (37) U.S. National Renewable Energy Laboratory. Life Cycle Assessment Harmonization
655 <https://www.nrel.gov/analysis/life-cycle-assessment.html> (accessed Sep 9, 2019).

656 (38) Sproul, E.; Barlow, J.; Quinn, J. C. Time Value of Greenhouse Gas Emissions in Life
657 Cycle Assessment and Techno-Economic Analysis. *Environmental science & technology*
658 **2019**, *53* (10), 6073–6080.

659 (39) Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M. Life Cycle Greenhouse Gas
660 Emissions of Coal-Fired Electricity Generation. *Journal of Industrial Ecology* **2012**, *16*,
661 S53–S72.

662 (40) Hsu, D. D.; O'Donoughue, P.; Fthenakis, V.; Heath, G. A.; Kim, H. C.; Sawyer, P.; Choi,
663 J. K.; Turney, D. E. Life Cycle Greenhouse Gas Emissions of Crystalline Silicon
664 Photovoltaic Electricity Generation: Systematic Review and Harmonization. *Journal of
665 Industrial Ecology* **2012**, *16*, S122–S135.

666 (41) Dolan, S. L.; Heath, G. A. Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind
667 Power: Systematic Review and Harmonization. *Journal of Industrial Ecology* **2012**, *16*,
668 S136–S154.

669 (42) O'Donoughue, P. R.; Heath, G. A.; Dolan, S. L.; Vorum, M. Life Cycle Greenhouse Gas
670 Emissions of Electricity Generated from Conventionally Produced Natural Gas:
671 Systematic Review and Harmonization. *Journal of Industrial Ecology* **2014**, *18* (1), 125–
672 144.

673 (43) Kim, H. C.; Fthenakis, V.; Choi, J.; Turney, D. E. Life Cycle Greenhouse Gas Emissions
674 of Thin-Film Photovoltaic Electricity Generation. *Journal of Industrial Ecology* **2012**, *16*,
675 S110–S121.

676 (44) Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The
677 Ecoinvent Database Version 3 (Part I): Overview and Methodology. *International Journal
678 of Life Cycle Assessment* **2016**, *21* (9), 1218–1230.

679 (45) Warner, E. S.; Heath, G. A. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity
680 Generation: Systematic Review and Harmonization. *Journal of Industrial Ecology* **2012**,
681 *16*, S73–S92.

682 (46) Murphy, C.; Mai, T.; Sun, Y.; Jadun, P.; Muratori, M.; Nelson, B.; Jones, R.
683 *Electrification Futures Study: Scenarios of Power System Evolution and Infrastructure
684 Development for the United States*; Golden, CO, 2021.

685 (47) Wilson, E. J.; Friedmann, S. J.; Pollak, M. F. Research for Deployment: Incorporating
686 Risk, Regulation, and Liability for Carbon Capture and Sequestration. *Environmental
687 science & technology* **2007**, *41* (17), 5945–5952.

688 (48) Rubin, E. S.; Zhai, H. The Cost of Carbon Capture and Storage for Natural Gas Combined
689 Cycle Power Plants. *Environmental science & technology* **2012**, *46*, 3076–3084.

690 (49) Stauffer, P. H.; Keating, G. N.; Middleton, R. S.; Viswanathan, H. S.; Berchtold, K. A.;
691 Singh, R. P.; Pawar, R. J.; Mancino, A. Greening Coal: Breakthroughs and Challenges in
692 Carbon Capture and Storage. *Environmental science & technology* **2011**, *45*, 8597–8604.

693 (50) Monroe, L. S.; Friedman, J. S. Deployment Models for Commercialized Carbon Capture
694 And Storage. *Environmental science & technology* **2011**, *45* (1), 139–146.

695 (51) Clemmer, S.; Rogers, J.; Sattler, S.; Macknick, J.; Mai, T. Modeling Low-Carbon US
696 Electricity Futures to Explore Impacts on National and Regional Water Use.
697 *Environmental Research Letters* **2013**, *8* (1), 015004.

698 (52) Logan, J.; Lopez, A.; Mai, T.; Davidson, C.; Bazilian, M.; Arent, D. Natural Gas
699 Scenarios in the U.S. Power Sector. *Energy Economics* **2013**, *40*, 183–195.

700 (53) Chadel, M. K.; Pratson, L. F.; Jackson, R. B. The Potential Impacts of Climate-Change
701 Policy on Freshwater Use in Thermoelectric Power Generation. *Energy Policy* **2011**, *39*
702 (10), 6234–6242.

703 (54) Katzer, J.; Moniz, E. J.; Deutch, J.; Ansolabehere, S.; Beer, J. *The Future of Coal: An*
704 *Interdisciplinary MIT Study*; Cambridge, MA, 2007.

705 (55) Ross, M. T.; Fawcett, A. A.; Clapp, C. S. U.S. Climate Mitigation Pathways Post-2012:
706 Transition Scenarios in ADAGE. *Energy Economics* **2009**, *31*, S212–S222.

707 (56) Arvesen, A.; Luderer, G.; Pehl, M.; Bodirsky, B.L.; Hertwich, E.G. Deriving life cycle
708 assessment coefficients for application in integrated assessment modelling. *Environmental*
709 *Modelling & Software* **2018**, *99*, 111-125.

710 (57) Arvesen, A.; Hertwich, E.G. Environmental implications of large-scale adoption of wind
711 power: a scenario-based life cycle assessment. *Environmental Research Letters* **2011**,
712 *6*(4), 045102.

713 (58) Pauliuk, S.; Arvesen, A.; Stadler, K. and Hertwich, E.G. Industrial ecology in integrated
714 assessment models. *Nature Climate Change* **2017**, *7*(1), 13-20.

715 (59) Hertwich, E.G.; Gibon, T.; Bouman, E.A.; Arvesen, A.; Suh, S.; Heath, G.A.; Bergesen,
716 J.D.; Ramirez, A.; Vega, M.I.; Shi, L. Integrated life-cycle assessment of electricity-
717 supply scenarios confirms global environmental benefit of low-carbon technologies.
718 *Proceedings of the National Academy of Sciences* **2015**, *112*(20), 6277-6282.

719 (60) Stehfest, E.; van Vuuren, D.; Bouwman, L.; Kram, T. *Integrated assessment of global*
720 *environmental change with IMAGE 3.0: Model description and policy applications*;
721 Netherlands Environmental Assessment Agency: The Hague, Netherlands.

722 (61) Mendoza Beltran, A., Cox, B., Mutel, C., van Vuuren, D.P., Font Vivanco, D., Deetman,
723 S., Edelenbosch, O.Y., Guinée, J. and Tukker, A. When the background matters: using
724 scenarios from integrated assessment models in prospective life cycle assessment. *Journal*
725 *of Industrial Ecology*, **2020**, *24*(1), 64-79.

726 (62) Dong, Y.; Hauschild, M.; Sørup, H.; Rousselet, R.; Fantke, P. Evaluating the monetary
727 values of greenhouse gases emissions in life cycle impact assessment. *Journal of Cleaner*
728 *Production* **2019**, *209*, 538-549.

729 (63) Marten, A.L.; Newbold, S.C. Estimating the social cost of non-CO₂ GHG emissions:
730 Methane and nitrous oxide. *Energy Policy* **2012**, *51*, 957-972.