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Abstract 9 

Global warming potential (GWP) has been widely used in the Life Cycle Assessment (LCA) to 10 

quantify the climate impacts of energy technologies. Most LCAs are static analyses without 11 

considering the dynamics of Greenhouse Gas (GHG) emissions and changes in background GHG 12 

concentrations. This study presents a dynamic approach to analyze the life-cycle GWP of energy 13 

technologies in different timeframes and representative GHG concentration pathways. Results 14 

show that higher atmospheric GHG concentrations lead to higher life-cycle GWP for long-term 15 

analysis. The impacts of background GHG concentrations are more significant for technologies 16 

with large operational emissions or CH4 emissions than technologies with low operational 17 

emissions. The case study for the U.S. electricity sector in 2020–2050 shows the impacts of 18 

background GHG concentrations and different LCA methods on estimating national climate 19 

impacts of different energy technology scenarios. Based on the results, it is recommended for 20 

future LCAs to incorporate temporal effects of GHG emissions when (1) technology has large 21 

operational GHG emissions or CH4 emissions; (2) the analysis timeframe is longer than 50 years; 22 

(3) when LCA results are used for policymaking or technology comparisons for mitigating climate 23 

change. 24 
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Synopsis 29 

This study developed a dynamic life cycle assessment approach to incorporate the temporal 30 

dynamics of atmospheric GHG concentrations and GHG emissions into Global Warming Potential 31 

accounting of energy technologies.   32 
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1. INTRODUCTION 36 

The energy sector is one of the largest contributors to greenhouse gas (GHG) emissions in the 37 

world and accounts for 73% of total global GHG emissions in 2016.1 To reduce GHG emissions, 38 

different climate change mitigation scenarios have been proposed by adopting emerging 39 

technologies such as carbon capture and sequestration (CCS) and renewable energy (e.g., solar 40 

and wind) for the energy sector.2–7 Quantifying and comparing the climate change mitigation 41 

potentials of different technologies and adoption scenarios from a holistic, life-cycle perspective 42 

is critical for energy policymaking and technology development.8 Such comparison is challenging 43 

given the dynamic nature of both climate and GHG emission profiles of energy technologies.9,10 44 

Global Warming Potential (GWP) is a standard metric widely used in Life Cycle Assessment 45 

(LCA) to compare the climate impacts of different technologies.11,12 GWP is calculated by the 46 

integrated radiative forcing of an emitted GHG and the reference gas carbon dioxide (CO2).11,13 47 

The radiative forcing of a GHG over a time horizon is given by multiplying radiative efficiency 48 

and GHG remaining in the atmosphere after the pulse emission (well known as the impulse 49 

response function (IRF)).11,14 Most LCA studies are static analyses and they use fixed GWP 50 

conversion factors for non-CO2 GHG emissions. Several studies proposed dynamic frameworks 51 

considering the temporal effects of GHG emissions and varied time horizons,8,9,22–24,13,15–21 and a 52 

few of them applied the dynamic approaches to LCA.9,13,15–17,23,24 Several studies also presented 53 

dynamic GWP characterization factors with considering the temporal effects of GHG emissions, 54 

most of which focused on biogenic carbon issues.16,17,22,24 Other studies developed correction 55 

methods for the fixed GWP factors (e.g., GWP*) to consider the warming equivalent effects of 56 

short-lived climate pollutants (e.g., CH4).25–27 The detailed review is available in Supporting 57 

Information (SI) Section 1. However, few studies have included the temporal changes of future 58 



4 
 

background atmospheric GHG concentrations that have significant impacts on GWP results given 59 

its large correlation with radiative efficiency, a key parameter used in the radiative forcing 60 

calculation.18,28 Quantitative understandings of the life cycle GWP impact of diverse energy 61 

technologies are essential to determine and compare the net climate change mitigation potential of 62 

different technologies. The static LCA method excludes dynamic factors such as the future 63 

changes in the atmospheric GHG concentrations that impact the life cycle GWP results, limiting 64 

the understandings of prospective climate implications of different energy technologies. In the 65 

current context of decarbonization, considering the dynamics of GHG emissions, decay, and 66 

atmospheric concentration changes in GWP accounting contributes to a fuller picture in the policy-67 

relevant analysis (e.g., analyzing GWP reduction target9), especially in the analysis with emission 68 

profiles over a long time (typically longer than 20 years).13,18  69 

To address the challenge, we developed a dynamic method integrated with LCA that is capable 70 

of modeling temporal dynamics of background GHG concentrations in the atmosphere and GHG 71 

emissions associated with energy systems. The method was used to analyze the dynamic life-cycle 72 

GWP of energy technologies under different trajectories of atmospheric GHG concentrations. In 73 

this method, the radiative efficiency is dependent on atmospheric GHG concentrations by using 74 

Representative Concentration Pathway (i.e., RCP2.6, RCP4.5, RCP6, RCP8.5),29 instead of being 75 

fixed values in traditional GWP estimations. To understand the impacts of varied future 76 

atmospheric GHG concentration pathways on life-cycle GWP of energy technologies, this 77 

dynamic method was applied to nine power generation technologies (e.g., coal, natural gas, wind) 78 

and then scaled up for the U.S. electricity generation projection from 2020 to 2050 under varied 79 

CCS technology adoption scenarios. The results of the dynamic method in this study are compared 80 
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to two common approaches in current LCAs to exhibit the significance of considering the changes 81 

of background GHG concentrations and the temporal effects of GHG emissions.  82 

  83 

2. MATERIALS AND METHODS 84 

In this study, a dynamic GWP accounting method was developed to incorporate the dynamic 85 

profiles of atmospheric GHG concentrations and GHG emissions (Section 2.1).29 This method 86 

allows for dynamic assessment of climate impact in LCA. The method was first used to analyze 87 

the life-cycle GWP of various energy technologies on the basis of 1 kWh of electricity generated 88 

(functional unit) using the Life Cycle Inventory (LCI) data collected from the literature (Section 89 

2.2). The GWP results of energy technologies were then scaled up using the projection of U.S. 90 

electricity generation by different fuel types and technology adoption from 2020 to 2050 (Section 91 

2.3), providing national-level insights on prospective climate implications of different energy 92 

technology scenarios. To better understand the importance of considering GHG concentration in 93 

GWP accounting, the method developed by this study was compared with another two common 94 

approaches under different adoption scenarios of CCS technology. One is the traditional LCA 95 

approach that considers no temporal impacts of GHG emissions and uses GWP conversion factors 96 

for different GHGs over a fixed time horizon (e.g., 20 or 100 years).28 The other is the dynamic 97 

method used in previous LCAs that only considers the decay of GHG species with fixed radiative 98 

efficiency.9,15–17 In this study, the modeling work of dynamic GWP accounting is performed in 99 

Excel with VBA programming. 100 

 101 

2.1. Dynamic GWP Accounting Method.  102 
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According to the Intergovernmental Panel on Climate Change (IPCC) 2013 report,11 the GWP 103 

for gas i can be derived by eq 1:  104 

𝐺𝑊𝑃𝑖(𝐻) =
𝐴𝐺𝑊𝑃𝑖(𝐻)

𝐴𝐺𝑊𝑃𝐶𝑂2
(𝐻)

=
∫ 𝑅𝐹𝑖(𝑡)𝑑𝑡

𝐻
0

∫ 𝑅𝐹𝐶𝑂2
(𝑡)𝑑𝑡

𝐻
0

                                                                                       (1) 105 

 106 

where AGWPi(H) is the absolute global warming potential (AGWP) (W yr m-2 kg-1) due to the 1 107 

kg pulse emission of gas i in the time horizon H (year), RFi is the radiative forcing (RF) due to 108 

pulse emission of gas i. RFi can be given by: 109 

 110 

𝑅𝐹𝑖 = 𝐴𝑖𝐶𝑖                                                                                                                                     (2) 111 

 112 

where Ai is the RFi per unit mass increase of species i (or so-called radiative efficiency (RE)), Ci 113 

is the fraction of species i remaining in the atmosphere after the pulse emission (or so-called 114 

impulse response function, IRF).11 Ai depends on the atmosphere concentration of gas i that is 115 

time-dependent and have been predicted by different concentration pathways.29  116 

As RF related data is usually reported on an annual basis (e.g., GHG atmospheric 117 

concentration), this study adapted the discrete accounting method developed by Levasseur et al.9 118 

This method uses dynamic characterization factor DCFi(k)inst, to quantify the RF occurring in 1 119 

year after k years of 1 kg pulse emission for gas i by eq 3.9,15 120 

 121 

 𝐷𝐶𝐹𝑖(𝑘)𝑖𝑛𝑠𝑡 =  ∫ 𝐴𝑖(𝑘)𝐶𝑖(𝑡)𝑑𝑡
𝑘

𝑘−1
                                                                                                (3) 122 

 123 
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where Ai(k) is the radiative efficiency at k years after the pulse emission. Ai(k) is time-dependent 124 

and varies for different GHG atmospheric concentrations. 𝐶𝑖(𝑡) is the time-dependent Ci during 125 

year k. The cumulative DCF for gas i with a time horizon H will be equal to AGWP: 126 

 127 

𝐷𝐶𝐹𝑖(𝐻)𝑐𝑢𝑚𝑢 = ∑ 𝐷𝐶𝐹𝑖(𝑘)𝑖𝑛𝑠𝑡
𝐻
𝑘=0 = 𝐴𝐺𝑊𝑃𝑖(𝐻)                                                                                (4) 128 

 129 

For GHG emitted in year j, gi(j) in kg, the instantaneous global warming impact in year k, 130 

GWIinst(k), can be derived from the instantaneous RF as shown in eq 5.17  131 

 132 

𝐺𝑊𝐼𝑖𝑛𝑠𝑡(𝑘) = ∑ ∑ 𝑔𝑖(𝑗) × 𝐷𝐶𝐹(𝑘 − 𝑗)𝑖𝑛𝑠𝑡
𝑘
𝑗=0𝑖                                                                              (5) 133 

 134 

The cumulative global warming impact for a time horizon H, GWIinst(H), can be calculated by 135 

summing up GWIinst(k) as shown in eq 6.17 136 

 137 

𝐺𝑊𝐼𝑐𝑢𝑚𝑢(𝐻) = ∑ 𝐺𝑊𝐼𝑖𝑛𝑠𝑡(𝑘)𝐻
𝑘=0                                                                                                    (6)        138 

 139 

The global warming potential of the GHG in the reference of CO2, GWP (kgCO2-eq), can be 140 

derived by eq 7.15 𝐷𝐶𝐹𝐶𝑂2
(𝐻)𝑐𝑢𝑚𝑢 is the cumulative DCF for 1 kg CO2 pulse emission in year 0 141 

and calculated from eq 4.  142 

 143 

𝐺𝑊𝑃 =
𝐺𝑊𝐼𝑐𝑢𝑚𝑢(𝐻)

𝐷𝐶𝐹𝐶𝑂2(𝐻)𝑐𝑢𝑚𝑢
                                                                                                                    (7)        144 

 145 
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Two important parameters in the calculations presented above are 𝐴𝑖(𝑘) and 𝐶𝑖(𝑡) that need be 146 

calculated for individual GHG.  147 

For CO2, the IRF (CCO2) is approximated by the summation of exponentials:11,30  148 

 149 

𝐶𝐶𝑂2
(𝑡) = 𝑎0 + 𝑎1𝑒

(−
𝑡

𝜏1
)

+ 𝑎2𝑒
(−

𝑡

𝜏2
)

+ 𝑎3𝑒
(−

𝑡

𝜏3
)                                                                                   (8)    150 

 151 

where τ is the lifetime of perturbation (year), a0 = 0.2173, a1 = 0.2240, a2 = 0.2824, a3 = 0.2763, 152 

τ1 = 394.4 year, τ2 = 36.54 year, τ3 = 4.304 year. ACO2 is approximated by using the derivative of 153 

CO2 RF based on work by Myhre el at.11,31 154 

 155 

𝐴𝐶𝑂2
=

𝑑𝑅𝐹𝐶𝑂2

𝑑𝐶
=

𝑑

𝑑𝐶
[𝛼 ln (

𝐶

𝐶0
)] =

𝛼

𝐶
                                                                                             (9) 156 

 157 

where C is the CO2 concentration in the atmosphere (in ppm), C0 is the reference concentration. In 158 

this study, α = 5.35 W m-2 based on the IPCC report.11 Hence, in year k, the ACO2(k) is: 159 

 160 

𝐴𝐶𝑂2
(𝑘) =

𝛼

𝐶(𝑘)
                                                                                                                             (10) 161 

 162 

Using eq 3, the instantaneous DCF of CO2 is: 163 

 164 

𝐷𝐶𝐹𝐶𝑂2
(𝑘)𝑖𝑛𝑠𝑡 = ∫ 𝐴𝐶𝑂2

(𝑘)𝐶𝐶𝑂2
(𝑡)𝑑𝑡

𝑘

𝑘−1
                                                                                     (11) 165 

 166 
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For CH4, the IRF (CCH4) is expressed as exponential decay by using CH4 lifetime of 167 

perturbation 𝜏𝐶𝐻4
 = 12.4 year.11  168 

 169 

𝐶𝐶𝐻4
(𝑡) = 𝑒

(−
𝑡

𝜏𝐶𝐻4
)
                                                                                                                          (12)  170 

 171 

Similar to the calculations for CO2, the ACH4 is given by using the derivative of RF as shown in eq 172 

13 and 14.11,31  173 

 174 

𝐴𝐶𝐻4
=

𝑑𝑅𝐹𝐶𝐻4

𝑑𝑀
=

𝑑

𝑑𝑀
(𝛼(√𝑀 − √𝑀0) − (𝑓(𝑀, 𝑁0) − 𝑓(𝑀0, 𝑁0))) =

𝑑

𝑑𝑀
(𝛼√𝑀) −175 

𝑑

𝑑𝑀
(𝑓(𝑀, 𝑁0))                                                                                                                                 (13) 176 

 177 

𝑓(𝑀, 𝑁) = 0.47 ln (1 + 2.01 × 10−5 × (𝑀𝑁)0.75 + 5.31 × 10−15 × 𝑀 × (𝑀𝑁)1.52)               (14)          178 

 179 

where M is the CH4 concentration in the atmosphere (in ppb), M0 is the CH4 reference 180 

concentration, N0 is the N2O reference concentration, α = 0.036 W m-2.11 Then the instantaneous 181 

DCF of CH4 is given by: 182 

 183 

𝐷𝐶𝐹𝐶𝐻4
(𝑘)𝑖𝑛𝑠𝑡 = (1 + 𝑓1 + 𝑓2) ∫ 𝐴𝐶𝐻4

(𝑘)𝐶𝐶𝐻4
(𝑡)𝑑𝑡

𝑘

𝑘−1
                                                                               (15) 184 

 185 

where f1 = 0.5 reflecting the indirect effects on ozone, f2 = 0.15 reflecting the indirect RF from CH4 186 

via changes in stratospheric H2O.11,32–36  187 
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For N2O, the IRF (CN2O) is expressed as exponential decay by using N2O lifetime of 188 

perturbation 𝜏𝑁2𝑂 = 121 year.11  189 

 190 

𝐶𝑁2𝑂(𝑡) = 𝑒
(−

𝑡

𝜏𝑁2𝑂
)
                                                                                                                          (16)  191 

 192 

AN2O is given by using the derivative of RF as shown in eq 17 using the function f(M,N) in eq 193 

14.11,31 194 

  195 

𝐴𝑁2𝑂 =
𝑑𝑅𝐹𝑁2𝑂

𝑑𝑀
=

𝑑

𝑑𝑀
(𝛼(√𝑁 − √𝑁0) − (𝑓(𝑀0, 𝑁) − 𝑓(𝑀0, 𝑁0))) =

𝑑

𝑑𝑀
(𝛼√𝑁) −196 

𝑑

𝑑𝑀
(𝑓(𝑀0, 𝑁))                                                                                                                                 (17) 197 

where N is the N2O concentration in the atmosphere (in ppb), α = 0.12 W m-2.11 Then the 198 

instantaneous DCF of N2O is given by: 199 

 200 

𝐷𝐶𝐹𝑁2𝑂(𝑘)𝑖𝑛𝑠𝑡 = (1 − 0.36(1 + 𝑓1 + 𝑓2)
𝐴𝑁2𝑂(𝑘)

𝐴𝐶𝐻4(𝑘)
) ∫ 𝐴𝑁2𝑂(𝑘)𝐶𝑁2𝑂(𝑡)𝑑𝑡

𝑘

𝑘−1
                                (18) 201 

 202 

where f1 and f2 are the same as that in eq 15.  203 

In this study, the GHG atmospheric concentrations in four widely recognized prediction 204 

pathways (RCP2.6, RCP4.5, RCP6, RCP8.5) were used to assign the projected values for C (CO2 205 

concentration in the atmosphere), M (CH4 concentration in the atmosphere), and N (N2O 206 

concentration in the atmosphere).29 207 

 208 

2.2. GHG Emission Profiles of Energy Technologies. 209 
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In this study, nine types of power generation technologies are included: coal and natural gas (NG) 210 

with and without CCS, nuclear, hydropower, geothermal, photovoltaic (PV), and wind. The energy 211 

technologies that account for less than 0.5% of total U.S. electricity generation from 2020 to 2050 212 

were excluded.2 The U.S. electricity generation from 2020 to 2050 follows the reference case 213 

projection of the U.S. Energy Information Administration (EIA) Annual Energy Outlook (AEO) 214 

2019 (see Section 2.3 for details).2 For each power generation technology, two life-cycle stages 215 

were included for the LCI data: upstream stage in year 0 (i.e., raw materials extraction and 216 

production, transportation, and on-site construction) and operational stage (i.e., fuel combustion, 217 

plant operations and maintenance) (see Figure S1 in SI for the system boundary).37,38 Based on the 218 

LCI data of various power generation technologies harmonized by the U.S. National Renewable 219 

Energy Laboratory (U.S. NREL),37 the life span of energy technologies was selected to be 30-year 220 

that was frequently used in the literature.37–43 The cradle-to-gate LCI data of GHG emissions (i.e. 221 

CO2, CH4, and N2O) for different electricity generation technologies (including coal and NG with 222 

CCS) were collected from the literature based on 1 kWh (functional unit) of net electricity 223 

generation (see SI Table S2 for detailed data).2,37–45 As this study focuses on developing a dynamic 224 

GWP accounting framework for LCA, the effects of future technological development, policies, 225 

and market conditions on these LCI data are not included. However, the LCI data can be updated 226 

and tailored by future researchers upon their needs and data availability. 227 

 228 

2.3 Scenario Analysis for Prospective Life-cycle GWP of U.S. Electricity Generation  229 

To understand the policy/practical implications of our method, we applied it to a case study of U.S. 230 

electricity generation from 2020–2050 with different technology adoption scenarios. The annual 231 

projections of total U.S. electricity generation from 2020 to 2050 by different generation 232 
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technologies followed the reference case projection of the AEO 2019.2 This projection represented 233 

EIA’s assessment of how the U.S. power sector would operate through 2050 under current laws 234 

and regulations, which could be interpreted as a baseline case.2 It is noticeable that the power 235 

sector projections are subjected to many uncertainties (e.g., technology development, 236 

demographics, policies, regulations).2 Hence, the 2020–2050 projection data used in this case 237 

study can be further modified by researchers for future research upon different assumptions and 238 

data availability. Other projection cases from the AEO (e.g., high or low economic growth case) 239 

and Electrification Futures Study by U.S. NREL are also valuable data sources for future studies 240 

in this area.2,46    241 

It is expected that the adoption of CCS and renewable energy will mitigate the climate impacts 242 

of the U.S. electricity generation. CCS represents a group of promising technologies that capture 243 

and store CO2 and in underground carbon reservoirs (e.g., saline aquifers, depleted oil and gas 244 

formations).47–50 The questions are when and how fast those technologies should be adopted to 245 

achieve specific climate change mitigation goals from a life-cycle perspective. As the answers are 246 

time-dependent, considering the dynamics of both GHG emissions and background GHG 247 

concentration in the atmosphere is necessary.  248 

In this study, five scenarios of the CCS adoption in the electricity generation projection were 249 

investigated, including a business-as-usual (BAU) scenario, three scenarios for adopting CCS at 250 

low, medium, and high adoption rate respectively, and one scenario for the late adoption of CCS.51–251 

55 The adoption of CCS in the case study was modeled by applying an adoption ratio to net 252 

electricity generation (kWh) of coal or NG power plants. The adoption ratio in each scenario was 253 

assumed based on the literature data that previously investigated the projections of CCS adoption 254 

(see Table S1 for CCS adoption ratio).51–55 Using the LCI data of different electricity generation 255 
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technologies, the total 2020-2050 emission profile can be derived as shown in eq 19. E(i,j) 256 

represents the annual emission of GHG i (i includes CO2, CH4, N2O); LCI(n,i) (g/kWh) is the 257 

quantity of GHG i for technology n (documented in SI Table S2); P(n,j) is the projections of 258 

technology n in year j (see SI Tables S3–S7). The projections of coal and natural gas power 259 

generation with CCS were estimated using the adoption ratio mentioned above. The detailed 260 

models were documented in SI Section 2. 261 

 262 

𝐸(𝑖, 𝑗) = ∑ 𝐿𝐶𝐼(𝑛, 𝑖)𝑃(𝑛, 𝑗)9
𝑛=1                                                                                                  (19) 263 

 264 

The baseline BAU (business-as-usual) assumes that the future electricity production mix will 265 

be the same as that in 2020 (see SI Table S3). The late adoption case assumed that the adoption of 266 

CCS would be as late as 2035, but the adoption rate was high enough to catch up with the previous 267 

high adoption scenario. This scenario was designed to understand the impacts of adoption time 268 

(see SI Table S7). The adoption of renewable energy was kept to be the same with the projection 269 

in 2050 developed by the U.S. EIA.2 The assumptions of each scenario are summarized in Table 270 

1. 271 

In each scenario, three GWP accounting methods were used to quantify the GWP of annual 272 

U.S. electricity generation, namely the static practice in LCA (i.e., the traditional LCA approach), 273 

dynamic LCA with fixed GHG concentrations, and dynamic GWP accounting method in this study 274 

with varied GHG atmospheric concentration pathways (i.e., RCP2.6, RCP4.5, RCP6, RCP8.5). 275 

This study does not intend to project and reconcile the global GHG concentration pathways under 276 

varied U.S. power sector scenarios. Instead, we quantify the impacts of varied GWP accounting 277 

methods and concentration pathways on the GWP results of the U.S. power sector. In other words, 278 
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the scenario analysis attempts to answer the “what-if” question, namely how the GWP results of 279 

the U.S. power generation would change if the GHG concentrations follow different pathways. 280 

Hence, this study does not consider the interdependency of future U.S. power sector scenarios and 281 

global GHG concentration pathways. However, this can be explored in future research upon 282 

available data or using global integrated assessment models.  283 

 284 

Table 1. Assumptions of Five Scenarios for U.S. Electricity Generation from 2020 to 2050  285 
Scenario Assumptions GWP accounting methods 

Business-as-usual 
(BAU) 

The future electricity production mix will be the same as that in 
2020 (SI Table S3). The total electricity production is based on EIA 
reference case projection.  

1) Static practice in LCA; 
2) dynamic LCA with fixed GHG 
concentrations;  
3) dynamic LCA with varied GHG 
atmospheric concentration 
projections (i.e. RCP2.6, RCP4.5, 
RCP6, RCP8.5). 

Low adoption EIA reference case projection with low CCS adoption rate (22% by 
2050 with linear growth) from 2020-2050 (SI Table S4). 

Medium adoption EIA reference case projection with medium CCS adoption rate 
(30% by 2050 with linear growth) from 2020-2050 (SI Table S5). 

High adoption EIA reference case projection with high CCS adoption rate (86% by 
2050 with linear growth) from 2020-2050 (SI Table S6).    

Late adoption 
The adoption of CCS would start as late as 2035, but the adoption 
rate (86% by 2050 with linear growth) would be high to catch up 
with the high adoption scenario in year 2050 (SI Table S7).  

 286 

3. RESULTS AND DISCUSSION 287 

3.1. GWP of 1 kg of Pulse Emission in Year 0. 288 

Figure 1 shows the GWP characterization factors calculated for 1kg of pulse emission CH4 (Figure 289 

1a) and dinitrogen monoxide N2O (Figure 1b) in year 0 using the dynamic method developed in 290 

this study compared with the traditional static approach and dynamic LCA that uses fixed GHG 291 

concentration. The GWP results of 1 kg of pulse emission CO2, CH4, and N2O in other years (i.e., 292 

year 10, 25, 50, and 75) are available in Table S8 in SI. GWP factors are shown from 20 to 100 293 

years to be consistent with the time horizons showed by IPCC.28 The GWP characterization factors 294 

for fixed 20- and 100-year timeframe from IPCC are shown as black crosses in year 20 and 100, 295 

which are the factors used in traditional static LCA. The dynamic method developed by previous 296 
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studies can provide time-dependent GWP, but their factors are based on fixed atmospheric GHG 297 

concentrations (orange lines). The dynamic GWP factors developed using our method were 298 

presented under four RCPs.29 Figure 1a indicates that both static and dynamic LCA with fixed 299 

GHG concentrations underestimate the GWP of CH4 (e.g., 14.9%–29.4% lower than our method 300 

at 100-year time horizon), although different dynamic methods showed similar trends as time 301 

horizon increases. Among the results of our method, RCP with higher GHG concentrations shows 302 

lower CH4 GWP factors when the time horizon is shorter than 53-year. However, this trend 303 

reverses after a 53-year time horizon, as shown in Figure 1a. For N2O, only the results of RCP2.6 304 

and RCP4.5 show similar trends with the results of dynamic method with fixed GHG 305 

concentrations, while the results of RCP6 and RCP8.5 show significant increases with the longer 306 

time horizon. Compared to the 100-year result of static LCA, the GWP factor of N2O in varied 307 

RCP are 5.9%–45.9% larger. These large discrepancies among different methods for CH4 and N2O 308 

indicate the necessity of including temporal impacts and background atmospheric GHG 309 

concentrations in LCA or relevant carbon analysis, especially for those power generation 310 

technologies with significant life-cycle CH4 and N2O emissions.  311 

 312 
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 313 
Figure 1.  GWP factors of 1 kg of pulse emission in year 0 with different time horizons: (a) CH4; 314 
(b) N2O. 315 
 316 
3.2. GWP of Energy Technologies Under Different GHG Concentration Pathways. 317 

Figure 2 shows the dynamic life-cycle GWP of nine energy technologies under different RCP 318 

compared with the results using traditional methods. The results of four time horizons (35, 50, 75, 319 

and 100 years) are presented, since the time horizon needs to be longer than the operational stage 320 

of the LCI data (30 years) for varied generation technologies. The results of nine energy 321 

technologies are categorized into three groups based on their GHG emission profiles, including (1) 322 

CO2-emission-dominated systems with large operational emissions annually (i.e., coal, NG, and 323 

nuclear that have higher life-cycle CO2 emissions compared to the CH4 and N2O emissions of the 324 

same technology; they also have higher operational emissions than their upstream emissions); (2) 325 

CH4-emission-dominated systems (i.e., the GWP results of coal and NG with CCS are largely 326 

driven by CH4 emissions (see SI Table S1)); (3) CO2-emission-dominated systems with large 327 

embedded emissions but small operational emissions (i.e., hydropower, geothermal, PV, and wind).  328 

 329 
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 330 
Figure 2. Life-cycle GWP of energy technology (functional unit: 1 kWh) under different RCP 331 
using our method compared with the results of traditional static and dynamic LCA approaches: (a) 332 
CO2-emission-dominated systems with large operational emissions; (b) CH4-emission-dominated 333 
systems; (c) CO2-emission-dominated systems with large embedded emissions but small 334 
operational emissions. 335 
 336 

Figure 2 indicates significant differences in the GWP results between static and dynamic LCAs, 337 

and such differences varied by time horizons and technology groups (percentage difference results 338 

are presented in Figure S2). For nine technologies, static LCA shows decreased GWP with longer 339 

time horizons due to lower GWP characterization factors for non-CO2 gases in the longer-term 340 

( e.g., the GWP characterization factor for CH4 is 62 for 35 years, 58 for 50 years, and 28 for 100 341 

years, see Figure 1) . However, for a specific time horizon, the current static LCA is unable to keep 342 

a consistent timeframe for GHG emissions occurring in different years. For example, a static LCA 343 

choosing 100-year fixed GWP characterization factors consider the impacts of all emissions for 344 

100 years. Thus, the GWP of emission in year 50 includes the impact from year 50 to year 150; 345 
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while the GWP of emission in year 75 includes the impact from year 75 to year 175. For an analysis 346 

with a fixed time horizon (e.g., a climate policy analysis for the future 100 years), this static 347 

approach includes the impacts beyond the scope of 100 years and does not distinguish earlier and 348 

later emissions. Oppositely, the dynamic LCA method has a consistent time horizon for all GHG 349 

emissions in the same analysis, as the GWP impacts beyond the chosen time horizon H are 350 

excluded (see eq 1). For example, if the time horizon is set to 100 years, the impacts of emission 351 

in year 50 are only considered for the remaining 50 years. This approach also distinguishes the 352 

impacts of earlier and later emissions. Therefore, dynamic LCAs for operational-CO2-intensive 353 

technologies (i.e., coal, NG, and nuclear) in Figure 2a showed lower GWP than static LCA, while 354 

the differences between static and dynamic LCAs are reduced with the longer time horizon as the 355 

GHG decay is closer to stagnation (reflected by impulse response function with longer time 356 

horizons28). For later emissions, their relative contributions compared to earlier emissions increase 357 

as the time horizon increases, which explains why all dynamic LCAs in coal and nuclear have 358 

higher GWP with longer time horizons. For example, in Figure 2a, when expanding the time 359 

horizon from 35 years to 100 years, the GWP of coal-based electricity generation increases 23.3%–360 

30.2% across varied RCP. Figure 2a shows that RCP cases have higher GWP results than the 361 

results of dynamic LCA with fixed GHG concentrations. The higher GHG concentration, the larger 362 

differences between the RCP case and fixed GHG concentration case. For example, for coal in 363 

Figure 2a, RCP2.6 exhibits 1.2%–4.2% higher GWP than dynamic LCA with fixed GHG 364 

concentrations, while RCP8.5 shows a 6.4%–9.1% difference. For NG in Figure 2a, expanding the 365 

time horizon fails to show significant increases in GWP and even shows slight decreases in some 366 

cases (e.g., RCP2.6 and RCP4.5). This can be explained that over coal and nuclear, NG has more 367 

GHG emissions coming from CH4 (see SI Table S1) and gains the combined effects from the first 368 
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group (CO2-emission-dominated systems with large operational emissions in Figure 2a) and the 369 

second group (CH4-emission-dominated technologies). 370 

For CH4-emission-dominated technologies, atmospheric GHG concentrations have large 371 

impacts on the GWP in the long term, and such impacts are overlooked by static LCA and dynamic 372 

LCA with fixed GHG concentrations. Different from Figure 2a where dynamic LCAs in coal and 373 

nuclear have higher GWP with longer time horizons, GWP in Figure 2b by all dynamic methods 374 

has minor changes between 35 years and 50 years, and decreases when the time horizon changes 375 

from 50 years to 100 years, which is impacted by the trend of CH4 (similar to Figure 1a). In Figure 376 

2b, the differences among the four RCPs are much larger at a 100-year time horizon than 35-year, 377 

reflecting the increased impacts of both GHG decay and background GHG concentrations on the 378 

long-term projection. In Figure 2b, at the 100-year time horizon, both current static LCA and 379 

dynamic LCA with fixed GHG concentrations underestimate the GWP, given that both methods 380 

rely on the present-day GHG concentrations. For example, for NG with CCS, at the 100-year time 381 

horizon, results of RCPs are 6.8%–24.4% higher than current static LCA and 14.6%–30.1% higher 382 

than dynamic LCA with fixed GHG concentrations. The higher atmospheric GHG concentrations 383 

(e.g., RCP8.5), the larger the discrepancy is. For a shorter time horizon (e.g., 35 or 50 years), the 384 

GWP results of static LCA are close to (although slightly higher than) the results of our method. 385 

However, the GWP results of dynamic method with fixed GHG concentrations are much lower 386 

than our method's results because the former only accounts GHG emitting timeline without 387 

considering the changing radiative efficiency caused by the changing atmospheric GHG 388 

concentrations.   389 

For CO2-emission-dominated technologies with large embedded emissions but small 390 

operational emissions (i.e., PV, hydropower, geothermal, and wind in Figure 2c), the results of 391 
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static LCA and dynamic LCA with fixed GHG concentrations are slightly lower than our method 392 

(e.g., 2.5%–6.1% lower than our method at 100-year time horizon for PV). Compared to the first 393 

(Figure 2a) and second (Figure 2b) groups of energy technologies, this group shows the smallest 394 

discrepancies of the results using static and dynamic approaches.  395 

 396 

3.3. Meeting GHG Mitigation Targets Under Different GHG Concentration Pathways. 397 

Figure 3 shows the total accumulative GWP reduction potential from 2020 to 2050 in four climate 398 

mitigation scenarios of projected electricity generation compared with BAU using the static LCA, 399 

dynamic LCA with fixed GHG concentrations, and our method with four RCP projections, with a 400 

50-year time horizon. The year-by-year GWP reduction potentials are shown in Figure 4. The 401 

results of dynamic LCA with RCP6 are presented as an example. The results of four scenarios with 402 

100-year time horizon are available in SI Figures S3 and S4. 403 

 404 

  405 
Figure 3. GWP (50-year time horizon) reduction potential by 2050 of four climate change 406 
mitigation scenarios compared with the BAU.  407 
 408 
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 409 
Figure 4. GWP (50-year time horizon) reduction potential of four climate change mitigation 410 
scenarios compared with the BAU: (a) static practice in LCA; (b) dynamic LCA with fixed GHG 411 
concentrations; (c) dynamic LCA with RCP6 projection.  412 
 413 

Static LCA significantly overestimates the GWP mitigation potential of four scenarios 414 

(47.3%–90.3% higher as shown in Figure 3) compared to the results of dynamic LCA with fixed 415 

GHG concentrations and our dynamic approach. For example, in Figure 4, in the medium adoption 416 

scenario (orange solid line in Figure 4a), the GWP mitigation potential by 2050 is 9.5 GtCO2-eq 417 

using static LCA, while that for the same scenario is 6.0 GtCO2-eq for the dynamic method with 418 

fixed GHG concentrations and 6.2 GtCO2-eq for the dynamic method with RCP6 projection. To 419 

reach the same GWP mitigation goal (9.5 GtCO2-eq by 2050), the adoption rate of CCS needs to 420 

be as high as 57.6% by 2050 using the current dynamic GWP accounting method (plotted as the 421 

orange dashed line in Figure 4b) and 55.5% by 2050 using dynamic LCA with RCP6 (orange dash 422 

line in Figure 4c). Such adoption rate is 92% and 85% higher than the current medium adoption 423 

scenario, respectively.    424 

The GWP mitigation potential of our dynamic LCA method shows differences from the current 425 

dynamic LCA. In Figure 3, compared with the results of dynamic LCA with fixed GHG 426 
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concentrations, the accumulative GWP reduction estimated by our dynamic LCA methods are 427 

1.2%–2.0% smaller in RCP2.6, 1.9%–3.7% larger in RCP4.5, 2.7%–4.5% larger in RCP6, and 428 

6.2%–9.2% larger in RCP8.5. This is caused by the differences in the atmospheric GHG 429 

concentrations. As the RCP2.6 projection has the slightest difference with current atmospheric 430 

GHG concentrations, the RCP2.6 results have the smallest discrepancy with the current dynamic 431 

LCA that uses fixed atmospheric GHG concentrations.      432 

For different RCP, the GWP reduction potential increases as RCP concentration increases, as 433 

shown in Figure 3. For example, in the medium adoption scenario, compared to RCP2.6 results, 434 

RCP4.5, RCP6, and RCP8.5 shows an increase of 3.8%, 4.6%, and 8.0%, respectively. This finding 435 

is critical for decision making that uses LCA results to support energy policy (e.g., setting 436 

mitigation goals) and technology investments (e.g., determining funding needs to accelerate the 437 

adoption of specific technologies), especially when the future atmospheric GHG concentration is 438 

different from current values.  439 

Another observation is that the late adoption of CCS in the electricity sector with a high 440 

adoption rate will take a longer time to catch up with early adoption scenarios (low and medium 441 

adoption scenarios) in Figure 4c than Figure 4a, which leads to different comparative conclusions 442 

when investigating different scenarios in the same year. For example, in 2050, static LCA results 443 

indicate that the late adoption scenario leads to 8.7% more GWP reduction than the medium 444 

adoption scenario. This is too optimistic compared with dynamic LCA with RCP6 where the late 445 

adoption shows 7.8% less GWP reduction than the medium adoption. As the static LCA method 446 

does not differentiate earlier and later GHG emissions, the possible negative consequences of late 447 

adoption (e.g., reducing GWP reduction) are underestimated or overlooked. Hence, when using 448 

dynamic LCA methods, earlier adoption is more likely to reach a similar GWP mitigation goal 449 
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with the static LCA method, and the differences between the two methods are impacted by 450 

different GHG concentrations in the atmosphere.  451 

 452 

3.4. Limitations and Implications of Methods. 453 

This study aims to provide a fuller picture of accounting life-cycle GWP in LCA by incorporating 454 

the dynamics in the atmospheric GHG concentrations and GHG emissions, demonstrated by a case 455 

study of the electricity generation sector in the U.S. The static method applies the same GWP 456 

characterization for GHG emitted at different years, ignoring the impacts of later and earlier 457 

emissions. The dynamic LCA approach in this study addresses this limitation by developing 458 

dynamic GWP characterization factors, considering the temporal profile of GHG emissions, and 459 

using a consistent time horizon for GWP accounting. Compared to the current dynamic LCA that 460 

uses fixed, present GHG concentrations, our method considers the future changes of the 461 

atmospheric GHG concentrations. The current dynamic LCA shows significant discrepancies in 462 

the GWP results for high RCP cases (compared to our method) when the GHG concentrations are 463 

much higher than the present. Compared to other methods such as GWP* (see SI Section 1 for 464 

literature review details), our method does not rely on correcting fixed GWP characterization 465 

factors by empirical parameters that are subjected to scenario assumptions and data. Instead, GHG 466 

concentration is directly incorporated into the GWP calculation to derive dynamic GWP 467 

characterization factors. Our dynamic approach also allows for a consistent time horizon for GWP 468 

assessment of GHGs emitted at different years, which is particularly useful for LCA applications 469 

in terms of keeping a coherent temporal system boundary.  470 

As this study focuses on the U.S. only, it does not include the feedback loop between RCPs 471 

and GHG emissions that may need to be considered for global studies. Such feedback loop can be 472 
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added by modeling the radiative efficiency of GHG as a function of both time and emissions gi(j) 473 

in eq 5. Such a function will need to be developed based on the dynamic and quantitative 474 

relationship between global emissions and atmospheric GHG concentration changes. Another 475 

research direction is integrating the impacts of prospective energy transformation pathways into 476 

the LCI data that commonly do not consider future changes.57,58,59 One approach is leveraging 477 

prospective scenarios from integrated assessment models (IAMs) (e.g., IMAGE60) to simulate the 478 

LCI data of future energy technologies.57,61 For future applications, by considering the temporal 479 

profile of emissions and the impacts of atmospheric GHG concentration changes on radiative 480 

efficiency, the method presented in this study can be integrated into other climate change related 481 

indicators, e.g., monetary values of GHG emissions,62 social cost of GHG emissions,63 and Global 482 

Temperature change Potential (GTP)11. 483 

The results of this study demonstrate the importance of incorporating atmospheric GHG 484 

concentrations into the life-cycle carbon accounting of energy technologies, especially under the 485 

following circumstances:   486 

• When the technology has large operational GHG emissions or CH4 emissions. Our results 487 

show that atmospheric GHG concentrations have significant impacts on the life-cycle GWP 488 

of CO2-emission-dominated energy technologies with large operational emissions such as 489 

coal, natural gas, and nuclear, as well as CH4-emission-dominated systems such as coal and 490 

natural gas with CCS. For those technologies, the static practice in LCA shows remarkable 491 

discrepancies in the GWP results compared with dynamic methods. Such discrepancies are 492 

minimal for CO2-emission-dominated technologies with large embedded emissions but small 493 

operational emissions (i.e., hydropower, geothermal, PV, and wind), in which most of the 494 

emissions are released at the beginning. 495 
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• When the analysis timeframe is longer than 50 years and the GHG concentration in the 496 

atmosphere is likely to be different from the present concentration. Compared with our 497 

method, the dynamic LCA method using fixed present GHG concentrations underestimated 498 

the GWP of all technologies, such underestimation is more significant under high GHG 499 

concentration pathways such as RCP6 and RCP8.5. For the long-term time horizon (larger 500 

than 50 years), higher atmospheric GHG concentrations result in higher life-cycle GWP. 501 

Such trends are less significant for short-term analysis (50 years).  502 

• When LCA results will be used to support policymaking or technology development for 503 

climate change mitigation in the future. The results of the case study for the U.S. electricity 504 

generation sector and different climate mitigation scenarios showed a large discrepancy of 505 

GWP mitigation potentials between our method and the static LCA approach that does not 506 

distinguish the impacts of early and later emissions. Our results indicate the necessity of 507 

earlier adoption of CCS to achieve the same climate change mitigation goals that use static 508 

LCA. These findings demonstrate the importance of considering the dynamics of background 509 

GHG concentrations in LCA and relevant environmental, policy, and technology decision 510 

making.  511 

 512 

SUPPORTING INFORMATION 513 

Literature review, detailed explanation of CCS adoption rate, LCI data of energy technologies, 514 

additional results, list of abbreviations and nomenclature, and references.  515 
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