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Abstract. We consider the minimization problem corresponding to a Sobolev inequality for
vector fields and show that minimizing sequences are relatively compact up to the symme-
tries of the problem. In particular, there is a minimizer. An ingredient in our proof is a
version of the Rellich–Kondrachov compactness theorem for sequences satisfying a nonlin-
ear constraint.
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1. INTRODUCTION AND MAIN RESULT

Zero modes of the three dimensional Dirac equation play a role in various physical con-
texts. The have an influence on the Stability of Matter problem (see [12, 28]) as well as on
the understanding of fermionic functional determinants in three dimensional Quantum
Electrodynamics [13]. Their occurrence leads in both situations to instabilities and it is
therefore of importance to find sharp conditions for their absence.

A zero mode is a non-trivial solution to the spinor equation

æ · (°ir)√=æ · A√ in R3 ,
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where √ : R3 ! C2 is a spinor and A : R3 ! R3 is the vector potential with magnetic field
B =r^ A, the curl of A. Moreover, æ denotes the vector of Pauli matrices

æ1 =
µ
0 1
1 0

∂
, æ2 =

µ
0 °i
i 0

∂
, æ3 =

µ
1 0
0 °1

∂
.

The canonical quantity whose size determines whether a solution is possible is kBk3/2. If
this number is too small. then a zero mode for this field configuration does not exist. The
work in [11] is an attempt to determine the optimal value for this quantity. One approach
explained in [11] is to consider the chain of inequalities

Csk√k3 … kæ · (°ir)√k3/2 = kæ · A√k3/2 = k|A|√k3/2 … kAk3k√k3 ,

which shows that necessarily kAk3  Cs , the best constant in the inequality

(1.1) kæ · (°ir)√k3/2  Csk√k3 .

The validity of this inequality can be shown, for instance, using the Hardy–Littlewood–
Sobolev inequality [25, Theorem 4.3], although the value of the constant Cs is not known.

Since the vector potential is gauge dependent, the quantity kAk3 is not the ideal candi-
date and should be replaced by the kr^ Ak3/2 which is dimensionally the same. Thus, a
solution of our problem is furnished by the inequality

(1.2) CvkAk3 … kr^ Ak3/2

valid for all A that satisfy the condition r · (|A|A) = 0. The reason for this condition on
the divergence will be explained below. As a consequence, CsCv … kBk3/2 is a necessary
condition for the existence of a zero mode.

In this context it is of interest that the spinor

(1.3) √= I + iæ · x
(1+|x|2)3/2

¥ ,

where ¥ 2 C2 is any constant spinor, is a solution of the Euler-Lagrange equation associ-
ated with the inequality (1.1). Likewise, the field

(1.4) A(x) = 3
(1+|x|2)2 [(1° |x|2)w +2x ·w x +2w ^x] ,

where w 2 R3 is a constant vector, satisfies r · (|A|A) = 0 and is a solution of the formal
Euler–Lagrange equation associated with the best constant in (1.2). It was shown in [28]
that (1.3) and (1.4) satisfy the zero mode equation if we require that w = h¥,æ¥i. These
considerations lend credence to the conjecture that the spinor (1.3) together with the vec-
tor field (1.4) are optimizers for their respective Sobolev inequalities and, moreover, yield
the minimal value for kBk3/2.

This motivates the study of the optimal constants for the two Sobolev inequalities (1.1)
and (1.2) in more detail and, as a first step, we shall prove the existence of optimizers. One
should emphasize that with no symmetry results available, it is far from clear how to show
that (1.3) and (1.4) are indeed optimizers of their respective inequalities. We leave this to
future investigations.
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There is an abundance of results on the existence of minimizers in optimization prob-
lems related to Sobolev inequalities. The existence of minimizers in our Sobolev inequality
(1.1) for spinor fields follows using ideas from concentration compactness and, while not
completely standard, does not pose real problems.

Perhaps surprisingly, the case of vector fields is significantly harder and the combina-
tion of quasilinearity, nonlocality and vectorvaluedness take it outside of the scope of stan-
dard methods. While we carry out our analysis only for inequality (1.2), we believe that the
arguments are more general and can be useful in related problems.

Let us be more specific. We consider

(1.5) Y :=
©

A 2 L3(R3,R3) : r^ A 2 L3/2(R3)
™

,

endowed with the norm
kAkY := kAk3 +kr^ Ak3/2 .

Here r^ · denotes the curl operator, understood in distributional sense. We will also make
use of the seminorm

(1.6) ÅAÅ3 := inf
'2Ẇ 1,3(R3)

kA°r'k3 ,

where Ẇ 1,3(R3) denotes the space of all real functions ' 2 L1
loc(R3) with r' 2 L3(R3,R3).

Our interest lies in the minimization problem

(1.7) S := inf
0 6¥A2Y

kr^ Ak3/2
3/2

ÅAÅ3/2
3

.

Note that both numerator and denominator in this minimization problem vanish pre-
cisely when A is a gradient field. The validity of the Sobolev inequality, that is, the fact
that S > 0, follows from the Helmholtz decomposition in L3/2(R3,R3) and the Sobolev in-
equality in Ẇ 1,3/2(R3,R3); see Lemma 2.2.

Our main result is that the infimum defining S is attained. In fact, we prove the stronger
result that all suitably normalized minimizing sequences for S are relatively compact in
Y , up to symmetries. The non-compact symmetries of the minimization problem S are
the translation and dilation symmetries, as well as a gauge symmetry, to be discussed mo-
mentarily. The problem has also a remarkable conformal symmetry, but this will not play
a major role in our arguments. As shown in Lemma 2.3, the gauge invariance can be bro-
ken by choosing for a given A 2 L3(R3,R3) an A0 2 L3(R3,R3) with r · (|A0|A0) = 0, where r·
denotes the divergence operator, understood in distributional sense. Then kA0k3 = ÅAÅ3

and for our minimization problem it is natural to work in this gauge.
The following is our main result.

Theorem 1.1. Let (An) ΩY be a minimizing sequence for S, satisfying r · (|An |An) = 0 and
kAnk3 = 1. Then there are ∏n 2 (0,1) and an 2R3 such that, along a subsequence,

∏n An(∏n(x °an))

converges in Y to a minimizer for S. In particular, there is a minimizer for S.
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Using the tools developed in the proof of Theorem 1.1 we will also be able to prove
existence of an optimizer for the problem that motivated our study, namely that of finding
the minimal L3/2-norm of magnetic fields admitting a zero mode. We define

ß := inf
©
kr^ Ak3/2 : A 2Y and 9 0 6¥√ 2 L3(R3,C2) with æ · (°ir° A)√= 0

™
.

The equation æ · (°ir° A)√= 0 is understood in distributional sense in R3 and, as shown
in [11], the requirement √ 2 L3 can be replaced by √ 2 Lp for any 3/2 < p <1. We choose
the L3 norm here because it appears naturally in the proof.

Theorem 1.2. Let (An) ΩY be a minimizing sequence forß, satisfying r·(|An |An) = 0. Then
there are ∏n 2 (0,1) and an 2R3 such that, along a subsequence,

∏n An(∏n(x °an))

converges in Y to a minimizer Ã for ß. In particular, there is a minimizer for ß. Moreover,
if (√n) Ω Ẇ 1,3/2(R3,C2) is a corresponding sequence of zero modes, normalized such that
k√nk3 = 1, then

∏n√n(∏n(x °an))

converges weakly in Ẇ 1,3/2(R3,C2) to √̃ 6¥ 0 and one has æ · (°ir+ Ã)√̃= 0.

We return now to the discussion of Theorem 1.1. The relative compactness statement in
this theorem is the analogue of a theorem of Lions [26] concerning the Sobolev inequality
in Ẇ 1,p (Rd ) for 1 < p < d . In this case, the existence of minimizers and, indeed, the identi-
fication of minimizers and the optimal constants are due to Rodemich [29], Aubin [2] and
Talenti [32].

As we will argue now, in our setting there are significant differences to the scalar set-
ting of Ẇ 1,p (Rd ) and the difficulties to be overcome are the combination of quasilinearity
(coming from the power 3/2 of the derivative term), nonlocality (coming from the semi-
norm Å ·Å3) and vector-valuedness (of the objects to be optimized over). While existing
methods can deal with any one or two of these difficulties, it is not clear to us whether
they can deal with all three of them.

Let us be more specific concerning the various standard methods to prove existence of
minimizers. In each case we give examplary references, without being exhaustive. Sym-
metrization-based methods [31, 23] seem to be unable to deal with the vectorvaluedness
and, in particular, the curl operator and the divergence constraint. Lieb’s method of the
missing mass [24, 5, 6, 12] uses typically the Hilbert space nature of the underlying space,
or, if not, needs some additional ingredients [24, 10]. In the framework of Lions’ concen-
tration compactness principle [26, 27], it is unclear how to deal with the nonlocal and non-
linear dependence of the term r' on A in the definition of the seminorm ÅAÅ3. Finally,
Yamabe’s method of subcritical approximations [35, 33, 1] relies on an L1-boundedness
result, whose analogue for the curl system is not clear to us.

While not obvious to us, it might very well be possible that one of these methods can be
used to prove Theorem 1.1. We, however, choose a different approach. In a first step we
show that any minimizing sequence has a subsequence which, up to these symmetries,
has a nontrivial weak limit, and in a second step we show that this subsequence, in fact,
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converges strongly. The first step relies on an improved Sobolev inequality, where on the
right side kr^ Ak3/2 is replaced by its geometric mean with a certain Besov-space norm
of r^ A. In the setting of Ḣ s(Rd ) such inequalities appear in [17] and build the basis of
profile decompositions [16]. The improved Sobolev inequality implies rather directly the
existence of a nontrivial weak limit point up to symmetries.

In a second step we slightly alter the minimizing sequence using Ekeland’s variational
principle in order to deduce that the minimizing sequence satisfies the Euler–Lagrange
equation with a small inhomogeneity. From this equation we can deduce that the curls of
the elements of the minimizing sequence converge in Lp

loc for any p < 3/2. Together with
a nonlinear Rellich–Kondrachov theorem, discussed below, this allows us to conclude that
the weak limit of the minimizing sequence satisfies the Euler–Lagrange equation and, con-
sequently, that the minimizing sequence converges strongly in Y . The basic idea behind
this second step can be traced back to [14] where the idea is briefly sketched on p. 448 in
the case of scalar functions and in an unconstraint variational principle. A related argu-
ment appears also in [15]. The vector-valuedness and justifying almost everywhere con-
vergence, however, require several new ingredients compared to the scalar case.

Probably the most significant among these is a nonlinear Rellich–Kondrachov theorem,
which says that if r^ An * r^ A in L3/2 and if r · (|An |An) = r · (|A|A) = 0, then An ! A
in Lq

loc for any q < 3. In particular, a subsequence converges almost everywhere. The im-
portance here is that the constraint r · (|An |An) = 0 is nonlinear and, indeed, if it would be
replaced by the linear constraint r · An = 0 the conclusion would follow from the standard
form of the Rellich–Kondrachov theorem. Our proof of the nonlinear variant is surpris-
ingly complicated and makes use of deep results by Iwaniec [20] on solutions of quasi-
linear equations. We emphasize that the almost everywhere convergence of minimizing
sequences is an ingredient in essentially every proof of existence of minimizers of Sobolev-
type inequalities. Therefore, even if a different proof of existence of a minimizer could be
found, our nonlinear Rellich–Kondrachov theorem is likely to play a fundamental role in
such a proof as well.

As we mentioned before, we explain our technique in the context of one specific in-
equality, which we find interesting in view of our work in [11]. The methods, however, are
much more general and are applicable in a variety of settings. Some immediate extensions
concern the generalization of the vector field inequality to arbitrary dimensions d   3,

inf
'2Ẇ 1,d

kA°r'kd . kr^ Akd/2 .

Also, the case of general exponents 1 < p < d on the right side and q = d p/(d ° p) on
the left side should be doable, after some changes in the proof of the nonlinear Rellich–
Kondrachov theorem, which currently uses the conformal invariance in the p = d/2 case.
One could consider this problem in a wider context by considering k-forms ! on Rd or on
any Riemannian manifold. Then the Sobolev-type inequality is of the form

infk!°d'kq . kd!kp
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where the infimum is taken over k°1 forms' and q = d p/(d°p). The conformal invariant
case corresponds to p = d

k+1 and q = d
k . We stay with the case d = 3 and k = 1 since the

mathematical issues that concern us are of considerable difficulty and these difficulties
would only be obfuscated in treating the general case.

We add that the method works in the case of spinor fields, mentioned at the beginning of
this introduction. In this case, however, there is no analogue of the nonlinear divergence
constraint and therefore the standard form of the Rellich–Kondrachov theorem suffices.
Moreover, in the absence of this constraint Lions’s concentration compactness method is
applicable and gives the relative compactness of minimizing sequences in a standard way.
If one insists on using the method in the present paper, there is only a minor change in the
application of Ekeland’s theorem because the underlying Banach space is complex. We
briefly comment on this in Subsection 7.2.

Acknowledgement. Partial support through US National Science Foundation grants DMS-
1363432 and DMS-1954995 (R.L.F.) and DMS-1856645 (M.L.), as well as through the Ger-
man Research Foundation grant EXC-2111-390814868 (R.L.F.) is acknowledged.

2. SOME PRELIMINARY RESULTS

In this section we collect some simple results that we will use repeatedly in this paper.
We begin with the Helmholtz decomposition in Lp . While this is valid for any 1 < p <1,
we only state it for p = 3/2, the only case that we will be using.

Lemma 2.1. Let A 2Y . Then there are Ã 2 Ẇ 1,3/2(R3,R3) and ' 2 Ẇ 1,3(R3) with

A = Ã+r' and r · Ã = 0.

This decomposition is unique, up to adding a constant to '. Moreover,

kr≠ Ãk3/2 . kr^ Ak3/2 and kr'k3 . kAk3 .

Here, r≠ Ã denotes the 3 £ 3-matrix valued function whose entries are @ j Ãk , j ,k 2
{1,2,3}. We include the proof of this lemma, since we will need the explicit construction
later on.

Proof. Let

'(x) := 1
4º

ˆ
R3

A(y) · (x ° y)
|x ° y |3 d y .

It follows from an endpoint case of the Hardy–Littlewood–Sobolev inequality [30] that ' 2
B MO(R3) with k'kB MO . kAkL3 . Moreover, by Calderón–Zygmund theory (see, e.g., [18,
Section 9.4]) we know that' is weakly differentiable with kr'kL3 . kAkL3 and, in the sense
of distributions,

°¢'=°r · A .

Let Ã := A°r' and B :=r^ A. Then, in the sense of distributions,

r^ Ã = B and r · Ã = 0.
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Let deduce from this that

(2.1) Ã(x) = 1
4º

ˆ
R3

B(y)^ (x ° y)
|x ° y |3 d y .

We denote the right side by Ã0(x). Note that, by the Hardy–Littlewood–Sobolev inequal-
ity and the assumption B 2 L3/2, we have Ã0 2 L3. Moreover, we have r^ Ã0 = B and
r · Ã0 = 0, so r^ (Ã° Ã0) = 0 and r · (Ã° Ã0) = 0. We conclude that ¢(Ã° Ã0) = 0. By Weyl’s
lemma, Ã ° Ã0 is smooth and therefore satisfies the mean value property Ã(x)° Ã0(x) =
3/(4ºr 3)

´
Br (x)(Ã(y)° Ã0(y))d y for any a 2R3 and r > 0. By the above discussion, we have

Ã° Ã0 2 L3 and, therefore,

ØØÃ(x)° Ã0(x)
ØØ…

µ
3

4ºr 3

ˆ
Br (x)

(Ã(y)° Ã0(y))3 d y
∂1/3

…
µ

3
4ºr 3

∂1/3

kÃ° Ã0kL3(R3,R3).

Letting r ! 1, we conclude that Ã(x)° Ã0(x) = 0, and since x 2 R3 is arbitrary we have
proved (2.1). Note that this argument also gives the uniqueness of the decomposition A =
Ã+r'.

Using Calderón–Zygmund theory one deduces that Ã is weakly differentiable with kr≠
ÃkL3/2 . kr^ AkL3/2 , as claimed. ⇤

As an application of the Helmholtz decomposition in L3/2, we obtain the validity of the
Sobolev inequality. Recall that S was defined in (1.7).

Lemma 2.2. S > 0

Proof. Given A 2Y , let Ã and'be as in Lemma 2.1. The usual Sobolev inequality in Ẇ 1,3/2

implies

kr^ Ak3/2 = kr^ Ãk3/2 & kr≠ Ãk3/2 & kÃk3

= kA°r'k3  ÅAÅ3 .

Thus, S > 0. ⇤
The next lemma discusses the natural choice of the gauge in our problem. Recall that

Å ·Å3 was defined in (1.6).

Lemma 2.3. For any A 2 L3(R3,R3) there is a '0 2 Ẇ 1,3(R3), unique up to an additive con-
stant, such that kA °r'0k3 = ÅAÅ3. Moreover, r ·

°
|A°r'0|(A°r'0)

¢
= 0. Conversely, if

A0 2 L3(R3,R3) satisfies r · (|A0|A0) = 0 in R3, then kA0k3 = ÅA0Å3.

Proof. The existence of '0 follows easily from the fact that k ·k3 is convex and that

(2.2) M :=
©

A 2 L3(R3,R3) : r^ A = 0
™

is closed in L3(R3,R3). The latter follows from standard properties of the distributional
curl. Note also that r' 2M for all' 2 Ẇ 1,3(R3). Uniqueness of r'0 follows from the strict
convexity of k·k3, and the equationr·

°
|A°r'0|(A°r'0)

¢
= 0 arises as the Euler–Lagrange

equation of the minimization problem.
Now assume that A0 2 L3(R3,R3) satisfies r·(|A0|A0) = 0 inR3 and let' 2 Ẇ 1,3(R3). Apply-

ing the inequality f (1)   f (0)+ f 0(0) for any convex function on [0,1] to f (t ) := kA0°tr'k3,
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we obtain kA0 °r'k3   kA0k3. Taking the infimum over ' gives ÅA0Å3   kA0k3, and the re-
verse inequality is trivial. ⇤

3. A NONLINEAR RELLICH–KONDRACHOV LEMMA

In this section we present the technical main result of our paper. To motivate it, we note
that if Ãn , Ã 2Y with r^ Ãn *r^ Ã in L3/2(R3,R3) and r · Ãn =r · Ã = 0, then Ãn ! Ã in
Lp

loc(R3,R3) for any p < 3. This is a consequence of the usual Rellich–Kondrachov lemma
for scalar functions, applied to each component of Ã, since by the Helmholtz decomposi-
tion in L3/2 (Lemma 2.1) the boundedness of r^ Ãn in L3/2 together with r· Ãn = 0 implies
boundedness of r≠ Ãn in L3/2.

The following theorem says that the same conclusion remains true if the linear con-
straint r · Ãn = 0 is replaced by a nonlinear constraint r · (|An |An) = 0. Our proof of this
result is rather involved and takes up this and the following section.

Theorem 3.1. Let An , A 2Y withr^An *r^A in L3/2(R3,R3) andr·(|An |An) =r·(|A|A) =
0. Then An ! A in Lq

loc(R3,R3) for any q < 3.

While a direct proof of this result on R3 should be possible, we use the conformal in-
variance of the relevant norms and prove the corresponding result on S3. We denote by
Lp (§kS3) the space of p-integrable k-forms on S3.

Theorem 3.2. Let Æn ,Æ 2 L3(§1S3) with d§(|Æn |Æn) = d§(|Æ|Æ) = 0 and dÆn * dÆ in
L3/2(§2S3). Then Æn !Æ in Lq (§1S3) for any q < 3.

Proof of Theorem 3.1 given Theorem 3.2. Let S : R3 ! S3 be the (inverse) stereographic
projection,

S j (x) =
2x j

1+x2 , j = 1,2,3, , S4(x) = 1°x2

1+x2 .

To a vector field A on R3 we associate the vector field Æ on S3 by

A(x) = (DS (x))TÆ(S (x)) ,

where DS is the Jacobi matrix of S . IdentifyingÆwith a one-form onS3 via the canonical
metric on S3, we see that

inf
'

ˆ
R3

|A°r'|3 d x = inf
©

ˆ
S3

|Æ°d©|3 d!

and ˆ
R3

|r^ A|3/2 d x =
ˆ
S3

|dÆ|3/2 d! ,

where ! is the uniform surface measure on the sphere. Similarly, the weak convergence
of r^ An in L3/2(R3,R3) is equivalent to weak convergence of dÆn in L3/2(§2S3) and the
condition r · (|An |An) = 0, which arises as the Euler equation of the above minimization
problem with respect to ', is equivalent to d§(|Æn |Æn) = 0. It is at this point where we use
that the stereographic projection is conformal.
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Thus, we are in the situation of Theorem 3.2 and we conclude that for any q < 3,ˆ
R3

|An ° A|q
µ

2
1+x2

∂3°q

d x =
ˆ
S3

|Æ°Æn |q d!! 0.

Since the weight on the left side is bounded away from zero on every bounded set, this
implies the Lq

loc(R3,R3) convergence of (An). ⇤

Thus, it remains to prove Theorem 3.2. As a preparation we recall the Helmholtz de-
composition in L3/2 on S3, analogous to that in Lemma 2.1 in R3. Since d§Æn has integral
zero, the solvability of the Poisson problem implies that there is a function un on S3 such
that d§dun = d§Æn . Thus,

eÆn :=Æn °dun

satisfies

(3.1) d eÆn = dÆn and d§ eÆn = 0.

Similarly, we define u and eÆ.
We recall the inequality

(3.2) kªkW 1,3/2(§1S3) …C
°
kdªkL3/2(§2S3) +kd§ªkL3/2(S3)

¢
;

see, for instance, [22, Thm. 4.11] together with the fact that there are no harmonic one-
forms on S3.

Inequality (3.2), applied to eÆn , implies that (eÆn) is bounded in W 1,3/2(§1S3) and there-
fore, after passing to a subsequence, we may assume that the sequence (eÆn) converges
weakly in W 1,3/2(§1S3). By passing to the limit in (3.1) we see that the limit of eÆn , which
we temporarily denote by Æ0, satisfies.

dÆ0 = dÆ , d§Æ0 = 0.

Thus, d(Æ0°eÆ) = 0 and d§(Æ0°eÆ) = 0. Since there are no harmonic one-forms, we conclude
that Æ0 = eÆ. Thus, eÆn * eÆ in W 1,3/2(§1S3).

A quick aside: Here we extracted a subsequence, whereas we stated Theorem 3.2 for
the full sequence. To deduce the theorem as stated we note that the proof really shows
that any subsequence has a further subsequence such that the conclusion holds, and this
proves that the conclusion holds, indeed, along the full sequence.

Next, by the usual Rellich–Kondrachov lemma mentioned at the beginning of this sec-
tion, eÆn ! eÆ in Lp (§1S3) for any p < 3. Thus, to prove the theorem we need to show that
dun ! du in Lp (§1S3) for any p < 3. To prove this, we recall the equations satisfied by Æn

and Æ, namely,

d§(|dun + eÆn |(dun + eÆn)) = 0 and d§(|du + eÆ|(du + eÆ)) = 0.

We think of this as an equation for dun for given eÆn . The key step in the proof is the
following inequality, which says that the solution un depends, in some sense, continuously
on the data eÆn . This is easy in the topology of L3, but rather deep for Lp with p < 3.
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Lemma 3.3. There are absolute constants C <1 and "§ > 0 such that, if 0 … " … "§ and if
'1,'2 2W 1,3°3"(S3) and ª1,ª2 2 L3°3"(§1S3) satisfy

d§(|d'1 °ª1|(d'1 °ª1)) = 0 and d§(|d'2 °ª2|(d'2 °ª2)) = 0,

then

(3.3) kd'1 °d'2k2
L3°3"(§1S3) …C

°
kª1 °ª2kL3°3"(§1S3)M +"2M 2¢

with
M := kª1kL3°3"(§1S3) +kª2kL3°3"(§1S3) .

This lemma is the analogue of a result in [19] concerning the closely related equation
d§(|d'|d') = d√. We defer its proof to the following section.

The ‘problem’ with the bound (3.3) is the term "2 on the right side, which only becomes
small when "! 0. However, in our application where ª1 = °eÆn and ª2 = °eÆ, we cannot
expect convergence of the first term on the right side of (3.3) at "= 0.

To go around this impasse, we follow [19] and deduce from (3.3) a bound in the grand
Lebesgue space Lµ,3)(S3). This space (which depends on a parameter µ > 0, which only
plays a minor role in what follows) strictly contains L3(S3). The second ingredient, which
is due to [7], is the observation that the Rellich–Kondrachov theorem remains valid in this
space. Combining these two ingredients it will be easy to complete the proof of Theorem
3.2.

We now present the details of this argument. For µ > 0 we denote by Lµ,3)(S3) the set of
(equivalence classes of) measurable functions f on S3 for which

k f kLµ,3)(S3) := sup
0<±…2

≥
±
µ
3 |S3|°

1
3°± k f kL3°±(S3)

¥
.

is finite. The factor |S3|° 1
3°± normalizes the measure on S3, but is not really important.

Corollary 3.4. There is an absolute constant C < 1 such that if '1,'2 2 W 1,3(S3) and
ª1,ª2 2 L3(§1S3) satisfy

d§(|d'1 °ª1|(d'1 °ª1)) = 0 and d§(|d'2 °ª2|(d'2 °ª2)) = 0,

then for any 0 < µ … 3,

(3.4) kd'1 °d'2kLµ,3)(§1S3) …C kª1 °ª2k
1° µ

3

Lµ,3)(§1S3)
(M 0)1+ µ

3

with
M 0 := kª1kLµ,3)(§1S3) +kª2kLµ,3)(§1S3) .

Proof. We abbreviate k · kµ,3) := k · kLµ,3)(S3). Since k f kL3°3"(S3) … (3")°
µ
3 |S3| 1

3°3" k f kµ,3), the
bound (3.3) implies

(3.5) kd'1 °d'2k2
L3°3"(S3) …C (3")°

2µ
3 |S3|

2
3°3"

°
kª1 °ª2kµ,3)M 0+"2(M 0)2¢

for all 0 < "… "§ and µ > 0. Now given a parameter 0 < ±… min{"§, 2
3 }, we set

" := ±
kª1 °ª2k1/2

µ,3)

(M 0)1/2
.
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Note that, in view of the explicit expression of M 0, we have "… ± and therefore,

|S3|°
2

3°3± kd'1 °d'2k2
L3°3±(S3)

… |S3|°
2

3°3" kd'1 °d'2k2
L3°3"(S3)

…C (3")°
2µ
3

°
kª1 °ª2kµ,3)M 0+"2(M 0)2¢

=C (3±)°
2µ
3 kª1 °ª2k

1° µ
3

µ,3) (M 0)1+ µ
3
°
1+±2¢

…C 0(3±)°
2µ
3 kª1 °ª2k

1° µ
3

µ,3) (M 0)1+ µ
3

with C 0 =C (1+min{"2
§, 4

9 }). Moreover, in case "§ < 2
3 , we bound for "§ < ±… 2

3 ,

|S3|°
2

3°3± kd'1 °d'2k2
L3°3±(S3)

… |S3|°
2

3°3"§ kd'1 °d'2k2
L3°3"§ (S3)

…C 0(3"§)°
2µ
3 kª1 °ª2k

1° µ
3

µ,3) (M 0)1+ µ
3

…C 0(3"§/2)°
2µ
3 (3±)°

2µ
3 kª1 °ª2k

1° µ
3

µ,3) (M 0)1+ µ
3 .

To summarize, we have for all 0 < ±… 2
3 ,

|S3|°
2

3°3± kd'1 °d'2k2
L3°3±(S3)

…Cµ(3±)°
2µ
3 kª1 °ª2k

1° µ
3

µ,3) (M 0)1+ µ
3

with Cµ :=C 0 max{1,(3"§/2)°
2µ
3 }. This implies

kd'1 °d'2k2
µ,3) …Cµkª1 °ª2k

1° µ
3

µ,3) (M 0)1+ µ
3 .

Since µ … 3, we have Cµ …C3 and we obtain the claimed bound. ⇤

As we mentioned already, the second ingredient in the proof of Theorem 3.2 is a version
of the Rellich–Kondrachov lemma in grand Lebesgue spaces. This appears as [7], but we
give a self-contained and elementary proof.

Lemma 3.5. Assume that vn * 0 in W 1,3/2(S3). Then vn ! 0 in Lµ,3)(S3) for any µ > 0.

Proof. For any ±0 > 0, we bound, using Hölder’s inequality,

kvnkLµ,3)(S3) … sup
0<±…±0

≥
±
µ
3 |S3|°

1
3°± kvnk3°±

¥
+ sup
±0…±…2

≥
±
µ
3 |S3|°

1
3°± kvnk3°±

¥

… ±
µ
3
0 |S

3|°
1
3 kvnk3 +2

µ
3 |S3|°

1
3°±0 kvnk3°±0 .

By the ordinary Rellich–Kondrachov lemma, we have vn ! 0 in L3°±0 (S3), so

limsup
n!1

kvnkLµ,3)(S3) … ±
µ
3
0 |S

3|°
1
3 limsup

n!1
kvnk3 .

Since (vn) is bounded in L3(S3) by Sobolev and since±0 > 0 can be chosen arbitrarily small,
we obtain the assertion. ⇤

We are now in position to complete the proof of Theorem 3.2. Indeed, Lemma 3.5 im-
plies that eÆn ! eÆ in Lµ,3)(S3) for any µ > 0. Thus, by Corollary 3.4, dun ! du in Lµ,3)(§1S3)
for any µ > 0. Since k f kLq (S3) … Cq,µk f kLµ,3)(S3) for any q < 3 and µ > 0, we conclude that
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dun ! du in Lq (§1S3) for any q < 3. Since Æn = eÆn +dun and eÆn ! eÆ in Lq (S3) for any
q < 3, this proves the assertion. ⇤

4. NONLINEAR HELMHOLTZ DECOMPOSITION

Our goal in this section is to prove Lemma 3.3. The key ingredient is a nonlinear version
of the Helmholtz decomposition due to Iwaniec [20]. A simplified proof of an improved re-
sult appears in [21] in the case of Euclidean space and the result for Riemannian manifolds
is in [22, Proof of Thm. 8.8]. We only state the special case of the result that we need.

Theorem 4.1. There is an absolute constant C < 1 such that for any 0 … " < 1
3 and any

' 2W 1,3°3"(S3) there are √ 2W 1, 3°3"
1°3" (S3) and ∞ 2 L

3°3"
1°3" (§1S3) such that

|d'|°3"d'= d√+∞ , d§∞= 0

and
k∞k

L
3°3"
1°3" (§1S3)

…C "kd'k1°3"
L3°3"(S3) .

With this theorem at our disposal, we now turn to the proof of Lemma 3.3. As we already
mentioned, our proof is analogous to the proof of a similar result for a related equation in
[19].

Proof of Lemma 3.3. According to Theorem 4.1, for any 0 … "< 1
3 there are √ 2W 1, 3°3"

1°3" (S3)

and ∞ 2 L
3°3"
1°3" (§1S3) such that

|d'1 °d'2|°3" °
d'1 °d'2

¢
= d√+∞ , d§∞= 0

and, with the obvious abbreviation for the norm,

k∞k 3°3"
1°3"

…C "kd'1 °d'2k1°3"
3°3" .

Testing the equations for '1 and '2 against √ and subtracting them from each other, we
get ˆ

S3
h|d'1 °ª1|(d'1 °ª1)° |d'2 °ª2|(d'2 °ª2), |d'1 °d'2|°3"(d'1 °d'2)id!

=
ˆ
S3
h|d'1 °ª1|(d'1 °ª1)° |d'2 °ª2|(d'2 °ª2),∞id! .(4.1)

We will bound the right side from above and the left side from below.
Using

(4.2)
ØØ|x|x ° |y |y

ØØ…
°
|x|+ |y |

¢
|x ° y | for all x, y 2Rn ,

(which can be seen by adding and subtracting |x|y from the vector on the left side) we get
ØØh|d'1 °ª1|(d'1 °ª1)° |d'2 °ª2|(d'2 °ª2),∞i

ØØ

…
°
|d'1 °ª1|+ |d'2 °ª2|

¢
|d'1 °ª1 °d'2 +ª2| |∞|

…
°
|d'1|+ |d'2|+ |ª1|+ |ª2|

¢°
|d'1 °d'2|+ |ª1 °ª2|

¢
|∞| .
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By Hölder’s inequality,
ØØØØ
ˆ
S3
h|d'1 °ª1|(d'1 °ª1)° |d'2 °ª2|(d'2 °ª2),∞id!

ØØØØ

…µ
°
kd'1 °d'2k3°3"+kª1 °ª2k3°3"

¢
k∞k 3°3"

1°3"

…Cµ"
°
kd'1 °d'2k3°3"+kª1 °ª2k3°3"

¢
kd'1 °d'2k1°3"

3°3"

with
µ := kd'1k3°3"+kd'2k3°3"+kª1k3°3"+kª2k3°3" .

We now turn to the left side in (4.1). It is elementary to see that

h|x °a|(x °a)° |y °b|(y °b), (x ° y)i
  1

2 |x ° y |3 °
°
|x|+ |y |+ |a|+ |b|

¢
|a °b||x ° y |

for all x, y, a,b 2Rn .(4.3)

We provide the details at the end of this proof. It follows from this inequality that

h|d'1 °ª1|(d'1 °ª1)° |d'2 °ª2|(d'2 °ª2), |d'1 °d'2|°3"(d'1 °d'2)i
  1

2 |d'1 °d'2|3°3"°
°
|d'1|+ |d'2|+ |ª1|+ |ª2|

¢
|ª1 °ª2| |d'1 °d'2|1°3" .

Therefore, by Hölder’s inequality,ˆ
S3
h|d'1 °ª1|(d'1 °ª1)° |d'2 °ª2|(d'2 °ª2), |d'1 °d'2|°3"(d'1 °d'2)id!

  1
2kd'1 °d'2k3°3"

3°3"°µkª1 °ª2k3°3" kd'1 °d'2k1°3"
3°3" .

Combining the bounds on both sides of (4.1), we obtain
1
2kd'1 °d'2k3°3"

3°3" …Cµ"
°
kd'1 °d'2k3°3"+kª1 °ª2k3°3"

¢
kd'1 °d'2k1°3"

3°3"

+µkª1 °ª2k3°3" kd'1 °d'2k1°3"
3°3" ,

which is the same as

(4.4) 1
2kd'1 °d'2k2

3°3" …Cµ"
°
kd'1 °d'2k3°3"+kª1 °ª2k3°3"

¢
+µkª1 °ª2k3°3" .

Absorbing the term kd'1 °d'2k3°3" on the right side into the left side gives

(4.5) kd'1 °d'2k2
3°3" …C 0 °kª1 °ª2k3°3"µ+"2µ2¢

with an absolute constant C 0 <1.
This is almost the claimed bound, except that we need to replace µ by M . This is where

the restriction on " comes in. We return to (4.4) in the special case where d'2 = ª2 = 0,
that is,

1
2kd'1k2

3°3" …C "
°
kd'1k3°3"+kª1k3°3"

¢2 +
°
kd'1k3°3"+kª1k3°3"

¢
kª1k3°3" .

We restrict ourselves to " … 1/(4C ) =: "§. Then the term kd'1k2
3°3" on the right side can

be absorbed into the left side. Of course, all the factors kd'1k3°3" on the right side can be
absorbed as well. In this way, we finally arrive at

kd'1k3°3" …C 00 kª1k3°3" for all 0 … "… "§
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with an absolute constant C 00 < 1. This, together with a similar bound for d'2, gives
µ… (1+C 00)M , which, when inserted into (4.5), completes the proof. ⇤
Proof of (4.3). Let c := (a +b)/2 and write

h|x °a|(x °a)° |y °b|(y °b), (x ° y)i= I0 + I1 + I2

with

I0 := h|x ° c|(x ° c)° |y ° c|(y ° c), (x ° y)i ,

I1 := h|x °a|(x °a)° |x ° c|(x ° c), (x ° y)i ,

I2 := h|y ° c|(y ° c)° |y °b|(y °b), (x ° y)i .

To bound I0 from below, we note that

(4.6) h|X |X ° |Y |Y , (X °Y )i= 1
2

°
(|X |+ |X |)|X °Y |2 +R

¢

with

(4.7) R := |X |3 +|Y |3 ° |X ||Y |(|X |+ |Y |)   0.

This follows from |X |2|Y |… 2
3 |X |3 + 1

3 |Y |3 and |X ||Y |2 … 1
3 |X |3 + 2

3 |Y |3. Applying (4.6), (4.7)
with X = x ° c and Y = y ° c gives

I0  
1
2

°
|x ° c|+ |y ° c|

¢
|x ° y |2   1

2
|x ° y |3 .

To bound I1 from above, we bound, using (4.2),

|I1|… ||x °a|(x °a)° |x ° c|(x ° c)|
ØØx ° y

ØØ

… (|x °a|+ |x ° c|) |a ° c|
ØØx ° y

ØØ

… (2|x|+ |a|+ |c|) |a ° c|
ØØx ° y

ØØ

…
°
|x|+ 3

4 |a|+
1
4 |b|

¢
|a °b|

ØØx ° y
ØØ .

This and the corresponding bound on I2 give

|I1 + I2|…
°
|x|+ |y |+ |a|+ |b|

¢
|a °b|

ØØx ° y
ØØ ,

which yields the claimed bound. ⇤

5. ANOTHER RELLICH–KONDRACHOV LEMMA

This section is a short digression and its content is not needed for the proof of Theorem
1.1. We present a different Rellich–Kondrachov lemma for vector fields which might prove
useful in other applications.

We need to introduce a gauge-invariant local L2 (semi)norm. Let≠ΩR3 be an open set
and define, for A 2 L2(≠,R3),

ÅAÅ2≠ := inf
'2Ḣ 1(≠)

kA°r'kL2(≠,R3) .

Here, Ḣ 1(≠) denotes the space of all real functions ' 2 L1
loc(≠) such that r' 2 L2(R3,R3).

The main result of this section is as follows.
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Proposition 5.1. Suppose that r^ An *r^ A in L3/2(R3,R3). Then for any open set≠ΩR3

of finite measure, ÅAn ° AÅ2≠! 0.

For the proof of this proposition, we express ÅAÅ2≠ by duality. For B 2 L2(≠,R3) we say
that

r ·B = 0 in≠ and ∫ ·B = 0 on @≠

if
´
≠r' ·B d x = 0 for any ' 2 Ḣ 1(≠). Clearly, if B 2C 1(≠)\C (≠) and @≠ is Lipschitz, this

definition coincides with the classical one.

Lemma 5.2. For any A 2 L2(≠,R3),

(5.1) ÅAÅ2≠ = sup
Ωˆ

≠
A ·B d x : kBkL2(≠,R3) … 1, r ·B = 0 in≠ , ∫ ·B = 0 on @≠

æ
.

Proof. For any B as on the right side of (5.1) and any ' 2 H 1(≠), we haveˆ
≠

A ·B d x =
ˆ
≠

(A°r') ·B d x … kA°r'kL2(≠,R3) .

Taking the infimum over ' and the supremum over B we obtain   in (5.1).
Conversely, as in Lemma 2.3, there is a '§ 2 H 1(≠) such that

kA°r'§kL2(≠,R3) = ÅAÅ2≠.

The Euler–Lagrange equation corresponding to this minimization problem isˆ
≠
r' · (A°r'§)d x = 0 for all ' 2 Ḣ 1(≠) ,

that is, B§ := A°r'§ satisfies r ·B§ = 0 in≠ and ∫ ·B§ = 0 on @≠. If B§ ¥ 0 then ÅAÅ2≠ = 0
and … in (5.1) holds trivially. Otherwise, B§/kB§kL2(≠) is an admissible candidate for the
right side in (5.1) and we haveˆ

≠
A · B§

kB§kL2(≠,R3)
d x =

ˆ
≠

(A°r'§) · B§
kB§kL2(≠,R3)

d x = ÅAÅ2≠ .

This proves … in (5.1). ⇤

Lemma 5.3. Let 0 … ¥ 2C 1(R3) with sufficiently fast decay and
´
R3 ¥d x = 1 and set ¥"(x) :=

"°3¥( x
" ). Then

ÅA°¥"? AÅ2R3 …C¥
p
"kr^ Ak3/2 .

Proof. We use Lemma 5.2 with≠=R3 and consider B 2 L2(R3,R3) with kBk2 … 1 and r·B =
0 in R3. By Plancherel (with the normalization of the Fourier transform as, for instance, in
[25]), we have ˆ

R3
(A°¥"? A) ·Bd x =

ˆ
R3

(1°b¥"(k)) bA(k) · bB(k)dk .

Since k · bB(k) = 0 we can write

bA(k) · bB(k) = (k ^ bA(k)) · (k ^ bB(k))
|k|2 ,
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and hence ˆ
R3

(A°¥"? A) ·B d x =
ˆ
R3

(1°b¥"(k))
|k|1/2

(k ^ bA(k))
|k|1/2

· (k ^ bB(k))
|k| dk ,

which is bounded above by

C
p
"

√ˆ
R3

ØØØ
(k ^ bA(k))

|k|1/2

ØØØ
2
dk

!1/2

.

Here we used the fact that, because of the sufficiently fast decay of¥, we have sup |ª|°1/2|1°
b¥(ª)| <1. The square of the last factor is, by Plancherel and Hardy–Littlewood–Sobolev,

C
µ
r^ A,

1
|x|2 ?r^ A

∂
…Ckr^ Ak2

3/2 .

This is the claimed inequality. ⇤
Finally, we are in position to prove the main result of this section.

Proof of Proposition 5.1. We will be using the following two properties of the seminorm
Å ·Å2≠. First, we have

ÅA1 + A2Å2≠ …ÅA1Å2≠+ÅA2Å2≠ .

This follows from the definition of the seminorm. Second, we have for A 2 L2(R3,R3),

ÅAÅ2≠ …ÅAÅ2R3 .

This follows from the duality lemma 5.2 and the fact that if B 2 L2(≠,R3) satisfies r ·B = 0
in≠ and ∫ ·B = 0 on @≠, then its extension B̃ by zero to R3 satisfies r · B̃ = 0 in R3.

Using these two facts, together with Lemma 5.3 we can bound

ÅAn ° AÅ2≠ …ÅAn °¥"? AnÅ2≠+Å¥"? An °¥"? AÅ2≠+Å¥"? A° AÅ2≠

…ÅAn °¥"? AnÅ2R3 +Å¥"? An °¥"? AÅ2≠+Å¥"? A° AÅ2R3

… 2C
p
"+Å¥"? An °¥"? AÅ2≠ .

We need to show that every subsequence has a further subsequence along which, for
every fixed "> 0, Å¥"? An °¥"? AÅ2≠! 0. Since r^ An *r^ A in L3/2(R3,R3) we have,
by the Sobolev inequality (Lemma 2.2),

(5.2)
ˆ
R3

An ·B d x !
ˆ
R3

A ·B d x for any B 2 L3/2(R3,R3) with r ·B = 0.

Moreover, since ÅAn°AÅ3 is bounded, there is a sequence©n such that kAn°A°r©nk3 is
bounded. Now for the given subsequence, there is a further subsequence along which An°
A °r©n * F in L3(R3,R3). It follows from (5.2) that

´
R3 F ·B d x = 0 for all B 2 L3/2(R3,R3)

with r ·B = 0, that is, F = r©. Thus, An ° A °r'n * 0 in L3(R3,R3) with 'n := ©n °©.
Thus, ¥"?An °¥"?A°¥"?r'n converges pointwise to zero and is bounded uniformly in
n. Thus, by dominated convergence, ¥"? An °¥"? A°¥"?r'n ! 0 in L2(≠) and so,

Å¥"? An °¥"? AÅ2≠ … k¥"? An °¥"? A°¥"?r'nkL2(≠,R3) ! 0.

This proves the proposition. ⇤
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6. NONZERO WEAK LIMIT

Our goal in the section is to show that a minimizing sequence has a nonzero weak limit
up to symmetries. In the language of concentration compactness, we exclude ‘vanishing’.

6.1. An improved inequality. Our goal in this section is to prove the following proposi-
tion, involving the seminorm Å ·Å3 from (1.6).

Proposition 6.1. For any A 2Y ,

ÅAÅ3 . kr^ Ak1/2
3/2

µ
sup
t>0

t ket¢r^ AkL1(R3,R3)

∂1/2

.

Note that, since et¢ is convolution with a function whose L3 norm is proportional to
t°1, one has, by Hölder,

sup
t>0

t ket¢r^ AkL1(R3,R3) . kr^ Ak3/2 .

In this sense the inequality ‘improves’ upon the Sobolev inequality in Lemma 2.2.

Proof. We set B := r^ A and define ' as in the proof of Lemma 2.1. Then A °r' = Ã is
given by (2.1). In this formula, we write

1
4º

x ° y
|x ° y |3 =° 1

4º
rx

1
|x ° y | =°

ˆ 1

0
d t (4ºt )°3/2rxe°(x°y)2/4t ,

where we used (°¢)°1 =
´1

0 d t et¢. Thus, with a parameter T to be determined,

A(x)°r'(x) = I<(x)+ I>(x) ,

where

I<(x) :=°
ˆ T

0
d t (4ºt )°3/2

ˆ
R3

d y B(y)^rxe°(x°y)2/4t ,

I>(x) :=°
ˆ 1

T
d t (4ºt )°3/2

ˆ
R3

d y B(y)^rxe°(x°y)2/4t .

Clearly,

|I<(x)|…
ˆ T

0
d t (4ºt )°3/2

ˆ
R3

d y |B(y)||rxe°(x°y)2/4t |

=
ˆ T

0
d t t°2

ˆ
R3

d y |B(y)|k((x ° y)/
p

t )

with
k(z) := (4º)°3/2(|z|/2)e°z2/4 .

Let k̃ be the monotone hull of k, that is,

k̃(z) :=
(

(4º)°3/2(1/
p

2)e°1/2 if |z| <
p

2,

(4º)°3/2(|z|/2)e°z2/4 if |z| 
p

2.
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Then, by the layer cake formula and the fact that the superlevel sets of k̃ are balls,ˆ
R3

t°3/2k((x ° y)/
p

t )|B(y)|d y …
ˆ
R3

t°3/2k̃((x ° y)/
p

t )|B(y)|d y

=
ˆ 1

0
d∑ t°3/2

ˆ
R3
1{k̃>∑}((x ° y)/

p
t )|B(y)|d y

…
ˆ 1

0
d∑ |{k̃ > ∑}|B§(x)

= kk̃kL1(R3)B
§(x)

with the maximal function

B§(x) := sup
r>0

3
4ºr 3

ˆ
{|x°y |<r }

|B(y)|d y .

Thus,

|I<(x)|… kk̃k1B§(x)
ˆ T

0
d t t°1/2 = 2kk̃kL1(R3)B

§(x)T 1/2 .

On the other hand, to estimate I> we use the semigroup property et¢ = et¢/2et¢/2 to
write

(4ºt )°3/2
ˆ
R3

d y B(y)^rxe°(x°y)2/4t = (2ºt )°3/2
ˆ
R3

d y (et¢/2B)(y)^rxe°(x°y)2/2t .

Thus,

|I>(x)|…
ˆ 1

T
d t (2ºt )°3/2

ˆ
R3

d y |(et¢/2B)(y)||rxe°(x°y)2/2t |

=
ˆ 1

T
d t
ˆ
R3

d y |(et¢/2B)(y)|(t/2)°2k((x ° y)/
p

t/2) .

Now ˆ
R3

|(et¢/2B)(y)|(t/2)°2k((x ° y)/
p

t/2)d y … ket¢/2Bk1(t/2)°1/2kkkL1(R3)

… M(t/2)°3/2kkk1

with M := supt>0 tket¢Bk1. Thus,

|I>(x)|…
ˆ 1

T
d t M(t/2)°3/2kkkL1(R3) = MkkkL1(R3)4(T /2)°1/2 .

To summarize, we have shown that

|A(x)°r'(x)|… 2kk̃kL1(R3)B
§(x)T 1/2 +MkkkL1(R3)4(T /2)°1/2 .

Optimizing in T , we get

|A(x)°r'(x)|… 211/4kk̃k1/2
L1(R3)kkk1/2

L1(R3)M 1/2B§(x)1/2 .

We raise this inequality to the third power and use the fact that the maximal function is a
bounded operator on L3/2(R3). This proves the claimed inequality. ⇤
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Remark 6.2. The analogue of Proposition 6.1 for the Sobolev inequality for spinor fields
mentioned in the introduction is

(6.1) k√k3 . kæ · (°ir)√k1/2
3/2

µ
sup
t>0

tket¢æ · (°ir)√k1
∂1/2

, √ 2 Ẇ 1,3/2(R3,C2) .

This is proved in exactly the same way as Proposition 6.1.

6.2. Nonzero weak limit up to symmetries. In this subsection we use the improved in-
equality in Proposition 6.1 to show that, up to translations and dilations, one can extract
from every minimizing sequence for S a subsequence which has a nontrivial weak limit.

Proposition 6.3. Let (An) ΩY be a sequence with

ÅAnÅ3 = 1 and kr^ Ank3/2 . 1.

Then there are ∏n 2 (0,1) and an 2R3 such that a subsequence of

∏2
n(r^ An)(∏n(x °an))

converges weakly in L3/2(R3,R3) to some B̃ 6¥ 0.

Proof. We write Bn :=r^ An . Applying the improved inequality from Proposition 6.1, we
infer that

" := liminf
n!1

sup
t>0

t ket¢BnkL1(R3,R3) > 0.

Thus, for all sufficiently large n there are tn > 0 and xn 2R3 such that

tn |(etn¢Bn)(xn)|  "/2,

that is,

(6.2)
ØØØØ
ˆ
R3

(4º)°3/2e°x2/4B̃n(x)d x
ØØØØ  "/2

for
B̃n(x) := tnBn(

p
tn x +xn) .

Since kB̃nk3/2 = kBnk3/2 = 1, weak compactness implies that a subsequence of (B̃n) con-
verges weakly in L3/2(R3,R3) to some B̃ . Since e°x2/4 2 L3(R3), it follows from (6.2) that
B̃ 6¥ 0, as claimed. ⇤

7. APPLYING EKELAND’S VARIATIONAL PRINCIPLE

In the previous section, in order to get a nonzero weak limit along a subsequence, we
only used limsupn!1 (kr^ Ank3/2/ÅAnÅ3) > 0. We did not use the fact that An is mini-
mizing for (1.7). Our goal in this and the next section is to upgrade the weak convergence
to strong convergence, and we do this by using limn!1 (kr^ Ank3/2/ÅAnÅ3) = S2/3 with S
from (1.7).

More specifically, in this section we show that the minimizing sequence can be slightly
altered to satisfy a version of the Euler–Lagrange equation with a small inhomogeneity.
This will be achieved through Ekeland’s variational principle. In the next section, we will
study this approximated Euler–Lagrange equation in more detail.



20 R. L. Frank & M. Loss

Proposition 7.1. Let (An) ΩY be a minimizing sequence for S with ÅAnÅ3 = 1. Then there
is a sequence (A0

n) ΩY with r · (|A0
n |A0

n) = 0 and kA0
nk3 = 1 for all n such that

r^ A0
n °r^ An ! 0 in L3/2(R3,R3)

and
r^ (|r^ A0

n |°1/2r^ A0
n)°S|A0

n |A0
n =r^ rn with rn ! 0 in L3(R3,R3) .

Our goal in this section will be to prove this proposition.

7.1. Differentiability of the seminorm. The following result implies that A 7! ÅAÅ3
3 is

Fréchet differentiable and gives a formula for its derivative.

Lemma 7.2. Let A 2 L3(R3,R3) with r · (|A|A) = 0. Then for all F 2 L3(R3,R3),
ØØØØÅA+FÅ3

3 °ÅAÅ3
3 °3
ˆ
R3

|A|A ·F d x
ØØØØ. ÅAÅ3/2

3 ÅFÅ3/2
3 +ÅFÅ3

3 .

Proof. Note that according to Lemma 2.3, the assumption on A implies ÅAÅ3 = kAk3.
Moreover, since the claimed inequality is invariant under adding a gradient to F , we may
also assume that ÅFÅ3 = kFk3. We have

ÅA+FÅ3
3 … kA+Fk3

3 … kAk3
3 +3
ˆ
R3

|A|A ·F d x +const
°
kAk3kFk2

3 +kFk3
3

¢
.

Since the remainder on the right side is bounded by a constant times kAk3/2
3 kFk3/2

3 +kFk3
3,

this proves one of the two claimed inequalities. For the converse inequality, we choose '
such that ÅA+FÅ3 = kA+F °r'k3 and bound

ÅA+FÅ3
3   kA°r'k3

3 +3
ˆ
R3

|A°r'|(A°r') ·F d x

°const
°
kA°r'k3kFk2

3 +kFk3
3

¢
.

To bound the right side, we use kA°r'k3
3  ÅAÅ3

3 = kAk3
3 andˆ

R3
|A°r'|(A°r') ·F d x  

ˆ
R3

|A|A ·F d x °2kr'k3kAk3kFk3 °kr'k2
3kFk3 .

In this way we arrive at

ÅA+FÅ3
3  ÅAÅ3

3 +3
ˆ
R3

|A|A ·F d x

°const
°
kAk3kFk2

3 +kFk3
3 +kr'k3kAk3kFk3 +kr'k2

3kFk3
¢

and it remains to bound kr'k3. We note that

r · (|A+F °r'|(A+F °r')) = 0 and r · (|A|A) = 0.

Using the R3-version of Lemma 3.3 corresponding to " = 0 (which can be proved by the
same argument and is, in fact, much simpler since for "= 0 Theorem 4.1 is not needed) we
obtain

kr'k2
3 . kFk3 (kA+Fk3 +kAk3) .
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Inserting this into the above bound, we obtain the lower bound

ÅA+FÅ3
3  ÅAÅ3

3 +3
ˆ
R3

|A|A ·F d x °const
°
kAk3/2

3 kFk3/2
3 +kFk3

3

¢
,

which concludes the proof. ⇤

7.2. Applying Ekland’s variational principle. In order to prove Proposition 7.1 we apply
Ekeland’s variational principle in the following setting. We recall that Y and M were de-
fined in (1.5) and (2.2), respectively, and we set

X :=Y /M

endowed with the norm kr^ Ak3/2. Using standard properties of weak derivatives it is
easy to see that this is, indeed, a norm and that X endowed with this norm is complete.
We claim that the dual space of X is

(7.1) X § =
©
r^B : B 2 L3(R3,R3)

™

with norm
kr^BkX § = inf

'2Ẇ 1,3(R3)
kB °r'k3 ,

in the sense that every functional© 2 X § is of the form

©([A]) =
ˆ
R3

B · (r^ A)d x for [A] 2 X ,

and conversely, any functional of this form defines an element of X §. This can again be
shown by standard arguments.

From Ekeland’s variational principle we will deduce the following lemma, which is the
core of the proof of Proposition 7.1.

Lemma 7.3. Let A 2 Y with ÅAÅ3 = 1. Then for any ±> 0 there are A0 2 Y and ∏ 2 R such
that

r · (|A0|A0) = 0, kA0k3 = ÅA0Å3 = 1,

kr^ A0k3/2 … kr^ Ak3/2 , kr^ (A0 ° A)k3/2 … ± ,

and ∞∞r^ (|r^ A0|°1/2r^ A0)°∏|A0|A0∞∞
X § … 3

°
kr^ Ak3/2

3/2 °S
¢
±°1 .

Proof of Proposition 7.1 given Lemma 7.3. We apply Lemma 7.3 to A = An with the choice
±2 = "n := kr^ Ank3/2

3/2 °S. We obtain sequences (A0
n) ΩY and (∏n) ΩR such that

r · (|A0
n |A0

n) = 0, kA0
nk3 = 1,

(7.2) kr^ (A0
n ° An)k3/2 …

p
"n

and

(7.3)
∞∞r^ (|r^ A0

n |°1/2r^ A0
n)°∏n |A0

n |A0
n

∞∞
X § … 3

p
"n .

Since (An) is minimizing, we have "n ! 0 and therefore, by (7.2), r^ (A0
n ° An) ! 0 in L3/2,

as claimed.
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Let us show that in the almost-Euler–Lagrange equation (7.3), we can replace ∏n by S.
Indeed, since ([A0

n]) is bounded in X by (7.2), when testing (7.3) against [A0
n] we obtain

(7.4)
ˆ
R3

|r^ A0
n |3/2 d x °∏n ! 0.

Here we also used kA0
nk3 = 1. According to (7.2) and the minimizing property of An we

have
´
R3 |r^ A0

n |3/2 d x ! S. Therefore (7.4) implies ∏n ! S and
∞∞r^ (|r^ A0

n |°1/2r^ A0
n)°S|A0

n |A0
n

∞∞
X §

…
∞∞r^ (|r^ A0

n |°1/2r^ A0
n)°∏n |A0

n |A0
n

∞∞
X § +|∏n °S|k|A0

n |A0
nkX § ! 0.

Here we used the fact that |A0
n |A0

n is uniformly bounded in X §. Indeed, the Sobolev in-
equality in Lemma 2.2 implies by duality that (L3/M )§ Ω X § continuously and so,

k|A0
n |A0

nkX § . k|A0
n |A0

nk(L3/M )§ … k|A0
n |Ank3/2 = kA0

nk2
3 = 1.

To complete the proof, we recall the characterization of X § in (7.1), which implies that
there is an rn 2 L3(R3,R3) such that

r^ (|r^ A0
n |°1/2r^ A0

n)°S|A0
n |A0

n =r^ rn .

After subtracting a gradient, we can assume that r · (|rn |rn) = 0 and then

krnk3 =
∞∞r^ (|r^ A0

n |°1/2r^ A0
n)°S|A0

n |A0
n

∞∞
X § ! 0.

This completes the proof of the proposition. ⇤

It remains to prove Lemma 7.3. This is almost an immediate consequence of [9, Theo-
rem 3.1], except that it is not obvious to us that the functional A 7! ÅAÅ3 is continuously
Fréchet differentiable. Its Fréchet differentiability is a consequence of Lemma 7.2. While
it might be possible to show the continuity of its Fréchet derivative, we think it is easier
to redo in our setting the reduction of [9, Theorem 3.1] to [9, Theorem 1.1]. The observa-
tion is that because of the homogeneity of A 7! ÅAÅ3, one does not need its continuous
Fréchet differentiability. In fact, only its Gateaux differentiability suffices. Our proof also
shows that the same method works in the case of complex Banach spaces. This substanti-
ates our claim in the introduction that the same method works for the Sobolev inequality
for spinor fields.

Proof of Lemma 7.3. We consider the metric space Z := {[A] 2 X : ÅAÅ3 = 1} with the met-
ric induced by the norm in X . As a consequence of the Sobolev inequality in Lemma 2.2, Z
is a closed subset of X and therefore complete. In Z we consider the functional F ([A]) :=
kr^ Ak3/2, which is well-defined and continuous. Now given A 2 Y with ÅAÅ3 = 1 and
±> 0, we deduce from [9, Theorem 1.1] that there is an [A0] 2 Z such that

kr^ A0k3/2 … kr^ Ak3/2 , kr^ (A0 ° A)k3/2 … ± ,

and such that for any [A0] 6= [A00] 2 Z ,

(7.5) kr^ A00k3/2
3/2 > kr^ A0k3/2

3/2 °
"

±
kr^ (A00 ° A0)k3/2
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with " := kr^ Ak3/2
3/2 ° S. According to Lemma 2.3 we can fix the gauge of A0 such that

r · (|A0|A0) = 0 and then kA0k3 = 1.
It remains to prove the last inequality in the statement of the lemma. Let F 2Y with

(7.6)
ˆ
R3

|A0|A0 ·F d x = 0.

We apply (7.5) with A00 = (A0+ tF )/ÅA0+ tFÅ3, where t   0 is such that ÅA0+ tFÅ3 6= 0. We
conclude that

kr^(A0+ tF )k3/2
3/2

ÅA0+ tFÅ3/2
3

  kr^ A0k3/2
3/2 °

"

±

t
ÅA0+ tFÅ3

∞∞∞∞r^
µ
F ° ÅA0+ tFÅ3 °1

t
A0

∂∞∞∞∞
3/2

.

Now we use the Gateau differentiability of k ·k3/2 and Å ·Å3. Note that Lemma 7.2 and (7.6)
imply that

ÅA0+ tFÅ3 = 1+o(t ) .

Thus, we obtain

(7.7)
3
2

ˆ
R3

|r^ A0|°1/2(r^ A0) · (r^F )d x  °"
±
kr^Fk3/2 .

By a simple abstract result (see Lemma 7.4 below), from the fact that for any F 2 Y , (7.6)
implies (7.7), we deduce the existence of a ∏ 2 R such that the last inequality in the state-
ment of Lemma 7.3 holds. ⇤

The following lemma holds for normed spaces over K, where either K = R or K = C. In
the real case it is a special case of [9, Lemma 3.3]. If one were to apply our techniques to
the case of spinor fields, one would need the complex case.

Lemma 7.4. Let X be a normed space and let F,G 2 X § and Ω > 0 such that for any x 2 X
with hG , xi= 0 one has RehF, xi  °Ωkxk. Then there is a ∏ 2K such that

kF °∏Gk … Ω .

Proof. By applying the assumption to x times a constant of absolute value one, we see
that |hF, xi| … Ωkxk for all x 2 X with hG , xi = 0. Thus, kF |kerGk … Ω. By Hahn–Banach,
there is an F̃ 2 X § such that F̃ |kerG = F |kerG and kF̃k= kF |kerGk. In particular, kF̃k … Ω. By
construction, kerG Ω ker(F̃ °F ). Thus, by a well-known algebraic lemma [4, Lemma 3.2],
there is a ∏ 2K such that F̃ °F =∏G . Thus, kF °∏Gk= kF̃k … Ω, as claimed. ⇤

8. STUDY OF THE APPROXIMATE EULER–LAGRANGE EQUATION

In this section we study solutions A0
n to the equations

(8.1) r^ (|r^ A0
n |°1/2(r^ A0

n))°S|A0
n |A0

n =r^ rn with rn ! 0 in L3(R3,R3)

satisfying

(8.2) r^ A0
n *B in L3/2(R3,R3) .

The constant S is defined in (1.7). The functions A0
n are not necessarily those constructed

in Proposition 7.1, although this is the application that we have in mind. Note that (8.1)
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and (8.2) imply

(8.3) kA0
nk3 . 1.

Indeed, (8.1) implies r · (|A0
n |A0

n) = 0 and therefore, by Lemma 2.3, kA0
nk3 = ÅA0

nÅ3. The
boundedness of (r^ A0

n) in L3/2, which follows from (8.2), and Lemma 2.2 give (8.3).
Our goal in the two subsections of this section is to prove two lemmas concerning the

derivative and the nonderivative terms, respectively, on the left side of (8.1).

8.1. The truncation argument. We will prove the following convergence result.

Lemma 8.1. In the situation (8.1), (8.2), we have r^ A0
n ! B in Lp

loc(R3,R3) for any p < 3/2.

This lemma is in the spirit of convergence theorems for quasilinear equations due to
Boccardo and Murat [3] and, in the case of systems, Dal Maso and Murat [8]. While our
equation does not satisfy the assumptions in [8], after choosing an appropriate gauge we
can follow their argument rather closely.

Proof. We prove that every subsequence has a further subsequence along which we have
convergence in Lp

loc(R3,R3) for any p < 3/2. This clearly implies the lemma.
We abbreviate Bn :=r^A0

n . We apply Lemma 2.1 to A0
n and obtain Ãn such that r^ Ãn =

Bn and r · Ãn = 0. Moreover, the bound in Lemma 2.1 together with the L3/2-boundedness
of (Bn) resulting from (8.2) implies that Ãn is bounded in Ẇ 1,3/2(R3,R3). Thus, after pass-
ing to a subsequence, we have Ãn * Ã in Ẇ 1,3/2(R3,R3). The first consequence of this
convergence is that Bn =r^ Ãn *r^ Ã in L3/2(R3,R3) and therefore r^ Ã = B . The sec-
ond consequence is that by the Rellich–Kondrachov lemma, Ãn ! Ã in Lq

loc(R3,R3) for any
q < 3. Moreover, after passing to a further subsequence, Ãn ! Ã almost everywhere.

Let √ 2 C 1(R3,R3) with √(y) = y for |y | … 1 and √(y) = 0 for |y |   2. For ± > 0 we set
√±(y) := ±√(y/±). Let ¬ 2C 1

c (R3) and let (±n) Ω (0,1) be a bounded sequence to be speci-
fied later and multiply equation (8.1) by ¬√±n (Ãn ° Ã) to obtainˆ

R3
¬

°
|Bn |°1/2Bn ° |B |°1/2B

¢
·
°
r^√±n (Ãn ° Ã)

¢
d x

=°
ˆ
R3

|Bn |°1/2Bn ·
°
r¬^√±n (Ãn ° Ã)

¢
d x °

ˆ
R3
¬|B |°1/2B ·

°
r^√±n (Ãn ° Ã)

¢
d x

+S
ˆ
R3
¬|A0

n |A0
n ·√±n (Ãn ° Ã)d x +

ˆ
R3

rn ·r^
°
¬√±n (Ãn ° Ã)

¢
d x .

It is not difficult to see that, independently of the choice of (±n), r^√±n (Ãn ° Ã) * 0 in
L3/2(R3,R3). This implies that the second term on the right side tends to zero as n !1.
Moreover, since r^√±n (Ãn ° Ã) is bounded in L3/2(R3) and rn tends to zero in L3(R3,R3),
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the fourth term on the right side tends to zero as n !1. Thus,

limsup
n!1

ˆ
R3
¬

°
|Bn |°1/2Bn ° |B |°1/2B

¢
·
°
r^√±n (Ãn ° Ã)

¢
d x

… limsup
n!1

°
kBnk1/2

3/2kr¬k3/2k√±n (Ãn ° Ã)k1+SkA0
nk2

3k¬k3k√±n (Ãn ° Ã)k1
¢

…
°
°kr¬k3/2 +S°0k¬k3

¢
M limsup

n!1
±n(8.4)

with M := sup |√|, ° := limsupn!1kBnk1/2
3/2 and °0 := limsupn!1kA0

nk2
3. Note that ° and °0

are finite by (8.2) and (8.3). We boundˆ
R3
¬

°
|Bn |°1/2Bn ° |B |°1/2B

¢
·
°
r^√±n (Ãn ° Ã)

¢
d x

 
ˆ

{|Ãn°Ã|…±n }
¬en d x °k¬k1M 0

ˆ
{±n<|Ãn°Ã|…2±n }

hn d x(8.5)

with M 0 := sup |r≠√| and

en :=
°
|Bn |°1/2Bn ° |B |°1/2B

¢
· (Bn °B) ,

hn :=
°
|Bn |1/2 +|B |1/2¢ |r≠ (Ãn ° Ã)| .

Here we used |r^F |… |r≠F | and |r≠√(G)|… M 0|r≠G|.
By Lemma 2.1, with C denoting the implicit constant in the first bound there,ˆ

R3
hn d x …

∞∞|Bn |1/2 +|B |1/2∞∞
3

∞∞r≠ (Ãn ° Ã)
∞∞

3/2

…C
°
kBnk1/2

3/2 +kBk1/2
3/2

¢
(kBnk3/2 +kBk3/2) ,

so limsupn!1khnk1 … 4C°3 and, in particular, hn is bounded in L1.
We fix two parameters 0 < " < "0 and choose the sequence (±n) depending on those

parameters as follows. We haveˆ "0

"

ˆ
{±<|Ãn°Ã|…2±}

hn d x
d±
±

…
ˆ
R3

hn

ˆ |Ãn (x)°Ã(x)|

|Ãn (x)°Ã(x)|/2

d±
±

d x = (ln2)khnk1

and ˆ "0

"

d±
±

= ln
"0

"
.

Thus, for each n there is a ±n 2 [","0] such thatˆ
{±n<|Ãn°Ã|…2±n }

hn d x … (ln2)khnk1

ln("0/")
.

From now on, we work with this choice of ±n .
It is elementary to see that

(8.6)
°
|v |°1/2v ° |w |°1/2w

¢
· (v °w)   (|v |2 +|w |2)°1/4|v °w |2 for all v, w 2R3 ,

and therefore

(8.7) en  
°
|Bn |2 +|B |2

¢°1/4 |Bn °B |2   0.
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Assuming, in addition, that ¬  0, we can bound, using the choice of ±n and (8.5),ˆ
{|Ãn°Ã|…"}

¬en d x …
ˆ

{|Ãn°Ã|…±n }
¬en d x

…
ˆ
R3
¬

°
|Bn |°1/2Bn ° |B |°1/2B

¢
·
°
r^√±n (Ãn ° Ã)

¢
d x

+ (ln2)k¬k1M 0khnk1

ln("0/")
.

Thus, in view of (8.4),

limsup
n!1

ˆ
{|Ãn°Ã|…"}

¬en d x …
°
°kr¬k3/2 +S°0k¬k3

¢
M limsup

n!1
±n

+
(ln2)k¬k1M 0 limsupn!1khnk1

ln("0/")

…
°
°kr¬k3/2 +S°0k¬k3

¢
M"0+ 4C°3(ln2)k¬k1M 0

ln("0/")
.

Now let 0 < µ < 1 and boundˆ
R3
¬eµn d x … k¬k1°µ

1

µˆ
{|Ãn°Ã|…"}

¬en d x
∂µ

+k¬kµ1
µˆ

R3
en d x

∂µµˆ
{|Ãn°Ã|>"}

¬d x
∂1°µ

.

Since en is bounded in L1(R3) and since Ãn ! Ã almost everywhere, dominated conver-
gence implies that

limsup
n!1

ˆ
R3
¬eµn d x … k¬k1°µ

1 limsup
n!1

µˆ
{|Ãn°Ã|…"}

¬en d x
∂µ

.

Inserting the bound on the limsup on the right side, we obtain

limsup
n!1

ˆ
R3
¬eµn d x … k¬k1°µ

1

µ°
°kr¬k3/2 +S°0k¬k3

¢
M"0+ 4C°3(ln2)k¬k1M 0

ln("0/")

∂µ
.

Letting first "! 0 and then "0 ! 0, we find

lim
n!1

ˆ
R3
¬eµn d x = 0,

and therefore eµn ! 0 in L1
loc(R3). According to the following lemma, this implies Bn ! B in

Lp
loc(R3,R3) for any p < 3/2. This completes the proof. ⇤

Lemma 8.2. Let E be a set of finite measure and let (Fn) Ω L3/2(E ,R3) be bounded. Assume
that for some F 2 L3/2(E ,R3) and some µ > 0, one has

°°
|Fn |°1/2Fn ° |F |°1/2F

¢
· (Fn °F )

¢µ ! 0 in L1(E) .

Then Fn ! F in Lp (E) for any 1 … p < 3/2.

Proof. We show that any subsequence has a further subsequence along which Fn ! F in
Lp (E) for any p < 3/2. This clearly implies the lemma.
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The assumption implies that, given a subsequence, there is a further subsequence along
which one has

°
|Fn |°1/2Fn ° |F |°1/2F

¢
· (Fn °F ) ! 0 almost everywhere in E . By (8.6), this

implies Fn ! F almost everywhere on E . By Vitali’s convergence theorem, this, together
with the boundedness of (Fn) in L3/2, implies the assertion. ⇤

Looking back at the proof of Lemma 8.1, one might wonder why we passed from A0
n to

Ãn . This was needed at two places. First, in the bound on
´
¬eµn d x we used the fact that

Ãn ! Ã almost everywhere and second, in the bound on r^√±n (Ãn ° Ã), we needed the
full Jacobi matrix r≠ (Ãn ° Ã) and not only r^ (Ãn ° Ã). While we could get around the
first item by appealing to Theorem 3.1, we do not know how perform the truncation in the
second item in the gauge of Lemma 2.3.

8.2. Application of the nonlinear Rellich–Kondrachov lemma. In the previous subsec-
tion we have proved a convergence result about r^ A0

n . Independently of that, we will
now prove a convergence result for A0

n . This is where the nonlinear Rellich–Kondrachov
lemma in Theorem 3.1 enters.

Lemma 8.3. In the situation (8.1), (8.2), there is an A0 2Y with r^A0 = B and r·(|A0|A0) = 0
such that A0

n * A0 in L3(R3,R3) and A0
n ! A0 in Lq

loc(R3,R3) for any q < 3.

Proof. Let A0 2 Y with r^ A0 = B and r · (|A0|A0) = 0. Such an A0 exists, for define Ã by
(2.1), which belongs to L3 by Hardy–Littlewood–Sobolev, and then apply Lemma 2.3 to
pass from Ã to A0 by changing the gauge.

Note that by (8.1) we have r · (|A0
n |A0

n) = 0. Therefore, by Theorem 3.1, we have that
A0

n ! A0 in Lq
loc(R3,R3) for any q < 3.

On the other hand, since (A0
n) is bounded in L3 by (8.3), a subsequence converges weakly

in L3 to some A. Because of the Lq
loc convergence to A we conclude that A = A0. Applying

this argument to a sub-subsequence of an arbitrary subsequence, we obtain the claimed
weak convergence in L3 of the full sequence. ⇤

9. COMPLETION OF THE PROOF

We are now in position to prove our main result, Theorem 1.1. Let (An) Ω Y be a
minimizing sequence for S with ÅAnÅ3 = 1. By Proposition 6.3, after passing to a sub-
sequence and after a translation and dilation, which we do not reflect in the notation, we
have r^ An * B in L3/2 for some B 6¥ 0. According to Proposition 7.1, there is a sequence
(A0

n) ΩY with r · (|A0
n |A0

n) = 0 and kA0
nk3 = 1 for all n such that

(9.1) r^ A0
n °r^ An ! 0 in L3/2(R3,R3)

and

(9.2) r^ (|r^ A0
n |°1/2r^ A0

n)°S|A0
n |A0

n =r^ rn with rn ! 0 in L3(R3,R3) .

It follows from Lemmas 8.1 and 8.3 that there is an A0 2 Y with r^ A0 = B and r ·
(|A0|A0) = 0 such that A0

n * A0 in L3(R3,R3) and such that for all F 2C 1
c (R3),

(9.3)
ˆ
R3

|A0
n |A0

n ·F d x !
ˆ
R3

|A0|A0 ·F d x
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and

(9.4)
ˆ
R3

|r^ A0
n |°1/2(r^ A0

n) · (r^F )d x !
ˆ
R3

|r^ A0|°1/2(r^ A0) · (r^F )d x .

Because of (9.3) and (9.4) we deduce from (9.2) that

(9.5) r^ (|r^ A0|°1/2(r^ A0))°S|A0|A0 = 0.

Testing (9.5) with A0, we obtain

kr^ A0k3/2
3/2 °SkA0k3

3 = 0

and therefore

(9.6)
kr^ A0k3/2

3/2

kA0k3/2
3

= SkA0k3/2
3 … S

since, by weak convergence, kA0k3 … liminfn!1kA0
nk3 = 1. Note also that A0 6¥ 0 since

B =r^ A0 6¥ 0. By definition of S, (9.6) implies that A0 is a minimizer for S and that

kA0k3 = 1 and kr^ A0k3/2 = S3/2 .

Equality in the lower semicontinuity inequalities

kA0k3 … lim
n!1

kA0
nk3 = 1 and kr^ Ak3/2 … lim

n!1
kr^ A0

nk3/2 = S3/2

implies, by [25, Theorem 2.11], that (A0
n) and (r^ A0

n) converge strongly to A0 in L3 and to
r^ A0 in L3/2, respectively.

Let us now pass from the sequence (A0
n) to the original sequence (An). Because of (9.1)

we also have that r^ An !r^ A0 strongly in L3/2.
Let us assume that the gauge of the An was fixed as in Lemma 2.3 by requiring r ·

(|An |An) = 0. Of course, this condition is preserved under the translations and dilations
that are performed in the above proof. By Theorem 3.1, An ! A0 in Lq

loc(R3,R3) for any
q < 3. This, together with the boundedness of An in L3, implies by the same argument as
in the proof of Lemma 8.3 that An * A0 in L3. From kAnk3 = 1 and kA0k3 = 1 we deduce as
before that An ! A0 strongly in L3. This concludes the proof of Theorem 1.1.

10. PROOF OF THEOREM 1.2

We turn now to the proof of our second main result, Theorem 1.2, and recall that the
minimization problem ß was defined before that theorem. Let (An) ΩY be a minimizing
sequence for ß, normalized such that r · (|An |An) = 0, and let √n 2 L3(R3,C2) be a corre-
sponding sequence such that æ · (°ir° An)√n = 0. By homogeneity we may assume that
k√nk3 = 1. Since (An) is a minimizing sequence, kr^ Ank3/2 is bounded and therefore, by
the Sobolev inequality (Lemma 2.2), kAnk3 = ÅAnÅ3 . kr^ Ank3/2 . 1. Moreover, by the
zero mode equation, we have

kæ · (°ir)√nk3/2 = kæ · An√nk3/2 = k|An |√nk3/2 … kAnk3k√nk3 . 1.
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Applying the improved inequality (6.1) to our sequence, we deduce that

sup
t>0

tket¢æ · (°ir)√nk1 & 1.

Thus, by the same argument as in Proposition 6.3, after translations and dilations, we can
pass to a subsequence that converges weakly in Ẇ 1,3/2(R3,C2) to a limit √̃ 6¥ 0. By the
usual Rellich–Kondrachov theorem we infer that it converges strongly in Lq

loc(R3,C2) for
any q < 3.

We translate and rescale the An accordingly and note that these operations preserve
the zero mode equation. By passing to another subsequence, we can ensure that (r^
An) converges weakly in L3/2(R3,R3) to some B̃ . By the same argument as in the proof of
Lemma 8.3 we deduce that there is an Ã 2 Y with r^ Ã = B̃ and r · (|Ã|Ã) = 0 such that
An * Ã in L3(R3,R3) and An ! Ã in Lq

loc(R3,R3) for any q < 3. This step uses our nonlinear
Rellich–Kondrachov theorem.

Consequently, æ · An√n !æ · Ã√̃ in Lq
loc(R3,R3) for any q < 3/2. This allows us to pass to

the limit in the distributional formulation of the zero mode equation and to conclude that
æ · (°ir° Ã)√̃= 0.

By weak convergence, one has

(10.1) kr^ Ãk3/2 … liminf
n!1

kr^ Ank3/2 =ß .

By definition of ß and the fact that Ã admits a zero mode √̃ 6¥ 0, we deduce that equality
holds in (10.1). This means that Ã is a minimizer and that the convergence of (r^ An) to
r^ Ã is strong in L3/2(R3,R3). This completes the proof of Theorem 1.2. ⇤
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