arXiv:2107.06450v2 [math.AP] 16 Feb 2022

Ars Inveniendi Analytica (2022), Paper No. 1, 31 pp.
DOI 10.15781/rvnn-bp52
ISSN: 2769-8505

Existence of optimizers
in a Sobolev inequality for vector fields

Rupert L. Frank Michael Loss
LMU Munich, MCQST & Georgia Institute of
California Institute of Technology
Technology

Communicated by Jean Dolbeault

Abstract. We consider the minimization problem corresponding to a Sobolev inequality for
vector fields and show that minimizing sequences are relatively compact up to the symme-
tries of the problem. In particular, there is a minimizer. An ingredient in our proof is a
version of the Rellich-Kondrachov compactness theorem for sequences satisfying a nonlin-
ear constraint.
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1. INTRODUCTION AND MAIN RESULT

Zero modes of the three dimensional Dirac equation play a role in various physical con-
texts. The have an influence on the Stability of Matter problem (see [12]/28]) as well as on
the understanding of fermionic functional determinants in three dimensional Quantum
Electrodynamics [13]. Their occurrence leads in both situations to instabilities and it is
therefore of importance to find sharp conditions for their absence.

A zero mode is a non-trivial solution to the spinor equation

o-(-iVY)y=0-Ay  inR3,
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where ¥ : R3 — C2? is a spinor and A : R® — R3 is the vector potential with magnetic field
B =V A A, the curl of A. Moreover, o denotes the vector of Pauli matrices

So_[0 1 oo [0 =i [t 0
1711 o) 27l o) $7lo -1)

The canonical quantity whose size determines whether a solution is possible is || Bl|3/2. If
this number is too small. then a zero mode for this field configuration does not exist. The
work in [11] is an attempt to determine the optimal value for this quantity. One approach
explained in [11] is to consider the chain of inequalities

Cslywls < llo- (=iVIyllze = llo- Ayllse = | Alylizz < 1 Allsllylls,

which shows that necessarily || All3 = C;, the best constant in the inequality

(1.1 o (=iV)ylizj2 = Csllylls.

The validity of this inequality can be shown, for instance, using the Hardy-Littlewood-
Sobolev inequality [25} Theorem 4.3], although the value of the constant C; is not known.

Since the vector potential is gauge dependent, the quantity | All3 is not the ideal candi-
date and should be replaced by the ||V A Al3/2 which is dimensionally the same. Thus, a
solution of our problem is furnished by the inequality

(1.2) CollAlls < IV A Allss2

valid for all A that satisfy the condition V- (|A]A) = 0. The reason for this condition on
the divergence will be explained below. As a consequence, C;C, < ||B||3/2 is a necessary
condition for the existence of a zero mode.

In this context it is of interest that the spinor

(1.3) _ I+io-x
: Y= 1+ |x|2)3/2n’

where 17 € C? is any constant spinor, is a solution of the Euler-Lagrange equation associ-
ated with the inequality (1.1). Likewise, the field

(1.4) [(1—|x|2)w+2x-wx+ZW/\x],

AN = e

where w € R3 is a constant vector, satisfies V- (JA|A) = 0 and is a solution of the formal
Euler-Lagrange equation associated with the best constant in (1.2). It was shown in [28]
that and satisfy the zero mode equation if we require that w = (n,o1n). These
considerations lend credence to the conjecture that the spinor together with the vec-
tor field are optimizers for their respective Sobolev inequalities and, moreover, yield
the minimal value for || B||3/2.

This motivates the study of the optimal constants for the two Sobolev inequalities
and in more detail and, as a first step, we shall prove the existence of optimizers. One
should emphasize that with no symmetry results available, it is far from clear how to show
that and are indeed optimizers of their respective inequalities. We leave this to
future investigations.
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There is an abundance of results on the existence of minimizers in optimization prob-
lems related to Sobolev inequalities. The existence of minimizers in our Sobolev inequality
for spinor fields follows using ideas from concentration compactness and, while not
completely standard, does not pose real problems.

Perhaps surprisingly, the case of vector fields is significantly harder and the combina-
tion of quasilinearity, nonlocality and vectorvaluedness take it outside of the scope of stan-
dard methods. While we carry out our analysis only for inequality (I.2), we believe that the
arguments are more general and can be useful in related problems.

Let us be more specific. We consider

(1.5) W :={Ae PR R%: VA Ae 32 R%)},

endowed with the norm

I Allg := I Alls + IV A Alls/2.
Here V A - denotes the curl operator, understood in distributional sense. We will also make
use of the seminorm
(1.6) lAlls:= inf [A-Vels,

e W1,3 (RS)

where W'3(R?) denotes the space of all real functions ¢ € L] (R%) with V¢ € L*([R3,R%).
Our interest lies in the minimization problem

3/2
IV A AI32

(1.7) = in
04y || AJI3'*

Note that both numerator and denominator in this minimization problem vanish pre-
cisely when A is a gradient field. The validity of the Sobolev inequality, that is, the fact
that S > 0, follows from the Helmholtz decomposition in L3/?(R3,R3) and the Sobolev in-
equality in W'%2(R3, R?); see Lemma|2.2]

Our main result is that the infimum defining S is attained. In fact, we prove the stronger
result that all suitably normalized minimizing sequences for S are relatively compact in
2%, up to symmetries. The non-compact symmetries of the minimization problem S are
the translation and dilation symmetries, as well as a gauge symmetry, to be discussed mo-
mentarily. The problem has also a remarkable conformal symmetry, but this will not play
a major role in our arguments. As shown in Lemma|2.3] the gauge invariance can be bro-
ken by choosing for a given A € L3(R3,R%) an A’ € L3(R*,R3) with V- (|A’|A") = 0, where V-
denotes the divergence operator, understood in distributional sense. Then || A|l5 = || Alls
and for our minimization problem it is natural to work in this gauge.

The following is our main result.

Theorem 1.1. Let (A,) €% be a minimizing sequence for S, satisfyingV - (|A,|A,) =0 and
| A, lls = 1. Then there are A, € (0,00) and a, € R® such that, along a subsequence,

AnAn(An(x—ay))

converges in?% to a minimizer for S. In particular, there is a minimizer for S.
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Using the tools developed in the proof of Theoremwe will also be able to prove
existence of an optimizer for the problem that motivated our study, namely that of finding
the minimal L3/2-norm of magnetic fields admitting a zero mode. We define

T:=inf{VA All32: Ae® and 30 %y e [*(R?,C?) with o - (—=iV - A)y = 0}.

The equation o - (—-iV — A)y = 0 is understood in distributional sense in R® and, as shown
in [L1]], the requirement v € L3 can be replaced by v € LP for any 3/2 < p < co. We choose
the L3 norm here because it appears naturally in the proof.

Theorem 1.2. Let (A,) €% bea minimizing sequence for Z, satisfyingV-(|A,|A,) =0. Then
there are A, € (0,00) and a,, € R® such that, along a subsequence,

AnAn(An(x = ay))

converges in% to a minimizer A for X. In particular, there is a minimizer for X. Moreover,
if (W) € WY32(R3,C?) is a corresponding sequence of zero modes, normalized such that
lwnlls =1, then

Anl//n(/ln(x —ap))
converges weakly in Wh32(R3 C2) ro W #£0andonehaso - (—iV+ A’)ip =0.

We return now to the discussion of Theorem|[1.1] The relative compactness statement in
this theorem is the analogue of a theorem of Lions [26] concerning the Sobolev inequality
in WP (R%) for 1 < p < d. In this case, the existence of minimizers and, indeed, the identi-
fication of minimizers and the optimal constants are due to Rodemich [29], Aubin [2] and
Talenti [32].

As we will argue now, in our setting there are significant differences to the scalar set-
ting of WP (R%) and the difficulties to be overcome are the combination of quasilinearity
(coming from the power 3/2 of the derivative term), nonlocality (coming from the semi-
norm || - [I3) and vector-valuedness (of the objects to be optimized over). While existing
methods can deal with any one or two of these difficulties, it is not clear to us whether
they can deal with all three of them.

Let us be more specific concerning the various standard methods to prove existence of
minimizers. In each case we give examplary references, without being exhaustive. Sym-
metrization-based methods [31}/23] seem to be unable to deal with the vectorvaluedness
and, in particular, the curl operator and the divergence constraint. Lieb’s method of the
missing mass (24, |5/|6}|12] uses typically the Hilbert space nature of the underlying space,
or, if not, needs some additional ingredients [24}10]. In the framework of Lions’ concen-
tration compactness principle [26/27], it is unclear how to deal with the nonlocal and non-
linear dependence of the term V¢ on A in the definition of the seminorm || Allls. Finally,
Yamabe’s method of subcritical approximations [35}[33}[1] relies on an L*°-boundedness
result, whose analogue for the curl system is not clear to us.

While not obvious to us, it might very well be possible that one of these methods can be
used to prove Theorem We, however, choose a different approach. In a first step we
show that any minimizing sequence has a subsequence which, up to these symmetries,
has a nontrivial weak limit, and in a second step we show that this subsequence, in fact,
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converges strongly. The first step relies on an improved Sobolev inequality, where on the
right side ||V A All3/2 is replaced by its geometric mean with a certain Besov-space norm
of VA A. In the setting of H*(R%) such inequalities appear in [17] and build the basis of
profile decompositions [16]. The improved Sobolev inequality implies rather directly the
existence of a nontrivial weak limit point up to symmetries.

In a second step we slightly alter the minimizing sequence using Ekeland’s variational
principle in order to deduce that the minimizing sequence satisfies the Euler-Lagrange
equation with a small inhomogeneity. From this equation we can deduce that the curls of
the elements of the minimizing sequence converge in Lf; . forany p <3/2. Together with
a nonlinear Rellich-Kondrachov theorem, discussed below, this allows us to conclude that
the weak limit of the minimizing sequence satisfies the Euler-Lagrange equation and, con-
sequently, that the minimizing sequence converges strongly in /. The basic idea behind
this second step can be traced back to [14] where the idea is briefly sketched on p. 448 in
the case of scalar functions and in an unconstraint variational principle. A related argu-
ment appears also in [15]. The vector-valuedness and justifying almost everywhere con-
vergence, however, require several new ingredients compared to the scalar case.

Probably the most significant among these is a nonlinear Rellich—-Kondrachov theorem,
which says that if VA A, =~ VA Ain L3? and if V- (|A,|A,) = V- (JA]A) =0, then A, — A
in Lﬁ) . forany g < 3. In particular, a subsequence converges almost everywhere. The im-
portance here is that the constraint V- (|A,|A;) = 0 is nonlinear and, indeed, if it would be
replaced by the linear constraint V- A, = 0 the conclusion would follow from the standard
form of the Rellich-Kondrachov theorem. Our proof of the nonlinear variant is surpris-
ingly complicated and makes use of deep results by Iwaniec [20] on solutions of quasi-
linear equations. We emphasize that the almost everywhere convergence of minimizing
sequences is an ingredient in essentially every proof of existence of minimizers of Sobolev-
type inequalities. Therefore, even if a different proof of existence of a minimizer could be
found, our nonlinear Rellich-Kondrachov theorem is likely to play a fundamental role in
such a proof as well.

As we mentioned before, we explain our technique in the context of one specific in-
equality, which we find interesting in view of our work in [11]. The methods, however, are
much more general and are applicable in a variety of settings. Some immediate extensions
concern the generalization of the vector field inequality to arbitrary dimensions d = 3,

infd IA=Vola SIVAAlas.

peWl

Also, the case of general exponents 1 < p < d on the right side and g = dp/(d — p) on
the left side should be doable, after some changes in the proof of the nonlinear Rellich-
Kondrachov theorem, which currently uses the conformal invariance in the p = d/2 case.
One could consider this problem in a wider context by considering k-forms w on R or on
any Riemannian manifold. Then the Sobolev-type inequality is of the form

infllo—dgl, < ldoll,
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where the infimum is taken over k—1 forms ¢ and g = dp/(d— p). The conformal invariant
case corresponds to p = % and g = %. We stay with the case d = 3 and k = 1 since the
mathematical issues that concern us are of considerable difficulty and these difficulties
would only be obfuscated in treating the general case.

We add that the method works in the case of spinor fields, mentioned at the beginning of
this introduction. In this case, however, there is no analogue of the nonlinear divergence
constraint and therefore the standard form of the Rellich-Kondrachov theorem suffices.
Moreover, in the absence of this constraint Lions’s concentration compactness method is
applicable and gives the relative compactness of minimizing sequences in a standard way.
If one insists on using the method in the present paper, there is only a minor change in the
application of Ekeland’s theorem because the underlying Banach space is complex. We

briefly comment on this in Subsection[7.2]

Acknowledgement. Partial support through US National Science Foundation grants DMS-
1363432 and DMS-1954995 (R.L.E) and DMS-1856645 (M.L.), as well as through the Ger-
man Research Foundation grant EXC-2111-390814868 (R.L.E) is acknowledged.

2. SOME PRELIMINARY RESULTS

In this section we collect some simple results that we will use repeatedly in this paper.
We begin with the Helmholtz decomposition in LP. While this is valid for any 1 < p < oo,
we only state it for p = 3/2, the only case that we will be using.

Lemma2.1. Let A€ % . Then there are Ac W"32(R3,R%) and ¢ €¢ W3 (R®) with
A=A+V¢o and V-A=0.
This decomposition is unique, up to adding a constant to ¢. Moreover,

IV® Al SIVA Az and  |Vols SI1Als.

Here, V® A denotes the 3 x 3-matrix valued function whose entries are d; Ay, j,k €
{1,2,3}. We include the proof of this lemma, since we will need the explicit construction
later on.

Proof. Let
Px):= f/ N/ Cink 3 Y dy.

T s |x—y
It follows from an endpoint case of the Hardy-Littlewood-Sobolev inequality [30] that ¢ €
BMO(R3) with lollspmo < 1Al 3. Moreover, by Calderon-Zygmund theory (see, e.g., [18]
Section 9.4]) we know that ¢ is weakly differentiable with |[V¢||;3 < || Al ;s and, in the sense
of distributions,

—-Ap=-V-A.
Let A:= A— V¢ and B:=V A A. Then, in the sense of distributions,

VAA=B and V-A=0.
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Let deduce from this that

@2.1) A(x):i/ wd
RS |xX—YI

We denote the right side by A’(x). Note that, by the Hardy-Littlewood-Sobolev inequal-
ity and the assumption B € L3/2 we have A’ € L3. Moreover, we have VA A’ = B and
V-A'=0,50 VA(A—A")=0and V- (A— A’) = 0. We conclude that A(A— A") = 0. By Weyl's
lemma, A— A’ is smooth and therefore satisfies the mean value property Alx) - Al(x) =
3/(Anrd) fBr(x) (A(y) — A'(y)) dy for any a € R and r > 0. By the above discussion, we have

A— A’ € I3 and, therefore,

1/3 L
4]’[]’3) ||A—A,||L3(R3,R3)'

3 ; 1/3
Aw - A )| < Ay)- & d) s(
|Ax) — A'(0)| (4m3 /Brm( W-AWw)’dy
Letting r — oo, we conclude that A(x) — A’(x) = 0, and since x € R? is arbitrary we have
proved (2.1). Note that this argument also gives the uniqueness of the decomposition A =
A+ V.
Using Calder6n—Zygmund theory one deduces that A is weakly differentiable with ||V ®
All sz SIIV A All 312, as claimed. O

As an application of the Helmholtz decomposition in L3/2

Sobolev inequality. Recall that S was defined in (1.7).

, we obtain the validity of the

Lemma2.2. S$>0
Proof. Given A€ %, let Aand ¢ be as in Lemma(2.1| The usual Sobolev inequality in 1/13/2
implies
IVAAlz2 =1V AAlzn 2 IV Al 2 1 Alls
=[A=Vols=llAlls.
Thus, $>0. 0

The next lemma discusses the natural choice of the gauge in our problem. Recall that
Il - lls was defined in (1.6).

Lemma 2.3. For any A€ L3(R3,R3) there is a ¢y € WY3(R3), unique up to an additive con-
stant, such that | A—Vqlls = ll Alls. Moreover, V- (|A—V¢ol(A— Vo)) = 0. Conversely, if
A’ € L3(R3,R3) satisfies V- (|A'|A) =0 inR3, then | A'|l3 = || A||3.

Proof. The existence of ¢ follows easily from the fact that | - |3 is convex and that
(2.2) Mi={Ae PR R : VA A=0}

is closed in L3(R3,R%). The latter follows from standard properties of the distributional
curl. Note also that Vo € . for all p € W3(R3). Uniqueness of V¢ follows from the strict
convexity of |- |13, and the equation V-(| A — Vgl (A — Vey)) = 0 arises as the Euler-Lagrange
equation of the minimization problem.

Now assume that A’ € L3(R3,R3) satisfies V-(|A’| A") = 0in R® and let ¢ € W3 (R3). Apply-
ing the inequality f(1) = f(0)+ f’(0) for any convex function on [0,1] to f(£) := [|A'—tVells,



8 R. L. Frank & M. Loss

we obtain || A’ — V|3 = || A'||3. Taking the infimum over ¢ gives || Al = || A’||3, and the re-
verse inequality is trivial. 0J

3. ANONLINEAR RELLICH-KONDRACHOV LEMMA

In this section we present the technical main result of our paper. To motivate it, we note
thatif A, Ac ¥ withVA A, —VAAin L3?®3,R3) and V- A, =V-A=0, then 4,, — Ain
Lﬁ) C(Rs, R3) for any p < 3. This is a consequence of the usual Rellich-Kondrachov lemma
for scalar functions, applied to each component of A, since by the Helmholtz decomposi-
tion in L3/2 (Lemma the boundedness of VA A,, in L3/? together with V- A,, = 0 implies
boundedness of V& A,, in L3/2.

The following theorem says that the same conclusion remains true if the linear con-
straint V- A, = 0 is replaced by a nonlinear constraint V- (|A,|A,) = 0. Our proof of this

result is rather involved and takes up this and the following section.

Theorem 3.1. Let A, A€ ¥ withVAA, — VAAinLY2(R3 R3) andV-(|A,lA,) = V-(|AlA) =
0. Then A, — AinL! (R%R®) forany q<3.

loc

While a direct proof of this result on R should be possible, we use the conformal in-
variance of the relevant norms and prove the corresponding result on $3. We denote by
LP(A*S3) the space of p-integrable k-forms on S°.

Theorem 3.2. Let a,,a € L3(A'S®) with d*(a,la,) = d*(lala) = 0 and da, — da in
L32(A%S3). Then a, — a in L1(A'S®) for any g < 3.

Proof of Theorem|3.1|given Theorem[3.2 Let & : R* — S be the (inverse) stereographic
projection,

1-x?

1+x%°

To a vector field A on R® we associate the vector field @ on S by

Alx)= (DL (x) T a(F (%),

2X;i
Fix)=—2L i=1,2,3,, Sk =
7(x) T2 4(x)

where D.¥ is the Jacobi matrix of . Identifying & with a one-form on S° via the canonical
metric on $3, we see that

inf/ |A—V(p|3dx:inf/ la—do® dw
¢ Jr3 ® Jg3

and
IVAAPR?dx= | |dal?dw,
R3 S8

where o is the uniform surface measure on the sphere. Similarly, the weak convergence
of VA A, in L¥2(R3,R%) is equivalent to weak convergence of da, in L¥?(A%2S%) and the
condition V- (|A;|A;) = 0, which arises as the Euler equation of the above minimization
problem with respect to ¢, is equivalent to d* (|a@,|a,) = 0. It is at this point where we use
that the stereographic projection is conformal.
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Thus, we are in the situation of Theoremand we conclude that for any g < 3,

2 \34
|A,, — Al9 dx= | la-a,|9dw—0.
2
R3 1+x s3

Since the weight on the left side is bounded away from zero on every bounded set, this
implies the Lﬁ) C(|R23, R3) convergence of (A,). O

Thus, it remains to prove Theorem|[3.2] As a preparation we recall the Helmholtz de-
composition in 3/2 on $?, analogous to that in Lemmal[2.1]in R3. Since d* a, has integral
zero, the solvability of the Poisson problem implies that there is a function u, on $* such
that d*du,, = d* a,. Thus,

satisfies
(3.1) da,=da, and d*a,=0.
Similarly, we define u and a.
We recall the inequality
3.2) 1€ wrazaiss) < C (1N 2 pzss) + 1d™ENl 32 (s3)) 5

see, for instance, (22, Thm. 4.11] together with the fact that there are no harmonic one-
forms on S3.

Inequality (3.2), applied to &,, implies that (&,) is bounded in W3/2(A'S3) and there-
fore, after passing to a subsequence, we may assume that the sequence (@,) converges
weakly in W13/2(A1S3). By passing to the limit in we see that the limit of @,,, which
we temporarily denote by a’, satisfies.

da' =da, d*a =0.

Thus, d(a’-&@) = 0and d* (a’—a) = 0. Since there are no harmonic one-forms, we conclude
that @' = @ Thus, &, — @ in W13/2(AlS3).

A quick aside: Here we extracted a subsequence, whereas we stated Theoremfor
the full sequence. To deduce the theorem as stated we note that the proof really shows
that any subsequence has a further subsequence such that the conclusion holds, and this
proves that the conclusion holds, indeed, along the full sequence.

Next, by the usual Rellich-Kondrachov lemma mentioned at the beginning of this sec-
tion, @, — a in L?(A'S3) for any p < 3. Thus, to prove the theorem we need to show that
du,, — duin LP(A'S?) for any p < 3. To prove this, we recall the equations satisfied by a;,
and «, namely,

d*(ldu,+a,|(du,+da,)=0 and d*(ldu+a|(du+a)=0.

We think of this as an equation for du, for given @,. The key step in the proof is the
following inequality, which says that the solution u,, depends, in some sense, continuously
on the data @,. This is easy in the topology of L3, but rather deep for LP with p < 3.
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Lemma 3.3. There are absolute constants C < oo and €, > 0 such that, if 0 < € < €, and if
1,92 € WIB3(S3) and &1,&5 € L33 (A'S3) satisfy

d*(ldp1—&ldpr1—¢&1) =0 and  d*(ldp: —&E(des—E2)) =0,

then
(3.3) ldpy = dallase qigsy < C (161 = E2ll p3-se (n153) M + €2 M?)
with

M:=|& | 3-3e (A183) + ||§2||L3—35(A1§3) .

This lemma is the analogue of a result in [19] concerning the closely related equation
d* (ldeldg) = dy. We defer its proof to the following section.

The ‘problem’ with the bound is the term £ on the right side, which only becomes
small when € — 0. However, in our application where ¢; = -, and ¢, = —@, we cannot
expect convergence of the first term on the right side of ate=0.

To go around this impasse, we follow [19] and deduce from a bound in the grand
Lebesgue space L93)($3). This space (which depends on a parameter 6 > 0, which only
plays a minor role in what follows) strictly contains L3(S$®). The second ingredient, which
is due to [7], is the observation that the Rellich-Kondrachov theorem remains valid in this
space. Combining these two ingredients it will be easy to complete the proof of Theorem

B.21
We now present the details of this argument. For 6 > 0 we denote by L93(S$3) the set of
(equivalence classes of) measurable functions f on S?2 for which

0 3,--L
£l o3y = sup (851735 I £l a-s(s)).
0<6<2

1
is finite. The factor |S$3|~ 35 normalizes the measure on $3, but is not really important.

Corollary 3.4. There is an absolute constant C < oo such that if ¢1,¢> € WH3(S3) and
1,62 € L3(A'S®) satisfy

d*(lde, —&lder —&E1) =0 and  d*(ldgs—&l(dgr—E2)) =0,
then forany0 <0 <3,

1-4 0
(3.4) ldg1— d(P2||L9,3)(A1§3) <C|¢é1— £2||Lg,33](A1§3)(M,)1+3
with
M := IS1l o3 p1s3) + 18211 6.3 (A153) -
0
Proof. We abbreviate | - llg3) := Il - | ;o1 g3- Since IIfllsse(ss) < (36)5IS15% [ fllg3), the
bound implies
d dooI2 < C(3e) 215353 1 22002
(3.5) ldp1 = dpall s se g3, < CBE) 3 IS7I5% (1161 = E2llg, M + € (M)?)

forall0 < e <€, and 6 > 0. Now given a parameter 0 < § < min{e., %}, we set

161 =215

€:=0 (M/)I/Z
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Note that, in view of the explicit expression of M’, we have ¢ < § and therefore,
2

3 - 2 3- 2
|§ | 3-36 ” d(Pl - d(P2||L3_35(§3) < |§ | 3-3¢ ||d(,01 - d(p2”L3—3£(§3)

<€)™Y (161 - E2lloay M’ + 2 (M)?)
_9
= C36)™ % &1~ &2l 5 (M5 (1+62)

_2 1-4 9
<C'B8)7 3161 —&2lly 4 (M)

2

with C' = C(1 + min{e2, 2}). Moreover, in case €, < 5, we bound fore, <§ < %,

%19

3|~ 55s 2 31— 35— 2
|§ | 3-36 ” d(Pl - d(PZ ||L3735(§3) < |§ | 3-3ex ”d(PI - d(P2||L3—35* (§3)

< C'Ge T 16— Eall 53 (M5
<C'Ge. 128 30) T~ Eally ) (M5
To summarize, we have forall 0 < 6 < %,
IS8 s — dipall s g5, < Co30) F 11— Eally ) (M)
with Cg := C'max{1, 3¢./2)~5}. This implies

1-2 0
ldgy = dallg 5 < Coll§1 =2l o) (M5

Since 0 < 3, we have Cy < C3 and we obtain the claimed bound. [

As we mentioned already, the second ingredient in the proof of Theoremis aversion
of the Rellich—-Kondrachov lemma in grand Lebesgue spaces. This appears as [7], but we
give a self-contained and elementary proof.

Lemma 3.5. Assume that v,, — 0 in W"3/2(S%). Then v, — 0 in L93(S?) for any8 > 0.
Proof. For any 6, > 0, we bound, using Holder’s inequality,

0 1 0 1
g ~3,--L 0 3,1
1ol oy < sup (851 75 llwpllas)+ sup (851S°1757 [vallss)
0<6<6y dos0<2

§ «3-1 9 <315
<6187 3 lvnllz +231S°] 3% vpll3-s, -
By the ordinary Rellich-Kondrachov lemma, we have v,, — 0 in L3790($3), so

[ 1
. 3,-1,.
limsup vyl 0.5 g3y < 6 |1S°|3 limsup [ vyll3.
n—oo n—oo

Since (v,,) is bounded in L3($%) by Sobolev and since § > 0 can be chosen arbitrarily small,
we obtain the assertion. O

We are now in position to complete the proof of Theorem|[3.2] Indeed, Lemmal3.5]im-
plies that &, — @ in L¥(S®) for any 0 > 0. Thus, by Corollary du, — duin L9¥ (A'S?)
for any 6 > 0. Since | fllza(s3) < Cg0l fll 103 s3) for any g < 3 and 6 > 0, we conclude that
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du, — du in LY(A'S®) for any g < 3. Since a, = &, + du, and &, — @ in L9(S?%) for any
q < 3, this proves the assertion. O

4. NONLINEAR HELMHOLTZ DECOMPOSITION

Our goal in this section is to prove Lemma The key ingredient is a nonlinear version
of the Helmholtz decomposition due to Iwaniec [20]. A simplified proof of an improved re-
sult appearsin [21] in the case of Euclidean space and the result for Riemannian manifolds
is in [22] Proof of Thm. 8.8]. We only state the special case of the result that we need.

Theorem 4.1. There is an absolute constant C < oo such that for any 0 < € < % and any
1,3-3e (<3 1,3=3¢ <3 33 2 1g3
@ e W>°5(S°) therearey € W 1-3¢ (S°) andy € L1-3¢ (A*S”) such that
|d(p|_3‘€d(p:dw+y, d*y=0
and
1-3¢

”/}/”L?:gg (A1§3) s CE ” d(p”L3—35(§3) .

With this theorem at our disposal, we now turn to the proof of Lemma As we already
mentioned, our proof is analogous to the proof of a similar result for a related equation in
[19].

Proof of Lemmal3.3] According to Theorem forany0<e <1 thereare y € Wiz (s9)
and y € L= (A1S3) such that
|dy — da| ¢ (dpy —dgo) =dy+y,  d*y=0
and, with the obvious abbreviation for the norm,
IYllae < Celldgy —deal3 735
Testing the equations for ¢, and ¢, against ¢ and subtracting them from each other, we
get

/3(|d(,01 —&ldgr — &) = ldpa — E(dpz — &), 1dgy — dgal ™ (dpr — de)) dw
s

(4.1) :/§3<|d(,01—51|(d<l’1—51)—|d(,02—52|(d<P2—52),Y>dw-
We will bound the right side from above and the left side from below.
Using
4.2) lIxlx=1yly| < (IxI+1yl)lx—yl  forallx,yeR",
(which can be seen by adding and subtracting | x|y from the vector on the left side) we get
[{ldp1 —E1l(dgr — &) = ldpa — Eal(dpr — E2),7)|
< (ldp1 — &1l +1dps — &) ldpr — &1 — da + Eal Y|
< (Ide1l +1dp2] + 1811 +1821) (1dgr = de2l + 181 = Eal) Iyl
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By Holder’s inequality,

/3(|d(P1 =&1lldpr —¢1) —ld@r — Sl (dg2 = &2),y) dw
s

<p(lldpr —dpzlis—se + 1€1 = Ells—3¢) Iyl 3-3¢

=
< Cue (ldpr = d@2ll3-3c + 161~ E2ll3-3c) | depr — depa 1335
with
pi=lldiliz-ze +Ild@2l3-3¢ + IS113-3¢ + 152 ll3-3¢ -
We now turn to the left side in (4.1). It is elementary to see that
(lx—al(x—a)=1y-bl(y=Db),(x=y)
>1|x -y = (IxI+1yl+lal +|bl) |la— bl|x - yl
(4.3) forall x,y,a,beR".
We provide the details at the end of this proof. It follows from this inequality that
(ldp1 = E11(depr — &) = |dpr — Eal(dpa — &), |dgy — Ao~ (depy — dep2))
> 1|dg1 — do* 7 = (Idgr| + |dgal + &1+ 1E2]) €1 — Eal Iy — depa| 7.

Therefore, by Holder’s inequality;,

/3<Id<p1 —&1l(dpy — &) — dps — Eal(d s — E2), |d1 — dal 3 (degy — de,)) dw
S

> Lde) — dga 13736 — &y — Eallz—se Ay — dall 375 .

Combining the bounds on both sides of (4.1), we obtain

2ldegr - A 113738 < Cue (lldgy — dpaliz—ze + 161 — Eallz—3¢) | dp1 — depall3 758

+1lléy = Eollz—se lldepr — deall3 3¢,

which is the same as

(4.4) Hlder — deal5_s. < Cue (Ildgr — dgalls—se + 11E1 — Ealls—ze) + 111 — Ealls—3e -

Absorbing the term || dg; — d@2ll3-3. on the right side into the left side gives
(4.5) ldp1 = dg213_3. < C' (161 = S2lls-sept + €*1°)

with an absolute constant C’ < co.

This is almost the claimed bound, except that we need to replace p by M. This is where
the restriction on € comes in. We return to (4.4) in the special case where d¢, = ¢, =0,

that is,
Hdp115_5, < Ce(ldprlis—ze + 11 ”3—38)2 + (Id@ills—3¢ + 1€1113-3¢) €1 1l3-3¢ -

We restrict ourselves to € < 1/(4C) =: €. Then the term | d¢; II§_3€ on the right side can
be absorbed into the left side. Of course, all the factors ||d¢ [l3—3, on the right side can be

absorbed as well. In this way, we finally arrive at

ld@ill3-3¢ < C" 1€1lI3-3¢ forall0<e<e,
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with an absolute constant C” < co. This, together with a similar bound for d¢,, gives
p < (1+C")M, which, when inserted into (4.5), completes the proof. O

Proof of (4.3). Let c:= (a+ b)/2 and write
(lx—alx—a)—|y—-bl(y—b),x—y)=ly+ L+ I
with
Iy:=(x—clx—c)—ly—clly—0c),(x=y),
L:=(lx-allx-—a)—|x—cl(x-0c),(x=y)),
L:=(y—cl(y—c)—ly—bl(y—b),(x—y)).

To bound I from below, we note that

1
(4.6) (IXIX-Y|Y,(X-Y)) = 3 ((IXI +IXDIX -V +%)
with
4.7) = |XP+|YP=|X|IY|(X|+|Y])=0.

This follows from | X|?|Y| < 2| X* + 3|V and | X||Y|? < 1|X* + §|YI3. Applying (4.6),
with X =x—cand Y = y— c gives

1 1
1025(|x—c|+|y—c|)|x—y|2>Elx—yls.

To bound I; from above, we bound, using (4.2),
Il <llx-al(x-a)-|x—cl(x-0o)l|x~y|
<(x—al+lx=clhla-cl|x-y|
< 2lx|+lal+lch)la—cl|x—y]|
< (IxI+3lal+ }Ibl)la—bl|x—y]|.
This and the corresponding bound on I, give
\I1 + LI < (IxI + |yl +|al + bl la— bl |x - y|,
which yields the claimed bound. U

5. ANOTHER RELLICH-KONDRACHOV LEMMA

This section is a short digression and its content is not needed for the proof of Theorem
We present a different Rellich—-Kondrachov lemma for vector fields which might prove
useful in other applications.

We need to introduce a gauge-invariant local L? (semi)norm. Let Q < R be an open set
and define, for A € L2(Q,R3),

lAll2q:= inf [JA- Vollr2qrs) -
peHL(Q)
Here, H' (Q) denotes the space of all real functions ¢ € Llloc(Q) such that Vo € L?(R3,R3).

The main result of this section is as follows.
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Proposition 5.1. Suppose thatV A A, — V A Ain L¥2R3,R3). Then for any open set Q c R3
of finite measure, || A, — All2q — 0.

For the proof of this proposition, we express [| Al|2q by duality. For B € L?(Q,R3) we say
that
V-B=0 inQ and v-B=0 onodQ

if [,Vg-Bdx =0 forany ¢ € H'(Q). Clearly, if B € C'(Q) n C(Q) and 0Q is Lipschitz, this
definition coincides with the classical one.

Lemma 5.2. Forany A€ L?(Q,R3),

(5.1) |||A|||29:sup{/ A-Bdx: Bl <1, V-B=0inQ, v-B:OonGQ}.
Q

Proof. For any B as on the right side of and any ¢ € H'(Q), we have

/A~de:/(A—V<p)-de<||A—V<.0||L2(Q,R3)-
Q Q

Taking the infimum over ¢ and the supremum over B we obtain > in (5.1).
Conversely, as in Lemma there is a ¢, € H'(Q) such that

|A— V(p* “LZ(Q,R?)) = [ All2q.-

The Euler-Lagrange equation corresponding to this minimization problem is
/ Vo-(A-V,)dx=0 forallpe H (Q),
Q

thatis, B, := A— Vg, satisfies V-B, =0in Q and v- B, =00n 0Q. If B, =0 then || Alloq =0
and < in holds trivially. Otherwise, B./| B« 12(q) is an admissible candidate for the
right side in and we have

B* B*
Ar—————dx= | (A-V¢,) - ————dx=All2a.
a IBillzars Q 1B+l 2 r3)

This proves < in (5.1). O

Lemma 5.3. Let0 <n e C'(R®) with sufficiently fast decay and era3 ndx =1 and setng(x) :=
8_317(§). Then
IA=ne % Allygs < Cy VEIV A Allzyz.

Proof. We use Lemmawith Q =R3 and consider B € L?(R3,R3) with |Bll; < 1and V-B =
0 in R3. By Plancherel (with the normalization of the Fourier transform as, for instance, in
|125]), we have

t/(A—ng*Adex:/nﬂ—ﬁAkDE%}EMﬂdh
RS R3
Since k- B(k) = 0 we can write

(kA A(K)) - (k A B(k))

Alk)- B(k) = T :
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and hence

(A-7e) (kA AGR) (kABK)
o (K12 k|12 K] ’

C\/E(/[Res

Here we used the fact that, because of the sufficiently fast decay of 7, we have sup [{
1(¢)| < co. The square of the last factor is, by Plancherel and Hardy-Littlewood—-Soboleyv,

/(A—ng*A)-de:
R3

which is bounded above by

-_— 1/2
(kA A(k)) |2
|k|1/2 ‘ dk

|—1/2|1_

1
C(V/\A,W*V/\A)SCIIV/\Allg/z.
X

This is the claimed inequality. 0
Finally, we are in position to prove the main result of this section.

Proof of Proposition[5.1 We will be using the following two properties of the seminorm
I - l2q. First, we have
1AL + Azll20 < 1 A1ll2q + 1 A2ll20 -

This follows from the definition of the seminorm. Second, we have for A € L?(R3, R3),

I All2q < Il All o -
This follows from the duality lemmal5.2]and the fact that if B € L?(Q,R%) satisfies V- B = 0
in Q and v- B = 0 on 8Q, then its extension B by zero to R3 satisfies V- B = 0 in R3.
Using these two facts, together with Lemma(5.3|we can bound
An = All2a < NAp =1z % Anll2a + N x Ap—ne % All2a + lIn: x A= All2q
< 1An —=1e * Anllops + 106 * Ap —ne % All2g + 106 * A= Allyps
< ZC\/E"‘ |||77£ * Ay — MNe x All2q.

We need to show that every subsequence has a further subsequence along which, for
every fixed € > 0, [|ne * A, — ¢ * Allog — 0. Since VA A, — V A Ain L3/?(R3,R%) we have,
by the Sobolev inequality (Lemmal2.2),

(5.2) /An-de—> A-Bdx  foranyBe L3?(R3,R%) withV-B=0.
R3 R3

Moreover, since || A, — All3 is bounded, there is a sequence @, such that |A;,— A-V®, |5 is
bounded. Now for the given subsequence, there is a further subsequence along which A,,—
A—-V®, — Fin L3([R3,R3). It follows from that [ps F-Bdx =0 for all B € L3/2(R3,R%)
with V- B = 0, that is, F = V®. Thus, A, — A- V¢, — 0in L3(R3,R3) with ¢, = ®, — .
Thus, ne * A, —ne * A—n¢e x Vo, converges pointwise to zero and is bounded uniformly in
n. Thus, by dominated convergence, 7 x A, —1¢ * A—1n¢ x V¢, — 0in L?>(Q) and so,

Ine * Ap —nNe x All2a < [N * Ay —Ne x A—1¢e % V(Pn||L2(Q,R3) — 0.
This proves the proposition. 0
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6. NONZERO WEAK LIMIT

Our goal in the section is to show that a minimizing sequence has a nonzero weak limit
up to symmetries. In the language of concentration compactness, we exclude ‘vanishing’.

6.1. An improved inequality. Our goal in this section is to prove the following proposi-
tion, involving the seminorm || - [I3 from {1.6).

Proposition 6.1. Forany Ae %,
/ 1/2
Il Alls S IV A Allg)3 [sup ¢4V A All joo s gs)
>0
Note that, since e’® is convolution with a function whose L3 norm is proportional to
t~!, one has, by Holder,
A
sup £ [e"*V A All oo s g3y S IV A Al
>0

In this sense the inequality ‘improves’ upon the Sobolev inequality in Lemma

Proof. We set B:=V A A and define ¢ as in the proof of Lemma Then A— V¢ = Ais
given by (2.1). In this formula, we write

1 x- 1 1 o0
— -y, = —/ dt (4mt) 32y et
4w |x—yl3 ar " |x—y| 0

where we used (-A)™1 = fooo dte™. Thus, with a parameter T to be determined,

Ax)=Vex) =1(x) + I (x),

where
! 2
I<(x) = —/ dt(4f[t)_3/2/ dyB(y)Avxe_(x—y) /4f’
0 R3
I, (x) = —/ dt(4nt)_3/2/ dyB(y)/\Vxe‘(x—J’)Z/‘”.
T R3
Clearly,
! 2
|I<(X)| S/ dt(4ﬂt)_3/2/3 dle(y)Hvxe—(x—)/) /4t|
0 R
T
:/ d”_z/3dy|3(y)|k((x—y)/\/f)
0 R
with

k(2) := 4m)~32(1zl/2)e~% /4.
Let k be the monotone hull of k, that is,
P {(4n)—3’2(1/\/§)e—12’2 if|z] < V2,
@m)32(|zl/12)e =" if|z] = V2.
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Then, by the layer cake formula and the fact that the superlevel sets of k are balls,

/ 32 k(- ) IVDIB()dy < / k(- IVDIB(I dy
R RS

:/0 d1<t‘glz/Rg1]{,~C>K}((x—y)/\/?)lB(y)|dy

s/ dx |{k > «}|B* (x)
0

= ||kl ;1 g3y B* (x)

with the maximal function

3
B*(x) :=sup / IB(y)ldy.
r>0 4mr3 {lx—yl<r}

Thus, ,
I (x)] < ||7c||lB*(x)/ drt"? =20kl 1 sy B* () TV,
0

On the other hand, to estimate I we use the semigroup property e!® = e!2/2¢!A/2 1o

write

(4nt)‘3’2/ dyB(y)/\Vxe‘(x—y)Z/M:(27”)—3/2/ dy (™2 ) (y) AV o V2120
R?’ R?’

Thus,
|I>(X)|</ dt(2ﬂt)_3/2/ dy|(em/23)(y)Hvxe—(x—y)z/Ztl
T R3
(0. 0]
Z/ df/ dyl(e™2B)()|(£12) 2 k((x - ) IV112).
T R3
Now

/ 1" B)Y(1)(£/2) 2 k((x— ) IVtI12)dy < |e">? Blloo (£12) 21 Kl 11 g3,
R?’

< M(t/2)72) kly
with M :=sup,. tlle"* Blloo. Thus,

[o.©]
I ()] < / At M(t12) 32|kl 11 sy = MKl 1 sy 4(T12) 2.
T

To summarize, we have shown that
|A(X) = V()] < 201Kl 11 sy B* () TV + M| Kell 11 sy 4(T12) 2.
Optimizing in T, we get

|AG0) = Vo ()| < 2Kl e 1l 1 50e MY 2B (012

We raise this inequality to the third power and use the fact that the maximal function is a
bounded operator on L3/?(R3). This proves the claimed inequality. O
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Remark 6.2. The analogue of Proposition|6.1|for the Sobolev inequality for spinor fields

mentioned in the introduction is
1/2
6.1  lwlsSlo-(=iviylys[suptle®o- (-iVIiyle| ,  we W2 ®R?,CH.
>0

This is proved in exactly the same way as Proposition|6.1

6.2. Nonzero weak limit up to symmetries. In this subsection we use the improved in-
equality in Propositionto show that, up to translations and dilations, one can extract
from every minimizing sequence for S a subsequence which has a nontrivial weak limit.

Proposition 6.3. Let (A;) €% be a sequence with
lARlls =1 and VA Az S1.
Then there are A, € (0,00) and a,, € R3 such that a subsequence of
A5V A Ap) Ay (x = ap))
converges weakly in L3'2(R3 R3) to some B # 0.

Proof. We write B, := V A A,,. Applying the improved inequality from Proposition we
infer that

€:=liminfsup ¢ le'®B, Il foo (w3 R3) > 0.
=0 150

Thus, for all sufficiently large 7 there are ¢, > 0 and x,, € R® such that
tnl(e"*By) (xy)| = €/2,

that is,

@) 32e B (x) dx| = €12
RS

(6.2)

for

Bn(x) 1= tqBn(\/tuX + Xy).
Since || B, lls/2 = IIByll3/2 = 1, weak compactness implies that a subsequence of (B,,) con-
verges weakly in L32(R3 R3) to some B. Since ¥4 ¢ L3(R3), it follows from that
B #£0, as claimed. O

7. APPLYING EKELAND’S VARIATIONAL PRINCIPLE

In the previous section, in order to get a nonzero weak limit along a subsequence, we
only used limsup,,_.., (IVA Aylis/2/ 1AL ll3) > 0. We did not use the fact that A,, is mini-
mizing for (1.7). Our goal in this and the next section is to upgrade the weak convergence
to strong convergence, and we do this by using lim,, .o (IV A A, ll3/2/ 1 Axllz) = S?’3 with S
from (1.7).

More specifically, in this section we show that the minimizing sequence can be slightly
altered to satisfy a version of the Euler-Lagrange equation with a small inhomogeneity.
This will be achieved through Ekeland’s variational principle. In the next section, we will
study this approximated Euler-Lagrange equation in more detail.
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Proposition 7.1. Let (A,) € ¥ be a minimizing sequence for S with || Aplls = 1. Then there
is a sequence (A)) c % with V- (|A},|A}) =0 and | A, |l = 1 for all n such that

VAA, -VAA,—0  inL3?®R%R%

and
VA(VAALITY2UAA)=SIALA, =V AT,  withr,—0in 3R%R%).

Our goal in this section will be to prove this proposition.

7.1. Differentiability of the seminorm. The following result implies that A — |||A|||§ is
Fréchet differentiable and gives a formula for its derivative.

Lemma 7.2. Let Ae L3(R3,R3) with V- (|A|A) = 0. Then for all F € L3([R3,R3),

IA+FII3 - AlN3 -3 / NAlA-Fdx| 5 WA NENS2 + W FI3 .
R

Proof. Note that according to Lemma the assumption on A implies [|Alls = [|All3.
Moreover, since the claimed inequality is invariant under adding a gradient to F, we may
also assume that || F||3 = || Flls. We have

IA+FI3<IA+FI3 < Al3 +3/3 |A|A-Fdx+const (| Al FlI5+IFII3).
R

Since the remainder on the right side is bounded by a constant times [| A[|3/2|| F||3/ + | F|3,
this proves one of the two claimed inequalities. For the converse inequality, we choose ¢
such that [|[A+ Flls = |A+ F - V¢|3 and bound

A+ FII3 = ||A—V<p||§+3/3 |A=Vo|(A-V) -Fdx
R

—const (| A= Vol3I Il + I FII3).
To bound the right side, we use | A— Vgl|3 = | All3 = || Al3 and

/3 |A-Vo|(A-Ve)-Fdx = / |A|A-Fdx—2|IVel3llAllsllFllz — IV@l5I Flls.
R R
In this way we arrive at
IA+FII3 = |||A|||§+3/3 |A|A-Fdx
R

- COHSt(||A||3||F||§ + IIFllg + IVollisllAllsll Flis + IIV¢II§IIFII3)
and it remains to bound [|V¢|l3. We note that
V-(JA+F-V¢|(A+F-Vg))=0 and V-(]A]A) =0.

Using the R3-version of Lemma corresponding to € = 0 (which can be proved by the
same argument and is, in fact, much simpler since for e =0 Theoremis not needed) we
obtain

IV@II3 S IFlls 1A+ Flis + [l Alls).
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Inserting this into the above bound, we obtain the lower bound
IA+FII5 = A3 +3 / |A|A- F dx —const ([ AI3IIFI3* + I F13),
R
which concludes the proof. U

7.2. Applying Ekland’s variational principle. In order to prove Propositionwe apply
Ekeland’s variational principle in the following setting. We recall that % and .# were de-
fined in and (2.2), respectively, and we set

X=%u

endowed with the norm [V A All3/2. Using standard properties of weak derivatives it is
easy to see that this is, indeed, a norm and that X endowed with this norm is complete.
We claim that the dual space of X is

(7.1) X*={VAB: Be L’R,R%}

with norm

IVABlx-= inf [[B-Veglls,
(,DEWI'?’(RS)

in the sense that every functional ® € X* is of the form
@([A]):/ B-(VAA)dx for [A] € X,
R3

and conversely, any functional of this form defines an element of X*. This can again be
shown by standard arguments.

From Ekeland’s variational principle we will deduce the following lemma, which is the
core of the proof of Proposition[7.1]

Lemma 7.3. Let A€ % with ||Alls = 1. Then for any § > 0 there are A’ € % and A € R such
that
v-(A'1A) =0, 1A I3 =MA"Ns=1,
IVAA 32 <IVAAl3zz2, IVA(A = Az <6,

and

[VAVAATTY2UAA) - MUAA || <3(IVAAIS5-S)87".

Proof of Proposition|7.1| given Lemma[ 7.3 We apply Lemma(7.3]to A = A, with the choice
5 =¢€,:=|VAA, 132 — S. We obtain sequences (A)) €% and (1,) < R such that

3/2
V-(1A,1A) =0,  lALlls=1,
(7.2) IV A (A, = Anllsr2 < Ven
and
(7.3) [V AUV A A2V A AL = Al ALl AL - <3VeEnR.

Since (A,,) is minimizing, we have &, — 0 and therefore, by (7.2), V A (A}, — A,,) — 0in L3/2,
as claimed.
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Let us show that in the almost-Euler-Lagrange equation (7.3), we can replace 1, by S.
Indeed, since ([A}]) is bounded in X by (7.2), when testing against [A]] we obtain

(7.4) IVAALF?dx—A,—0.
R?’
Here we also used || A} ll3 = 1. According to and the minimizing property of A, we
have ng IVA A 132 dx — S. Therefore implies A,, — S and
[V AUV A A2V A AL = SIALLAL | 4

<|[VAUVAALITY2V A AL = Al AL AL

x +1An = SIIA, ALl x+ — 0.

Here we used the fact that IA’nIA’n is uniformly bounded in X*. Indeed, the Sobolev in-
equality in Lemmaimplies by duality that (L3/.4)* < X* continuously and so,

2
AL AL xS IALIALN 13100 < N AL Apllziz = 1AL N5 = 1.

To complete the proof, we recall the characterization of X* in (7.1), which implies that
there is an r,, € L3(R3,R3) such that

VA(VAALITY2UA A~ SIALIA, =V AT,.
After subtracting a gradient, we can assume that V- (|r,|r,) = 0 and then

Irnlls = |V A (VA A2V A AL = S|A) AL 4 — 0.

X*
This completes the proof of the proposition. 0

It remains to prove Lemma|7.3} This is almost an immediate consequence of [9] Theo-
rem 3.1], except that it is not obvious to us that the functional A — || All3 is continuously
Fréchet differentiable. Its Fréchet differentiability is a consequence of Lemma([7.2] While
it might be possible to show the continuity of its Fréchet derivative, we think it is easier
to redo in our setting the reduction of [9] Theorem 3.1] to [9) Theorem 1.1]. The observa-
tion is that because of the homogeneity of A — || Alls, one does not need its continuous
Fréchet differentiability. In fact, only its Gateaux differentiability suffices. Our proof also
shows that the same method works in the case of complex Banach spaces. This substanti-
ates our claim in the introduction that the same method works for the Sobolev inequality
for spinor fields.

Proof ofLemma We consider the metric space Z :={[A] € X : [|Alls = 1} with the met-
ricinduced by the norm in X. As a consequence of the Sobolev inequality in Lemma Z
is a closed subset of X and therefore complete. In Z we consider the functional F([A]) :=
IV A Alls/2, which is well-defined and continuous. Now given A € % with [|Alls = 1 and
6 >0, we deduce from [9] Theorem 1.1] that there is an [A’] € Z such that

IVAAl32<IVAAlzz,  IVAA =A)lz2<8,
and such that for any [A'] # [A"] € Z,

E
(7.5) IVAA"I35> IV AA3S - 51V (A" = A3z
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with € := [V A Allgg — S. According to Lemmawe can fix the gauge of A’ such that
V-(|A’|A") =0 and then || A'|3 = 1.

It remains to prove the last inequality in the statement of the lemma. Let F € % with

(7.6) |A'|A"-Fdx=0.
R3

We apply with A" = (A" + tF)/||A" + tF||3, where t = 0 is such that || A’ + tF|l3 # 0. We
conclude that

IVA(A + tF)I5)5 e A+ tFll3— 1
3/23/2 VU — /\(F— l lls A’) _
A"+ ¢FII3 0 A"+ tF|l3 t 3/2

Now we use the Gateau differentiability of || - |32 and || - [I3. Note that Lemma and
imply that

A"+ tF|ls =1+ o(2).
Thus, we obtain

3 1-1/2 ' €
(7.7) 5 IVAA (V/\A)-(V/\F)dx?—5||V/\F||3/2.
[R3

By a simple abstract result (see Lemmabelow), from the fact that for any F € %,
implies (7.7), we deduce the existence of a A € R such that the last inequality in the state-
ment of Lemmal7.3]holds. O

The following lemma holds for normed spaces over K, where either K =R or K = C. In
the real case it is a special case of [9, Lemma 3.3]. If one were to apply our techniques to
the case of spinor fields, one would need the complex case.

Lemma 7.4. Let X be a normed space and let F,G € X* and p > 0 such that for any x € X
with (G, x) = 0 one has Re(F, x) = —pllx|. Then thereis a A € K such that

IF-AGI <p.
Proof. By applying the assumption to x times a constant of absolute value one, we see
that [(F, x)| < pllx| for all x € X with (G,x) = 0. Thus, ||Flkergll < p. By Hahn-Banach,
there is an F € X* such that Flierg = Flerg and || F|| = || Flxergll. In particular, | F| < p. By

construction, ker G c ker(F — F). Thus, by a well-known algebraic lemma [4} Lemma 3.2],
there is a A € K such that F — F = AG. Thus, |F — AG|| = | F| < p, as claimed. O

8. STUDY OF THE APPROXIMATE EULER-LAGRANGE EQUATION

In this section we study solutions A}, to the equations

(8.1) VA(VAA Y2V AA)) -SIAA, =V AT,  withr,—0in L3(R3R%)
satisfying
(8.2) VAA,—~B  inL3?@®R%).

The constant S is defined in (1.7). The functions A/, are not necessarily those constructed
in Proposition although this is the application that we have in mind. Note that
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and imply
(8.3) 1ALl ST

Indeed, implies V- (|A}|A}) = 0 and therefore, by Lemma 1A, |l = Il A} lls. The
boundedness of (VA A)) in L3/2 which follows from , and Lemma give .

Our goal in the two subsections of this section is to prove two lemmas concerning the
derivative and the nonderivative terms, respectively, on the left side of (8.1).

8.1. The truncation argument. We will prove the following convergence result.
Lemma 8.1. In the situation (8.1), (8.2), we haveV A A), — B in Lf:)C(IRS, R3) for any p < 3/2.

This lemma is in the spirit of convergence theorems for quasilinear equations due to
Boccardo and Murat [3] and, in the case of systems, Dal Maso and Murat [8]. While our
equation does not satisfy the assumptions in [8], after choosing an appropriate gauge we
can follow their argument rather closely.

Proof. We prove that every subsequence has a further subsequence along which we have
convergence in I, (R3,R®) for any p < 3/2. This clearly implies the lemma.

We abbreviate B, := VA A),. We apply Lemmal(2.1/to A/, and obtain A, such that VA A, =
B, and V- A, = 0. Moreover, the bound in Lemma together with the L32-boundedness
of (B,,) resulting from implies that A,, is bounded in W'3/2(R3,R3). Thus, after pass-
ing to a subsequence, we have A, — A in W'32(R3,R3). The first consequence of this
convergence is that B, = VA A,, — VA Ain L¥?(R3,R%) and therefore V A A = B. The sec-
ond consequence is that by the Rellich-Kondrachovlemma, A, — Ain L] (R®,R%) for any
g < 3. Moreover, after passing to a further subsequence, A, — A almost everywhere.

Let ¢ € C'(R3,R3) with y/(y) = y for |y| < 1 and w(y) = 0 for |y| = 2. For § > 0 we set
vs(y) :=6w(yld). Let y € CL(R®) and let (6,,) < (0,00) be a bounded sequence to be speci-
fied later and multiply equation by yvs, (An, — A) to obtain

/ X (Bl By = 1BI"12B) - (V Ay, (An = A) dx

R

==/ |Bn|_1/an.(Vx/\u/(gn(ﬁn—A))dx—/leBl_l/ZB-(VAw(sn(An—A))dx
R R

+S/37(|A;1|A;l-u/5n(iln—il) dx+/3 -V A(xws,(A,—A))dx.
R R

It is not difficult to see that, independently of the choice of (§,,), VA w5, (A, — A) — 0 in
L32(R3 R3). This implies that the second term on the right side tends to zero as n — oo.
Moreover, since VA, (A, — A) is bounded in L32(R%) and r,, tends to zero in L?(R3,R3),
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the fourth term on the right side tends to zero as n — co. Thus,

limsup/sx(|3n|—1/23n_ IBI‘I/ZB)'(V/\Ufa,,(An—A))dx
R

n—oo

<limsup (IBnll3/51Vxl32lws,(An— Do + SIAL I3 xlIsNws, (An = A)lloo)

n—oo

(8.4) < (TIVyllas2 + STy lls) Mlimsup 6,

n—oo

with M :=sup|y|, I :=limsup,,_ IIBnIIég and I :=limsup,,_. | A}, II§. Note that I and I
are finite by and (8.3). We bound

/ X (Bl By = 1BI"2B) - (V Ay, (An = A)) dix
R

(8.5) 2/~ ~ )(endx—llxllooM'/ o h,dx
{1An—Al<bp} On<|A,—A|<26,)

with M' :=sup |V ® | and
en:=(1Bal"*By~|BI"""*B)- (B, - B),
hu:=(1Bal"? +1BI'?) Ve (4, - A)l.
Here we used [VA F|<|V® F|and [V y(G)|< M'|V&G|.
By Lemma with C denoting the implicit constant in the first bound there,
| < B B2 Ve G DL,

< C(IBul3%+ 1BI312) (IBulis2 + 1 Bllas2),

so limsup,,_ . lh,ll1 <4CT? and, in particular, hj, is bounded in L.
We fix two parameters 0 < € < ¢ and choose the sequence (§,) depending on those
parameters as follows. We have

4 das |An(x)—Ax)|
/ / hndx—s/ / —dx—(ln2)||h 1
e J{6<|A,-Al<26} o R3 |4, (x)—-A(x)|/2

/f’ ds ¢
ZZ-In=.
e O €

Thus, for each n thereisa §, € [, €] such that

and

/ Iy dx < (In2) IIIhnlh
10n<IAn—Al<26,} In(e'/e)
From now on, we work with this choice of §,,.
It is elementary to see that
8.6 (v v—w™?w) - (v-w) = (v +lwP) M v-w?  forallv,weR®,

and therefore

8.7) en=(1Bul2+1B1%) "B, - B2 >0.
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Assuming, in addition, that y = 0, we can bound, using the choice of §,, and (8.5),

/~ i )(endxs/~ i xendx
{lAn—Alse} {|An—Al<b,}

< / 3x(|Bn|‘”ZBn—|B|‘”ZB)-(vA%n(An—A))dx
R

N (In2) | ¥ lloo Ml By ll1
In(e'/€) )

Thus, in view of (8.4),
n—oo n—oo

limsup/_ ~ xendx<(TIVxliaz+STllxlls) Mlimsup &,
{lAn—Al<e}

s (In2) [y llooM'limsup,,_.o, Il nll1
In(e'/¢)

4CT3(n2) [ x oo M’
In(e'/¢)

< (TIVxlizz + ST lIxlls) Me' +

Now let 0 < 8 < 1 and bound

0 0 1-6
/ )(e?ldxsllxlli_e(/~ i Xendx) +||)(||20(/ endx) (/ i )(dx) .
R3 {lAp—Al<e} R3 {lAp—Al>¢€}

Since e, is bounded in L!(R3) and since A, — A almost everywhere, dominated conver-
gence implies that

0
limsup/ )(ez dx < ||)(||%_elimsup (/ xén dx) .
n—oo JR3 n—00 {|A,—Al<e}
Inserting the bound on the limsup on the right side, we obtain

ACT3(In2) | )(IIOOM’)G

In(e’'/€)

limsup / 3 xeddx <yl ((rnvxnm + ST xlls) Me' +
R

n—oo

Letting first ¢ — 0 and then &’ — 0, we find

lim )(ez dx=0,
n—oo R3

and therefore €9 — 0in L{ (R®). According to the following lemma, this implies B, — B in
LY (®R3,R3) for any p < 3/2. This completes the proof. O

loc

Lemma 8.2. Let E be a set of finite measure and let (F,,) c L3?(E,R%) be bounded. Assume
that for some F € L3?(E,R%) and some0 > 0, one has

_ _ 0 .
(IF,I"Y2E, — |FI"Y2F) - (F, - F)) —0  inL'(E).
Then F, — F in LP(E) forany1 < p <3/2.

Proof. We show that any subsequence has a further subsequence along which F,, — F in
LP(E) for any p < 3/2. This clearly implies the lemma.
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The assumption implies that, given a subsequence, there is a further subsequence along
which one has (|F,|"Y2F,, — |F|"\/2F) - (F,, - F) — 0 almost everywhere in E. By (8.6), this
implies F,, — F almost everywhere on E. By Vitali’s convergence theorem, this, together
with the boundedness of (F;) in 32 implies the assertion. L]

Looking back at the proof of Lemma one might wonder why we passed from A/, to
A,,. This was needed at two places. First, in the bound on f )(eg dx we used the fact that
A, — A almost everywhere and second, in the bound on V A s, (A, — A), we needed the
full Jacobi matrix V® (A,, — A) and not only V A (A,, — A). While we could get around the
first item by appealing to Theorem we do not know how perform the truncation in the
second item in the gauge of Lemma

8.2. Application of the nonlinear Rellich-Kondrachov lemma. In the previous subsec-
tion we have proved a convergence result about V A A),. Independently of that, we will
now prove a convergence result for A),. This is where the nonlinear Rellich-Kondrachov
lemma in Theorem[3.1]enters.

Lemma8.3. In the situation (8.1), (8.2), thereisan A’ € % withVAA =B andV-(|A'|A) =0
such that A}, — A" in L3®3,R% and A!, — A’ in L] (R%,R3) forany q <3.

loc

Proof. Let A' € % with VA A’ = B and V- (JA'|A") = 0. Such an A’ exists, for define A by
{2.1), which belongs to L* by Hardy-Littlewood-Sobolev, and then apply Lemma to
pass from A to A’ by changing the gauge.

Note that by we have V- (|A’n|A;1) = 0. Therefore, by Theorem we have that
A, — A'in L] ®3,R?) for any g <3.

On the other hand, since (A})) isbounded in L3 by (8.3), a subsequence converges weakly
in I3 to some A. Because of the Lﬁ) . convergence to A we conclude that A= A'. Applying
this argument to a sub-subsequence of an arbitrary subsequence, we obtain the claimed
weak convergence in L? of the full sequence. U

9. COMPLETION OF THE PROOF

We are now in position to prove our main result, Theorem Let (Ay) € % be a
minimizing sequence for S with [|A,lls = 1. By Proposition after passing to a sub-
sequence and after a translation and dilation, which we do not reflect in the notation, we
have VA A,, — B in L3/? for some B # 0. According to Proposition there is a sequence
(A) c @ with V- (|A)|A}) =0and || A}, lls = 1 for all n such that

9.1) VAA -VAA,—0  inI3?@®R3R%)
and
(9.2) VA(VAAL Y2V A A~ SIALIA, =V AT,  withr, —0in L3(R3,R%).

It follows from Lemmas[8.1] and [8.3 that there is an A’ € & with VA A’ = B and V -
(IA’| A" = 0 such that A/, — A’ in L3(R3%,R®) and such that for all F € C}(R®),

9.3) / |ALJA!,-Fdx— | |A'|A'-Fdx
R3 R3
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and

(9.4) /RgIV/\AZI_I/Z(V/\A;)-(V/\F)dx—» RSIVAA’I'UZ(V/\A')-(V/\F)dx.
Because of and we deduce from that

(9.5) VA(VAAITY2(WAA))-SIA A =0.

Testing (9.5) with A’, we obtain
IVAAEE-SIAI3=0

and therefore

IV AAIS5 11312
3
since, by weak convergence, ||A'|l3 < liminf,_. A} ll3 = 1. Note also that A’ # 0 since
B =V A A #0. By definition of S, implies that A’ is a minimizer for S and that

IAIs=1 and VA A3, =52

Equality in the lower semicontinuity inequalities
IAl3< lim Ajls=1 and VA Al < lim [V A A ll3/2 = $*2
n—oo n—oo
implies, by [25, Theorem 2.11], that (A},) and (V A A})) converge strongly to A’ in 3 andto
V A A’ in 132, respectively.

Let us now pass from the sequence (A}, to the original sequence (A,). Because of
we also have that VA A, — V A A strongly in L3/2.

Let us assume that the gauge of the A, was fixed as in Lemma [2.3| by requiring V -
(AnlAy) = 0. Of course, this condition is preserved under the translations and dilations
that are performed in the above proof. By Theorem Ap— A'in L] (R3,R®) for any
q < 3. This, together with the boundedness of A, in L°, implies by the same argument as
in the proof of Lemmathat A, — A'in I3. From || A, ]l = 1 and || A’|l5 = 1 we deduce as
before that A, — A’ strongly in L3. This concludes the proof of Theorem

10. PROOF OF THEOREM/[1.2]

We turn now to the proof of our second main result, Theorem|1.2] and recall that the
minimization problem X was defined before that theorem. Let (A;) € % be a minimizing
sequence for X, normalized such that V- (|A,|A,) = 0, and let v, € L3(R3,C?) be a corre-
sponding sequence such that o - (-iV — A,)w, = 0. By homogeneity we may assume that
lwnlls =1. Since (A;) is a minimizing sequence, |V A A,ll3/2 is bounded and therefore, by
the Sobolev inequality (Lemma, I Anlls = lAxlls S IV A Apllss2 < 1. Moreover, by the
zero mode equation, we have

lo- (=iVYypllziz =l Anypnllsiz = Anlwalls2 < 1 Anlslynlls S 1.
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Applying the improved inequality to our sequence, we deduce that

sup t]e®o- (—iV)Wplloo > 1.

>0
Thus, by the same argument as in Proposition after translations and dilations, we can
pass to a subsequence that converges weakly in W'3/2(R3,C?) to a limit ¢ # 0. By the
usual Rellich—-Kondrachov theorem we infer that it converges strongly in LI‘Z) . (R3,C?) for
any g <3.

We translate and rescale the A, accordingly and note that these operations preserve
the zero mode equation. By passing to another subsequence, we can ensure that (V A
A;) converges weakly in L3'2(R3,R3) to some B. By the same argument as in the proof of
Lemma [8.3|we deduce that there is an A € % with VA A = B and V- (|A] A) = 0 such that
A, — Ain 3®3,R3) and A,, — Ain LI‘Z)C (R3,R3) for any ¢ < 3. This step uses our nonlinear
Rellich-Kondrachov theorem.

Consequently, 0+ Ay, — 0 - A in L] (R3,R3) for any g < 3/2. This allows us to pass to
the limit in the distributional formulation of the zero mode equation and to conclude that
o-(—iV-A)y =0.

By weak convergence, one has

(10.1) ||VAA||3,2sli’?linf||v/\An||3,2:z.
—00

By definition of X and the fact that A admits a zero mode i # 0, we deduce that equality
holds in (10.I). This means that A is a minimizer and that the convergence of (V A A,,) to
V A Ais strong in L¥2(R3,R%). This completes the proof of Theorem|1.2] O
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