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NON-LINEAR SCHRÖDINGER EQUATION IN A UNIFORM

MAGNETIC FIELD

T. F. KIEFFER AND M. LOSS

School of Mathematics, Georgia Institute of Technology, Atlanta GA, USA.

Abstract. The aim of this paper is to study, in dimensions 2 and 3, the pure-
power non-linear Schrödinger equation with an external uniform magnetic field
included. In particular, we derive a general criteria on the initial data ψ0 ∈ H1

A

and the power of the non-linearity so that the corresponding solution blows
up in finite time, and we show that the time for blow up to occur decreases as
the strength of the magnetic field increases. In addition, we also discuss some
observations about Strichartz estimates in 2 dimensions for the Mehler kernel,
as well as similar blow-up results for the non-linear Pauli equation.

We dedicate this work to Ari who has influenced our research in many and fruitful
ways.

1. Introduction

The importance of Virial Identities in the theory of partial differential equations
can hardly be overstated. They can be used for proving absence of bound states
in Schrödinger operators (see [1]) and the well known Pohozaev identity is a Virial
Identity in disguise. What is maybe more surprising is that a Virial Identity is
an entry point to scattering theory and has lead to what is now called ‘Mourre
Estimates’. A very readable introduction can be found in [2]. Another application,
and this is the topic of this paper, is the study of blow up of solutions for the
non-linear Schrödinger equation

{

i∂tψ = −∆ψ + µ|ψ|p−1ψ
ψ(0)(x) = ψ0(x),

(1)

due to Glassey [3]. This system has a conserved energy

E[ψ(t)] = ‖∇ψ(t)‖2L2(Rd) +
2µ

p+ 1
‖ψ(t)‖p+1

Lp+1(Rd), (2)

and one computes with Glassey

1

4

d2

dt2
〈ψ, |x|2ψ〉L2(Rd) = 2‖∇ψ‖2L2(Rd) + µd

p− 1

p+ 1
‖ψ‖p+1

Lp+1(Rd). (3)

Thus, when p ≥ 1 + 4/d and µ < 0, then

1

4

d2

dt2
〈ψ, |x|2ψ〉L2(Rd) ≤ 2E[ψ0].

If the energy is strictly negative, then the function 〈ψ, |x|2ψ〉L2(Rd)(t) is strictly
concave and must hit zero at some time T provided that the solution were to exist
up to that point in time. Thus, the solution ceases to exist after a finite time.

Date: October 24, 2020.

1

http://arxiv.org/abs/2010.12961v1


2

The initial value problem (1) has been studied extensively by many authors;
see, for example, [4, Chapter 3] or [5] for detailed reviews. Local well-posedness
in H1(Rd) of (1) for 1 < p < 1 + 4/(d − 2) essentially follows from a fixed point
argument utilizing the Strichartz estimates for the Schrödinger unitary group eit∆.
Such estimates read

‖eit∆f‖Lq
tL

r(R×Rd) ≤ C‖f‖L2(Rd), (4)

for all f ∈ L2(Rd) and all Schrödinger admissible exponents (q, r) satisfying

q ∈ [2,∞],
2

q
= d

(

1

2
−

1

r

)

, (q, r, d) *= (2,∞, 2).

Here C > 0 is a constant depending on the numbers (q, r, d). Global well-posedness
for p < 1 + 4/d follows along familiar lines using the energy conservation and the
Gagliardo-Nirenberg inequalities.

The aim of this paper is to generalize the aformentioned blow-up result to the
pure-power NLS equation with a uniform magnetic field included, referred to as the
constant field non-linear magnetic Schrödinger (NLMS) equation. In particular, we
derive a general criteria on the initial data ψ0 ∈ H1

A
so that finite time blow-up

occurs when p ≥ 1 + 4/d. It is easy to see by a scaling argument that the length
of the time interval of local existence is inversely proportional to the strength of
the magnetic field (see Theorem 3). Since Strichartz estimates are at the heart of
some of the estimates for the nonlinear Schrödinger equation we add some simple
and, we think, interesting remarks about Strichartz estimates in 2 dimensions for
the Mehler kernel (see Theorem 2). We end the paper with a few simple remarks
concerning blow-up results for the non-linear Pauli equation (see Theorem 4 and
5).

A resolution of the problem of finite time blow-up for the constant field NLMS
equation was already claimed by G. Ribeiro in 1990 [6] in 3 dimensions, and subse-
quently generalized by A. Garcia in 2012 [7]. However, we believe that our approach
brings a new perspective to this problem as we observe that a crucial feature is the
existence of an additional conserved quantity related to the angular momentum
(see (15)). Using this additional conserved quantity, a more exact, as compared to
the results of [6, 7], virial identity for the second time derivative of the expectation
value of |x|2 is derived (see (16)). This new identity yields a different sufficient
condition on the initial data which guarantees finite time blow-up, and may also be
solved exactly in 2 dimensions with critical power for the non-linearity (see (17)).

The paper is organized as follows. In §2 we introduce the NLMS equation,
discussing local/global well-posedness and Strichartz estimates in §2.1, and study
finite time blow-up in §2.2 and §2.3. We conclude with §3 which generalizes the
results concerning the NLMS equation to the so-called non-linear Pauli equation.

Acknowledgment: The authors are grateful to Jan-Philip Solovej for many
discussions and for the hospitality at the University of Copenhagen. This work was
partially funded by NSF grant DMS-1856645.

2. Non-linear Magnetic Schrödinger Equation

The Cauchy problem for the NLMS equation in d ≥ 2 space dimensions1 reads
{

i∂tψ = (p+A)2ψ + µ|ψ|p−1ψ
ψ(0,x) = ψ0(x).

(5)

1We only discuss (5) in dimension d ≥ 2 because in dimension d = 1 it is always possible to
pass from (p +A)2 to the free Hamiltonian −∆ via a gauge transformation.
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where A is the magnetic vector potential. We typically consider (5) as an initial
value problem in the Hilbert space

H1
A(Rd;C) = {f ∈ L2(Rd;C) : (p+A)f ∈ L2(Rd;Cd)},

which is equipped with the norm ‖(p+A)f‖L2(Rd), and we will always assume the
operator (p+A)2 is essentially self-adjoint on L2(Rd;C) with domain

H2
A(Rd;C) = {f ∈ H1

A(Rd;C) : (p+A)2f ∈ L2(Rd;C)}.

If A ∈ L4(Rd;Rd) and divA ∈ L2(Rd), then by the Leinfelder-Simader theorem
[8], (p+A)2 is essentially self-adjoint on C∞

c (Rd).
The total energy associated with the NLMS equation (5) is2

ES[ψ,A](t) = TS[ψ(t),A] +
2µ

p+ 1
‖ψ(t)‖p+1

Lp+1(Rd), (6)

where TS[ψ,A] = ‖(p+A)ψ‖2L2(Rd). Note that ES[ψ,0] = E[ψ], where on the right

hand side appears (2). Often the magnetic vector potential A is understood, and
thus we will usually suppress the A-dependence of ES, simply writing ES[ψ], and
likewise for TS. It is straightforward to check via differentiation that, at least for-
mally, ‖ψ(t)‖2L2(Rd) and the total energy (6) are conserved along the flow generated

by (5).

Remark 1. It is common to apriori “fix a gauge” for the vector potential A. When
a gauge is chosen, we will always pick the symmetric gauge A = Bx⊥/2, where

x⊥ =

{

(−x2, x1), d = 2
(−x2, x1, 0), d = 3.

However, unless otherwise specified, we will generally not fix the gauge for reasons
that will become clear later.

2.1. Strichartz Estimates and Well-posedness. Local well-posedness for the
NLMS equation (5) with initial data in H1

A
(R3) first appeared in [9]. There the au-

thors consider more general non-linearities and external potentials, and also study
the orbital stability of the ground state associated with (5). Local well-posedness
results for uniform magnetic fields in dimensions d ≥ 2, and for more general mag-
netic fields, may be found in [7, Theorem 2.2], and are proved using the Strichartz
estimates of [10, 11]. For the sake of completeness, we state the local well-posedness
result of [9] for the pure-power non-linearity case and no external potential.

Theorem 1 (Cazenave-Esteban, 1988 [9]). Let d = 3, µ ∈ R, p ∈ (1, 5), and
A = Bx⊥/2. For all ψ0 ∈ H1

A
we have the following.

(1) There exists a unique maximal solution ψ ∈ C([0, T∗), H1
A
)∩C1([0, T∗), H

−1
A

)
of (5). If T∗ < ∞, then ‖(p+A)ψ(t)‖L2(Rd) → ∞ as t ↑ T∗.

(2) The mapping ψ0 .→ T∗(ψ0) is lower semi-continuous and, if t ∈ [0, T∗(ψ0))
and (φn)n≥1 ⊂ H1

A
converges to ψ0 as n → ∞, in H1

A
, then the corre-

sponding sequence of solutions (ψn)n≥1 to (5) verify ψn → ψ as n → ∞,
in C([0, t], H1

A
).

(3) If ψ0 ∈ H2
A
, then ψ ∈ C([0, T∗), H2

A
) ∩C1([0, T∗), L2).

(4) ‖ψ(t)‖L2(Rd) = ‖ψ0‖L2(Rd) and ES[ψ(t),A] = ES[ψ0,A].

Remark 2. Though Theorem 1 is proved in the symmetric gauge, by applying a
gauge transformation we can obtain a similar Theorem in other gauges. Therefore,
the restriction to the symmetric gauge is one of convenience, not necessity.

2The subscript “S” is placed on certain quantities to distinguish them from similar quantities
that come up in the discussion of the non-linear Pauli equation in §3.
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As will be discussed below, Theorem 1 also applies in two dimensions. Global
existence of H1

A
(Rd)-solutions to (5) for p < 1 + 4/d and µ < 0 follows from the

diamagnetic inequality combined with the same estimates that were applied to (1)
to obtained global existence there.3 Indeed, the diamagnetic inequality reads

|∇|ψ|(x)| ≤ |(p+A)ψ(x)|, for a.e. x ∈ R
d. (7)

From this, the Gagliardo-Nirenberg inequality, and the conservation charge and
energy for (5), we have the following bound on the kinetic energy:

‖(p+A)ψ‖2L2(Rd) ≤ |ES[ψ0]|+
2Cp+1

p+ 1
‖(p+A)ψ‖d(p−1)/2

L2(Rd)
.

Hence, if p < 1+4/d, then a uniform bound on ‖(p+A)ψ‖L2(Rd) follows. According
to the blow-up alternative of Theorem 1, we have global well-posedness of the
Cauchy problem (5) for 1 < p < 1 + 4/d.

The proof of Theorem 1 relies on homogeneous and non-homogeneous Strichartz
estimates for the unitary time evolution US(t) = exp {−it(p+A)2} when A =
Bx⊥/2. To discuss these estimates in detail, we first write

US(t) =

{

M(t), d = 2

eit∂
2
3M(t), d = 3,

(8)

where M(t) is the operator given by

M(t) = exp

{

−it

[(

p1 −
B

2
x2

)

+

(

p2 +
B

2
x1

)]}

. (9)

It is possible to write the integral kernel of the operator M(t) explicitly; see, for
example, [12] for a derivation. Known as the Mehler kernel, and denoted by the
same symbol M(t) : R4 → C, it reads

M(x,y, t) =
B

4π sin (Bt)
exp

{

B

4i

(

cot (Bt)|x− y|2 − 2x ∧ y
)

}

, (10)

where x ∧ y = x1y2 − x2y1. Using the representation (10) one has the following
Lp-estimate on the unitary time evolution for d = 3:

‖US(t)ψ0‖Lp(R3) ≤

(

|B|
√

|t|| sin (Bt)|

)1− 2
p

‖ψ0‖Lp′(R3), (11)

for all ψ0 ∈ Lp′

(R3). We note that the time decay in (11) is due to the free motion
in the third direction. Using (11) it is then possible to show

‖USψ0‖Lq
tL

r
x([0,T ]×R3) ≤ C1‖ψ0‖L2(R3), (12)

and
∥

∥

∥

∥

∫ t

0
US(t− τ)ψ(τ)dτ

∥

∥

∥

∥

Lq
tL

r
x([0,T ]×R3)

≤ C2‖ψ‖Lq̃′

t Lr̃′
x ([0,T ]×R3)

, (13)

for all Schrödinger admissible (see (4)) (q, r) and (q̃, r̃) with d = 3, and where
C1 > 0 depends only on r and T , and C2 > 0 depends only on r, r̃, and T .

The authors in [9] prove Theorem 1 for d = 3 using estimates (12) and (13).
However, using the following Theorem regarding Strichartz estimates for US(t) ≡
M(t) for the two dimensional case, we may easily prove Theorem 1 in the d = 2
case as well. Note, the magnetic evolution is periodic with period π/B which
is essentially the Larmor period. Thus, there is no decay in time and one has to
consider the evolution for 0 ≤ t ≤ π/B. The following may be somewhat surprising.

3For the defocusing case µ > 0, global existence follows for any 1 < p < 1 + 4/(d − 2) and
ψ0 ∈ H1

A
(Rd). This follows from the conservation of energy: ‖(p +A)ψ(t)‖2

L2 (Rd)
≤ ES[ψ0,A].
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Theorem 2. For the unitary propagator US(t) ≡ M(t) given by (9)-(10) we have
the identity

‖M(t)ψ0‖Lq
tL

r
x((0,π/B)×R2) = (4π)1−

4
q ‖eit∆ψ0‖Lq

tL
r
x(R×R2), (14)

for all ψ0 ∈ L2(R2) and all Schrödinger admissible exponents (q, r).

Proof. Observe that we may write the Mehler kernel (10) as

M(x,y) =
B

4π sin (Bt)
exp

{

B

4i
cot (Bt)

(

|x|2 + |y|2
)

}

exp

{

i
By ·R(Bt)x

2 sin (Bt)

}

,

where R(θ) is the usual 2× 2 rotation matrix given by

R(θ) =

(

cos (θ) − sin (θ)
sin (θ) cos (θ)

)

.

The unitary propagator US(t) ≡ M(t) acting on ψ0 : R2 → C may be written

(M(t)ψ0)(x) =
B exp

{

B
4i cot (Bt)|x|2

}

4π sin (Bt)

∫

R2

exp

{

i
By · R(Bt)x

2 sin (Bt)

}

g(y, t)dy,

where

g(y, t) = exp

{

B

4i
cot (Bt)|y|2

}

ψ0(y).

Therefore,

(M(t)ψ0)(x) =
B exp

{

B
4i cot (Bt)|x|2

}

4π sin(Bt)
Fg

(

−
BR(Bt)x

4π sin(Bt)
, t

)

,

where F is the Fourier transform defined by

(Ff)(k) =

∫

Rd

e−2πik·xf(x)dx.

Letting r ≥ 2, we may now compute
∫

R2

|(M(t)ψ0)(x)|rdx =

∣

∣

∣

∣

B

4π sin(Bt)

∣

∣

∣

∣

r ∫

R2

∣

∣

∣

∣

Fg

(

B

4π sin(Bt)
x, t

)
∣

∣

∣

∣

r

dx

=

∣

∣

∣

∣

B

4π sin(Bt)

∣

∣

∣

∣

r−2 ∫

R2

|Fg(x, t)|rdx.

If we raise this to the q/r-power, integrate over t from 0 to π/B, and use the
substitution s = B cot (Bt), we find

∫ π/B

0

(
∫

R2

|(M(t)ψ0)(x)|rdx
)

q
r

dt

=
1

(4π)2

∫ ∞

−∞

∣

∣

∣

∣

B

4π sin(Bt)

∣

∣

∣

∣

q
r
(r−2)−2(∫

R2

∣

∣

∣
F
(

e−is|·|2/4ψ0

)

(x)
∣

∣

∣

r
dx

)

q
r

ds.

If (q, r) are Schrödinger admissible, we have
q

r
(r − 2)− 2 = 0.

This last observation together with the previous calculation yields (14). !

Theorem 2 states in essence that the Strichartz estimates for the Mehler kernel
(10) are the same as those for the free Schrödinger evolution. In particular, we
bring attention to an interesting corollary to Theorem 2.

Corollary 1. For (q, r) = (4, 4), the identity (14) implies the sharp constant for the
Strichartz estimate for the Mehler kernel (10) is the same as for the free Schrödinger
evolution, namely 1/

√
2 [13].
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We refer the reader to [13] for a derivation of the sharp constant for the free
Schrödinger Strichartz estimate in the (q, r, d) = (4, 4, 2) case. The proof of the
previous corollary follows directly from the formula (14). Lastly, we mention that
a simple formula like (14) doesn’t seem possible in 3D.

2.2. Finite Time Blow-up for Uniform Magnetic Fields. We introduce the
function space

ΣS = {f ∈ H1
A(Rd;C) :

∫

Rd

|x|2|f(x)|2dx < ∞},

and define FS : ΣS → R by

FS[ψ,A] = ES[ψ,A]−BRe 〈x⊥ψ, (p+A)ψ〉L2(Rd) +
B2

2
‖ρψ‖2L2(Rd), (15)

where ρ =
√

x2
1 + x2

2.
4 The functional FS[ψ,A] defined on ΣS will play a key role

in providing a sufficient condition for blow-up of solutions to (5) when p ≥ 1 + 4/d
and µ < 0. Since the vector potential A will be fixed we will usually suppress the
A-dependence of FS and simply write FS[ψ].

Observe that the functional FS is gauge invariant, which is the main reason why
we didn’t choose to fix any particular gauge from the start. Indeed, if we select the
symmetric gauge A = Bx⊥/2, then the term

−BRe 〈x⊥ψ, (p+A)ψ〉L2(Rd) +
B2

2
‖ρψ‖2L2(Rd)

in (15) simply equals −B〈ψ, L3ψ〉L2(Rd), where L3 ≡ x⊥ · p = −i∂ϑ = −i(−x2∂1 +
x1∂2) is the x3-component of the angular momentum. Since we are considering a
uniform magnetic field along the x3-axis, it is reasonable to assert the x3-component
of the angular momentum is preserved. Indeed, at least formally,

d

dt
〈ψ, L3ψ〉L2(Rd) =

∫

Rd

|ψ|2∂ϑ|ψ|p−1 =
p− 1

p+ 1

∫

Rd

∂ϑ|ψ|p+1 = 0.

The next Lemma makes this precise, showing that, in any gauge, FS is conserved
under the time evolution of (5).

Lemma 1. Let d ∈ {2, 3} and A ∈ L2
loc(R

d;Rd) generate a uniform magnetic field
B = (0, 0, B). Let ψ0 ∈ H1

A
(Rd) and ψ ∈ C([0, T∗), H1

A
) ∩ C1([0, T∗), H

−1
A

) denote
the corresponding solution to (5). Then, FS[ψ(t)] = FS[ψ0].

The proof of Lemma 1 is given at the end of §2.3. Using that FS[ψ] is con-
served we have the following Theorem concerning the second time derivative of the
expectation value of |x|2.
Theorem 3. Let d ∈ {2, 3}, 1 < p < 1 + 4/(d − 2), A ∈ L2

loc(R
d;Rd) generate

a uniform magnetic field B = (0, 0, B), and ψ0 ∈ ΣS. Let ψ ∈ C([0, T∗);ΣS) ∩
C1([0, T∗);H

−1
A

) be the corresponding maximal solution to the initial value problem
(5). Then, the function g(t) = 1

4‖xψ(t)‖
2
L2(Rd) satisfies the virial identity:

g̈(t) = 2FS[ψ0] + µd
p− (1 + 4/d)

p+ 1
‖ψ(t)‖p+1

Lp+1(Rd) −B2‖ρψ(t)‖2L2(Rd). (16)

In particular, if d = 2 and p = 3, then (16) becomes a second-order equation for g
that can be solved exactly:

g(t) =
FS[ψ0]

2B2
+

(

g0 −
FS[ψ0]

2B2

)

cos (2Bt) +
ġ0
2B

sin (2Bt) (17)

4We will frequently switch between the polar/cylindrical coordinates (ρ,ϑ) and (ρ,ϑ, x3) and

the Cartesian coordinates (x1, x2) and (x1, x2, x3) for R2 and R3, respectively. Here ρ =
√

x2
1 + x2

2

and tan ϑ = x2/x1.
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where g0 = 1
4‖ρψ0‖2L2(R2) and ġ0 = Re 〈xψ0, (p+A)ψ0〉L2(R2).

Remark 3. It is not obvious that, for ψ0 ∈ ΣS, the corresponding solution is in
ψ ∈ C([0, T∗);ΣS) ∩ C1([0, T∗);H

−1
A

). This fact is shown in [6] in the course of
proving of Theorem 1.2 there.

The proof of Theorem 3 is reserved for §2.3. Following a similar reasoning as
discussed in §1 for (1), observe that if µ < 0 and p ≥ 1 + 4/d, then g̈(t) ≤ 2FS[ψ0].
So if FS[ψ0] < 0, then g̈(t) < 0 for all times t ∈ [0, T∗). If T∗ = +∞, then g
would necessarily hit 0 at some t∗ > 0, implying (by the uncertainty principle) that
‖(p+A)ψ(t∗)‖L2(Rd) = +∞. This contradicts the blow-up alternative of Theorem
1.

Corollary 2. Suppose µ < 0, 1+4/d ≤ p < 1+4/(d−2), ψ0 ∈ ΣS, and FS[ψ0] < 0.
Then the corresponding solution to (5) blows up in finite time. If FS[ψ0] = 0, then
blow-up occurs when ġ(0) = Re 〈xψ0, (p+A)ψ0〉L2(Rd) < 0.

Note that (17) implies the time for blow-up to occur decreases as the magnetic
field strength increases.

Consider the explicit solution (17) for d = 2 and p = 3 from Theorem 3. The
condition for g(t) < 0 at some time t ∈ (0, T∗) is given by

(

g0 −
FS[ψ0]

2B2

)2

+

(

ġ0
2B

)2

>

(

FS[ψ0]

2B2

)2

.

After some algebra this simplifies to

FS[ψ0]g0 < B2

(

g20 +
ġ20
4B2

)

. (18)

Observe that (18) is much weaker than demanding FS[ψ0] < 0 for blow-up to occur.
Consider the special case ġ0 = 0. Using the definition (15) of FS[ψ0] and choosing
the symmetric gauge A = B

2 x⊥, (18) then reduces to ES[ψ0,0] < 0. This is clearly
only satisfied in the focusing case µ < 0.

In the general case ġ0 *= 0, (18) reduces to

FS[ψ0]−
B2

4
‖ρψ0‖2L2(R2) <

Re 〈xψ0, (p+A)ψ0〉2L2(R2)

‖ρψ0‖2L2(R2)

. (19)

Choosing again the symmetric gauge A = B
2 x⊥ and using the definition (6) of ES,

then the expression (19) further reduces to

ES[ψ0,0] <
Re 〈xψ0,pψ0〉2L2(R2)

‖ρψ0‖2L2(R2)

. (20)

Since Re 〈xψ0,pψ0〉L2(R2) ≤ ‖ρψ0‖L2(R2)‖∇ψ0‖L2(R2) we see that the inequality
(20) is only satisfied if µ < 0. We note these observations are a consistency check
with the earlier observation that the defocusing H1

A
(R2)-subcritical NLMS equation

is globally well-posed.
On a final note for this section, the sufficient condition for blow-up, namely

FS[ψ0] < 0, is significantly different than the one found in [6, 7]. There, the
authors claim, based on a virial identity argument, that ES[ψ0,A] < 0 is sufficient
for blow-up to occur. For this reason we spend the next several paragraphs closely
analyzing the relationship between FS[ψ0] and ES[ψ0]. Choose the symmetric gauge
A = Bx⊥/2, B > 0, and fix ψ0 ∈ ΣS. By expanding the kinetic energy TS[ψ0,A] =
‖(p+A)ψ0‖2L2(Rd) we have that

FS[ψ0,A] = E0 +
B2

4
‖ρψ0‖2L2(Rd), (21)
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and

ES[ψ0,A] = E0 −B〈L3〉0 +
B2

4
‖ρψ0‖2L2(Rd), (22)

whereE0 ≡ ES[ψ0,0] = ‖∇ψ0‖2L2(Rd)−
2

p+1‖ψ0‖p+1
Lp+1(Rd) and 〈L3〉0 ≡ 〈L3ψ0,ψ0〉L2(Rd).

Clearly, for B = 0, FS[ψ0,0] = E0. From the expressions (21) and (22) we can im-
mediately conclude







FS[ψ0,A] < ES[ψ0,A], when 〈L3〉0 < 0,
FS[ψ0,A] > ES[ψ0,A], when 〈L3〉0 > 0,
FS[ψ0,A] = ES[ψ0,A], when 〈L3〉0 = 0.

The previous inequalities suggest that, when 〈L3〉0 < 0, it is possible to derive a
general criterion on the magnetic field strength B > 0 and the initial data ψ0 ∈ ΣS

that gives ES[ψ0,A] > 0 and FS[ψ0,A] < 0, and vice versa when 〈L3〉0 > 0. We
first note that it is clear from (21) that we must assume E0 < 0 for FS[ψ0,A] < 0
to be possible. Assuming E0 < 0, from (21) we see that if B2 < 4|E0|/‖ρψ0‖2L2(Rd),

then FS[ψ0,A] < 0, when ES[ψ0,0] < 0. Furthermore, assuming 〈L3〉0 < 0, from
(22) we observe that to have ES[ψ0,A] > 0 we must have

B|〈L3〉0|+
B2

4
‖ρψ0‖2L2(Rd) > |E0|.

Using this estimate to ensure ES[ψ0,A] > 0 we choose B > |E0/〈L3〉0|. Therefore,
for ES[ψ0,A] > 0 and FS[ψ0,A] < 0, we may choose B > 0 such that

∣

∣

∣

∣

E0

〈L3〉0

∣

∣

∣

∣

< B <
2
√

|E0|
‖ρψ0‖L2(Rd)

.

Thus, for such a B > 0 to exist, it will be necessary to have
√

|E0|‖ρψ0‖L2(Rd) < 2|〈L3〉0|.

Such an inequality can certainly be satisfied. Indeed, take d = 2, p = 5, ψ0(ρ,ϑ) =
u(ρ)e−iϑ as an L3-eigenstate with eigenvalue −1 with

u(ρ) =
800ρ√
π

e−400ρ2

.

Then, for this state, E0 = 1600(1 − 800
81π2 ) and |〈L3〉0|2/‖ρψ0‖2L2(Rd) = 800π, and

for any 2 < B < 106 will produce a positive ES[ψ0,A], but negative FS[ψ0,A].

2.3. Virial Identity and Proof of Main Result. The virial identities in this
section for the NLMS equation (5) are already present in the literature. The linear
case in any space dimension d ≥ 2 is covered in [14, Theorem 1.2], while the non-
linear generalization can be found in [7, Theorem 3.1]. We rederive these identities
for completeness, as well as express them in a form that will be useful for the
proof of Theorem 3. We treat the case of any dimension d ≥ 2 and a general,
time-independent, external magnetic field (i.e., not necessarily a uniform field).
The vector potential A : Rd → Rd generates the matrix-valued magnetic field
B : Rd → Mn×n(R) with components Bij = ∂jAi−∂iAj . We record this first virial
identity as the following Lemma.

Lemma 2 ([14, 7]). Let g(t) = 1
4‖xψ(t)‖

2
L2(Rd). Then, for any solution ψ to the

NLMS equation (5) with initial data ψ0 ∈ H2
A
(Rd;C), the following virial identity

holds:

g̈ = 2TS[ψ,A] + µd
p− 1

p+ 1
‖ψ‖p+1

Lp+1(Rd) − 2Re 〈Bxψ, (p +A)ψ〉L2(Rd). (23)
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Proof. By Theorem 1 the corresponding solution ψ ∈ C([0, T∗), H2
A
)∩C1([0, T∗), L2)

and therefore all the following computations are justified. Consider the function
f(t) = 〈ψ(t), G(x)ψ(t)〉, where G : Rd → R is a differentiable, radial multiplier to
be specified later. We denote HS = πππ2 + µ|ψ|p−1 where πππ = p + A. Using the
identity [A2, B] = A[A,B] + [A,B]A and taking the time derivative of f we find

ḟ = 〈i[πππ2, G]ψ,ψ〉L2(Rd)

= 〈i(πππ · [p, G] + [p, G] · πππ)ψ,ψ〉L2(Rd)

= 2Re 〈∇G · πππψ,ψ〉L2(Rd).

Choosing G(x) = |x|2 we arrive at

ġ = Re 〈x ·πππψ,ψ〉L2(Rd) = 〈(D + x ·A)ψ,ψ〉L2(Rd), (24)

where D = (x · p+ p · x)/2 is the dilation operator.
For the second time derivative we find

g̈ = 〈i[HS, (D + x ·A)]ψ,ψ〉L2(Rd). (25)

Recall that
d

dθ
e−iθDHSe

iθD
∣

∣

∣

θ=0
= i[HS, D],

and that (eiθDf)(x) = edθ/2f(eθx). Our task is to compute e−iθDHSeiθD. This is
straightforward. For example, for a suitable f , we have

e−iθDπππeiθDf(x) = ((eθp+A(e−θ·))f)(x),

which implies e−iθDπππ2eiθD = e2θπππ2
θ, where Aθ(x) = e−θA(e−θx) and πππθ = p+Aθ.

Similar computations yield

e−iθDHSe
iθD = e2θπππ2

θ + µ|ψ(e−θ·)|p−1.

Differentiating the previous expression with respect to θ and evaluating it at θ = 0
we find

i[HS, D] = 2πππ2 − µ(x ·∇)|ψ|p−1 +
d

dθ
πππ2
θ

∣

∣

∣

θ=0
. (26)

To complete the computation of (25) we must workout the commutator [HS,x ·
A], which reduces to [πππ2,x ·A]. One finds

[πππ2,x ·A] = πππ · [p,x ·A] + [p,x ·A] · πππ,
and

[∇,x ·A] = ∇(x ·A) = A+ (x ·∇)A−
∑

ij

xjBijei.

Since

A(x) + (x ·∇)A(x) = −
d

dθ

∣

∣

∣

θ=0
Aθ(x),

we conclude that

i[HS,x ·A] = −
d

dθ

∣

∣

∣

θ=0
πππ2
θ − (πππ ·Bx+Bx · πππ) . (27)

Combining (25), (26), and (27) we conclude (23). !

Proof of Lemma 1 and Theorem 3. We specialize to the case d = 3, as d = 2 is
similar. We will consider ψ0 ∈ H2

A
(R3) ∩ ΣS, as the general case of ψ0 ∈ ΣS will

follow from the continuous dependence portion of Theorem 1. Again, we denote
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πππ = p +A. Begin by noting that, in dimensions d ∈ {2, 3}, with B = (0, 0, B) a
uniform field, (23) becomes

g̈ = 2TS[ψ,A] + µd
p− 1

p+ 1
‖ψ‖p+1

Lp+1(Rd) − 2Re 〈Bx⊥ψ,πππψ〉L2(Rd). (28)

Therefore, the proof of Lemma 1 boils down to showing

−BRe 〈x⊥ψ,πππψ〉L2(R3) +
B2

2
‖ρψ‖2L2(R3)

is conserved. We start by computing the time derivative of 〈ψ,x⊥ · πππψ〉L2(Rd). We
first note

d

dt
〈ψ,x⊥ · πππψ〉L2(R3) = 〈i[πππ2,x⊥ ·πππ]ψ,ψ〉L2(R3) + µ〈i(L3|ψ|p−1)ψ,ψ〉L2(R3), (29)

where we recall that L3 ≡ x⊥ · p = −i∂ϑ. The second commutator on the right
hand side of (29) is straightforward to compute:

〈i(L3|ψ|p−1)ψ,ψ〉L2(R3) =
p− 1

p+ 1

∫

R3

∂ϑ|ψ|p+1 = 0.

To compute the first commutator on the right hand side of (29) we note

[πππ2,x⊥ · πππ] =
3
∑

j,k=1

(πj [πj , (x⊥)kπk] + [πj , (x⊥)kπk]πj) .

Noting that [π3,πk] = −i(∂3Ak − ∂kA3) = 0 in a uniform magnetic field directed
along the x3-axis, the above sum reduces to

[πππ2,x⊥ · πππ] =
2
∑

j,k=1

(πj [πj , (x⊥)kπk] + [πj , (x⊥)kπk]πj)

= π1[π1, x1π2]− π2[π2, x2π1]. (30)

Since ∂1A2 − ∂2A1 = B, for the first commutator in (30) we find

i[π1, x1π2] = π2 + ix1[π1,π2] = π2 +Bx1,

and for the second commutator in (30) we find

i[π2, x2π1] = π1 + ix2[π2,π1] = π1 −Bx2.

Plugging the previous two commutators back into (30) we conclude

i[πππ2,x⊥ ·πππ] = π1 (π2 +Bx1)− π2 ((p1 +A2)−Bx2)

= −2iB + 2B(x1, x2, 0) ·A+ 2B(x1, x2, 0) · p.

Therefore, (29) becomes

d

dt
Re 〈x⊥ψ,πππψ〉L2(R3) = 2BRe 〈(x1, x2, 0) · (p+A)ψ,ψ〉L2(R3). (31)

It is easily verified that the right hand side of (31) is proportional to the time
derivative of ‖ρψ‖2L2(R3), where ρ

2 = x2
1 + x2

2. That is, we have the desired identity

d

dt
Re 〈x⊥ψ,πππψ〉L2(R3) =

B

2

d

dt
‖ρψ‖2L2(R3). (32)

Finishing the proof of Theorem 3 simply amounts to rewriting the identity (28) and
using (32). !
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3. The Non-linear Pauli Equation

In this final section, we consider generalizing earlier results on the NLMS equa-
tion to the non-linear Pauli (NLP) equation. In space dimensions d ∈ {2, 3}, the
NLP equation5 reads

{

i∂tψ = [σσσ · (p+A)]2ψ + µ|ψ|p−1ψ
ψ(0,x) = ψ0(x),

(33)

where ψ : Rd → C2, and

σσσ =

{

(σ1,σ2,σ3), d = 3,
(σ1,σ2), d = 2,

is the vector of Pauli matrices, which are 2 × 2 Hermitian matrices assumed to
satisfy the commutation relations [σj ,σk] = 2iεjk&σ& and anticommutation relations
{

σj ,σk
}

= 2δjkI. A typical representation is

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

We typically consider (33) as an initial value problem in the space H1
A
(Rd;C2),

which is the obvious generalization of the space H1
A
(Rd;C) discussed in §2. Again,

we will always assume A ∈ L2
loc(R

d;Rd) is such that [σσσ · (p+A)]2 is an essentially
self-adjoint operator on L2(Rd;C2) with domain H2

A
(Rd;C2). The total energy of

(33) is

EP[ψ,A](t) = TP[ψ,A] +
2µ

p+ 1
‖ψ(t)‖p+1

Lp+1(Rd;C2), (34)

respectively, where TP[ψ,A] = ‖σσσ · (p + A)ψ‖2L2(Rd;C2) is the total Pauli kinetic
energy. Again, we usually surpress the A-dependence of EP and TP. At least
formally, the L2-norm ‖ψ(t)‖2L2(Rd;C2) and the total energy (34) are conversed along

the flow generated by (33).
Consider the case of a uniform magnetic field B = (0, 0, B), B ∈ R\{0}. Using

the algebraic properties of the Pauli matrices we note that

[σσσ · (p+A)]2 = (p+A)2 +Bσ3.

As a consequence, we have that the unitary time evolution for the Pauli operator
UP(t) = exp {−it[σσσ · (p+A)]2} is equal to

UP(t) = e−iBtσ3US(t),

where US(t) is given by (8). Hence, the estimates (11), (12), and (13) continue
to hold with US(t) replaced with UP(t). Likewise, Theorem 2 easily generalizes
to UP(t) in d = 2 dimensions. Therefore, using the same proof that was used for
Theorem 1, we have the following Theorem.

Theorem 4. Let d ∈ {2, 3}, µ ∈ R, 1 < p < 1 + 4/(d− 2), and A = Bx⊥/2. For
all ψ0 ∈ H1

A
(Rd;C2) we have the following.

(1) There exists a unique maximal solution ψ ∈ C([0, T∗), H1
A
)∩C1([0, T∗), H

−1
A

)
of (33). If T∗ < ∞, then ‖(p+A)ψ(t)‖L2(Rd) → ∞ at t ↑ T∗.

(2) The mapping ψ0 .→ T∗(ψ0) is lower semi-continuous and, if t ∈ [0, T∗(ψ0))
and (φn)n≥1 ⊂ H1

A
converges to ψ0 as n → ∞, in H1

A
, then the correspond-

ing sequence of solutions (ψn)n≥1 to (33) verify ψn → ψ as n → ∞, in
C([0, t], H1

A
).

(3) If ψ0 ∈ H2
A
, then ψ ∈ C([0, T∗), H2

A
) ∩C1([0, T∗), L2).

5Note that for d = 2, the NLP equation is not equivalent to the NLMS equation via a gauge
transformation. This is a consequence of the non-linearity “mixing” the components of ψ.
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(4) ‖ψ(t)‖L2(Rd) = ‖ψ0‖L2(Rd) and EP[ψ(t),A] = EP[ψ0,A].

In general, the diamagnetic inequality (7) no longer holds when p+A is replaced
by σσσ · (p+A). However, in 3 dimensions, as a result of the estimate

〈σσσ ·Bψ,ψ〉L2(R3;C2) = B

∫

R3

(

|ψ1|2 − |ψ2|2
)

≤ B‖ψ‖2L2(R3;C2),

we may still obtain a uniform bound on ‖(p + A)ψ‖L2(R3;C2) when p < 7/3 in
a similar manner as the magnetic Schrödinger case discussed in §2.1. A similar
estimate in 2 dimensions shows the same conclusion holds, but now with p < 3.
Therefore, by Theorem 4 we conclude global well-posedness of the Cauchy problem
(33) in the range 1 < p < 1 + 4/d, d ∈ {2, 3}, with a uniform magnetic field.

Our blow-up result for (33) is very similar to that for the NLMS equation (5).
To state the result, we introduce the function space

ΣP := {f ∈ H1
A(Rd;C2) :

∫

Rd

|x|2|f(x)|2dx < ∞},

and define FP : ΣP → R by

FP[ψ] = EP[ψ]−BRe 〈σσσ · x⊥ψ,σσσ · (p+A)ψ〉L2(Rd;C2) +
B2

2
‖ρψ‖2L2(Rd;C2). (35)

Similar to FS, the next Lemma shows FP is conserved under the time evolution of
(33).

Lemma 3. Let d ∈ {2, 3} and A ∈ L2
loc(R

d;Rd) generate a uniform magnetic field
B = (0, 0, B). Let ψ0 ∈ H1

A
(Rd;C2) and ψ ∈ C([0, T∗), H1

A
) ∩ C1([0, T∗), H

−1
A

)
denote the corresponding solution to (5). Then, FP[ψ(t)] = FP[ψ0].

The proof of Lemma 3 is almost identical to that of Lemma 1 and is reserved
for the end of §2.3. Using that FP[ψ] is conserved we have the following Theorem
concerning the second time derivative of the expectation value of |x|2.

Theorem 5. Let d ∈ {2, 3}, 1 < p < 1 + 4/(d − 2), A ∈ L2
loc(R

d;Rd) generate a
uniform magnetic field B = (0, 0, B), and ψ0 ∈ ΣP. Let T∗ ∈ (0,∞] be the time so
that ψ ∈ C([0, T∗);ΣP)∩C1([0, T∗);H

−1
A

) is the corresponding maximal solution to
the Cauchy problem (33). Then the function g(t) = 1

4‖xψ(t)‖
2
L2(Rd;C2) satisfies the

virial identity

g̈(t) = 2FP[ψ0] + µd
p− (1 + 4/d)

p+ 1
‖ψ(t)‖p+1

Lp+1(Rd) −B2‖ρψ(t)‖2L2(Rd;C2). (36)

In particular, if d = 2 and p = 3, then (36) becomes a second-order equation for g
that can be solved exactly:

g(t) =
FP[ψ0]

2B2
+

(

g0 −
FP[ψ0]

2B2

)

cos (2Bt) +
ġ0
2B

sin (2Bt) (37)

where g0 = 1
4‖ρψ0‖2L2(R2;C2) and ġ0 = Re 〈xψ0, (p+A)ψ0〉L2(R2;C2).

Corollary 3. Suppose µ < 0, 1+4/d ≤ p < 1+4/(d−2), ψ0 ∈ ΣP, and FP[ψ0] < 0.
Then the corresponding solution to (5) blows up in finite time. If FP[ψ0] = 0, then
blow-up occurs when ġ(0) = Re 〈xψ0, (p+A)ψ0〉L2(Rd) < 0.

As with the NLMS equation, both Theorem 5 and its Corollary are proved by
deriving a virial identity for the second time derivative of 〈ψ, |x|2ψ〉L2(Rd;C2). As
before, we first treat the case of a general, time-independent, external magnetic
field (not necessarily a uniform field). We record the virial identity for the NLP
equation as the following Lemma.
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Lemma 4. Let g(t) = 1
4‖xψ(t)‖

2
L2(Rd;C2). Then, for any solution ψ to the NLP

equation (33) with initial data ψ0 ∈ H2
A
(Rd;C2), the following virial identities holds:

In dimension d = 3,

g̈ = 2TP[ψ] + 3µ
p− 1

p+ 1
‖ψ‖p+1

Lp+1(R2;C2)

+ 2Re 〈σσσ · (x ∧B)ψ,σσσ · (p+A)ψ〉L2(R2;C2), (38)

and, assuming B is aligned with the x3-axis, in dimension d = 2,

g̈ = 2TP[ψ] + 2µ
p− 1

p+ 1
‖ψ‖p+1

Lp+1(R2;C2)

− 2Re 〈Bσσσ · x⊥ψ,σσσ · (p+A)ψ〉L2(R2;C2). (39)

Proof. We denote HP = [σσσ ·πππ]2+µ|ψ|p−1 where πππ = p+A. For simplicity we focus
on the d = 3 case, as the d = 2 case will be nearly identical. Computing first time
derivative of g is essentially the same as the first time derivative of g in the proof
of Lemma 2. For the second time derivative we find

g̈ = 〈i[HP, (D + x ·A)]ψ,ψ〉L2(R3;C2), (40)

where HP = [σσσ · πππ]2 + µ|ψ|p−1ψ. We worked out the commutator [HP, D] in the
same way as in the proof of Lemma 2. We find

i[HP, D] = 2[σσσ · πππ]2 − µ(x ·∇)|ψ|p−1 +
d

dθ
[σσσ · πππθ]

2
∣

∣

∣

θ=0
. (41)

where πππθ = p+Aθ.
Likewise, for the computation of

〈i[HP,x ·A]ψ,ψ〉L2(R3;C2) = 〈i[[σσσ ·πππ]2,x ·A]ψ,ψ〉L2(R3;C2) = 〈i[πππ2,x ·A]ψ,ψ〉L2(R3;C2)

we refer to the proof of Lemma 2. In total we arrive at

g = 2TP[ψ,A] + 3µ
p− 1

p+ 1
‖ψ‖p+1

Lp+1(Rd)

+
d

dθ
〈σσσ ·Bθψ,ψ〉L2(Rd) + 2Re 〈x ∧Bψ,πππψ〉L2(Rd). (42)

where Bθ(x) = e−2θB(e−θx). We may simplify the expression (42) by observing
the following calculation:

∫

R3

(x ∧B) · curl 〈ψ,σσσψ〉C2dx =

∫

R3

curl (x ∧B) · 〈ψ,σσσψ〉C2dx

=

∫

R3

(−2B− (x ·∇)B) · 〈ψ,σσσψ〉L2(R3;C2)dx

=
d

dθ

∣

∣

∣

θ=0
〈σσσ ·Bθψ,ψ〉L2(R3;C2).

Combining the previous observation with (42) we arrive at (38). !

Proof of Lemma 3 and Theorem 5. The proof of Lemma 3 and, hence, Theorem 5
is nearly identical to the proof for the NLMS equation case. In particular, we have
the identity

d

dt
Re 〈σσσ · x⊥ψ,σσσ · (p+A)ψ〉L2(Rd) =

B

2

d

dt
‖ρψ‖2L2(Rd),

which upon integration in time together with (39)-(38) yields the desired result. !
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[6] J. M. Gonçalves Ribeiro. Finite time blow-up for some nonlinear Schrödinger equations with
an external magnetic field. Nonlinear Anal., 16(11):941–948, 1991.

[7] Andoni Garcia. Magnetic virial identities and applications to blow-up for Schrödinger and
wave equations. Journal of Physics A: Mathematical and Theoretical, 45(1):015202, dec 2011.

[8] Herbert Leinfelder and Christian G. Simader. Schrödinger operators with singular magnetic
vector potentials. Math. Z., 176(1):1–19, 1981.

[9] Thierry Cazenave and Maria J. Esteban. On the stability of stationary states for nonlinear
Schrödinger equations with an external magnetic field. Mat. Apl. Comput., 7(3):155–168,
1988.

[10] Piero D’Ancona and Luca Fanelli. Strichartz and smoothing estimates of dispersive equations
with magnetic potentials. Comm. Partial Differential Equations, 33(4-6):1082–1112, 2008.

[11] Piero D’Ancona, Luca Fanelli, Luis Vega, and Nicola Visciglia. Endpoint Strichartz estimates
for the magnetic Schrödinger equation. J. Funct. Anal., 258(10):3227–3240, 2010.

[12] J. Avron, I. Herbst, and B. Simon. Schrödinger operators with magnetic fields. I. General
interactions. Duke Math. J., 45(4):847–883, 1978.

[13] Dirk Hundertmark and Vadim Zharnitsky. On sharp Strichartz inequalities in low dimensions.
Int. Math. Res. Not., pages Art. ID 34080, 18, 2006.

[14] Luca Fanelli and Luis Vega. Magnetic virial identities, weak dispersion and Strichartz in-
equalities. Math. Ann., 344(2):249–278, 2009.


