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ABSTRACT. The aim of this paper is to study, in dimensions 2 and 3, the pure-
power non-linear Schrédinger equation with an external uniform magnetic field
included. In particular, we derive a general criteria on the initial data ¥g € HA
and the power of the non-linearity so that the corresponding solution blows
up in finite time, and we show that the time for blow up to occur decreases as
the strength of the magnetic field increases. In addition, we also discuss some
observations about Strichartz estimates in 2 dimensions for the Mehler kernel,
as well as similar blow-up results for the non-linear Pauli equation.

We dedicate this work to Ari who has influenced our research in many and fruitful
ways.

1. INTRODUCTION

The importance of Virial Identities in the theory of partial differential equations
can hardly be overstated. They can be used for proving absence of bound states
in Schrédinger operators (see [1]) and the well known Pohozaev identity is a Virial
Identity in disguise. What is maybe more surprising is that a Virial Identity is
an entry point to scattering theory and has lead to what is now called ‘Mourre
Estimates’. A very readable introduction can be found in [2]. Another application,
and this is the topic of this paper, is the study of blow up of solutions for the
non-linear Schrédinger equation

{ Zat'l/} = _Ad} + #Wp_lw (1)
P(0)(x) = o (x),

due to Glassey [3]. This system has a conserved energy

2p
Elp(6)] = VY @) 72gay + mllw(t)lliﬁl(ﬂw (2)
and one computes with Glassey
1 a2 p—1
Z@(% %%9) L2(may = 2[ VY| T2 (gay + MdeHiﬁl(Rdy (3)
Thus, when p > 1+ 4/d and p < 0, then
1 d?

ZFWJ’ x|*¥) p2ray < 2E[bo].

If the energy is strictly negative, then the function (¢, [X[*¥) 2(ga)(t) is strictly
concave and must hit zero at some time 7" provided that the solution were to exist
up to that point in time. Thus, the solution ceases to exist after a finite time.
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The initial value problem (1) has been studied extensively by many authors;
see, for example, [4, Chapter 3] or [5] for detailed reviews. Local well-posedness
in HY(RY) of (1) for 1 < p < 14 4/(d — 2) essentially follows from a fixed point
argument utilizing the Strichartz estimates for the Schrédinger unitary group e*4.
Such estimates read

€2 fllar-@xrey < CllfllL2(a, (4)
for all f € L*(R?) and all Schrédinger admissible exponents (q,r) satisfying
2 1 1
q € [2,00], EZd(i_;)’ (¢,r,d) # (2,00,2).

Here C' > 0 is a constant depending on the numbers (g, r, d). Global well-posedness
for p < 1+ 4/d follows along familiar lines using the energy conservation and the
Gagliardo-Nirenberg inequalities.

The aim of this paper is to generalize the aformentioned blow-up result to the
pure-power NLS equation with a uniform magnetic field included, referred to as the
constant field non-linear magnetic Schrodinger (NLMS) equation. In particular, we
derive a general criteria on the initial data ¢y € Ha so that finite time blow-up
occurs when p > 1 +4/d. Tt is easy to see by a scaling argument that the length
of the time interval of local existence is inversely proportional to the strength of
the magnetic field (see Theorem 3). Since Strichartz estimates are at the heart of
some of the estimates for the nonlinear Schrodinger equation we add some simple
and, we think, interesting remarks about Strichartz estimates in 2 dimensions for
the Mehler kernel (see Theorem 2). We end the paper with a few simple remarks
concerning blow-up results for the non-linear Pauli equation (see Theorem 4 and
5).

A resolution of the problem of finite time blow-up for the constant field NLMS
equation was already claimed by G. Ribeiro in 1990 [6] in 3 dimensions, and subse-
quently generalized by A. Garcia in 2012 [7]. However, we believe that our approach
brings a new perspective to this problem as we observe that a crucial feature is the
existence of an additional conserved quantity related to the angular momentum
(see (15)). Using this additional conserved quantity, a more exact, as compared to
the results of [6, 7], virial identity for the second time derivative of the expectation
value of [x|? is derived (see (16)). This new identity yields a different sufficient
condition on the initial data which guarantees finite time blow-up, and may also be
solved exactly in 2 dimensions with critical power for the non-linearity (see (17)).

The paper is organized as follows. In §2 we introduce the NLMS equation,
discussing local/global well-posedness and Strichartz estimates in §2.1, and study
finite time blow-up in §2.2 and §2.3. We conclude with §3 which generalizes the
results concerning the NLMS equation to the so-called non-linear Pauli equation.

Acknowledgment: The authors are grateful to Jan-Philip Solovej for many
discussions and for the hospitality at the University of Copenhagen. This work was
partially funded by NSF grant DMS-1856645.

2. NON-LINEAR MAGNETIC SCHRODINGER EQUATION

The Cauchy problem for the NLMS equation in d > 2 space dimensions'® reads

{ i) = (p+ A)2Y + plpP~ 5)
¥(0,%x) = tho(x).

1We only discuss (5) in dimension d > 2 because in dimension d = 1 it is always possible to
pass from (p + A)? to the free Hamiltonian —A via a gauge transformation.
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where A is the magnetic vector potential. We typically consider (5) as an initial
value problem in the Hilbert space

HA(R%C) = {f € L*R%C) = (p+A)f € LA(RGCY),
which is equipped with the norm [|(p + A) | L2(ra, and we will always assume the
operator (p + A)? is essentially self-adjoint on L?(R¢;C) with domain

HAREC) = {f € HAREC) : (p+ AP/ € L3(RYC))
If A € LA(R%RY) and div A € L2(R?), then by the Leinfelder-Simader theorem

[8], (p + A)? is essentially self-adjoint on C>°(IRY).
The total energy associated with the NLMS equation (5) is?

B[, AJ) = Tl ), Al + 21005 (6)

where Ts[¢, A] = [|[(p+ A)1/1H2LQ<W). Note that Es[i, 0] = E[t], where on the right
hand side appears (2). Often the magnetic vector potential A is understood, and
thus we will usually suppress the A-dependence of Eg, simply writing Fs[¢], and
likewise for Tg. It is straightforward to check via differentiation that, at least for-
mally, [|[¢(t)]|2. (ray and the total energy (6) are conserved along the flow generated

by (5).
Remark 1. It is common to apriori “fix a gauge” for the vector potential A. When
a gauge is chosen, we will always pick the symmetric gauge A = Bx, /2, where
N (—xo,21), d=2
+ (*.7}2,1’1,0)7 d=3.
However, unless otherwise specified, we will generally not fix the gauge for reasons
that will become clear later.

2.1. Strichartz Estimates and Well-posedness. Local well-posedness for the
NLMS equation (5) with initial data in Hj (R?) first appeared in [9]. There the au-
thors consider more general non-linearities and external potentials, and also study
the orbital stability of the ground state associated with (5). Local well-posedness
results for uniform magnetic fields in dimensions d > 2, and for more general mag-
netic fields, may be found in [7, Theorem 2.2], and are proved using the Strichartz
estimates of [10, 11]. For the sake of completeness, we state the local well-posedness
result of [9] for the pure-power non-linearity case and no external potential.

Theorem 1 (Cazenave-Esteban, 1988 [9]). Let d = 3, p € R, p € (1,5), and
A = Bx /2. For all ¢y € Has we have the following.

(1) There exists a unique mazimal solution 1 € C([0,T.), HA)NC*([0,T%), Hy )
of (5). If Tx < oo, then ||(p + A)b(t)|| 2ray = 00 as t T Tk.

(2) The mapping o — Ti(tbo) is lower semi-continuous and, if t € [0,Tx (o))
and (¢pn)n>1 C HA converges to o as n — oo, in Hi, then the corre-
sponding sequence of solutions (¥ )n>1 to (5) verify ¥, — ¥ as n — oo,
in C([0,t], HY).

(3) If o € HE, then ¢ € C([0,T%), HZ) N C*([0,T%), L?).

(4) [lo@lz2@ay = Yol z2ray and Es[y(t), A] = Es[to, A].

Remark 2. Though Theorem 1 is proved in the symmetric gauge, by applying a

gauge transformation we can obtain a similar Theorem in other gauges. Therefore,
the restriction to the symmetric gauge is one of convenience, not necessity.

2The subscript “S” is placed on certain quantities to distinguish them from similar quantities
that come up in the discussion of the non-linear Pauli equation in §3.



As will be discussed below, Theorem 1 also applies in two dimensions. Global
existence of Ha (R9)-solutions to (5) for p < 1+ 4/d and p < 0 follows from the
diamagnetic inequality combined with the same estimates that were applied to (1)
to obtained global existence there.® Indeed, the diamagnetic inequality reads

VIUI()] < |(p+ Ajb(x)|,  for ae. x € Y. )

From this, the Gagliardo-Nirenberg inequality, and the conservation charge and
energy for (5), we have the following bound on the kinetic energy:

2C,
”(p + A)wHLQ(Rd) = \ESWJOH + jj+11 H(p + A)wHLZ(]Rd

Hence, if p < 1+4/d, then a uniform bound on [|(p+A)t|| L2 (ray follows. According
to the blow-up alternative of Theorem 1, we have global well-posedness of the
Cauchy problem (5) for 1 <p < 1+4/d.

The proof of Theorem 1 relies on homogeneous and non-homogeneous Strichartz
estimates for the unitary time evolution Us(t) = exp{—it(p + A)?} when A =
Bx /2. To discuss these estimates in detail, we first write

0s0={ elthr, 9 0

where M (t) is the operator given by

M(t) = exp {—it [(pl - §I2> + (pg + gmﬂ } 9)

It is possible to write the integral kernel of the operator M (t) explicitly; see, for
example, [12] for a derivation. Known as the Mehler kernel, and denoted by the
same symbol M (t) : R* — C, it reads

M(x,y,t) = cot (Bt)|x — y|? — 2x A y)} (10)

B B (
dmsin (Bt) TP\ 4
where x Ay = x1y2 — x2y1. Using the representation (10) one has the following

LP-estimate on the unitary time evolution for d = 3:

1—2
P

B
||Us<t>wo||m<ms>s< AT ) 95l (1)

for all ¢y € L¥' (R?). We note that the time decay in (11) is due to the free motion
in the third direction. Using (11) it is then possible to show

1UsvollLarr o,7)xrs) < CillthollL2(rs), (12)

and

t
| [ ste - nierar < Gl

0 LILT([0,T]xR3)
for all Schrodinger admissible (see (4)) (¢,7) and (q,7) with d = 3, and where
C1 > 0 depends only on r and T', and Cy > 0 depends only on r, 7, and T'.

The authors in [9] prove Theorem 1 for d = 3 using estimates (12) and (13).
However, using the following Theorem regarding Strichartz estimates for Ug(t) =
M (t) for the two dimensional case, we may easily prove Theorem 1 in the d = 2
case as well. Note, the magnetic evolution is periodic with period 7/B which
is essentially the Larmor period. Thus, there is no decay in time and one has to
consider the evolution for 0 < ¢ < w/B. The following may be somewhat surprising.

Lq Lr ([0,T]xR3)? (13)

3For the defocusing case n > 0, global existence follows for any 1 < p < 1+ 4/(d — 2) and
o € Hai (RY). This follows from the conservation of energy: ||(p + A)t(t )HL2 ®d) S < Eglto, Al.
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Theorem 2. For the unitary propagator Us(t) = M(t) given by (9)-(10) we have
the identity

_a
||M(ﬂ"/’o||L;?L;((o,7r/B)xR2) = (47T)1 5 ||6nAw0”L§L;(R><R2)7 (14)
for all 1o € L?(R?) and all Schridinger admissible exponents (q,7).
Proof. Observe that we may write the Mehler kernel (10) as

M(x,y) = ﬁiBt) exp {g cot (Bt) (\X\Z + |Y|2)}9XP {Z%((ggx}’

where R(#) is the usual 2 x 2 rotation matrix given by

wo = () ).

The unitary propagator Us(t) = M (t) acting on g : R? — C may be written

_ Bexp { £ cot (Bt)[x|*} By - R(Bt)x
(M(t)vo)(x) = 4; sin (B) [ P {Zm }g(}ﬁ t)dy,
where
B 2
o(3.0) = exp { T cot (Bl fun ()
Therefore,

exp{ £ co x|? L)X
o)t = P (),

where F is the Fourier transform defined by

(FF)K) = / ¢ 2R f () dx.

JRE
/ ]'—
R2

5 ¢
I\ drsin(B) ™
B

r—2
— Fg(x,t)|"dx.
A sin(Bt) /Rz Fglx, 1)l dx
If we raise this to the g/r-power, integrate over ¢ from 0 to m/B, and use the
substitution s = B cot (Bt), we find

/OW/B (/ (M <t>w0)(x>\fdx) Ca
e il (L

47 sin(Bt)
If (g, r) are Schrédinger admissible, we have

q
Iir—2)—2=0.
Ir—2)-2=0

Letting r > 2, we may now compute

/Rz [(M(t)do)(x)|"dx =

T

dx

B
47 sin(Bt)

F <67¢s\'I2/4¢0) (x)’r dx) ' ds.

This last observation together with the previous calculation yields (14). O

Theorem 2 states in essence that the Strichartz estimates for the Mehler kernel
(10) are the same as those for the free Schrodinger evolution. In particular, we
bring attention to an interesting corollary to Theorem 2.

Corollary 1. For (q,7) = (4,4), the identity (14) implies the sharp constant for the
Strichartz estimate for the Mehler kernel (10) is the same as for the free Schrodinger
evolution, namely 1/+v/2 [13].



We refer the reader to [13] for a derivation of the sharp constant for the free
Schrodinger Strichartz estimate in the (q,r,d) = (4,4,2) case. The proof of the
previous corollary follows directly from the formula (14). Lastly, we mention that
a simple formula like (14) doesn’t seem possible in 3D.

2.2. Finite Time Blow-up for Uniform Magnetic Fields. We introduce the
function space

Ss = {f € HAR%C) : /R |x|2|£(x)[2dx < oo},

and define Fg: Xg — R by

B2
F5[, A] = Es[y), A] — BRe (x 19, (p + A)) r2(rae) + 7||P1/)||2L2(Rd)7 (15)

where p = /27 + 23.* The functional Fs[s, A] defined on g will play a key role
in providing a sufficient condition for blow-up of solutions to (5) when p > 1+4/d
and g < 0. Since the vector potential A will be fixed we will usually suppress the
A-dependence of Fg and simply write Fg[¢].

Observe that the functional Fy is gauge invariant, which is the main reason why
we didn’t choose to fix any particular gauge from the start. Indeed, if we select the
symmetric gauge A = Bx /2, then the term

B2
—BRe (x19,(p+ A)Y) r2(ray + 7||P1/)H2L2(Rd)

in (15) simply equals —B (1, L3)) 2(gay, where Ly = x) - p = —i0y = —i(—x201 +
x102) is the xz-component of the angular momentum. Since we are considering a
uniform magnetic field along the x3-axis, it is reasonable to assert the x3-component
of the angular momentum is preserved. Indeed, at least formally,

d _ p—1
— (1, L 2 = 2 P 1:_/ p+l _
dtw’ 3U) L2 (R) (/]Rd [¥]“0p 2] DT e D9[] 0

The next Lemma makes this precise, showing that, in any gauge, Fg is conserved
under the time evolution of (5).

Lemma 1. Let d € {2,3} and A € L2 _(R%R?) generate a uniform magnetic field
B = (0,0,B). Let ¢y € Hy(RY) and v € C([0,T.), Hx) N C*([0,T.), Hy') denote
the corresponding solution to (5). Then, Fs[(t)] = Fs[to].

The proof of Lemma 1 is given at the end of §2.3. Using that Fg[¢] is con-
served we have the following Theorem concerning the second time derivative of the
expectation value of |x|2.

Theorem 3. Letd € {2,3}, 1 < p < 1+4/(d—2), A € L2 (R%:R?) generate
a uniform magnetic field B = (0,0, B), and o € Xs. Let ¢ € C([0,T%);Xg) N
CH([0,Ty); HA_l) be the corresponding mazimal solution to the initial value problem
(5). Then, the function g(t) = %wa(t)H%Q(Rd) satisfies the virial identity:

. p—(1+4/d) 1

i) = 20a] + pa =SSV ot )~ B0y (1)

In particular, if d = 2 and p = 3, then (16) becomes a second-order equation for g
that can be solved exactly:

g(t) = % + (go - F;[Biéo]) cos (2Bt) + 29—; sin (2Bt) (17)

AWe will frequently switch between the polar/cylindrical coordinates (p, ) and (p,d, x3) and
the Cartesian coordinates (z1,z2) and (z1, z2, z3) for R? and R3, respectively. Here p = /2% + x3

and tan ¥ = xa/x1.



where gg = iHPd’O”%%R?) and go = Re (xto, (p + A)o) 12(r2)-

Remark 3. It is not obvious that, for 1y € g, the corresponding solution is in
Y € C([0,T.);%s) N CY([0,T.); Ho'). This fact is shown in [6] in the course of
proving of Theorem 1.2 there.

The proof of Theorem 3 is reserved for §2.3. Following a similar reasoning as
discussed in §1 for (1), observe that if 4 < 0 and p > 14 4/d, then §(t) < 2Fg[to].
So if Fg[yg] < 0, then §(¢t) < 0 for all times ¢t € [0,T%). If T\ = +oo, then g
would necessarily hit 0 at some ¢, > 0, implying (by the uncertainty principle) that
(P4 A)t(te)llL2(mey = +o0. This contradicts the blow-up alternative of Theorem
1.

Corollary 2. Suppose p < 0, 1+4/d <p < 14+4/(d—2), 1o € Xs, and Fs[yp] < 0.
Then the corresponding solution to (5) blows up in finite time. If Fs[ipo] =0, then
blow-up occurs when §(0) = Re (xvo, (P + A)to) 2(ray < 0.

Note that (17) implies the time for blow-up to occur decreases as the magnetic
field strength increases.

Consider the explicit solution (17) for d = 2 and p = 3 from Theorem 3. The
condition for ¢g(¢) < 0 at some time ¢ € (0,T%) is given by

CBINT L (90 L (Bl )
o0 R 2B B2 )
After some algebra this simplifies to
)
2 ( 2 90
—_— . 1
Falioloo < 5 (g8 + 255 ) (18)

Observe that (18) is much weaker than demanding Fs[t),] < 0 for blow-up to occur.
Consider the special case go = 0. Using the definition (15) of Fg[ty] and choosing
the symmetric gauge A = ng_, (18) then reduces to Es[t), 0] < 0. This is clearly
only satisfied in the focusing case pu < 0.

In the general case o # 0, (18) reduces to

Re (X¢07 (p + A),¢O>%2(R2)
HP1/10H%2(R2)

B2
Fslo] — T”P%Wm(ma < (19)
Choosing again the symmetric gauge A = gx 1 and using the definition (6) of Ej,
then the expression (19) further reduces to
Re <X7/}0> p¢0>%2(ﬂg2)

HP%H%?(W)

Since Re (xtho, po)r2®2) < |lpvoll2@2)l|Vibollz2m2) we see that the inequality
(20) is only satisfied if p < 0. We note these observations are a consistency check
with the earlier observation that the defocusing Ha (R?)-subcritical NLMS equation
is globally well-posed.

On a final note for this section, the sufficient condition for blow-up, namely
Fs[to] < 0, is significantly different than the one found in [6, 7]. There, the
authors claim, based on a virial identity argument, that Eg[to, A] < 0 is sufficient
for blow-up to occur. For this reason we spend the next several paragraphs closely
analyzing the relationship between Fs[¢y] and Es[t]. Choose the symmetric gauge
A = Bx, /2, B >0, and fix ¢y € Xg. By expanding the kinetic energy Ts[¢o, A] =
l(p+ A)1/)0||%2<]Rd) we have that

Es[to,0] < (20)

BZ
Fs[o, A] = Ep + T‘IprH%?(Rd)v (21)



and
B2 9
Es[yo, A] = Eo — B(Ls)o + — -l p¥ollz2(re) (22)

where FEy = Es[to, 0] = ||V1/10||L2(Rd> p+1 l[olF () and (Lz)o = (L3%o, Vo) 12(r4)-
Clearly, for B = 0, Fs[tg, 0] = Ep. From the expressions (21) and (22) we can im-
mediately conclude

FS[w(‘hA] < Es[wmA], when <L3>0 < 0,

Fs[wo,A] > Es[wo,A], when <L5>0 > 0,

Fs[’ll)o,A] = Es[’d}mA], when <L3>0 =0.

The previous inequalities suggest that, when (Lz)o < 0, it is possible to derive a
general criterion on the magnetic field strength B > 0 and the initial data ¢y € Xg
that gives Fs[io, A] > 0 and Fs[ip, A] < 0, and vice versa when (L3)g > 0. We
first note that it is clear from (21) that we must assume Ey < 0 for Fs[i, A] <0
to be possible. Assuming Ey < 0, from (21) we see that if B2 < 4|E0|/Hp¢0||2L2(Rd),
then Fs[¢, A] < 0, when Eg[tpg, 0] < 0. Furthermore, assuming (L3)o < 0, from
(22) we observe that to have Eg[¢, A] > 0 we must have

BQ
Bl(Ls)ol + T”P%Hiz(n@) > |Eo|.
Using this estimate to ensure Eg[tg, A] > 0 we choose B > |Ey/(Ls)o|. Therefore,
for Es[to, A] > 0 and Fs[t, A] < 0, we may choose B > 0 such that
Ey |Eo|
(L3)o llpoll L2 ®a)
Thus, for such a B > 0 to exist, it will be necessary to have

VIEolllptoll L2 ey < 2/(Ls)ol-

Such an inequality can certainly be satisfied. Indeed, take d =2, p =5, 1o (p,?) =
u(p)e”™ as an Lz-eigenstate with eigenvalue —1 with
wlp) = 2008 —a00,?,
N3
Then, for this state, Ey = 1600(1 — &%) and |(Ls)ol* /Hp@ZJOHL2 ray = 8007, and
for any 2 < B < 106 will produce a positive Es[ig, A], but negative Fs[tg, Al.

2.3. Virial Identity and Proof of Main Result. The virial identities in this
section for the NLMS equation (5) are already present in the literature. The linear
case in any space dimension d > 2 is covered in [14, Theorem 1.2], while the non-
linear generalization can be found in [7, Theorem 3.1]. We rederive these identities
for completeness, as well as express them in a form that will be useful for the
proof of Theorem 3. We treat the case of any dimension d > 2 and a general,
time-independent, external magnetic field (i.e., not necessarily a uniform field).
The vector potential A : R? — R? generates the matrix-valued magnetic field
B :R? — M, »,(R) with components B;j = 0;A; — 0;A;. We record this first virial
identity as the following Lemma.

Lemma 2 ([14, 7]). Let g(t) = inw(t)Hiz(Rd). Then, for any solution 1) to the
NLMS equation (5) with initial data vy € HZ(R?; C), the following virial identity
holds:

§ = 2Ts [0, A]+ud \WJL(W 2Re (Bx¢, (p + A)o) 2. (23)



9

Proof. By Theorem 1 the corresponding solution v € C([0, %), HZ)NC([0, T%), L?)
and therefore all the following computations are justified. Consider the function
Ft) = (), G(x)w(t)), where G : R? — R is a differentiable, radial multiplier to
be specified later. We denote Hg = 72 + u|t)|P~! where # = p + A. Using the
identity [A%, B] = A[A, B] + [A, B]A and taking the time derivative of f we find
f: (i[”27GW»¢>L2(Rd)
= (i(m - [p,G] + [P, G] - M), 1) 2 (ra)
=2Re <VG . 11”4[), w>L2(]Rd)-
Choosing G(x) = |x|? we arrive at
g =Re(x-m,P)r2gae) = (D +x- A)h, V) p2ga), (24)
where D = (x-p + p - x)/2 is the dilation operator.
For the second time derivative we find
g = (i[Hs, (D +x - A)Jt), ¥) L2 (ra).- (25)
Recall that
d Dy oD .
— 0D Fgel — i[Hs, D
ag¢  Hse|,_, = iHs, D)
and that (P f)(x) = /2 f(efx). Our task is to compute e~ P Hge®®P. This is
straightforward. For example, for a suitable f, we have
e Pme®P f(x) = ((e"p + Ale™)) ) (x),
which implies e ?Pr2eP = 2972 where Ag(x) = e 9 A(e~%x) and mp = p+ Ay.
Similar computations yield
e—ieDHSeieD _ 62671'3 + ,UW}(e_H'”p_l-
Differentiating the previous expression with respect to # and evaluating it at =0
we find

d
i[Hs, D] = 212 — ju(x - Pl — g2l 2
ilHs, D] = 22 — p(x - V) + Somd| (26)
To complete the computation of (25) we must workout the commutator [Hg, x -
A], which reduces to [w2,x - A]. One finds

[7727X'A] :ﬂ"[p,X-A]-i-[p,X-A]'ﬂ‘,

and
[V,x-A]=V(x-A)=A+(x-V)A - x;Bje;.
j
Since
A+ (x VIAG) = —5|  Aol)

we conclude that

) _d 2

Z[HS,X-A]f—@‘azuwg—(‘erx—&—Bx-r). (27)
Combining (25), (26), and (27) we conclude (23). O

Proof of Lemma 1 and Theorem 3. We specialize to the case d = 3, as d = 2 is
similar. We will consider ¢y € HZ(R®) N g, as the general case of ¢y € Xg will
follow from the continuous dependence portion of Theorem 1. Again, we denote
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7 = p + A. Begin by noting that, in dimensions d € {2,3}, with B = (0,0, B) a
uniform field, (23) becomes

. p—1
g =2Ts[¢, Al + udm”d)“itil(ﬂgd) = 2Re (Bx 9, mY) r2(Ra)- (28)

Therefore, the proof of Lemma 1 boils down to showing
B2
—BRe (x19, ) 12m3) + 7“/”1’“%2(11@3)

is conserved. We start by computing the time derivative of (¢, x| ~1r1/))L2(Rd). We
first note

d
E("Z’aXL ) p2rey = (A% X0 wY, ) ey + pli(Ls|[P ), ) p2rsy,  (29)

where we recall that Ls = x; - p = —idy. The second commutator on the right
hand side of (29) is straightforward to compute:

(L3l ), ) 12 ey = % /]R AylyPt = 0.

To compute the first commutator on the right hand side of (29) we note

3
w2, xp-w] = > (mjlmy, (x0)kme] + [y, (%0 kmil)
J.k=1
Noting that |75, 7] = —i(93A4r — Ok A3) = 0 in a uniform magnetic field directed

along the xz-axis, the above sum reduces to
2

w20 = D (mslmy, (x)wm] + [, (1) kmelmy)
k=1
= m[m1, w1 72) — Wa[me, Ta1]. (30)
Since 01 A2 — 92 A1 = B, for the first commutator in (30) we find
i[m1, x1me] = T + iw1[m1, m2] = ™2 + B,
and for the second commutator in (30) we find
i[ma, wam] = m + ix9[me, ] = ™ — Baa.
Plugging the previous two commutators back into (30) we conclude
i[r?,x, -m| = m (ma + Bx1) — m ((p1 + Az) — Bas)
= —2iB+ 2B(z1,22,0) - A + 2B(x1,22,0) - p.
Therefore, (29) becomes

d
pn Re (x 19, m)r2(rs) = 2B Re ((21,22,0) - (P + A, ¥) 12(rs). (31)
It is easily verified that the right hand side of (31) is proportional to the time

derivative of || p1/)||2L2(JR3>, where p? = 22 + 22. That is, we have the desired identity

d B d
7 Re (X1, ) r2rs) = E&prH%?(D@)' (32)

Finishing the proof of Theorem 3 simply amounts to rewriting the identity (28) and
using (32). d



11

3. THE NON-LINEAR PAULI EQUATION

In this final section, we consider generalizing earlier results on the NLMS equa-
tion to the non-linear Pauli (NLP) equation. In space dimensions d € {2,3}, the
NLP equation® reads

0y = [0 (p + A)2Y + ply|P~ 1y
{ $(0,%) = Yo (x), (33)

where ¥ : R¢ — C2, and

o= (0'170'2,0'3), d:37
B (0'1,0'2)7 d=2,

is the vector of Pauli matrices, which are 2 x 2 Hermitian matrices assumed to
satisfy the commutation relations [07, 0*] = 2ie; 0! and anticommutation relations
{oj, O'k} = 26;,1. A typical representation is

01 0 —i 10
(Vo) () (0 h)

We typically consider (33) as an initial value problem in the space H} (R%; C2),
which is the obvious generalization of the space H 4 (R?; C) discussed in §2. Again,
we will always assume A € L2 (R% R?) is such that [o - (p + A)]? is an essentially
self-adjoint operator on L?(R%; C?) with domain HZ(R% C2). The total energy of
(33) is

2p
Eply, Al(t) = Te[v, A] + mnw(t)uiﬁlmm, (34)

respectively, where Tp[¢, A] = |jo - (p + A)dJH%Q(Rd;CQ) is the total Pauli kinetic
energy. Again, we usually surpress the A-dependence of Ep and Tp. At least
formally, the L2-norm ||’l/)(t)||2L2(le;C2) and the total energy (34) are conversed along
the flow generated by (33).

Consider the case of a uniform magnetic field B = (0,0, B), B € R\{0}. Using
the algebraic properties of the Pauli matrices we note that

[0-(p+A)*=(p+A)*+ Bos.

As a consequence, we have that the unitary time evolution for the Pauli operator
Up(t) = exp {—it[o - (p + A)]?} is equal to

Up (t) = ¢ iBtos Us (t)7

where Ug(t) is given by (8). Hence, the estimates (11), (12), and (13) continue
to hold with Us(t) replaced with Up(t). Likewise, Theorem 2 easily generalizes
to Up(t) in d = 2 dimensions. Therefore, using the same proof that was used for
Theorem 1, we have the following Theorem.

Theorem 4. Letd € {2,3}, peR, 1 <p<1+4/(d—2), and A = Bx, /2. For
all ¥y € HL (R C?) we have the following.

(1) There exists a unique mazimal solution 1) € C([0,T.), H)NC* ([0, T.), Hy ')
of (83). If T < oo, then ||(p + A)Y(t)| p2(ray — o0 at t T Ts.

(2) The mapping 1o — Tx(to) is lower semi-continuous and, if t € [0, Tx (1))
and (¢pn)n>1 C Ha converges to 1o asn — oo, in Ha , then the correspond-
ing sequence of solutions (Un)n>1 to (33) verify ¥, — ¥ as n — oo, in
C([0,t], H}).

(3) If oo € HZ, then ¢ € C([0,T.), HZ) N C([0,T.), L?).

5Note that for d = 2, the NLP equation is not equivalent to the NLMS equation via a gauge
transformation. This is a consequence of the non-linearity “mixing” the components of ).
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(4) [9®llL2@ey = Yol L2ray and Epli(t), A] = Ep[to, Al.

In general, the diamagnetic inequality (7) no longer holds when p+ A is replaced
by o - (p+ A). However, in 3 dimensions, as a result of the estimate

(@ B dhiagoe = B [ (11 = [62F) < Bl coy

we may still obtain a uniform bound on [[(p 4+ A)¥|[L2(rs,c2) when p < 7/3 in
a similar manner as the magnetic Schrodinger case discussed in §2.1. A similar
estimate in 2 dimensions shows the same conclusion holds, but now with p < 3.
Therefore, by Theorem 4 we conclude global well-posedness of the Cauchy problem
(33) in the range 1 < p < 144/d, d € {2,3}, with a uniform magnetic field.

Our blow-up result for (33) is very similar to that for the NLMS equation (5).
To state the result, we introduce the function space

Seim (£ HARACY) ¢ [ ixPIf0o Px < ocl,
Rd

and define Fp : ¥p — R by

B2
Fply] = Bp[] = BRe (0 - x19,0 - (P + A)Y) p2racce) + 5 [0¥l[1aacy (35)

Similar to Fg, the next Lemma shows Fp is conserved under the time evolution of
(33).

Lemma 3. Let d € {2,3} and A € L2 _(R% R?) generate a uniform magnetic field

B = (0,0,B). Let 1 € HL(R%C?) and ¢ € C([0,T.), HY) N C'(0,T.), H{Y)
denote the corresponding solution to (5). Then, Fpli(t)] = Fp[to].

The proof of Lemma 3 is almost identical to that of Lemma 1 and is reserved
for the end of §2.3. Using that Fp[¢)] is conserved we have the following Theorem
concerning the second time derivative of the expectation value of |x|2.

Theorem 5. Letd € {2,3}, 1 <p < 1+4/(d—2), A € L} _(R%;RY) generate a
uniform magnetic field B = (0,0, B), and ¥y € Lp. Let T, € (0,00] be the time so
that 4 € C([0,T%); Zp) NC([0,T..); Hy ') is the corresponding mazimal solution to
the Cauchy problem (33). Then the function g(t) = i”xw(t)”%z,(md;@) satisfies the
virial identity

—(1+4/d ,
30) = 28elvo] + wd” LD GO ) — Bt sy (36)

In particular, if d = 2 and p = 3, then (36) becomes a second-order equation for g
that can be solved exactly:

g(t) = F;Z’Z;O] + ( 0 — M) cos (2Bt) + 5—; sin (2Bt) (37)

2B2
where go = §llptoll72(g2.c2) and go = Re (xtbo, (P + A)vho) L2(r2:c2)-

Corollary 3. Suppose u <0, 1+4/d <p < 1+4/(d—2), ¢¥o € Zp, and Fp[i] < 0.
Then the corresponding solution to (5) blows up in finite time. If Fp[io] = 0, then
blow-up occurs when §(0) = Re (x10o, (P + A)tbo) r2(ray < 0.

As with the NLMS equation, both Theorem 5 and its Corollary are proved by
deriving a virial identity for the second time derivative of (¢, |x|%t) L2(Rd;c2). As
before, we first treat the case of a general, time-independent, external magnetic
field (not necessarily a uniform field). We record the virial identity for the NLP
equation as the following Lemma.
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Lemma 4. Let g(t) = %wa(t)H%?(Rd;(Ci’)’ Then, for any solution v to the NLP

equation (33) with initial data o € HZ (R%; C?), the following virial identities holds:
In dimension d = 3,
.. p—1 +1
g =2Tp[Y] + 3Nm||¢”]£p+l(]]g2;cz)
+2Re(o- (xAB)Y,0- (p+ A)Y) L2r2,02), (38)
and, assuming B is aligned with the xs-axis, in dimension d = 2,
. p—1 11
g =2Tp[Y] + Q#m”w”iwl(np;cz)
—2Re(Bo - x.0,0 - (p+ A raacs.  (39)

Proof. We denote Hp = [0 -m)2 + pu|tp|P~! where m = p+ A. For simplicity we focus
on the d = 3 case, as the d = 2 case will be nearly identical. Computing first time
derivative of g is essentially the same as the first time derivative of ¢ in the proof
of Lemma 2. For the second time derivative we find

.é = <Z[HP7 (D +x- A)]dj’ w>L2(R3;C2)7 (40)

where Hp = [o - w]? + p||[P~1y. We worked out the commutator [Hp, D] in the
same way as in the proof of Lemma 2. We find

i[Hp, D) = 2l -al? — (- V)t + o mol?| (1)

where mp = p + Ay.
Likewise, for the computation of

(i[Hp,x - Aly),¢)) 2(rs,c2) = (illo - @)%, x - Al ¥) po(rosc2) = (im0, x - Al ¥) L2 (rosc2)

we refer to the proof of Lemma 2. In total we arrive at

p—1 +1
g=2Tp [7/]7 A] + 3um”w||ip+l(ﬂ§d)

d
+ @@' ~B911J71/J>L2(Rd) + 2Re <X/\B1/},7r'l/1>Lz(Rd). (42)

where Bg(x) = e 2'B(e~%x). We may simplify the expression (42) by observing
the following calculation:

/ (A B) - curl {f o)cedx = / curl (x A B) - (1), 0¢)czdx
R3 ..
- /Ra(_QB -(x-V)B)- <1/Jam/)>L2(]Rs;Cz)dx

d
— @’0:0@ “Bot), V) 12 (m3,c2)-
Combining the previous observation with (42) we arrive at (38). O

Proof of Lemma 3 and Theorem 5. The proof of Lemma 3 and, hence, Theorem 5
is nearly identical to the proof for the NLMS equation case. In particular, we have
the identity

d B d

1 Re (o -x19,0 - (p+ A)) L2re) = S&HWJHQL%R@?
which upon integration in time together with (39)-(38) yields the desired result. O
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