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Abstract—Due to the potentially severe consequences of coordi-
nated cyber-physical attacks (CCPA), the design of defenses has
gained significant attention. A popular approach is to eliminate
the existence of attacks by either securing existing sensors
or deploying secured PMUs. In this work, we improve this
approach by lowering the defense target from eliminating attacks
to preventing outages and reducing the required number of PMUs.
To this end, we formulate the problem of PMU Placement for
Outage Prevention (PPOP) under DC power flow model as a
tri-level non-linear optimization problem and transform it into
a bi-level mixed-integer linear programming (MILP) problem.
Then, we propose an alternating optimization framework to solve
PPOP by iteratively adding constraints, for which we develop
two constraint generation algorithms. In addition, for large-scale
grids, we propose a polynomial-time heuristic algorithm to obtain
suboptimal solutions. Next, we extend our solution to achieve the
defense goal under AC power flow model. Finally, we evaluate our
algorithm on IEEE 30-bus, 57-bus, 118-bus, and 300-bus systems,
which demonstrates the potential of the proposed approach in
greatly reducing the required number of PMUs.

I. INTRODUCTION

Coordinated cyber-physical attacks (CCPA) [2] have gained
a great deal of attention due to the stealthiness of such attacks
and the potential for severe damage on to the smart grid. The
power of CCPA is that its physical component damages the grid
while its cyber component masks such damage from the control
center (CC) to prolong outages and potentially enable cascades.
For instance, in the Ukrainian power grid attack [3], attackers
remotely switched off substations (damaging the physical
system) while disrupting the control through telephonic floods
and KillDisk server wiping (damaging the cyber system).

Defenses against CCPA can be broadly categorized into
detection and prevention. Attack detection mechanisms aim
at detecting attacks that are otherwise undetectable using
traditional bad data detection (BDD) by exploiting knowledge
unknown to the attacker [4]. However, the knowledge gap
between the attacker and the defender may disappear due to
more advanced attacks, and relying on detection alone risks
severe consequences in case of misses. Therefore, in this work,
we focus on preventing attacks using secured sensors.

We consider a powerful attacker with full knowledge of
the pre-attack state of the grid and the locations of secured
PMUs. The attacker launches an optimized CCPA where the
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physical attack disconnects a limited number of lines and the
cyber attack falsifies the breaker status and the measurements
from unsecured sensors to mask the physical attack while
misleading security constrained economic dispatch (SCED)
at the CC. Such attacks can result in severe cascading failures.
For example, under the setting in Section V, CCPA in absence
of secured PMUs can cause initial overload-induced tripping
at 2, 1, and 2 lines in IEEE 30-bus, 57-bus, and 118-bus
systems, respectively. Moreover, the re-distribution of power
flows on the initially tripped lines may cause cascading
outages. Take IEEE 118-bus system as an example. There is
an attack that physically disconnects line 144 and manipulates
the measurements to cause overload-induced tripping at line
109. These initial outages will trigger a cascade that eventually
results in outages at 82 lines. This observation highlights the
importance of defending against such attacks.

While attack prevention traditionally aims at eliminating
undetectable attacks by deploying secured PMUs to achieve
full observability [5], this approach can require a large number
of PMUs. Little is known about how to achieve a good tradeoff
between the efficacy of protection and the cost of PMU place-
ment during the deployment process before full observability is
achieved. In addition, the operators may be only interested in
using secured PMUs to prevent severe consequences, while leav-
ing the defense of less severe attacks to other mechanisms [6].
To fill this gap, we lower the goal of PMU placement to pre-
venting undetectable attacks from causing outages. Specifically,
we want to deploy the minimum number of secured PMUs such
that the attacker will not be able to cause overload-induced line
tripping due to overcurrent protection devices. The key novelty
of our approach is that we allow undetectable attacks to exist but
prevent them from causing any outages, hence potentially requir-
ing fewer secured PMUs. For instance, we can prevent overload-
induced tripping using 71% fewer secured PMUs compared to
the requirement of full observability in IEEE 118-bus system.

A. Related Work

Attacks: False data injection (FDI) [7], [8] is widely adopted
to launch cyber attacks in CCPA to bypass the traditional BDD
[2]. A typical form of FDI is load redistribution attack [9],
which together with physical attacks [2], [10], [11] that alter
grid topology, aims to mislead SCED by injecting false data
for economic loss or severe physical consequences such
as sequential outages [11]. Bi-level optimization is widely
adopted for analyzing the impact of CCPA on state deviation
[12] or line flow changes [13]. In this work, we extend them
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into a stronger attacker that jointly optimizes the location
of physical attacks and the attack target. Besides misleading
SCED, similar physical consequences can also be achieved
by attacking the commands issued by the control center [14],
[15], which is not the focus of this work.

Defenses: Defending against CCPA requires a systematic
mechanism [6], which can be decomposed into three modules:
prevention that postpones the onset of attacks [10], detection
that identifies the attack before it starts affecting the system
[5], [14], [16]–[21], and resilience which limits the impact
of the attacks that successfully bypass the detection [18],
[22]–[24]. Our focus is on an intermediate stage of PMU
deployment where not enough PMUs are installed to achieve
perfect detection of all FDI attacks.

To eliminate the existence of FDI by detection, different
strategies have been studied, such as directly protecting meters
[16]–[20], [25] or deploying secured PMUs [5], [21]. Due to
the connection between observability of the grid and FDI [17],
solutions on achieving full observability through PMUs [26] can
also be leveraged to defend against FDI. Unlike the aforemen-
tioned works, our work only aims to prevent attacks from caus-
ing outages, which can significantly reduce the required number
of secured PMUs while maintaining the system resilience.

Tri-level optimization is widely used for modeling interac-
tions among the defender, the attacker and the operator in smart
grid. To name a few, a tri-level model is proposed in [23] to
find the optimal set of lines to protect from physical attacks to
minimize load shedding. In [18], [22], [24], the measurements
to protect were chosen by solving a budget-constrained
optimization problem, which was also adopted in [27] for
distribution networks. However, existing works are limited in
the following aspects. From the formulation perspective, their
solution may become sub-optimal if the cost vector in SCED
changes due to the dependence of their methods on the KKT
conditions of linear programming. Such dependence also limits
the extension of their formulation to the AC power flow model.
From the computational perspective, the method in [18] solves
a MIP for each possible physical attack and thus is not scalable
to multi-line physical attacks. The method in [23] introduces
bilinear terms, which leads to a high computational cost. To
overcome such limitations, we will develop a formulation for
CCPA that can (i) model multi-line physical attacks without
bilinear terms, and (ii) be extended to the AC power flow model.
Moreover, the PMU placement obtained from our solution can
prevent overloading-induced line tripping regardless of the cost
vector in SCED. Furthermore, securing PMU measurements
instead of (legacy) measurements for individual nodes/lines has
the advantage that it aligns with the ongoing trend of deploying
PMU-based power grid monitoring systems.

Power flow models: Due to the nonlinear and nonconvex na-
ture of AC power flow equations, it is a common practice [28] to
develop FDI/CCPA or its countermeasure under the DC power
flow model and validate the solutions under the AC power flow
model. Although much efforts [29]–[31] have been devoted into
directly formulating FDI under the AC model, most of them
targeted at causing erroneous state estimation, with very limited
results on load redistribution attack aiming at causing outages.
The works [29] formulated FDI under the AC model through

convex relaxation, but did not accurately model the impact of
FDI on SCED. In [25], [28], [32], the design of FDI was based
on the DC model, although the feasibility of the attack was
tested under the AC model. In [30], [31], a formulation based
on convex relaxation was proposed to model load redistribution
attack under the AC model. They adopted DC-based line outage
distribution factors (LODF) to infer the impact of attacks on
SCED, which leads to the use of active power flows as the
criterion to determine overloading. This is inaccurate as the true
criterion should be the magnitude of current. To the best of our
knowledge, it remains an open problem to compute the optimal
load redistribution attack under the AC power flow model. Our
approach is to circumvent this problem by (i) first finding
a PMU placement to prevent load redistribution attack from
causing outages under the DC model, (ii) then developing a
method to test the feasibility of the found PMU placement under
the AC model based on a recently developed approximation
of AC power flow equations [33], and (iii) finally refining the
PMU placement to prevent outages under the AC model.

B. Summary of Contributions

We summarize our contributions as follows:

1) Instead of eliminating the existence of FDI, we
investigate the optimal secured PMU Placement for
Outage Prevention (PPOP) problem to defend against
CCPA, where we formulate a strong attacker that jointly
optimizes physical attack locations and target lines. The
proposed approach can potentially require fewer PMUs
than approaches that eliminate FDI.

2) We propose an alternating optimization algorithm
to solve PPOP by generating additional constraints
from each infeasible PMU placement. Specifically, we
demonstrate how to generate “No-Good” constraints and
“Attack-Denial” constraints to solve PPOP optimally.

3) We develop a heuristic algorithm for PPOP to produce
a possibly suboptimal solution. The complexity of the
proposed heuristic is polynomial in the grid size, which
makes it scalable to large networks.

4) We develop an algorithm to test whether a given PMU
placement can achieve our defense goal under the AC
power flow model. In addition, we propose a heuristic
to augment the given PMU placement to pass the test.

5) We systematically evaluate the proposed solution on
IEEE 30-bus, IEEE 57-bus, IEEE 118-bus, and IEEE
300-bus systems. The results demonstrate that the
proposed solution can substantially reduce the number
of required PMUs while preventing CCPA from causing
outages, even with the AC-based augmentation.

Roadmap: We formulate the PPOP problem under the DC
model in Section II and present both optimal algorithms and
heuristics to solve PPOP in Section III. We then show how
the DC-based solution can be refined to work under the AC
model in Section IV. We evaluate the performance of PPOP
in Section V and conclude the paper in Section VI. Additional
contents and proofs are given in the appendices.
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II. PROBLEM FORMULATION

Notations: For a matrix A, we denote by ai its i-th column
and Ak its k-th row. We slightly abuse the notation | · | in that
|A| indicates the cardinality if A is a set and the element-wise
absolute value if A is a vector or matrix. Logical expression↔
indicates the “if and only if” logic, while→ denotes the “if then”
logic. When the operators ≥,≤,= are applied to two vectors,
they indicate element-wise operations. Let a ∈ Rna , b ∈ Rnb
be two vectors, then a ⊕ b ∈ Rna+nb indicates the vertical
concatenation of a and b. Let dae denote the element-wise
ceiling. If na = nb = n, then a � b := (aibi)

n
i=1 denotes

the Hadamard product, i.e., the element-wise product. We use
Λ(·) ∈ {0, 1}m×n with one nonzero element in each row to
select entries from a vector such that Λ(·)x is a subvector of x.

A. Power Grid Modeling

We model the power grid as a connected undirected graph
N = (V,E), where E denotes the set of lines (lines) and
V the set of nodes (buses). Majority of our results will be
based on the DC power flow model, which is an approximation
widely adopted for studying security issues in power grids [2],
[5], [9]–[13], [18]; extension to the AC power flow model is
deferred to Section IV. Under this approximation, each line
e = (s, t) is characterized by reactance re = rst = rts. The
grid topology can be represented by the admittance matrix
B := (Buv)u,v∈V ∈ R|V |×|V |, defined as

Buv =


0 if u 6= v, (u, v) 6∈ E,
−1/ruv if u 6= v, (u, v) ∈ E,
−
∑
w∈V \{u}Buw if u = v.

(1)

BesidesB, the grid topology can also be described by incidence
matrix D ∈ {−1, 0, 1}|V |×|E|, which is defined as follows:

Dij =

 1 if line ej comes out of node vi,
−1 if line ej goes into node vi,
0 otherwise,

(2)

where the orientation of each line is assigned arbitrarily. By
defining Γ ∈ R|E|×|E| as a diagonal matrix with diagonal
entries Γe = 1

re
(e ∈ E), we have B = DΓDT and f =

ΓDTθ ∈ R|E| where f denotes the line flows. By defining net-
work states as phase angles θ := (θu)u∈V and active powers as
p = (pu)u∈V , the relationship between p, θ and f is given as

p = Bθ = Df , (3)

The CC will periodically conduct state estimation, whose results
will be used for SCED to re-plan the power generation [9], [11].
Formally, let z = [zTN , z

T
L ]T ∈ Rm denote the unsecured meter

measurements, where zN ∈ RmN denotes the power injection
measurements over (a subset of) nodes and zL ∈ RmL denotes
the power flow measurements over (a subset of) lines. Let ΛN

and Λp be two row selection matrices such that zN = ΛNz =
Λpp. Similarly, we define row selection matrices ΛL and Λf

such that zL = ΛLz = Λff . Then, we have

z = Hθ + ε for H :=

[
ΛpB

ΛfΓD
T

]
, (4)

where H is the measurement matrix based on the meter
locations and the reported breaker status, and ε is the
measurement noise. In the rest of the paper, we assume that
the measurements satisfy the conditions of [34, Theorem 5]
such that H has full column rank to support unique recovery
of θ from (4) (before attack). If θ̄ is the estimated phase
angle from z and H , then BDD will raise alarm if ‖z−Hθ̄‖
is greater than a predefined threshold.

Given p0 := Bθ̄, the CC will conduct SCED to calculate
new generation to meet the demand with minimal cost.
Specifically, let Λg ∈ {0, 1}|Vg|×|V |, Λd ∈ {0, 1}|Vd|×|V | be
row selection matrices for generator/load buses in p, where
Vd and Vg denote the sets of load buses and generator buses,
respectively. Denote θ̂ as the decision variable where Bθ̂
represents the new power injection after SCED, and φ ∈ R|Vg|
as the cost vector for power generation. Then, SCED can be
formulated as follows [11]:

ψs(p0,D) = arg min
θ̂

φT (ΛgBθ̂) (5a)

s.t. ΛdBθ̂ = Λdp0, (5b)
ΓDT θ̂ ∈ [−fmax,fmax], (5c)

ΛgBθ̂ ∈ [pg,min,pg,max], (5d)

where fmax ∈ R|E| indicates the normal line flow limits,
pg,min and pg,max denote lower/upper bounds on generation,
and (5b) indicates that demands on all load buses are satisfied.

B. Modeling Coordinated Cyber-Physical Attack (CCPA)

In this section, we formulate the attack model according
to a load redistribution attack [9] that aims at causing the
maximum outages, so that a defense against this attack can
prevent outage under any attack under the same constraints. In
the sequel, “ground truth” means the estimated value based on
unmanipulated measurements, which may contain noise.

For ease of presentation, we summarize the timeline of the
entire attack process, as shown in Fig 1. Specifically,
• At t0, the attacker estimates θ0 and p0 := B̃θ0 by

eavesdropping on z0 and H̃ .
• At t1, CCPA is deployed to change the ground-truth from
z0, H̃,θ0 to z1,H and θ1, respectively.

• At t2, the CC receives falsified information, i.e., H̃ and
z̃2, which leads to θ̃2. Then the CC will deploy a new
dispatch of power generation as p̃3 := B̃θ̃3, where θ̃3

denotes the associated predicted phase angles.
• At t3, the new dispatch takes effect and reaches steady

state, with the true phase angles θ3 and power flows f3.
Key notations at different time instances are summarized in
Table I, where “—” means that the information is not available
to the CC at the given time instance.

t0 t1 t2 timet3

෩𝐻, ෨𝐵, ෩𝐷 𝐻, 𝐵, 𝐷

Physical attack

Before 

attack

CCPA 

deployed

SCED 

at CC

Post-SCED 

steady state

𝑢0

𝑢5

𝑢1

𝑢3 𝑢4

𝑢2

Figure 1. Timeline of an instance of CCPA
First, we model the influence of attacks on SCED. We

define ac ∈ Rm to be the cyber-attack vector, which changes
the measurements received by the CC to z̃2 = z2 + ac, and
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Table I
NOTATIONS V.S. TIMELINE

time t0 t1 t2 t3

True measurement matrix H̃ H H H

Measurement matrix at CC — — H̃ H̃

True phase angle θ0 θ1 θ2 = θ1 θ3

Phase angle at CC — — θ̃2 θ̃3

True measurement z0 z1 z2 = z1 z3

measurement at CC — — z̃2 —

ap ∈ {0, 1}|E| the physical-attack vector, where ap,e = 1
indicates that line e is disconnected by the physical attack.
As the physical attack changes the topology, we use Ñ to
denote the pre-attack topology and N the post-attack topology.
Accordingly, B̃, D̃, H̃ denote the pre-attack admittance, inci-
dence, and measurement matrices, and B,D,H their (true)
post-attack counterparts, related by

B = B̃ − D̃Γdiag(ap)D̃
T , D = D̃ − D̃diag(ap), (6)

and H = H̃ − [(ΛpD̃Γdiag(ap)D̃
T )T , (ΛfD̃diag(ap))

T ]T .
Falsified measurements in z̃2 and breaker status will mislead
CC to an incorrect state estimation and thus falsified SCED de-
cisions. Hence, overload-induced line tripping can happen at t3.

To bypass BDD, the attacker has to manipulate breaker status
information to mask the physical attack, misleading the CC to
believe that the measurement matrix is H̃ instead of H . Also,
measurements have to be modified into z̃2 such that BDD
with z̃2 and H̃ as input will not raise any alarm. Below, we
will derive constraints on ap and ac such that the modified
data can pass BDD under the assumption that the pre-attack
data can pass BDD as assumed in FDI [2]. Considering that
z̃2 = z2 + ac, ac should be constructed such that

‖z̃2 − H̃θ̃2‖ = ‖z0 − H̃θ0 + z2 + ac − z0 + H̃θ0 − H̃θ̃2‖
= ‖z0 − H̃θ0‖, (pre-attack residual) (7)

which leads to the following construction of ac:

ac = z0 − z2 + H̃(θ̃2 − θ0) (8)

= H̃θ0 + ε0 − (Hθ2 + ε0) + H̃(θ̃2 − θ0) (9)

=

[
ΛpB̃

ΛfΓD̃
T

]
θ̃2 −

[
ΛpB

ΛfΓD
T

]
θ2. (10)

Besides (8), there may be additional constraints on ac to avoid
causing suspicion. Specifically, following [9], we assume that
all the power injections at generator buses are measured and
not subject to attacks, i.e.,

ΛgD̃f̃2 = ΛgB̃θ̃2 = ΛgBθ2 = ΛgDf2 = Λgp0, (11)

recalling that Λg is the row selection matrix corresponding
to generator buses. Moreover, by representing the maximum
normal load fluctuation through α ≥ 0, the magnitude of
falsification at load buses needs to be constrained due to load

forecasting [9], [11], which can be modeled by 1

−α|p0| ≤ B̃θ̃2 − p0 ≤ α|p0|. (12)

Following the convention in [9], [23], the attack is con-
strained by a predefined constant ξp denoting the maximum
number of attacked lines and another constant ξc denoting the
maximum number of manipulated measurements, i.e.,

‖ap‖0 ≤ ξp, ‖ac‖0 ≤ ξc. (13)

In addition, we constrain ap so that the graph after physical
attack remains connected, which is needed for stealth of the
attack according to [11], [12]. Specifically, defining fcon ∈
R|E| as a pseudo flow and u0 as the reference node, we can
guarantee network connectivity at t2 by ensuring

D̃ufcon =

{
|V | − 1, if u = u0,

−1, if u ∈ V \ {u0},
(14a)

−|V | · (1− ap,e) ≤ fcon,e ≤ |V | · (1− ap,e). (14b)

With lines oriented as in D̃, (14a) (flow conservation constraint)
and (14b) (line capacity constraint) ensure the existence of a
unit pseudo flow from u0 to every other node in the post-attack
grid and hence the connectivity of the post-attack grid, where
fcon,e > 0 if the flow on e is in the same direction of the line
and fcon,e < 0 otherwise.

In practice, transmission lines are equipped with overcurrent
protection devices, which will trip the lines when the power
flow exceeds the tripping threshold. Thus, heavy overloading
caused by the SCED misled by cyber attacks can lead to
initial outages at t3, which can create cascading outages [11].
Specifically, let fmax ∈ R|E| be the normal power flow limits
imposed in SCED [35]. Then, a line e ∈ E will be tripped by
protection devices (i.e., having an outage) if

|fe| > γefmax,e, (15)

where γe denotes the tripping threshold based on the thermal
limit of the line. In practice, although [36] suggests γe ≥ 1.5,
the operator may choose higher fmax,e, which leads to a smaller
γe. As discussed in [11], [37], a small γe implies that the system
is operating with a low margin of overload. A large γe may
contribute to robustness to cascading failure [37], but leads to
underutilization of transmission lines.

C. Modeling the Protection Effect of Secured PMUs

Let β ∈ {0, 1}|V | be the indicator vector for PMU placement
such that βu = 1 if and only if a secured PMU is installed at
node u. We define Ω(β) := {u|βu > 0} and the inverse process
β(Ω) : βu = 1 if u ∈ Ω and βu = 0 otherwise. Let Vu be the
node set containing neighbors of node u (including u) and Eu
be the line set composed of lines incident on u. According to
[21], by measuring both voltage and current phasor, a PMU
on node u can guarantee the correctness of phase angles in Vu

1In contrast to [1] that only imposes the magnitude constraint on measured
buses, constraint (12) is imposed on all buses (although subsumed by (11)
for generator buses). This is because under the assumption of full-rank
measurement matrix (Section II-A), the CC can recover all the phase angles
and hence the power injections at all the buses, and thus the attacker needs to
avoid causing too much deviation in the power injections at all the buses.
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and protect lines in Eu from both cyber and physical attacks.
Formally, we define xN ∈ {0, 1}|V | such that (xN,u = 1)↔
(∃v ∈ Vu such that βv = 1), which can be modeled as

∆−1Aβ ≤ xN ≤∆−1Aβ +
‖∆‖∞ − 1

‖∆‖∞
, (16)

where ∆ ∈ Z|V |×|V | is a diagonal matrix with ∆uu = |Vu|,
whileA := A+I is the adjacency matrix of the grid with added
self-loops at all nodes. Similarly, we define ζ to be any constant
within [0.5, 1) and xL ∈ {0, 1}|E| satisfying (xL,e = 1) ↔
(∃v with e ∈ Ev and βv = 1), which can be linearlized as

0.5|D|Tβ ≤ xL ≤ 0.5|D|Tβ + ζ. (17)

We assume that the PMU locations are known to the attacker,
thus the cyber attack is constrained as follows:

xN,u = 1→ θ̃2,u = θ2,u,∀u ∈ V, (18a)
xL,e = 1→ ap,e = 0, ∀e ∈ E. (18b)

Note that (16)-(18) implicitly protect the power flow measure-
ments on lines incident to a PMU. To see this, suppose that e =
(s, t) and βs = 1. Then we must have xN,s = xN,t = xL,e = 1
due to (16)-(17). By (18), it is guaranteed that z̃2,e := (θ̃2,s −
θ̃2,t)/rst = (θ2,s − θ2,t)/rst =: z2,e. In addition, PMU data
are usually collected at a high frequency (e.g., around 60-200
samples per second). Thus, the PMUs can “instantly” detect any
attack violating (18) even though they cannot prevent the attack
from happening. In this way, the PMUs can reduce the potential
damage by restricting the attacker’s choices of attack vectors.

D. Optimal PMU Placement Problem

Our main problem, named PMU Placement for Outage
Prevention (PPOP), aims at placing the minimum number
of secured PMUs so that no undetectable CCPA can cause
overload-induced tripping. To achieve this, we model the
problem as a tri-level optimization problem (an overview of
PPOP is given in Fig. 4 in Appendix A).

The middle-level optimization is the attacker’s problem,
which aims to maximize the number of overloaded lines without
being detected. Instead of using ac as decision variable, we
propose to formulate over f̃i,fi and θ̃i,θi where i ∈ {2, 3}. In
the rest of the paper, we will apply big-M modeling technique
that introduces sufficiently large constants denoted as M(·) for
linearization. The calculation of M(·) is given in Appendix B.
Specifically, the constraints on θ2 and f2 are:

−M2,a,e (1− ap) ≤ f2 ≤M2,a,e (1− ap) , (19a)

D̃f2 = p0, (19b)
−M2,fap ≤ ΓDθ2 − f2 ≤M2,fap. (19c)

The constraints (19a) and (19b) guarantee the consistency
between f2 and p0 given ap, where ap,e = 1 will force
f2,e = 0. The role of (19c) is to force the consistency between
f2 and θ2 for all e with ap,e = 0, which is necessary for the
uniqueness of f2. Similarly, we can transform (7)-(13) into
constraints over f̃2, θ̃2, and ap, which are

− fmax ≤ f̃2 ≤ fmax, (20a)

ΓD̃T θ̃2 − f̃2 = 0, (20b)
θ̃2,u − θ2,u ≤M2,θ · (1− xN,u), (20c)

θ̃2,u − θ2,u ≥ −M2,θ · (1− xN,u), (20d)

− α|p0| ≤ D̃f̃2 − p0 ≤ α|p0|, (20e)
ΛgD̃f̃2 = Λgp0, (20f)

‖Λf

(
f̃2 − f2

)
‖0 + ‖Λp

(
D̃f̃2 − p0

)
‖0 ≤ ξc, (20g)

‖ap‖0 ≤ ξp, (20h)

where (20a)-(20b) guarantee the validity of f̃2 as in (19a)-(19c),
(20c)-(20d) linearize (18a) (M2,θ defined in Appendix B), while
(20e), (20f), and (20g)–(20h) correspond to (12), (11), and (13),
respectively. It is worth noting that there exists an ac in the
form of (10) for any f̃2 and θ̃2 satisfying (20) due to the
relationship between f̃2, θ̃2 and ac shown in (10) and (20b).
Moreover, the constraints on θ3, θ̃3, and f3 are

pg,min ≤ ΛgB̃θ̃3 ≤ pg,max (21a)

− fmax ≤ ΓDT θ̃3 ≤ fmax, (21b)
ΛdB̃θ̃3 = ΛdD̃f̃2 (21c)
−M3,a(1− ap) ≤ f3 ≤M3,a(1− ap), (21d)

ΛdD̃f3 = Λdp0, ΛgD̃f3 = ΛgB̃θ̃3, (21e)

−M3,fap ≤ ΓD̃Tθ3 − f3 ≤M3,fap, (21f)

where (21a)-(21c) describe the feasible region of θ̃3 under
false data injection, and (21d)–(21f) are used to enforce the
power flow equation (3) at t3, where ΛgB̃θ̃3 is the post-SCED
generation predicted by the attacker. While a straightforward
formulation of the power flow equation should be

ΓDTθ3 = f3, ΛdDf3 = Λdp0, ΛgDf3 = ΛgB̃θ̃3, (22)

such a formulation will introduce bilinear terms DTθ3 and
Df3, as the post-attack incidence matrix D is a function
of the physical-attack vector ap that is also a decision
variable for the attacker. To avoid the bilinear terms, we
use (21d) to force f3,e = 0 when ap,e = 1 (line e is
disconnected), and (21f) to force Γed̃

T
e θ3 = Γed

T
e θ3 = f3,e

when ap,e = 0. Moreover, under (21d), we observe that Df3 =∑
e∈E def3,e =

∑
e∈E d̃ef3,e = D̃f3, as de = d̃e if ap,e = 0

and def3,e = d̃ef3,e = 0 if ap,e = 1, which explains (21e).

Thus, the attacker’s problem, which defines the optimal
attack strategy, can be formulated as:

ψa(β) := max ‖π‖0 (23a)

s.t. (14), (16)− (21), (23b)
θ2,u0

= θ3,u0
= θ̃2,u0

= θ̃3,u0
= 0, (23c)

θ̃3 = ψs(B̃θ̃2, D̃), (23d)
|f3,e|
fmax,e

> γe ↔ πe = 1, ∀e ∈ E, (23e)

where yc := θ̃2 ⊕ θ̃3 ⊕ θ2 ⊕ θ3 ⊕ f2 ⊕ f3 ⊕ f̃2 ⊕ fcon and
yb := π ⊕ ap ⊕ xN ⊕ xL are continuous and binary decision
variables, respectively. Here, πe = 1 if and only if line e is
overloaded to be tripped, which is ensured by (23e). Thus,
the objective is to maximize the number of overload-induced
tripped lines due to the attack-induced load redistribution. The
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constraints (23c) fixes the phase angle at the reference node,
denoted as node u0. The constraint (23d) incorporates the lower-
level optimization of SCED (5) by specifying the post-SCED
generation, determined by θ̃3.

We formulate the upper-level PMU placement problem as

min ‖β‖0 (24a)

s.t. ψa(β) = 0 (24b)

where the decision variable is β ∈ {0, 1}|V |, and ψa(x)
defined in (23) denotes the maximum number of lines that
will be tripped according to (15) at t3. In the sequel, we call
(ap,ac, e) an attack tuple, which is called “successful” under
PMU placement β if there exists a feasible solution to (23)
with physical attack ap and cyber attack ac such that πe = 1.
Moreover, we call (ap, e) a successful attack pair under β if
it can form a successful attack tuple under β.

Remark 1: While the above formulation treats the load profile
p0 as a constant, it can be easily extended to handle the
fluctuations in loads. This can be modeled by treating p0 as a
decision variable in the attacker’s optimization, constrained by
the expected range of fluctuation, e.g., p0 ∈ [κp(0), κp(0)], or
the union of ranges around multiple operating points:

p0 ∈
i0⋃
i=1

{κip(i) ≤ p ≤ κip(i)}. (25)

This enlarges the solution space for the attacker, which changes
the meaning of ψa(β) to the maximum number of tripped lines
under the worst load profile and the worst attack under this
load profile. Clearly, a PMU placement that avoids overload-
induced tripping in this worst scenario can avoid overload-
induced tripping in any scenario encountered during operation,
as long as the load profile stays within the predicted range.

Remark 2: In practice, PMUs are often deployed in stages.
Thus, it may be desirable that a temporary PMU placement
designed to prevent outages can be augmented into an optimal
PMU placement βopt in the long run (e.g., a minimum
placement that provides full observability). This can be modeled
by adding a constraint in (24) that requires β ≤ βopt.

III. SOLVING PPOP

The PPOP problem (23)-(24) is a tri-level non-linear mixed
integer problem, which is notoriously hard [12]. In this section,
we first formally prove that the problem is NP-hard, and
then demonstrate how to transform it into a bi-level mixed-
integer linear programming (MILP) problem. Next, we propose
an alternating optimization framework based on constraint
generation to solve the problem optimally. Finally, to accelerate
the computation, we develop a polynomial-time heuristic.

A. Hardness and Conversion to Bi-Level MILP

Although multi-level non-linear mixed integer programming
is generally hard, PPOP is only a special case and hence needs
to be analyzed separately. Nevertheless, we show that PPOP
is NP-hard (see proof in Appendix H).

Theorem III.1. The PPOP problem (24) is NP-hard.

The attacker’s problem (23) can be linearized into a MILP
(see details in Appendix A), which implies that PPOP can be
converted into a bi-level MILP.

B. An Alternating Optimization Framework

Algorithm 1: Alternating Optimization

1 Initialization: k = 1, β̂(k) = 0;
2 while True do
3 Solve (23) under β̂(k) to obtain ψa(β̂(k));
4 if ψa(β̂(k)) > 0 then
5 Add constraints to (24);
6 k ← k + 1, obtain β̂(k) by solving (24), with

(24b) replaced by the generated constraints
7 else break ;
8 Return β̂(k), indicators of the selected PMU placement;

As a bi-level MILP, PPOP is still difficult to solve due to the
integer variables in (23) and (24). Since one of the fundamental
challenges in solving bi-level MILPs is the lack of explicit
description of the upper-level optimization’s feasible region, we
propose an alternating optimization framework shown in Alg. 1
to solve PPOP by gradually approximating the feasible region
of the upper-level optimization through constraint generation. In
Sections III-C–III-D, we will give two concrete constraint gen-
eration methods for Line 5 of Alg. 1 based on the results of (23).

In the sequel, we assume that solving (23) returns a
successful attack tuple (a

(k)
p ,a

(k)
c , e(k)) if ψa(β̂(k)) > 0.

C. Alternating Optimization with No-Good Constraints
(AONG)

In this section, we give the first specific algorithm under the
framework of Alg. 1, in which the added constraints in Line 5
are motivated by the following observation:

Lemma III.1. Given β̂ and Ω(β̂) := {u ∈ V : β̂u > 0}, if
there exists a successful attack tuple (ap,ac, e), then for all
β with Ω(β) ⊆ Ω(β̂), there exists a successful attack tuple.

Proof. For any β with Ω(β) ⊆ Ω(β̂), (ap,ac, e) remains a
successful attack tuple.

The above observation indicates that at least one PMU must
be placed in Ω(β̂)c := V \Ω(β̂). Therefore, the optimal β can
be obtained in an iterative manner: during each iteration, we
use the PMU placement β̂ from the previous iteration (initially,
β̂ = 0) to solve (23) for ψa(β̂). If ψa(β̂) = 0, β̂ is the
final solution; otherwise, we will add the following “No-Good”
constraint:

∑
i:β̂i=0 βi ≥ 1 to (24) for the next iteration to rule

out the infeasible solution β̂.
However, the above procedure will converge very slowly as
|Ω(β̂)c| is usually large. To speed up convergence, we augment
each discovered infeasible solution β̂ into a maximal infeasible
solution β̂′ to narrow down candidate solutions. This can be
achieved by solving the following problem:

max ‖β̂′‖0 (26a)
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s.t. ψa(β̂′) ≥ 1, (26b)

β̂′u = 1, ∀u ∈ V with β̂u = 1, (26c)

which has the same decision variables as (23) and the additional
β̂′. Algorithm AONG adds the following “No-Good” constraint
in Line 5 of Alg. 1: ∑

i:β̂′
i=0

βi ≥ 1. (27)

AONG solves PPOP optimally, as proved in Appendix H.

Theorem III.2. AONG converges in finite time to an optimal
solution to (24).

Given the MILP formulation of (23) in Appendix A, it is
easy to write (26) as a MILP and solve it by existing MILP
solvers. It is worth noting that solving (26) suboptimally does
not affect the optimality of AONG. Thus, we can also apply
heuristic algorithms (e.g., LP relaxation with rounding).

D. Alternating Optimization with Double Constraints (AODC)
Building on AONG, we develop an additional constraint as

a complement of (27) to accelerate convergence, in the special
case where ξc =∞ and ψs(p,D) returns the set of θ’s satisfy-
ing (5b)-(5d), i.e., it returns the feasible region of SCED rather
than a single solution. Such a special case is worth consideration
because (i) ξc =∞ represents the strongest cyber attack, and
(ii) relaxing the optimality requirement in (23d) means that
the attacker is allowed to pick a solution for SCED within its
feasible region, both making the attack stronger and hence the
resulting PMU placement more robust in preventing outages.

Below we will first introduce the new constraints, called
“Attack-Denial” constraints, and then give the AODC algorithm,
in which both “No-Good” constraints and “Attack-Denial”
constraints are added in Line 5 of Alg. 1. The new constraints
are motivated by the following observations about AONG:
many PMU placements enumerated by AONG are vulnerable
to attacks formed from the same attack pair (ap, e), indicating
that it is more efficient to generate constraints that can
invalidate the identified attack pairs. More discussions are
given in Appendix C.

The above observations motivate the following idea of
“Attack-Denial” constraints: given a successful attack pair
(a

(k)
p , e(k)) under β(k), the added constraints should guarantee

that any PMU placement satisfying the constraints can prevent
attacks that fail lines according to a(k)

p from causing overload-
induced tripping at line e(k). We focus on (a

(k)
p , e(k)) instead

of (a
(k)
p ,a

(k)
c , e(k)) due to the following observations:

1) The number of (a
(k)
p ,a

(k)
c , e(k))’s is infinite since a(k)

c

is continuous, but the number of (a
(k)
p , e(k))’s is finite.

2) Given xN and (a
(k)
p , e(k)), (23b)-(23e) reduce to a linear

system with only the continuous variables contained in
yc under the assumptions that ξc = ∞ and ψs(p,D)
returns the set of θ’s satisfying (5b)-(5d). The linear
system can be summarized as

F
(k)
1 yc = s

(k)
1 , (28a)

F
(k)
2 yc ≤ s(k)

2 + F3xN , (28b)

where F
(k)
1 , F

(k)
2 , F3, s

(k)
1 , s

(k)
2 are constant

matrices/vectors defined in Appendix D. An attack pair
(a

(k)
p , e(k)) can form a successful attack if and only if

(28) has a feasible solution.

The above assumptions (i.e., ξc =∞ and ψs(p,D) returns all
the θ’s satisfying (5b)-(5d)) are needed because: (i) ξc =∞
implies that we no longer need the binary variables used to
linearize (20g) (i.e., wf and wp in (40) in Appendix A); (ii)
when the lower-level optimization returns the feasible region
of (5), (23d) can be replaced by (5b)-(5d) without introducing
binary variables required for transforming (5) into its KKT
conditions [9].

Our key observation is that a PMU placement β can defend
against an attack pair (a

(k)
p , e(k)) by either preventing the

physical attack a(k)
p or making (28) infeasible. The former can

be achieved by adding constraint
∑
l:a

(k)
p,l=1

xL,l ≥ 1 (i.e., at
least one attacked line must be incident to a PMU). The latter
holds according to Gale’s theorem of alternative [38] if and
only if there exists q(k)

1 and q(k)
2 ≥ 0 satisfying

(F
(k)
1 )Tq

(k)
1 + (F

(k)
2 )Tq

(k)
2 = 0, (29a)

(s
(k)
1 )Tq

(k)
1 + (s

(k)
2 + F3xN )Tq

(k)
2 < 0, (29b)

where q(k)
1 ∈ Rm1 and q(k)

2 ∈ Rm2 can be treated as the dual
variables for (28a) and (28b), respectively.

Based on the above observation, the “Attack-Denial” con-
straints for defending against (a

(k)
p , e(k)) are:

(F
(k)
1 )Tq

(k)
1 + (F

(k)
2 )Tq

(k)
2 = 0, (30a)

(s
(k)
1 )Tq

(k)
1 + (s

(k)
2 + F3xN )Tq

(k)
2 ≤ wa,k − 1, (30b)∑

l:a
(k)
p,l=1

xL,l ≥ wa,k, (30c)

q
(k)
2 ≥ 0, wa,k ∈ {0, 1}, (30d)

where q(k)
1 , q(k)

2 , and wa,k are newly introduced variables. Note
that (29b) and (30b) are equivalent when wk = 0 since we can
scale q(k)

1 and q(k)
2 to satisfy (30b) if (29b) holds. The binary

variable wa,k indicates which approach to use for defending
against (a

(k)
p , e(k)). When wa,k = 0, (30c) holds trivially, in

which case β defends against (a
(k)
p , e(k)) by satisfying (29),

i.e., preventing the cyber attack from causing overload-induced
tripping at line e(k). When wa,k = 1, q(k)

1 = 0 and q(k)
2 = 0

will satisfy the constraints (30a)-(30b), in which case β defends
against (a

(k)
p , e(k)) by preventing the physical attack a(k)

p .
Now, we are ready to present the AODC algorithm, where

β̂(K+1) in Line 6 of Alg. 1 is obtained by solving:

min ‖β‖0 (31a)

s.t. (16)− (17), (30) for k = 1, · · · ,K, (31b)∑
i:β̂

′(k)
i =0

βi ≥ 1, k = 1, · · · ,K, (31c)

β ∈ {0, 1}|V |, (31d)

where the decision variables are β, xN , xL, q(k)
1 , q(k)

2 , and
wa,k for k = 1, · · · ,K.
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To convert (31) to a MILP, we linearize (F3xN )Tq
(k)
2

using McCormick’s relaxation. Concretely, note that

(F3xN )Tq
(k)
2 =

∑
u∈V

xN,u

(
m2∑
i=1

F3,i,uq
(k)
2,i

)
, ∀k. (32)

Assuming that
∑
i F3,i,uq

(k)
2,i ∈ [MF ,MF ], we introduce a

continuous auxiliary variable yu and the following constraints:

MFxN,u ≤ yu ≤MFxN,u, (33a)

yu ≤

(
m2∑
i=1

F3,i,uq
(k)
2,i

)
+MFxN,u −MF , (33b)

yu ≥

(
m2∑
i=1

F3,i,uq
(k)
2,i

)
+MFxN,u −MF . (33c)

Note that yu =
∑m2

i=1 F3,i,uq
(k)
2,i if xN,u = 1 and yu = 0 other-

wise, i.e., yu = xN,u

(∑m2

i=1 F3,i,uq
(k)
2,i

)
. Then, (F3xN )Tq

(k)
2

in (30b) can be replaced by
∑
u∈V yu subject to (33).

AODC guarantees an optimal solution at convergence in the
considered special case (see proof in Appendix H).

Theorem III.3. If ξc =∞ and ψs(p,D) returns the feasible
region of (5), then AODC will converge in finite time to an
optimal solution to (24).

Although in the worst case AODC may still enumerate all the
attack pairs, which can be exponential in |E|, we have observed
that in practice it usually converges after identifying a relatively
small set of “typical attack pairs”, as shown in Table V.

E. Efficient Heuristics

Although Alg. 1 is guaranteed to find the optimal solution,
the computational complexity can grow exponentially with
the network size due to the requirement of solving MILPs in
each iteration, which motivates us to develop polynomial-time
heuristics. A scenario of particular interest is when ξp is small,
i.e., ξp = O(1). In this case, the total number of attack pairs is
polynomial in |E|, and thus the number of iterations in AODC
and the complexity of computing a new attack pair in each
iteration are both polynomial in |E|. Our focus in this case is
thus on solving (31) approximately in polynomial time.

Relaxation: One idea is to directly relax the MILP version of
(31) into an LP. However, simple LP relaxation will not work:

1) The LP relaxation will invalidate the McCormick relax-
ation (33) for the bilinear term (F3xN )Tq

(k)
2 .

2) The feasible region is significantly extended by the LP
relaxation due to the adopted big-M modeling technique.

3) Given a continuous solution β̃ obtained from the LP
relaxation, it is non-trivial to determine which subset of
Ω(β̃), if any, can achieve our defense goal.

We have developed a polynomial-time heuristic that can
find a better PMU placement. The core of our heuristic is a
different “LP relaxation” of (31). Recall that the main challenge
in directly relaxing the MILP version of (31) is the invalidation
of (33) for linearizing (F3xN )Tq

(k)
2 . To overcome this issue,

we make the following observation (see proof in Appendix H):

Lemma III.2. Define Λx,p,Λx,n ∈ {0, 1}|V |×m2 such that
(Λx,pq2)u is the dual variable for (20c) and (Λx,nq2)u is the
dual variable for (20d). Suppose that the linear system

(F
(k)
1 )Tq

(k)
1 + (F

(k)
2 )Tq

(k)
2 = 0, (34a)

(s
(k)
1 )Tq

(k)
1 + (s

(k)
2 + F3)Tq

(k)
2 ≤ −1, (34b)

(Λx,p + Λx,n)q2 ≤MqAβ, (34c)

q
(k)
2 ≥ 0, 1 ≥ β ≥ 0 (34d)

for attack pair (a
(k)
p , e(k)) is feasible under β = β̌, where Mq

is a large constant (defined in Appendix B). Then, β = dβ̌e
satisfies (16)–(17) and (30) with wa,k = 0 for the attack pair
(a

(k)
p , e(k)).

Lemma III.2 suggests that given an attack pair (a
(k)
p , e(k)),

we can relax the mixed integer “Attach-Denial” constraints
(30) into the linear constraints (34) and round up the fractional
solution to obtain a valid PMU placement, which is guaranteed
to prevent the given attack pair from forming successful
attack tuples. According to Gale’s theorem of alternative,(

(Λx,p + Λx,n)q
(k)
2

)
u
> 0 only if at least one of (20c)

and (20d) is effective for making (28) infeasible2. Since
(20c)-(20d) is effective if and only if xN,u = 1 (under the
constraint of xN,u ∈ {0, 1}), we use (Λx,p + Λx,n)q

(k)
2 as a

proxy of xN in Lemma III.2.
Lemma III.2 motivates us to formulate the following LP

based on a given set C of infeasible PMU placements and a
given set {(a(k)

p , e(k))}Kk=1 of attack pairs:

min
∑
u∈V

βu (35a)

s.t. (34) for k = 1, · · · ,K, (35b)∑
i:β̂i=0

βi ≥ 1, ∀β̂ ∈ C, (35c)

where (35b) models relaxed “Attack-Denial” constraints and
(35c) models relaxed “No-Good” constraints. In this sense,
(35) is a “LP relaxation” of (31). However, instead of directly
computing a PMU placement from (35) which still faces some
of the issues for simple LP relaxation, our idea is to use the
result of (35) to identify important nodes for PMU placement
to defend against the given attack pairs in the case of wa,k = 0
in (30). We will account for the case of wa,k = 1 separately in
the proposed algorithm to avoid scaling and numerical issues.

Algorithm: The details of the proposed heuristic is given
in Alg. 2, which relies on the function UpdateCandidate(·)
shown in Alg. 3. The logic behind the heuristic is similar to
that in AODC, i.e., iteratively updating PMU placements based
on newly found attack pairs. The questions are: (i) how to
generate initial placements, (ii) how to find attack pairs that
can cause outages under given placements, and (iii) how to
update the given placements to defend against the newly found
attack pairs, all in polynomial time. Since this algorithm is
designed for the case of ξp = O(1), under which question (ii)
is easily solvable, our focus will be on questions (i) and (iii).

2We say that an inequality in (28) is effective for making (28) infeasible if
removing it will change the feasibility of (28).
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Algorithm 2: 3-phase Secured PMU Placement

/* Phase-1: find a set A0 of attack
pairs */

1 Initialization: k = 1, β̂(k) = 0, A0 = ∅, C = ∅;
2 while ψa(β̂(k)) > 0 do
3 A0 ← A0 ∪ {(a(k)

p , e(k))}, where (a
(k)
p , e(k)) is

obtained by solving (23) under β̂(k);
4 C ← C ∪ {β̂(k)}, k ← k + 1;
5 obtain β̌(k) by solving (35) over C and A0;
6 Rounding: β̂(k) ← dβ̌(k)e;
/* Phase-2: find candidate placements
{Ωi}Kci=1 to defend against A0 */

7 Set Ωi := {ui}, i = 1, · · · ,Kc, where {ui}Kci=1 are the
indices of the largest Kc elements of β̌(k) that is
obtained in the last iteration of phase-1;

8 {Ωi}Kci=1, C ← UpdateCandidate
(
{Ωi}Kci=1,A0, C

)
;

/* Phase-3: augment {Ωi}Kci=1 to find a
placement Ω with ψa (β(Ω)) = 0 */

9 while True do
10 A ← ∅;
11 for i← 1 to Kc do
12 if ψa (β(Ωi)) > 0 then Generate (a

(i)
p , e(i))

and A ← A∪ (a
(i)
p , e(i));

13 else Return Ω∗ = arg minΩj :ψa(β(Ωj))=0 |Ωj | if
|Ω∗| ≤ 1 + minΩj :ψa(β(Ωj))>0 |Ωj |;

14 {Ωi}Kci=1, C ← UpdateCandidate
(
{Ωi}Kci=1,A, C

)
;

We answer question (i) in two phases. Specifically, in
phase-1, we iteratively find a set of attack pairs A0 such
that solving (35) over A0 leads to a fractional solution β̌
with ψa

(
dβ̌e

)
= 0. Then in phase-2, we search for a set of

candidate PMU placements {Ωi}Kci=1 to defend against A0 in
the hope that |Ωi| < |Ω(dβ̌e)|. The motivation for maintaining
Kc > 1 candidates is to avoid the situation where the computed
placement is effective in defending against the given attacks
but ineffective for other attacks.

We answer (iii) in Alg. 3, which iteratively augments a
given set of candidate placements {Ωi}Kci=1 to defend against a
given set A of attack pairs. For each candidate placement not
effective against all the attack pairs in A, Alg. 3 will generate
KL and KA new candidate placements in Line 7 and Lines 8-9,
respectively. Then, Line 10 will select the Kc placements most
effective in defending against the attack pairs inA from the pool
of Kc · (KA+KL) candidate placements. We now characterize
the complexity of Alg. 2 (see proof in Appendix H).

Theorem III.4. If ξp = O(1), then the complexity of Alg. 2
is polynomial in |V |, |E|, and Kc.

IV. EXTENSION TO AC POWER FLOW MODEL

So far we have assumed the DC power flow approximation
for the power grid given in Section II-A. It remains to validate
the resulting PMU placement under the AC power flow model

Algorithm 3: UpdateCandidate
(
{Ωi}Kci=1, A, C

)
1 Initialization: Ai = A, i = 1, · · · ,Kc;
2 while ∃i such that Ai 6= ∅ do
3 Q ← ∅;
4 for i← 1 to Kc do
5 if Ai = ∅ then Q ← Q

⋃
{Ωi} and continue;

6 else C ← C ∪ {β(Ωi)} ;
7 Q ← Q

⋃
(Ωi ∪ {vj}) for j = 1, · · · ,KL,

where vj can prevent the j-th most physical
attacks in Ai ;

8 Solve (35) over A, C, and the constraints
βu = 1, ∀u ∈ Ωi, which results in β̌;

9 Q ← Q
⋃

(Ωi ∪ {uj}) for j = 1, · · · ,KA,
where uj is the index of the j-th largest
element in {β̌u}u∈V \Ωi ;

10 Update {Ωi}Kci=1 as the Kc elements in Q that can
defend against the most attack pairs in A;

11 Ai ← {(ap, e) ∈ A|Ωi cannot defend against
(ap, e)}, ∀i = 1, . . . ,Kc;

12 Return {Ωi}Kci=1 and C;

that describes the grid state more accurately. To this end, we
will address the following questions: given a PMU placement
ΩDC ⊆ V obtained under the DC power flow model, (i) how
to test the feasibility of ΩDC in preventing outages under the
AC power flow model, and (ii) how to refine ΩDC if needed to
achieve our defense goal under the AC power flow model.

A. Testing a PMU Placement under AC Model

One challenge to answer the first question is the nonlinear
and nonconvex nature of AC power flow based SCED (AC-
SCED), which invalidates the transformation of (23) into a
single-level MILP through KKT conditions. Another challenge
lies in formulating a single optimization to maximize the
overloading of a target line after SCED (at t3 in Fig. 1).
Specifically, since solving nonlinear AC power flow equations
usually requires iterative methods (e.g., Newton-Raphson
method [39]), we cannot directly formulate the AC-SCED
at t2 and the corresponding ground-truth grid state at t3 in an
optimization problem. Existing works handled this challenge
by approximating the grid state at t3 by the DC power flow
model [28], [32] or DC-based line outage distribution factors
[30], [31]. However, such DC-based approximations cannot
be directly used to compute the magnitude of currents, which
determines the overloading and related tripping of lines.

In the following, we provide a method, as shown in Alg. 4,
to check the existence of an AC-based CCPA that can cause
overloading under a given PMU placement. To overcome the
challenges discussed before, we first remove the optimality
requirement in AC-SCED, similar to our derivation of “Attack-
Denial” constraints in Section III-D. Omitting this optimality
requirement is equivalent to allowing the attacker to choose the
objective for AC-SCED, which enlarges the feasible region for
the attacker’s optimization. To jointly model the current at t3
and the AC-SCED at t2, we adopt the linearized approximation
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of AC power flow equations [33]. Based on these two strategies,
we formulate the following optimization problem for the
attacker to maximize the magnitude of current on a given
target line et under a given physical attack (i.e., ap):

max |Î3,et |2 (36a)

s.t. Constraints on ṽ2, θ̃2 to bypass BDD, (36b)

ACOPF constraints on ṽ3, θ̃3, (36c)

Constraints to solve v̂3, θ̂3, |Î3|, (36d)

where ṽ2, θ̃2 denote the voltage magnitudes and phase
angles estimated at t2 by the control center based on falsified
measurements, ṽ3, θ̃3 denote the same variables predicted by
AC-SCED for t3 (computed at t2), and v̂3, θ̂3, |Î3| denote the
approximated ground-truth of voltage magnitudes, phase angles
and line current magnitude at t3. The details of (36) are given
in Appendix E. Similar to Table I, for a given variable x, we
use x̃2 to denote its estimate based on falsified measurements
at t2, x2 to denote its ground-truth value at t2, x̃3 to denote the
value predicted by AC-SCED (at t2) for t3, and x3 to denote
the ground-truth value at t3. Given the voltage magnitudes ṽ3

and the phase angles θ̃3, the approximated values of x at t3 is
denoted as x̂3.

In (36), we have the following three types of constraints and
decision variables:

1) Constraint (36b) is the counterpart of (20) under the AC
power flow model, in which the main decision variables
are ṽ2 and θ̃2. Similar to (20), we use ṽ2 and θ̃2 as
the decision variables to model the cyber attack that can
bypass the BDD. Following [30], we adopt the quadratic
convex (QC) relaxation [40] in (36b) to model the AC
power flow equations.

2) As the counterpart of (21a)-(21c) under the AC power
flow model, (36c) models the reaction of AC-SCED to
the falsified measurements based on the QC relaxation.

3) The real grid state at t3 is formulated in (36d) as the
counterpart of (21d)-(21f), based on the approximation
of AC power flow equations proposed in [33].

As we have enlarged the feasible region for the attacker in
(36b)-(36c) by using the QC relaxation, (36) models a stronger
attack, and hence a PMU placement that prevents overloading
under this attack can prevent overloading under the original
attack. We will use x∗ to denote the value of decision variable
x in the optimal solution to (36).

Based on (36), we develop an algorithm to check the
feasibility of a PMU placement Ω ⊆ V in preventing outages
under AC-based CCPA, shown in Algorithm 4. Specifically,
at Lines 2, we compute v2,θ2, |I2| by solving power flow
equations. Thus, the counterpart of (19) is no longer needed
to compute the real grid states after physical attacks. Then,
at Line 3, we obtain the optimal solution (|Î∗3,et |, ṽ

∗
3 , θ̃
∗
3) to

(36) for the given attack pair (ap, et) (recall that |Î∗3,et | is the
approximated current magnitude on line et at time t3 while
|I∗3,et | is the corresponding true value). Alg. 4 considers the
PMU placement Ω to successfully defend against (ap, et) (i.e.,
preventing overloading at line et under physical attack ap) if
one of the following conditions hold:

1) no cyber attack ac can bypass the BDD, i.e., (36) is
infeasible, as checked in Line 9, or

2) |Î∗3,et | ≤ Îmax,et and |I∗3,et | ≤ γeImax,et , as checked in
Lines 4–7, where Îmax,et (derived in Theorem IV.1) is
the threshold used by Alg. 4 to detect the tripping of line
et based on the approximated current magnitude |Î∗3,et |.

The use of Îmax,e rather than γeImax,e allows us to
compensate for the approximation error at t3. As stated in
Theorem IV.1, under a properly-set Îmax,e, a PMU placement
Ω is guaranteed to achieve our defense goal under the AC
model if Ω can pass the test of Alg. 4, i.e., no overloading is
reported. How to bound the approximation errors as assumed in
Theorem IV.1 is not the focus of this work; we refer interested
readers to [33] for details.

Theorem IV.1. Assume that the approximation used in (36d)
satisfies |v̂3,u − v3,u| ≤ εv,u, |θ̂3,u − θ3,u| ≤ εθ,u, ∀u ∈ V and
|p̂3,f,e − p3,f,e| ≤ εp,e, |q̂3,f,e − q3,f,e| ≤ εq,e, ∀e ∈ E. Then,
there exists εI,e, ∀e ∈ E (see proof in Appendix H for details)
and Îmax,e := γeImax,e − εI,e such that any PMU placement
passing the test of Alg. 4 can prevent overload-induced tripping
under the AC power flow model.

Algorithm 4: Test Feasibility of Ω under AC Model

1 for each possible attack pair (ap, et) under the given
PMU placement Ω do

2 Obtain v2,θ2, |I2| from AC power flow equations;
3 Solve (36) to obtain |Î∗3,et |, ṽ

∗
3 , θ̃
∗
3 ;

4 if (36) is feasible AND |Î∗3,et | ≤ Îmax,et then
5 Compute |I∗3,et | from AC power flow equations;
6 if |I∗3,et | ≤ γeImax,et then
7 Continue;
8 else Terminate and report overloading;
9 else if (36) is infeasible then

10 Continue;
11 else Terminate and report overloading;

B. Refining PMU Placement

In the case that the DC-based PMU placement ΩDC fails the
test by Alg. 4, we provide a simple heuristic to augment it into a
new placement ΩAC that can achieve our defense goal under the
AC model. The intuition is to iteratively augment ΩDC by placing
more PMUs until the resulting placement ΩAC can pass the test
of Alg. 4. The key question is which node to add. To answer this
question, we first augment ΩDC into a PMU placement ΩC :=
Ω(βC) that can achieve full observability by solving (37):

min
βC ∈ {0, 1}|V |

‖βC‖1 (37a)

s.t. βC ≥ β(ΩDC), (37b)
AβC ≥ 1, (37c)

where (37b) guarantees ΩDC ⊆ ΩC , and (37c) forces ΩC
to achieve full observability. Then equipped with ΩC , we
augment ΩDC into ΩAC by Alg. 5. If a PMU placement cannot
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defend against an attack pair (ap, et) (Line 6), then we update
the PMU placement by the following rules:

1) If there exists a node u ∈ ΩC that can prevent the
physical attack ap as in (18b), we add node u to the
current PMU placement (Line 8).

2) Otherwise, we add the node in ΩC with the maximum
deviation in phase angle due to false data injection
(Line 11), with ties broken arbitrarily.

Algorithm 5: Augment PMU Placement for AC Model

1 Initialization: ΩAC = ΩDC;
2 while True do
3 Test ΩAC through Alg. 4;
4 if No overloading is reported then Return ΩAC;
5 else
6 Let (ap, et) be the attack pair under which

overloading is reported, and
U := {u ∈ V : ∃e with ap,e = 1, Du,e 6= 0}
(all end-nodes of physically-attacked lines);

7 if ΩC ∩ U 6= ∅ then
8 Arbitrarily choose a node u ∈ ΩC ∩ U ;
9 else

10 Let θ̃2,θ2 be the falsified/true phase angles
at t2 under attack pair (ap, et);

11 Set u := arg maxv∈ΩC |θ̃2,v − θ2,v|;
12 ΩAC ← ΩAC ∪ {u};

V. NUMERICAL EXPERIMENTS

Simulation Settings: We evaluate our solution against bench-
marks in several standard systems: IEEE 30-bus, IEEE 57-bus,
IEEE 118-bus, and IEEE 300-bus system, where the system
parameters as well as load profiles are obtained from [41].
The parameters for our evaluation are set as follows unless
specified otherwise: We set α = 0.25 according to [11]. We
allow θ̃3 to take any value specified by the attacker subject to
(5b)-(5d), which makes our defense effective under any SCED
cost vector. The attacker’s capability is set as ξp = 2, ξc =∞
(no constraint on the number of manipulated meters). We set
the overload-induced tripping threshold to γe = 1.2, ∀e ∈ E,
which is slightly smaller than the one used in [11] to make the
solution more robust. For Alg. 2, we set Kc = KA = KL = 10.

In the rest of this section, we will compare the performance
of Alg. 1 (AONG or AODC) and Alg. 2 with the following
benchmarks: (i) PMU placement to achieve full observability as
proposed in [26]; (ii) greedily placing PMUs in the descending
order of node degrees until attack-induced overload-induced
tripping is prevented, referred to as “GreedyDegree”. Bench-
mark (i) represents the current approach, and benchmark (ii)
represents a baseline solution under the lowered goal of defense.

Savings in the Number of PMUs: In Table II, we compare the
number of secured PMUs required by the proposed algorithms
(Alg. 1, Alg. 2) with the benchmarks under the nominal
operating point [41]. The minimum number of PMUs required
to avoid outages, given by Alg. 1 (either AONG or AODC),
is significantly smaller than what is required to achieve full

observability. Alg. 2 closely approximates the minimum for the
tested systems, but a simple heuristic such as GreedyDegree
does not. For IEEE 300-bus system, we have skipped Alg. 1
as neither AODC nor AONG can converge within 72 hours.
The details of PMU locations are given in Appendix F.

Table II
COMPARISON OF THE REQUIRED NUMBER OF PMUS

30-bus 57-bus 118-bus 300-bus
Alg. 1 (optimal) 2 3 9 —

Alg. 2 2 3 10 31
GreedyDegree 3 3 14 85

Full observability 10 17 32 87

Then, we evaluate the scenario when the solution by PPOP
is used as a temporary PMU placement that will eventually
be augmented into a placement achieving full observability,
as discussed at the end of Section II (Remark 2). To this end,
we evaluate the following metrics: (i) the minimum number
of PMUs required by PPOP |ΩPPOP|, (ii) the minimum number
of PMUs for achieving full observability |ΩFO|, (iii) the size
of a full-observability placement ΩC augmented from ΩPPOP

given by (37), and (iv) the size of the optimal solution Ω′PPOP

to a variation of PPOP with the additional constraint that
Ω′PPOP ⊆ ΩFO. In Table III, we observe that (i) |Ω′PPOP| is only
slightly larger than |ΩPPOP|, i.e., most of the cost savings by
PPOP is still achievable when its solution is required to be
consistent with the optimal long-term solution that achieves full
observability, but (ii) |ΩC | can be notably larger than |ΩFO| for
large systems, i.e., augmenting an arbitrary solution to PPOP
to achieve full observability may require notably more PMUs
compared to a clean-slate solution.

Table III
COMPARISON OF #PMUS UNDER TEMPORARY/LONG-TERM PLACEMENT

30-bus 57-bus 118-bus 300-bus
|ΩPPOP| 2 3 9 31
|Ω′PPOP| 2 3 10 34
|ΩC | 10 17 33 95
|ΩFO| 10 17 32 87

Impact of System Parameters: We evaluate the impact of
various system parameters on the number of PMUs required
by PPOP, given by Alg. 1 (by Alg. 2 for the 300-bus system).

First, we study the effect of α introduced in (12), where
a larger α implies a larger feasible region for the attacker. It
can be seen from Table IV that (i) PPOP can still significantly
reduce the required number of PMUs compared to “Full
observability” (see Table II) even if α is large, and (ii) PPOP
benefits from a small value of α, which signifies the importance
of precise load forecasting in defending against CCPA.

Table IV
NUMBER OF PMUS IN PPOP UNDER VARYING α

30-bus 57-bus 118-bus 300-bus
α = 0.01 1 1 4 24
α = 0.10 1 2 6 30
α = 0.25 2 3 9 31
α = 0.50 3 3 11 34

Then, we vary ξp and ξc to evaluate the impact of the
attacker’s capability. As shown in Figure 2, (i) defending
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Figure 2. #PMUs required by PPOP
#PMUs required by full observability (ξc= |V |+|E| means no ξc-constraint).

against a stronger attacker requires more PMUs as expected,
(ii) PPOP still requires much fewer PMUs than “Full
observability” when the attacker can disconnect multiple lines
and manipulate all the meters (except for the secured PMUs),
which is stronger than the attack model considered in [11],
[18], and (iii) PPOP can save a larger fraction of PMUs in
IEEE 57-bus system since fmax given in [41] is large.

In addition, we consider the case that the load profile p0

can vary as shown in (25). We assume p0 ∈ [κp(0), κp(0)],
where p(0) is the nominal load profile from [41], κ = 0.5 and
κ is set to the maximum value that keeps (5) feasible under
κp(0). In our evaluations, we set κ as 1.95, 2.69, 2.41 and
1.61 for IEEE 30-bus, 57-bus, 118-bus and 300-bus systems,
respectively. For the given range, PPOP requires 3, 4, 19,
and 33 PMUs for the 30-bus, 57-bus, 118-bus, and 300-bus
systems, which is more than what is required under a single
load profile as expected. Nevertheless, PPOP can still save
PMUs compared to “Full observability” as shown in Table II.

Computational Efficiency: We compare AODC and AONG in
terms of the number of iterations (which is also the number of
examined attack pairs) and the running time, which is evaluated
in a platform with Intel i7-8700 CPU with Gurobi as the solver.
Since any feasible solution to (26) can form an “No-Good”
constraint, we set an upper-bound on the time for solving
(26), which is 1200 seconds. As shown in Table V, while the
two algorithms perform similarly for small systems, AODC
converges notably faster for larger systems such as the 118-bus
system thanks to its reduced solution space due to the adoption
of both “No-Good” and “Attack-Denial” constraints. Note that
both algorithms converge after examining a small fraction of
possible attack pairs (the total number of attack pairs is 33620,
252800, and 3200130 for these systems, respectively).

Table V
NUMBER OF ITERATIONS/CONVERGENCE TIME (103 SEC)

30-bus 57-bus 118-bus
AODC 8/0.021 3/2.188 16/26.64
AONG 7/0.014 4/2.163 78/74.44

Moreover, we use IEEE 118-bus system as an example to
demonstrate the trade-off in tuning the parameters Kc,KA,KL

for Alg. 2 (assuming KA = KL). We run Alg. 2 for 5 times
under each setting due to the randomness in solving (23)
and breaking ties. The results are given in Fig. 3, where
the bar denotes the mean and the error bar denotes the
minimum/maximum. In Fig. 3 (b), we show the speedup
of the heuristic compared to AODC in convergence time,
i.e., (time of AODC)/(time of heuristic). We observe that (i)
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Figure 3. The performance of Alg. 2 under different Kc, KA, and KL.

Alg. 2 can return a good solution when Kc ≥ %10 · |V | and
KA = KL ≥ Kc, and (ii) under this configuration, Alg. 2 is
significantly faster than AODC at a small cost of requiring
a couple of more PMUs.

Extension to AC model: We compare the solution ΩAC

obtained by Alg. 5 with the best previous solution ΩDC obtained
under the DC approximation. As shown in Table VI, although
the DC-based solution may need augmentation to defend against
AC-based CCPA, the gap (i.e., |ΩAC| − |ΩDC|) is small. More
importantly, |ΩAC| is still much smaller (by 60–80%) than the
number of PMUs |ΩFO| required to achieve full observability
(see Table III), indicating the efficacy of our approach of first
computing an initial solution under the DC approximation and
then augmenting it to achieve our defense goal under the AC
model. We note that the values of |ΩAC| in Table VI are only
upper bounds on the number of PMUs required to prevent
outages under AC-based CCPA, suggesting great potential of
saving PMUs by adopting the proposed defense goal.

Table VI
NUMBER OF PMUS UNDER AC POWER FLOW MODEL

30-bus 57-bus 118-bus 300-bus
|ΩAC| 3 3 10 34
|ΩDC| 2 3 9 31

VI. CONCLUSION

We formulate a tri-level optimization problem under the DC
power flow model to find the optimal secured PMU placement
to defend against the coordinated cyber-physical attack (CCPA)
in the smart grid. Rather than completely eliminating the attack,
we propose to limit the impact of the attack by preventing
overload-induced outages. To solve the proposed problem, we
first transform it into a bi-level MILP and then propose an
alternating optimization algorithm framework to obtain optimal
solutions. The core of the proposed algorithm framework is
constraint generation based on infeasible placements, for which
we develop two constraint generation approaches. Furthermore,
we propose a polynomial-time heuristic algorithm that can
scale to large-scale grids. In addition, we demonstrate how to
extend the obtained PMU placement to achieve our defense
goal under the AC power flow model. Our experimental results
on standard test systems demonstrate great promise of the
proposed approach in reducing the requirement of PMUs. Our
work lays the foundation for tackling a number of further
questions in future work, e.g., how to characterize the optimal
attack without solving MILPs, how to directly optimize the
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PMU placement for outage prevention under the AC model,
and how to improve the robustness of the solution against the
failures of PMUs themselves.
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APPENDIX A
MILP FORMULATION OF ATTACKER’S PROBLEM

In this section, we will demonstrate how to transform (23)
into a MILP, which can be efficiently solved by existing solver
such as Gurobi.

To begin with, we give an overview of the PPOP, as shown
in Fig. 4.

The Proposed Formulation (PPOP) 
• Framework

• Tri-level optimization problem

PMU deployment 
Optimization

Attacker’s problem

SCED

Whether successful 
attack exists

PMU placement

Result of SCED under 
the given attack

An attack

Figure 4. Overview of the PPOP
We first consider the case that lower-level optimization (5)

returns the set of θ’s satisfying (5b)-(5d), i.e., it returns the
feasible region of SCED rather than a single solution. In this
case, (23) becomes a single-level problem.

Below, we show how to convert the single-level formulation
of (23) into a MILP. To convert (18) and (23e) into linear con-
straints, we introduce a constant M2,θ (defined in Appendix B)
such that (18a) holds if and only if the following holds:

θ̃2,u − θ2,u ≤M2,θ · (1− xN,u), (38a)

θ̃2,u − θ2,u ≥ −M2,θ · (1− xN,u), (38b)

and similar conversion applies to (18b). As for (23e), by
defining a sufficiently large constant Mπ,e (see Appendix B)
and two binary auxiliary variables πn,e, πp,e to get rid of the
absolute value operation, (23e) is transformed into

−Mπ,e · (1− πp,e) <
f3,e

fmax,e
− γe ≤Mπ,e · πp,e, (39a)

−Mπ,e · (1− πn,e) <
−f3,e

fmax,e
− γe ≤Mπ,e · πn,e. (39b)

We claim that πe = πn,e + πp,e. To see this, suppose that
f3,e ≥ 0. Then, we must have − f3,e

fmax,e
− γe ≤ 0 and thus

πn,e = 0, while |f3,e|fmax,e
− γe =

f3,e
fmax,e

− γe and thus πp,e = πe.
Notice that we must have πe = 1 if |f3,e| − γe · fmax,e > 0,
while |f3,e| − γe · fmax,e ≤ 0 leads to πe = 0.

To linearize (20g), we introduce binary variables wf ∈
{0, 1}|mL| and wp ∈ {0, 1}|mN | for data injection on line
measurements and node measurements, respectively. Then,
(20g) can be transformed into (see definitions of Mc,f , Mc,p

in Appendix B)

−Mc,fwf ≤ Λf

(
f̃2 − f2

)
≤Mc,fwf , (40a)

−Mc,pwp ≤ Λp

(
B̃θ̃2 − p0

)
≤Mc,pwp, (40b)

1Twf + 1Twp ≤ ξc. (40c)

Together, the above techniques transform (23) into
a MILP. Specifically, the binary decision variables

are {πn,πp,ap,wf ,wp}, continuous variables are
{θ̃2, θ̃3,θ2,θ3,f2,f3, f̃2,fcon}, where wf ,wp are introduced
auxiliary variables. Then, the full formulation without
considering the optimality of (5) is given as follows.

max ‖πp + πn‖0 (41a)

s.t.

∆−1Aβ ≤ xN ≤∆−1Aβ +
‖∆‖∞ − 1

‖∆‖∞
, (41b)

1

2
|D|Tβ ≤ xL ≤

1

2
|D|Tβ + ζ, (41c)

− (1− ap) ≤ diag (γ � fmax)
−1
f2 ≤ 1− ap, (41d)

D̃f2 = p0,−M2,fap ≤ ΓDθ2 − f2 ≤M2,fap, (41e)

− fmax ≤ f̃2 ≤ fmax, ΓD̃T θ̃2 − f̃2 = 0, (41f)
− α|p0| ≤ D̃f̃2 − p0 ≤ α|p0|, (41g)
ΛgD̃f̃2 = Λgp0, (41h)

−Mc,fwf ≤ Λf

(
f̃2 − f2

)
≤Mc,fwf , (41i)

−Mc,pwp ≤ B̃θ̃2 − p0 ≤Mc,pwp, (41j)
1Twf + 1Twp ≤ ξc, ‖ap‖0 ≤ ξp, (41k)

θ̃2,u − θ2,u ≤M2,θ · (1− xN,u), (41l)

θ̃2,u − θ2,u ≥ −M2,θ · (1− xN,u), (41m)

pg,min ≤ ΛgB̃θ̃3 ≤ pg,max, (41n)

− fmax ≤ ΓDT θ̃3 ≤ fmax, (41o)
ΛdB̃θ̃3 = ΛdD̃f̃2, (41p)
−M3,a(1− ap) ≤ f3 ≤M3,a(1− ap), (41q)

ΛdD̃f3 = Λdp0, ΛgD̃f3 = ΛgB̃θ̃3, (41r)

−M3,fap ≤ ΓD̃Tθ3 − f3 ≤M3,fap, (41s)

θ2,u0 = θ3,u0 = θ̃2,u0 = θ̃3,u0 = 0, (41t)

− ·(1− πp,e) <
f3,e

Mπ,efmax,e
− γe
Mπ,e

≤ ·πp,e, ∀e, (41u)

− ·(1− πn,e) <
−f3,e

Mπ,efmax,e
− γe
Mπ,e

≤ ·πn,e, ∀e, (41v)

D̃ufcon =

{
|V | − 1, if u = u0,

−1, if u ∈ V \ {u0},
, (41w)

− |V | · (1− ap,e) ≤ fcon,e ≤ |V | · (1− ap,e) (41x)

The constraints (41b)-(41c) correspond to (16)-(17), (41d)-
(41e) correspond to (19a)-(19c), (41f)-(41k) correspond to (20),
(41l)-(41m) correspond to (38), (41n)-(41s) correspond to (21),
(41t) corresponds to (23c), (41u)-(41v) correspond to (23e),
(41w)-(41x) correspond to (14).

If we do not relax the optimality requirements in (5), we need
to introduce additional binary variables {rfl, rfu, rgl, rgu} and
continuous dual variables {µb,µc,µd,µe,µg} to transform
(5) into a linear system by using its KKT conditions [9].
Specifically, we add the following linear system into (41) for
the completeness of KKT conditions of (5):

B̃ΛT
d µb + D̃Γµc + D̃Γµd + B̃ΛT

g µe − B̃ΛT
g µg = −B̃ΛT

g φ
(42a)

µc −Mrfl ≤ 0, (42b)

ΓD̃T θ̃3 +Mrfl ≤M − fmax (42c)
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µd −Mrfu ≤ 0, (42d)

− ΓD̃T θ̃3 +Mrfl ≤M − fmax (42e)
µe −Mrgl ≤ 0, (42f)

ΛgB̃θ̃3 +Mrgl ≤ pg,min +M1 (42g)
µg −Mrgu ≤ 0, (42h)

−ΛgB̃θ̃3 +Mrgu ≤ −pg,max +M1 (42i)
rgl + rgu ≤ 1 (42j)
rfl + rfu ≤ 1 (42k)
µc,µd,µe,µg ≥ 0 (42l)

Compared to the attacker’s formulations in [1], [13] that also
optimize the location of physical attacks, the key advantage
of (23) is avoiding McCormick’s relaxation for bilinear terms
(22) and reducing the numbers of variables and constraints.
Specifically, McCormick’s relaxation in [1] will introduce
2|E||V | additional continuous variables and 8|E||V | additional
constrains. The cost of avoiding bilinear term in (23) is the
additional variables f2,f3, f̃2 and the associated constraints,
although the benefit usually outweighs the cost. For example,
for the IEEE 118-bus system, the formulation in [1] has 44436
continuous variables and 178, 596 constraints, while (23) only
has 1216 continuous variables and 5, 802 constraints.

APPENDIX B
CALCULATION OF BIG-M

In this section, we will explain how to calculate M2,a,e in
(19a), M2,f in (19c), M3,a in (21d), M2,θ in (38), M3,f in
(21f), Mπ,e in (39), MF ,MF in (33), Mc,f ,Mc,p in (40) and
Mq in (34c). In this section, we denote N = (V,E) as the
graph before physical attack while N ′ = (V,E′) as the graph
after attack.

We first show how to calculate M2,a, M2,f and M2,θ.
Suppose that the power grid is designed to be robust to
N − k contingency. Then, the value of M2,a depends on
ξp − k. If ξp − k ≤ 0, then we can set M2,a,e := fmax,e
or M2,a,e := γefmax,e, since no ap can cause overloading.
Otherwise, we set M2,a,e := C2,aγefmax,e with a parameter
C2,a > 1. In our simulations, we find that C2,a := 3 suffices
since ξp− k is usually small. Next, we bound |θ2| by defining
Mθ2,u ≥ maxap |θ2,u| and Mθ2 ≥ maxap maxu |θ2,u| since
the value of θ2 depends on ap. An intuitive way of obtaining
Mθ2,u is enumerating all possible values of ap, whose time
complexity is polynomial in |E| and |V | if ξp = O(1).
Here we provide another way of bounding Mθ2,u. Due to
our assumption of the connected N , there exists at least
one path in N connecting the reference node u0 to each
node u ∈ V . Moreover, for each path connecting u0 and
u, say Pa(u0, u) := (e0, e1, · · · , eJ) where e0 = (u0, v1),
ej = (vj , vj+1) and eJ = (vJ , u), we have θ2,u − θ2,u0

=
θ2,s − θ2,v1 + θ2,v1 − · · ·+ θ2,vJ − θ2,t, which leads to

max
ap
|θ2,u| = max

ap
|θ2,u − θ2,u0 |

≤
J∑
j=0

rejM2,a,ej := MPa(θ2,u) (43)

since θ2,u0
= 0 in our assumption and |θ2,vj − θ2,vj+1

| ≤
rejM2,a,ej due to (19a). Denote np as the number of dif-
ferent paths connecting u and u0. Then, since the physical
attack will disconnect at most ξp lines, we set Mθ2,u :=

max{MPai(θ2,u)}min{ξp+1,np}
i=1 .

Equipped with Mθ2,u, u ∈ V , we can calculate M2,f and
M2,θ. We define an intermediate constant M2,f,e for each line
such that M2,f = maxe∈EM2,f,e. Then, for e = (u, v) we can
set M2,f,e := re(Mθ2,u + Mθ2,v) since |Γed̃Te θ2 − f2,e| > 0
only if ap,e = 1 and f2,e = 0.

To obtain M2,θ, we first bound Mθ̃2,u
≥

maxap,ac |θ̃2,u|, u ∈ V in a similar way as that in (43).
Specifically, since θ̃2 is estimated by CC based on the topology
N , we can arbitrarily choose one path (e0, e1, · · · , eJ) in N
that connects u and u0 and set

Mθ̃2,u
:=

J∑
j=0

rejfmax,ej ≥ max
ap,ac

|θ̃2,u|. (44)

Then, we can set M2,θ := maxu∈V (Mθ̃2,u
+Mθ2,u).

Now, we are ready to demonstrate the calculation of M3,a

and M3,f . As for M3,a, we only require M3,a,e > γefmax,e
and M3,a ≥ maxe∈E γefmax,e so that the attacker can cause
outages over any lines. In practice, we can set M3,a :=
cmaxe∈E γefmax,e with c > 1. As for M3,f , we again first
show that we can bound |θ3,u| ≤ Mθ3,u without hurting the
attacker’s objective. We notice that the topology of grid at t3
before lines facing outage automatically disconnect themselves
is still N ′. Thus, we can set Mθ3,u similarly as Mθ2,u, except
that (43) becomes:

max
ap
|θ3,u| ≤

J∑
j=0

rejMa,ej := MPa(θ3,u). (45)

Then, we can set Mθ3,u := max{MPai(θ3,u)}min{ξp+1,np}
i=1 ,

M3,f,e := re(Mθ3,u+Mθ3,v) for e = (u, v) ∈ E, and M3,f =
maxe∈EM3,f,e.

Equipped with M3,a,e, Mπ,e can be easily set as c ·(M3,a,e

fmax,e
+

γe) with any constant c > 1.
We can set MF as 0 since q2 ≥ 0 and F3,i,u ∈ {0,−M2,θ},
∀i, u. There is no simple guidelines for MF in (33) since it is
the bound for dual variables. In practice, we can initialize MF

to a given value and solve (31) for each attack pair separately.
Then, we iteratively decrease MF until (31) is feasible under
each attack pair separately. In our simulations, we set MF :=

−M2
2,θ. Equipped with MF , we can set Mq :=

2MF

M2,θ
.

Finally, we demonstrate how to set Mc,f and Mc,p. Due
to (19a) and (20a), we have |f̃2,e − f2,e| ≤ (1 + γe)fmax,e,
which implies that we can set Mc,f := maxe∈E(1 + γe)fmax,e.
Similarly, we can set Mc,p := α‖p0‖∞ due to (20e).

APPENDIX C
EFFICIENCY ANALYSIS OF “NO-GOOD” CONSTRAINTS

We have the following observations about AONG:
1) Cold start. The efficiency of (27) can be characterized

by the number of infeasible β’s that are cut out. Let
{β̂(k)}Kk=1 be the PMU placements obtained in the first



16

K iterations of Alg. 1 and {β̂′(k)}Kk=1 the corresponding
augmented placements obtained from (26). Then, the
number of feasible β’s for the next iteration is at least(

2|
⋂K
k=1 Ω(β̂

′(k))c| − 1
)
· 2|V |−|

⋂K
k=1 Ω(β̂

′(k))c| (46)

if
⋂K
k=1 Ω(β̂

′(k))c 6= ∅, as placing at least one PMU in⋂K
k=1 Ω(β̂

′(k))c will satisfy (27) for every placement in
{β̂′(k)}Kk=1. This implies that the number of β’s that are
cut out is at most 2|V |−|

⋂K
k=1 Ω(β̂

′(k))c|. Therefore, the
first K “No-Good” constraints (27) added in Alg. 1 will
be inefficient if |

⋂K
k=1 Ω(β̂

′(k))c| is large. We observe
that |

⋂K
k=1 Ω(β̂

′(k))c| is large at the beginning of Alg. 1
and decreases quickly as ‖β̂(k)‖0 increases.

2) Repeated successful attacks. Another cause of inefficiency
is that for many PMU placements enumerated by AONG,
there exist successful attacks based on the same attack
pair (ap, e), indicating that new constraints are needed
to better defend against identified attacks.

APPENDIX D
THE DETAILS OF COEFFICIENTS IN ATTACKER’S PROBLEM

The linear system (28a) is the composition of (20f), (21e)
and (21c), which can be expanded into:

ΛgB̃ 0 0
0 0 ΛdB

0 −ΛgB̃ ΛgB

ΛdB̃ −ΛdB̃ 0


 θ̃2

θ̃3

θ3

 =


Λgp0

Λdp0

0
0

 (47)

as well as θ̃2,u0 = θ̃3,u0 = θ3,u0 = 0. For a given attack pair
(ap, e) and the corresponding θ2, the expansion of (28b) is

θ̃2 θ̃3 θ3 s2 + F3xN



B̃ 0 0 p0 + α|p0|
−B̃ 0 0 −p0 + α|p0|
I|V | 0 0 θ2 +Mθ(1− xN )
−I|V | 0 0 −θ2 +Mθ(1− xN )

0 0 −Γed
T
e −γefmax,e

0 D̃TΓ 0 fmax

0 −D̃TΓ 0 fmax

0 ΛgB̃ 0 pg,max
0 −ΛgB̃ 0 −pg,min

D̃TΓ 0 0 fmax

−D̃TΓ 0 0 fmax

(48)

Specifically, the first two rows of (48) correspond to (20e), the
next two rows correspond to (38), the 5-th row indicates the
outage at the target line, the 6-th and 7-th rows correspond to
(21b), the 8-th and 9-th rows correspond to (21a), and the last
two rows correspond to (20a).

APPENDIX E
DETAILS OF THE ATTACKER’S PROBLEM UNDER AC POWER

FLOW MODEL

For completeness, we summarize the necessary notations for
presenting AC power flow model in Table VII. Specifically,

Table VII
NOTATIONS FOR AC POWER FLOW

Notation Description

p/q ∈ C|V | Active/reactive power injection

~vu = vuej·θu node voltage

Ỹbus = G̃bus + jB̃bus Bus admittance matrix

Ỹf/Ỹt ∈ C|E|×|V | From/to end admittance matrix

Cf/Ct ∈ {0, 1}|E|×|V | From/to end incidence matrix

pf/pt ∈ C|E| From/to end active power flow

qf/qt ∈ C|E| From/to end reactive power flow

|If |2/|It|2 ∈ C|E| Square of from/to end current magnitude

Imax ∈ R|E| Limit on line current magnitude

Îmax ∈ R|E| Threshold for line tripping

Ỹc = G̃c + jB̃c ∈ C|E| line charging

Z̃ = Z̃R + jZ̃I ∈ C|E| line impedance

ỸL = G̃L + jB̃L ∈ C|E| line admittance

Vmax/Vmin ∈ R|V | Limit on node voltage magnitude

θmax/θmin ∈ R|E| Limit on phase angle difference for lines

p̂3/q̂3 ∈ R|V | approximated power injections at t3
p̂f,3/q̂f,3 ∈ R|E| approximated line power flow at t3

we denote Cf as the From end incidence matrix, in which
Cf,e,i = 1 if and only if we have e = (i, k) ∈ E. The To end
incidence matrix Ct is defined similarly, where Ct,e,k = 1 if
and only if we have e = (i, k) ∈ E.

We provide details about (36), where we adopt QC relaxation
proposed in [40] for (36c) and linearized approximation
proposed in [33] for (36d). As for the constraint on false data
injection to bypass BDD (36b), we follow [30] to formulate
QC relaxation-based constraints.

To begin with, we demonstrate the basics on QC relaxation
for AC power flow equations. Recall from Table VII that the
complex voltage on node i is ~vi := vie

j·θi . Then, we introduce
auxiliary variables cii, cik and sik in the hope that

cii = v2
i , (49a)

cik = vivk cos θik (49b)
sik = vivk sin θik, (49c)

where θik = θi − θk. As proposed in [40], we first introduce
the notation 〈x〉·, which indicates an auxiliary variable as well
as the associated constraints with x as input. Concretely,

〈
x2
〉T

indicates the auxiliary variable x̆ together with the following
constraints:〈

x2
〉T ≡ { x̆ > x2

x̆ 6 (xu + xl)x− xuxl
, (50)

where x ∈ [xl, xu] is pre-assigned bound. Similarly, we have

〈xy〉M :=


x̆y > xly + ylx− xlyl
x̆y > xuy + yux− xuyu
x̆y 6 xly + yux− xlyu
x̆y 6 xuy + ylx− xuyl

(51a)

〈sinx〉S :=

{
s̆x 6 cos

(
xu
2

) (
x− xu

2

)
+ sin

(
xu
2

)
s̆x > cos

(
xu
2

) (
x+ xu

2

)
− sin

(
xu
2

) (51b)

〈cosx〉C :=

{
cx 6 1− 1−cos(xu)

(xu)2
x2

c̆x > cos (xu)
(51c)
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Equipped with (50) and (51), the QC relaxation-based con-
straints on cii for each i ∈ V can be written as cii ∈

〈
v2
i

〉T
,

while the constraints on cik and sik for each e = (i, k) ∈ E
are

cik = cki, (52a)
sik = −ski, (52b)

c2ik + s2
ik ≤ ciickk, (52c)

cik ∈
〈
〈vivk〉M · 〈cos θik〉C

〉M
, (52d)

sik ∈
〈
〈vivk〉M · 〈sin θik〉S

〉M
. (52e)

For simplicity, we will omit the auxiliary variables and
the associated constraints for modeling (52d) and (52e). We
assume that (52d) and (52e) are imposed when QC relaxation
is adopted. For (36b), the decision variables we focus are
c̃2,ii, ∀i ∈ V, c̃2,ik, s̃2,ik, ∀e = (i, k) ∈ E, e = (k, i) ∈ E,
θ̃2, ṽ2 and |Ĩ2,f |2, |Ĩ2,t|2. Then, the constraints (36b) can be
written as

Λg(p̃2 − p0) = 0,Λg(q̃2 − q2) = 0 (53a)
Λg(ṽ2 − v2) = 0, (53b)

c̃2,ii = v2
2,i, ∀i ∈ Vg, (53c)

−Λd|p̃0| ≤ αΛd(p̃2,i − p̃0) ≤ αΛd|p̃0|, (53d)
−Λd|q̃0| ≤ αΛd(q̃2,i − q̃0) ≤ αΛd|q̃0|, (53e)
(1− η)Vmin ≤ ṽ2 ≤ (1 + η)Vmax (53f)

(1− η)θmin,e ≤ θ̃2,e ≤ (1 + η)θmax,e, ∀e ∈ E (53g)

|Ĩ2,f | ≤ Imax, |Ĩ2,t| ≤ Imax (53h)

p̃2,i =
∑

k=1,...,n

G̃ik c̃2,ik − B̃iks̃2,ik, (53i)

q̃2,i =
∑

k=1,...,n

−B̃ik c̃2,ik − G̃iks̃2,ik, (53j)

p̃2,f,e = G̃f,e,ic̃2,ii + G̃f,e,k c̃2,ik − B̃f,e,ks̃2,ik, (53k)

q̃2,f,e = −B̃f,e,ic̃2,ii − B̃f,e,k c̃2,ik − G̃f,e,ks̃2,ik, (53l)

p̃2,t,e = G̃∗t,e,k c̃2,kk + G̃t,e,ic̃2,ik + B̃t,e,is̃2,ik, (53m)

q̃2,t,e = −B̃∗t,e,k c̃2,kk − B̃t,e,ic̃2,ik + G̃t,e,is̃2,ik, (53n)

p̃2,i = cTf,ip̃f,2 + cTt,ip̃t,2 +R(Ysh,ic̃2,ii) (53o)

q̃2,i = cTf,iq̃f,2 + cTt,iq̃t,2 − I(Ysh,ic̃2,ii) (53p)

c̃2,ii = v2
2,i, ṽ2,i = v2,i, θ̃2,i = θ2,i, ∀i with xN,i = 1, (53q)

c̃2,ik = v2,iv2,k cos θik, ∀e = (i, k) with xL,e = 1, (53r)
p̃2,e = p2,e, q̃2,e = q2,e, ∀e = (i, k) with xL,e = 1, (53s)

Ĩ2,f,e = I2,f,e, Ĩ2,t,e = I2,t,e, ∀e = (i, k) with xL,e = 1,
(53t)

where p0 and q0 indicates the ground-truth power injections
at t0, (53i)-(53j) are imposed for each node i ∈ V , (53k)-
(53n) are imposed for all e = (i, k) ∈ E, cf,i/ct,i is the
i-th column of Cf/Ct, Ysh denotes the diagonal matrix of
node shunt, R(x)/I(x) denotes the real/imaginary part of
x, (53q)-(53t) indicates the protection effect of PMUs, and
η ∈ [0, 1) is a manually assigned factor for ṽ2 and θ̃2 not to
raise alarms in control center. Besides (53), we impose the

following constraints according to [42, Chapter 5] for each
e = (i, k) ∈ E into (36b) :

|Ĩ2,f,e|2 =
1

|Ze|2
(c̃2,ii + c̃2,kk − 2c̃2,ik) + 2G̃c,ep̃2,f,e

− 2B̃c,eq̃2,f,e − |Yc,e|2 c̃2,ii, (54a)

p̃2,f,e + q̃2,f,e = Z̃R,e
(
|Ĩ2,f,e|2 − 2(G̃c,ep̃2,f,e − B̃c,eq̃2,f,e)

+ |Yc,e|2 c̃2,ii
)

+ G̃c,e(c̃2,ii + c̃2,kk), (54b)

p̃2,f,e + q̃2,f,e = Z̃I,e
(
|Ĩ2,f,e|2 − 2(G̃c,ep̃2,f,e − B̃c,eq̃2,f,e)

+ |Yc,e|2 c̃2,ii
)
− B̃c,e(c̃2,ii + c̃2,kk), (54c)(

1 + 2Z̃R,eG̃c,e − 2Z̃I,eB̃c,e

)
c̃2,ii − c̃2,kk = 2(Z̃R,ep̃2,f,e

+ Z̃I,eq̃2,f,e)− |Z̃e|2
(
|Ĩ2,f,e|2 − 2(G̃c,ep̃2,f,e − B̃c,eq̃2,f,e)

+
∣∣∣Ỹc,e∣∣∣2 c̃2,ii) (54d)

All equations in (54) should hold simultaneously.

Similarly, the decision variables we will focus on in (36c)
are c̃3,ii, ∀i ∈ V, 3̃2,ik, s̃3,ik, ∀e = (i, k) ∈ E, e = (k, i) ∈
E, θ̃3, ṽ3 and |Ĩ3,f |2, |Ĩ3,t|2. Then, the constraints (36c) are
similar to (53) and (54), with (53a)-(53h) changed into

pg,min ≤ Λgp̃3 ≤ pg,max, qg,min ≤ Λgq̃3 ≤ qg,max, (55a)
Λd(p̃3,i − p̃2,i) = 0, Λd(q̃3,i − q̃2,i) = 0, (55b)
Λg(p̃3,i − p̃2,i) = 0 (55c)

Vmin ≤ ṽ3 ≤ Vmax, θmin,e ≤ θ̃3,e ≤ θmax,e, ∀e ∈ E, (55d)

|Ĩ3,f | ≤ Imax, |Ĩ3,t| ≤ Imax. (55e)

Following [33], the decision variables in (36d) are
v̂2

3,i, θ̂3,i, p̂3,i, q̂3,i, ∀i ∈ V , p̂f,3 ∈ R|E|, q̂f,3 ∈ R|E| and
|Î3|2 ∈ R|E|. Next, we define pLf,3,e and qLf,3,e for e = (i, k) ∈
E with ap,e = 0 as follows:

pLf,3,e = G̃L,e

(
θ̂ik,0θ̂3,ik −

θ̂2
ik,0

2
+
v̂i,0 − v̂k,0
v̂i,0 + v̂k,0

(v̂2
3,i − v̂2

3,k)

− (v̂i,0 − v̂k,0)2

2

)
+R(Ỹc,e)v̂

2
3,i (56a)

qLf,3,e = −B̃L,e
(
θ̂ik,0θ̂3,ik −

θ̂2
ik,0

2
+
v̂i,0 − v̂k,0
v̂i,0 + v̂k,0

(v̂2
3,i − v̂2

3,k)

− (v̂i,0 − v̂k,0)2

2

)
− I(Ỹc,e)v̂

2
3,i, (56b)

where v̂ik,0 and θ̂ik,0 are obtained from any base case system
operating condition. In our work, we set it as v̂ik,0 = v2,ik

and θ̂ik,0 = θ2,ik for each given (ap, et). Then, we have three
types of constraints in (36d). Specifically, by appropriately
setting η3,p,i and η3,q,i (see proof of Theorem IV.1 for details)
to tolerate the approximation error, for each i ∈ V , we have

−η3,p,i ≤Dip̂3,f + v̂2
3,i

|V |∑
k=1

G̃ik − p0,i ≤ η3,p,i. (57)

For each i ∈ Vd, we have

−η3,q,i ≤Diq̂3,f − v̂2
3,i

|V |∑
k=1

B̃ik − q̃3,i ≤ η3,q,i, . (58)
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For each e = (i, k) ∈ E with ap,e = 0, we have

pf,3,e = G̃L,e
v̂2

3,i − v̂2
3,k

2
− B̃L,eθ̂ik + pLf,3,e, (59a)

qf,3,e = −B̃L,e
v̂2

3,i − v̂2
3,k

2
− G̃L,eθ̂ik + qLf,3,e, (59b)(

1 + 2Z̃R,eG̃c,e − 2Z̃I,eB̃c,e

)
v̂2

3,i − v̂2
3,k = 2(Z̃R,ep̂3,f,e

+ Z̃I,eq̂3,f,e)− |Z̃e|2
(
|Î3,f,e|2 − 2(G̃c,ep̂3,f,e

− B̃c,eq̂3,f,e) +
∣∣∣Ỹc,e∣∣∣2 v̂2

3,i

)
(59c)

APPENDIX F
DETAILS OF PMU LOCATIONS OBTAINED IN PPOP

Here, we present the location of PMUs obtained in the
proposed PPOP. First, in Table VIII, we give the PMU locations
according to the best proposed solution ΩPPOP to PPOP, which
is consistent with Table II.

Table VIII
PMU LOCATIONS OF PPOP UNDER DC MODEL

Location of PMUs
IEEE 30-bus system 15, 23
IEEE 57-bus system 12,13,25
IEEE 118-bus system 17,34,37,42,49,72,85,100,118

IEEE 300-bus system
8,20,22,34,38,43,44,48,49,54,64,68,
74,77,79,89,90,94,99,109,119,132,

138,152,185,190,203,216,221,270,271

Then, in Table IX, we present the PMU locations of the
solution that can pass the test of Alg. 4 under AC power flow
model, obtained by Alg. 5.

Table IX
PMU LOCATIONS OF PPOP UNDER AC MODEL

Location of PMUs
IEEE 30-bus system 5,15,23
IEEE 57-bus system 12,13,25
IEEE 118-bus system 17,34,37,42,49,62,72,85,100,118

IEEE 300-bus system

8,20,22,34,38,43,44,48,49,54,64,68,
74,77,79,81,89,90,94,99,109,119,132,

138,152,175,185,190,197,203,216,
221,270,271

APPENDIX G
MORE DISCUSSION OF RELATED WORKS

Different defense techniques against CCPA/FDI: Follow-
ing [6], we classify defense techniques against CCPAs into the
following categories:

1) Prevention: Due to the requirements of network infor-
mation and measurements, prevention methods defend
against CCPAs by reducing or postponing the information
leakage. Moving target defense (MTD) approach [10]
is a typical technique in this category. Specifically,
MTD methods will strategically impose random change
to network components (such as line admittance) to
mislead the attacker. The CCPAs with falsified network
parameters have a higher chance to be detected. Another

typical method in this category is dynamic watermarking
[43], which shares a similar spirit of MTD.

2) Detection: The methods in this category manage to
detect the existence of attacks under some assumption on
information exposure and attack capability. Traditional
BDD is one of the approaches in this category. There
are some advanced detection techniques, such as low
rank-based detection [44]. Securing measurements or de-
ploying PMUs can also be used for detection. Specifically,
an attack that tries to alter the measurements secured by
PMUs will be detected by the control center. However,
to achieve full detection, full observability by PMUs is
required.

3) Resilience: It is critical to keep the system stable when
there exist CCPAs that can bypass the detection. In other
words, resilience approaches aim at limiting the impact of
the attacks. Game-theoretic methods can be regarded as
typical ones, such as the budget-constrained formulations
in [18], [22]–[24], [27]. Our solution lies in this category.

APPENDIX H
ADDITIONAL PROOFS

Theorem III.1. We will reduce the dominating set problem to
PPOP. Given a graph N = (V,E), the dominating set problem
aims to find a minimum set of vertices V1 ∈ V such that
∀u ∈ V \V1, u has at least one neighbor in V1. The dominating
set problem is known to be NP-hard. Notice that given the grid
N = (V,E) the parameters for the proposed problem (24)-(23)
are p0,Γ, ξp, ξc,α and {γe}e∈E . We will prove for any given
connected grid and the associated dominating set problem,
there exists a parameter setting for the proposed problem such
that V1 is a minimal dominating set if and only if V1 is an
optimal solution to (24), i.e., ∀u ∈ V, xN,u = 1.

Given any p0, suppose that θ0 is the associated phase angle
without attack, i.e., p0 = B̃θ0, and θ̂0 is the the solution to
(5), i.e., θ̂0 = ψs(p0, D̃), which gives f̂0 := ΓD̃T θ̂0.

Then, we set p0 = 0, ξp = 0, ξc = ∞, α = ∞ and Γ as
identity matrix, which results in θ0 = θ̂0 = 0 and f̂0 = 0. In
addition, we set γe = 0, ∀e ∈ E, which transform (23e) to

|ΓedTe θ3| = 0↔ πe = 0. (60)

Next, we show by contradiction that |ΓedTe θ3| = 0 holds for
all e ∈ E only if θ̃2 = 0 = θ0. Suppose θ̃2 6= 0, we must
have B̃θ̃2 6= 0, which leads to 0 6= θ̃3 = ψs(B̃θ̃2, D̃) and
thus ΛgB̃θ̃3 6= 0 due to the constraint (23c). The non-zero
ΛgB̃θ̃3 implies that ∃e ∈ E such that Γed

T
e θ3 6= 0. That is to

say, the constraint (24b) holds only when θ̃2 = θ0 = 0, which
indicates that the defender has to place PMUs to guarantee
that the only feasible solution to (23) is ac = 0. In another
word, β needs to satisfy ∀u ∈ V, xN,u = 1, which completes
the proof.

Theorem III.2. First, we introduce some definitions: B :=
{β|ψa(β) = 0} denotes the set of feasible solutions,
Bc := {β|ψa(β) ≥ 1} the infeasible solutions, M(Bc) :=
{β|(β,β′ ∈ Bc) ∧ (β′ ≥ β) → (β′ = β)} the maximal
infeasible solutions, and P := {β̌ ∈ [0, 1]|V ||∀β ∈ M(Bc) :
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∑
u:βu=0 β̌u ≥ 1} the polytope excluding all the maximal

infeasible solutions.
Then, based on the results in [45], we have the following

characterization:

Lemma H.1. The following statements hold: (i) P ∩
{0, 1}|V | = B; (ii) ∀β′ ∈M(Bc),

∑
u:β′

u=0 βu ≥ 1 defines a
facet of P .

Proof. To prove statement (i), we first prove that B ⊆
(P∩{0, 1}|V |) by contradiction. Suppose ∃β1 ∈ B but β1 /∈ P .
Then by definition of P , there must exist β′1 ∈ Bc such
that

∑
u:β′

1,u=0 β1,u = 0, which implies Ω(β1) ⊆ Ω(β′1). By
Lemma III.1, we must have β1 ∈ Bc, which contradicts with
the assumption that β1 ∈ B. Thus, B ⊆ (P ∩ {0, 1}|V |). Then,
we prove (P ∩ {0, 1}|V |) ⊆ B by contradiction. Suppose there
exists β̌ ∈ (P ∩ {0, 1}|V |) but β̌ /∈ B, which implies that
β̌ ∈ Bc. That is to say, ∃β̌′ ≥ β̌ such that β̌′ ∈M(Bc). Then
by definition of P , we have

∑
u:β̌′

u=0 β̌u ≥ 1. However, since
β̌′ ≥ β̌, ∀u : β̌u = 0, we must have β̌u = 0 and leads to∑
u:β̌′

u=0 β̌u = 0, which introduces contradiction. In summary,
P ∩ {0, 1}|V | = B.

We then prove statement (ii) by contradiction, i.e.,
∃β̌′ ∈ M(Bc) such that when we remove the inequality∑
u:β̌′

u=0 βu ≥ 1 from P , we still have P . By definition of
M(Bc), we must have β̌′ ∈ Bc, which implies

∑
u:β̌′

u=0 β̌
′
u =

0, i.e., β̌′ /∈ P . That is to say, there exists some inequality
to cut β̌′ out from P , i.e., ∃β̌′′ ∈M(Bc) and β̌′′ 6= β̌′ such
that

∑
u:β̌′′

u=0 β̌
′
u = 0. Notice that ∀u : (β̌′′u = 0)→ (β̌′u = 0),

which implies Ω(β̌′) ⊆ Ω(β̌′′). By definition of M(Bc), we
must have β̌′′u = β̌′u, which contradicts with β̌′′u 6= β̌′u and
completes the proof.

We now prove Theorem III.2 based on Lemma H.1. First
notice that each β̂ ∈ Bc will be enumerated at most once in
Alg. 1 due to the “no-good” constraints, and hence the algorithm
will converge in finite time. Then, consider an arbitrary β̂′

obtained through (26). The generated “no-good” constraint∑
i:β̂′

i=0 βi ≥ 1 must be satisfied by all the feasible solutions
in B, as any PMU placement violating this constraint must be
infeasible according to Lemma III.1. Finally, for any β1,β2 ∈
B with ‖β1‖0 < ‖β2‖0, β1 will be found by Alg. 1 before β2,
since each guess of PMU placement is obtained by minimizing
‖β‖0 in (24), which completes the proof.

Theorem III.3. As Alg. 1 always returns a feasible solution
that defends against all attack pairs, we only need to prove
that the solution β1 returned by AODC requires the minimum
number of PMUs. We will prove this by contradiction.
Suppose that there exists β2 such that ‖β2‖0 < ‖β1‖0 and
ψa(β2) = 0. Then β2 must be feasible to the instance of (31)
constructed based on the attack pairs {(a(k)

p , e(k))}Kk=1 and
the maximal infeasible solutions {β̂′(k)}Kk=1 found by AODC
as it defends against all attacks. This contradicts with the fact
that β1 is optimal to (31).

Lemma III.2. We first observe that xN and xL are unique
under the constraints (16)-(17). Thus, we will use xN (β) and

xL(β) to denote the values of xN and xL satisfying (16)-(17)
for a given β ∈ {0, 1}|V |.

For a given attack pair (ap, e), (q̌1, q̌2, β̌) can be feasible
to (34) in two different cases. The first case is that∑

ap,e=1

xL,e(dβ̌e) ≥ 1, (61)

which makes (q1 = 0, q2 = 0, dβ̌e,xN (dβ̌e),xL(dβ̌e))
feasible for (30) with wa = 1.

The second case is that xL,e(dβ̌e) = 0 for all
e with ap,e = 1, in which case we must have
(q̌1, q̌2, dβ̌e,xN (dβ̌e),xL(dβ̌e)) feasible to (30) with wa = 0.
To prove this, we only need to show that(

F3xN (dβ̌e)
)T
q̌2 ≤ F3q̌2. (62)

According to (48), F3,i,u is either 0 or −Mθ, which together
with the fact that xN,u(dβ̌e) ≥ 0 and q̌2,i ≥ 0 implies that

(
F3xN (dβ̌e)

)T
q̌2 =

∑
u∈V

xN,u(dβ̌e)

(
m2∑
i=1

F3,i,uq̌2,i

)
(63)

≤
∑
u∈V

1

(
m2∑
i=1

F3,i,uq̌2,i

)
= F3q̌2, (64)

which completes the proof.

Theorem III.4. Under the assumption of ξp = O(1), the
number of possible attack pairs is |E|

(∑ξp
i=1

(|E|
i

))
≤

ξp|E|ξp+1 = O
(
|E|ξp+1

)
. Therefore, the time complexity

of solving (23) for a given β is polynomial in |E| and |V |,
since in the worst case (23) can be solved by checking the
feasibility of (28) for all the O

(
|E|ξp+1

)
attack pairs.

We first characterize the complexity of Alg. 3. Since each
candidate placement Ωi either has one more node or can defend
against all attack pairs in A after one iteration of the while loop,
Alg. 3 converges within |V | iterations. Each iteration of Alg. 3
is dominated by solving (35) (Line 8) for at most Kc times.
Since the numbers of variables and constraints of (35) are both
O((|E| + |V |)|A|) and |A| = O

(
|E|ξp+1

)
, the complexity

of solving (35) is polynomial 3 in |V | and |E|. In summary,
the complexity of Alg. 3 is polynomial in |V |, |E|, and Kc

since it solves a polynomial-sized LP for at most Kc|V | times.
It is worth noting that the effect of KA and KL in Alg. 3’s
complexity is dominated by |V | and |E|. To see this, we note
that KL only appears in Line 7 of Alg. 3, in which we must
have KL ≤ |E|. Then, KA only appears in Line 9 of Alg. 3, in
which we must have KA ≤ |V |. Thus, we do not consider the
effect of KA and KL in Alg. 3’s computational complexity.

The complexity of Alg. 2 comes from: (i) solving (23)
O(|E|ξp+1) times (Line 3 and Line 12); (ii) solving (35) for
|A0| = O(|E|ξp+1) times (Line 5), each of which deals with
an LP containing O((|E|+ |V |)|A0|) variables and constraints
and thus takes polynomial time; (iii) calling Alg. 3 at Line 8 for
1 time and at Line 14 for O(|E|ξp+1) times, whose complexity
is polynomial in |V |, |E|, and Kc. In summary, Alg. 2 is a
polynomial-time algorithm in terms of |V |, |E|, and Kc.

3The exact order depends on the specific algorithm used to solve LP [46].
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Theorem IV.1. According to [33], [42] and (59), we have

|Î3,f,e|2 =
1

|Ze|2
(
2(Z̃R,ep̂3,f,e + Z̃I,eq̂3,f,e) + v̂2

k−

(1 + 2Z̃R,eG̃c,e − 2Z̃I,eB̃c,e)v̂
2
i

)
+ 2(G̃c,ep̂3,f,e−

B̃c,eq̂3,f,e)− |Ỹc,e|2v̂2
i (65)

for each e = (i, k) ∈ E with ap,e = 0. Based on (65)
and the assumption on εθ = (εθ,u)u∈V , εv = (εv,u)u∈V ,
εp = (εp,e)e∈E and εq = (εq,e)e∈E , we can easily derive
an upperbound εI,e ≥ ||Î3,e| − |I3,e||, ∀e ∈ E. Specifically, we
can set

εI,e :=
1

|Ze|2
(
2(|Z̃R,e|εp,e + |Z̃I,e|εq,e) + ε2v,i+

|1 + 2Z̃R,eG̃c,e + 2Z̃I,eB̃c,e|ε2v,i
)

+ 2(|G̃c,e|εp,e+
|B̃c,e|εq,e) + |Ỹc,e|2ε2v,i. (66)

If there exists an successful attack pair (ap, e) that cannot
be found by Alg. 4 for a given PMU placement, we must have
one of the following cases:

1) There exists ṽ2, θ̃2 such that |I3,e| > γeImax,e. In the
meantime, at least one of (57) and (58) are violated.

2) Let |Î∗3,f,e| be the optimal solution of (36). There
exists ṽ(1)

2 , θ̃
(1)
2 , ṽ

(1)
3 , θ̃

(1)
3 such that |I(1)

3,e | > γeImax,e.
Let |Î(1)

3,f,e| be the corresponding approximated solution
for ṽ(1)

2 , θ̃
(1)
2 , ṽ

(1)
3 , θ̃

(1)
3 . Then we must have Îmax,e ≥

|Î∗3,f,e| ≥ |Î
(1)
3,f,e|.

We first show that the case one can be avoided if we properly
set η3,p,i in (57) and η3,q,i in (58). Specifically, according to
(57), we must have

Dip̂3,f + v̂2
3,i

|V |∑
k=1

G̃ik − p0,i ≤ η3,p,i (67)

if we set

η3,p,i ≥ (∆ii − 1)εp,i + |
|V |∑
k=1

G̃ik|εv,i, (68)

where (∆ii − 1) denotes the number of neighbors of node i
as defined in (16). Similarly, we can define η3,q,i to avoid the
first case. Then, we will show how to set Îmax,e so that the
second case will not happen. In case two, we must have

Îmax,e ≥ |Î∗3,f,e| ≥ |Î
(1)
3,f,e| ≥ |I

(1)
3,e | − εI,e > γeImax,e − εI,e

(69)

Thus, if we set Îmax,e ≤ γeImax,e − εI,e, (69) cannot hold,
which rules out the possibility of case two. In summary, by
properly setting η3,p,i, η3,q,i and set Îmax,e ≤ γeImax,e − εI,e,
a PMU placement that can pass the test of Alg. 4 will achieve
our defense goal.
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