Real-time experiential geosimulation in virtual reality with
immersion-emission

Paul M. Torrens
Department of Computer Science and Engineering
New York University
New York, NY, USA
torrens@geosimulation.com

Simin Gu
Integrated Design & Media
New York University
New York, NY, USA
$g5292@nyu.edu

Figure 1: User participation in the VR experiment. The background projection shows the streetscape and user’s view.

ABSTRACT

The aim of this work is to develop closer connectivity between
real, lived human encounters in everyday life and geosimulation
that might be tasked and designed to experiment with synthetic
variations of those experiences. In particular, we propose that
geosimulation can be used in close connection with virtual
geographic environments and virtual reality environments to
build human-in-the-loop interactivity between real people and
geosimulation of the geographies that they experience. We
introduce a novel scheme based on immersion and emission by
socio-visual gaze to facilitate connectivity between human users
and geosimulation. To examine the utility of the approach, we
present a worked demonstration for examining road-crossing
behavior in downtown settings for Brooklyn, NY.
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1 Introduction

Geosimulation has long been considered beneficial for driving the
dynamic behavioral interactions of agents and other automata in
computer models [1]. A usual instantiation of this approach
involves deploying geosimulation atop theoretical models of
human behavior, using the geosimulation as a vehicle for
experimentation and knowledge discovery [2, 3]. In these cases,
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geosimulation is matched in different ways to human behavior.
These include using geosimulation to test theories of how
behavior unfolds within systems context (particularly for complex
adaptive systems with geographic scaling) [4, 5]; representation
of the geographical agency of particular phenomena [6]; and
building synthetic human process dynamics in support of
studying other system factors [7]. Geosimulation is also employed
to extend models for uses beyond existing data records, e.g., to
animate static data through simulated time by forecast or
hindcast, to scale-up the representation of a few agent-
representatives to large populations of modeled people, or even to
use geosimulation to produce synthetic data [8]. In this context,
geosimulation is particularly useful for working in applications
with sparse behavioral data [9], which is often illustrative of most
situations in urban applications, where behavior data is routinely
difficult to acquire empirically. Recent developments in expert-in-
the-loop type geosimulation [10] and automated intervention in
user-based geosimulations [11, 12] are particularly useful in these
instances, as a scheme to encode available knowledge bases and
on-the-fly user input into the geosimulation. Another usual proof-
of-usefulness for geosimulation in studies of human behavior is to
use the framework to build representations of scenarios that
would normally sit outside the reach of academic inquiry, e.g., for
hazardous situations, for scenarios that sit far into the future as
mere possibilities, or for normative planning. In these cases, one
must often speculate about potential behaviors, because the
applications being considered are rare, novel, or have yet to occur.

A conundrum, particularly in the latter two use cases of
geosimulation (where behavior data are difficult to acquire, or for
behavioral scenarios that are rare in occurrence) is that the
geosimulation is reliant upon the fidelity of the underlying model
of human behavior, which itself may be significantly opaque in
understanding [2]. Chasing the “fidelity gap” between the real-
world, the model, and the simulation involves significant work to
build and calibrate automata states and rule-sets on the front-end
of experiments, and then further subsequent effort to validate and
verify the simulations on the back-end of the experiment. These
gaps can be “massaged” into workable geosimulation applications,
using mathematical adjustments such as equation-free [13], for
example. But, for many facets of human life, the underlying
human behavior may not even be knowable and the purpose of
the simulation is to generate candidate threads for building that
knowledge. This may place the geosimulation on unsteady
footing, typically at construction. Consequently, traditional
geosimulations proceed from automata that have been built from
(usually highly) abstract conceptual models [14]. In essence, the
model does claim much fidelity relative to individual behavioral
agency, and instead focuses on phenomena at coarse scale [15],
such that didactic aims of the geosimulation are at arms-length
from many real-world scenarios they support [16, 17].

In this paper, we examine how virtual reality (VR) environments
for geosimulation of human behavior might be used atop virtual
geographic environments (VGEs) [18-20] to build real-time
individual interactivity between model users and agent-automata
for urban scenarios in which (1) data are generally sparse because
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of difficulties in observation, and (2) the scenarios involved are
rare and novel due to low likelihood of occurrence relative to the
broader dynamics in which they sit. In essence, we aim to provide
an extensible scheme for introducing real human-in-the-loop
connections to geosimulation. To accomplish this aim, we will
show how immersive-emissive functions can be used within
VR/VGE environments for geosimulation of busy urban scenes to
facilitate real-time experiential connections between real-world
model users and synthetic agent representations of road-crossing
behavior among pedestrians, vehicles, and signal systems. We
conclude by outlining how VR/VGE can be used as an
environment for immersive geosimulation to support naturalistic
forms of user interaction with simulated scenes of human
behavior in everyday urban contexts. We believe that the
approach we have outlined can be helpful in moving
geosimulation closer to the reality of everyday lived experiences,
thereby expanding the experimental reach of geosimulation,
particularly for human behavior research.

2 Methods

To accomplish our objectives of building a human-in-the-loop
framework for geosimulation, we developed a multi-agent
geosimulation to characterize an everyday urban scene involving
road-crossing behavior at a busy downtown intersection. The
geosimulation follows existing approaches for pedestrian
modeling in urban environments, but we enabled one significant
pathway for the direct involvement of real human users in the
model: we endowed the agents with interactive personality, which
we achieved using socio-visual gaze. We allow real human users
to participate directly in the geosimulation through immersion.
This was accomplished by developing the geosimulation atop a
realistic-appearing VGE representation of a real intersection in
Brooklyn, NY. By physically walking around a real space, and
looking within a virtual space, human users directly control their
own ego-agent character in the geosimulation. From the
perspectives of other agents in the simulation, the ego-agent is no
different than any other agent, so model agents may interact with
the human participant with parity of spatial interaction. However,
the human user is immersed directly in the geosimulation through
VR, allowing them to participate naturally with the simulation
events as they unfold.

Figure 2: 13 different types of agent-avatars were used in
simulation, with varying characteristics.
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We accounted for four classes of agents in the model: pedestrian-
agents, cars, signals, and the ego-agent. Pedestrian-agents were
used to represent synthetic characters in the model, which form
the basis for building dynamic human activity in the simulated
scenes. We provide for 13 different pedestrian variations in the
model, with diversity in demographics (sex, age, race), physical
attributes (height, body shape), and appearance (hairstyle,
clothing). The avatar-representations of the agents in simulation
were designed to reflect these characteristics (Figure 2). Agents
were also assigned a random field of view ranging between 140
and 190 degrees, within which they had (visual) access to the
objects within the scene graph for that portion of the VGE (Figure
3). Ego-agents were used to instantiate the simulation user within
the VGE. Pedestrian-agents and vehicle agents act and interact
with ego-agents as if they were pedestrian-agents. However, the
decision-making, personality, path-planning, way-finding,
steering, locomotion, attention, gaze, collision detection, collision
avoidance, signal adherence, and road-crossing behavior of the
ego-agent was driven directly by the human user through
immersion in the VRE. Car-agents were used to model individual
vehicles for road-crossing scenarios, as well as to produce basic
dynamic traffic patterns for the VRE streetscape scene. Signals
were introduced to handle traffic control for car-agents, and
crossing safety for pedestrian-agents and for ego-agents (Figure 4,
at left).

Figure 4: (Left) Based on personality, agent-pedestrians in
the VGE use socio-visual gaze to examine things that grab
their attention. (Right) Agents may also gaze at each other
[man at right of image] and at the ego-character [woman in
center].

2.1 Data structures

All agents in the model were encoded as geographic automata (G)
[21], with variations in their typology (K), state arrays (S), state
transition rules (Ts), movement rules (ML), neighbor arrays (R),
and neighborhood rules (Rn). Geographic automata shared
location conventions (L), with positions noted in both the VGE’s
navigation mesh and the VRE’s scene graph (using slipstreaming
[20]). Typology transition rules (Rk) were not used as agent
remained fixed within their initial typologies.

G~ (St, K, L, N(I), Rs, Rx, Rr, RN)

Rs: St — (St+n|L);

RKZ Ki— Kt+n; (l)
Ri: Lt — Lt+n;

Rn: N(It) — N(lt+n)
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Path information was stored separately as a navigation graph [22].
The navigation graph was adapted from a GIS layer file of the
intersection under study, based on TIGER line data (sidewalks and
road lanes) and building footprints and geometry. All objects and
automata in the model were indexed to the graph. Geographic
automata accessed the graph using their neighborhood input N(It)
lookups and neighborhood transition rules (Rx), e.g., when car-
agents detect a nearby collision with another car-agent, they enter

into a new N(It) lookup to calculate their deceleration or stopping
rules. All objects in the VGE were held in a scene graph [23, 24]
for rendering in the VRE, We relied on the built-in scene graph
for Unity3D [25] as well as its materials, bump-mapping, lighting,
and rendering engine.

Figure 3: Ray-casting to assess users’ ego-agent gaze upon
VGE objects within the VRE. A user’s field of vision is
shown in pale green; gaze rays are shown in white; gazed-
upon objects are illustrated as cyan eye icons. Above, as a
user approaches the road crossing, she is gazing upon two
traffic lights (blue boxes 1), two crossing signals (boxes 2),
and the curb (box 3) on the other side of the crossing. (Red
lines are ray-snappings to the nearest candidate scene
object because the user gazes near—but not at—the opposing
curb. The large three-dimensional grid corresponds to the
geofence for the VRE experiment.)

2.2 Designing agent behavior

We introduced three types of behavioral models. In each case, the
models were used to produce immersive streetscape experiences
in simulation and to elicit actions, interactions, and reactions from
the (real, human) simulation user. The data recorded from these
experiences then became the primary performance indicators and
outputs of our experiments. Human behavior for pedestrian-
agents was designed to produce realistic movement, life-like
locomotion, place-based behaviors for road-crossing, socio-visual
gaze, and inter-personal interactions. Traffic behavior was
designed to control the movement of car-agents to drive plausible
dynamics of inner-city traffic, to determine collision avoidance
rules between car-agents and between (other) car-agents,
pedestrian-agents, and ego-agents, and to facilitate
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communication between implied drivers and pedestrian-agents
and ego-agents. Signal behavior was used to provide street
control of foot traffic and car traffic at the four approaches to the
modeled intersection. We developed road-crossing behavior as
combinations of the other behaviors.

2.3 Agent-based human behavior

The aim of this work is to develop specific capabilities for
geosimulation to support real-time experiential interaction
between human users and synthetic agent equivalents within a
realistic urban streetscape setting. Further, the simulations for this
study were designed as VGEs to represent the urban geography of
a real-world site in downtown Brooklyn, NY. We therefore
emphasized spatial (and largely movement-associated) behavior
in the design of the agent models. To build model human behavior
for agent-pedestrians, we focused on high-level movement of
path-planning [26]; medium-level movement of navigation, and
wayfinding [20]; low-level movement of steering and collision
avoidance [27]; locomotion [28]; and perception [29-31]. We also
introduced specific road-crossing behavior for the area of
sidewalk and pelican crossing. In addition, we introduced socio-
spatial behavior, through socio-visual gaze and personality.

The design of the models for this paper built on some of our
previous work in high-fidelity behavioral modeling for
geosimulation [32]. Elsewhere, we have explored building socio-
behavioral models in geosimulation through data-mining and
machine learning [33, 34], as well as anti-social behavior among
crowds of agents in geosimulation [35]. However, the
development of the socio-behavioral components through socio-
visual gaze and personality are novel to this paper.

High-level movement for agent-pedestrians was introduce as
follows. For path-planning, agent-pedestrians were initially
seeded with origin-destination (OD) pairs at randomized locations
on the VGE sidewalk within a close distance to the intersection
being studied. Agent-pedestrians used an A* best-first traversal
heuristic [36] to plan a path between the OD pairs. Upon reaching
their destination, the agent-pedestrians would call for a new set
of OD-pairs with their terminal node on the previous path as the
origin for the subsequent OD-pair. These paths were stored in
run-time using a navigation mesh [22], with links to the
simulation scene graph. We demarcated the mesh into four
distinct movement zones: roads (for car-agents), sidewalks (for
pedestrian-agents), pelican crossings (pedestrian light controlled;
for pedestrian-agents and for car-agents), and the area covered by
the VRE geo-fence (for ego-agents). The use of a navigation graph
structure has some basis in theory and reality, as pedestrians are
understood to make use of environmental cues that are encoded
in (and read from) streetscapes in determining their high-level
movement, i.e., movement decisions that are revisited and
updated relatively infrequently [37, 38]. Within the navigation
mesh, portions of the VGE that were traversable by agent-
pedestrians were distinguished from those corresponding to
roads, such that agent-pedestrians were not permitted to step into
the road (this was not the case for human users, who had no such
limitation). The portion of the roadway that corresponded to
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pelican crossings was also demarcated in the navigation mesh,
and agent-pedestrians engaged in specific movement behavior
(see “road-crossing behavior”) when entering those spaces.

We facilitated medium-level movement for agent-pedestrians in
the following approach. Agents were programmed to follow their
settled (shortest) navigation path through the navigation mesh.
The A* heuristic promotes heavy-tailed distributions of turns [39,
40], such that agent-pedestrians will generally travel in a straight
line between O-D pairs, steering (by turning) to make adjustment
relatively infrequently [41]. Elsewhere, we have shown that the
patterns of coarse movement that this produces match
observational data in downtown settings [26]. However, if agent-
pedestrians detect a potential collision (with other agent-
pedestrians or with an ego-pedestrian), they may decouple from
their high-level movement routine to engage in “medium-level”
movement. (We term this as medium-level as it takes place over
spaces of the VGE that sit between paths and step-by-step
locomotion; it also involves neighborhood scanning that is
localized to small bands of space-time around the agent.) Medium-
level movement was invoked using basic navigation and steering.
Navigation was handled straightforwardly: an agent was tasked
to proceed from origin to destination; when the destination is
reached, it then calculated a new destination, pulled the shortest
path from the navigation mesh, and continued moving along the
new path. Steering was handled using Reynold’s [42] well-known
rule-set for tiered autonomous movement. For most collisions,
steering provides a collision-free path for agent-pedestrians. The
real human ego-agent, however, may move relatively erratically
and suddenly depending on how the user experiences the VRE. To
accommodate realistic collision behavior between ego-agents and
pedestrian-agents, we developed an attention system.
Pedestrian-agents are assigned a random set of attention
priorities, including for agents of a given typology. If pedestrian-
agents detect an immediate collision that they cannot steer
around, lower priority agent-pedestrians will calculate a sub-path
to yield the right of way to higher-priority agents. As we will
discuss, gaze is also tied to the same attention system, which
results in situations in which agent-pedestrians may gaze upon an
ego-pedestrian, then decide to slow down and steer or speed-up
without yielding the right of way, all the while locking eye contact
with the ego-agent (see Figure 4 at right). The agent-pedestrians
were designed to never collide with cars. This is not the case for
the ego-agents controlled by the human user in simulation.

We modeled low-level movement for agent-pedestrians in the
following fashion. We used motion blending [43] to produce
realistic-appearing locomotion (stride and matching ambulation,
as well as transitions between motion states such as standing —
idling — walking — jogging — running, as well as whole-body
turning maneuvers, and head-turning maneuvers. Elsewhere, we
have shown how motion blending can be tied to movement rules
for geographic automata within GIS [28]. For the experiments
represented in this paper, we relied on existing motion capture
libraries with Unity 3D. (“Idle”, “quarter turn”, “half turn” (with
rotational directionality for both turn volumes); “stand”; “walk”,
“sharp walk”, “run” and “run sharp”.) In addition, we made use of
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a state-transition blend tree to generate a number of blends and
combinations between these base libraries using motion warping
to resolve state-to-motion transitions [44]. This was handled in
run-time for the VRE using the “third person controller” and
“animator controller” in Unity 3D [25].

2.3.1 Personality. Agents were also specifically programmed
with different personalities, which we based on rank-attraction
to other agent-objects in the scene. The primary responsibility for
the personality model was to drive pedestrian-agent gaze. At each
step in a simulation run, as objects fall within the visual range of
agent-pedestrians, they will gaze at the object that has the highest
rank-attraction (for example, they will turn their head to look
away from a traffic signal and toward a user as she walks past
them). A secondary aspect of pedestrian-agents’ personality
controlled their verbal interactions with other agents. If a
pedestrian-agent comes into potential collision with another
pedestrian-agent, it will gaze at that agent and vocalize a warning
by playing recorded audio announcing, “Hey, watch out!”. As
highlighted when discussing collision detection above, agent-
pedestrians also deploy an attention priority system that yields
different collision personalities (tendency to yield by steering to
adjust course when encountering another agent-pedestrian or
ego-pedestrian, or not).

2.4 Car behavior and agent-based traffic

Figure 5: Simulated traffic patterns flowing into and out of
the experimental intersection.

Cars followed a roadway mesh in the VGE, which limited them to
the road spaces in simulation. Their velocity and maximum speed
were straightforwardly set with a user-defined parameter. Cars
were programmed to obey traffic signaling rules. If a car neared
an intersection as the signal shifted from red to green, they would
slow and come to a stop before the pedestrian crossing area. Cars
were also programmed to avoid collisions with other cars by
slowing and stopping. To generate simple traffic, we gave cars
shifting destinations around the VGE (Figure 5). Car-agents were
specified to maintain a safe driving distance behind other cars, by
velocity-matching. This matching, coupled with stopping
behavior was anecdotally successful in producing realistic traffic
dynamics of congestion, for example. We specifically introduced
car-pedestrian interactions in the model by enabling cars to stop
(abruptly if necessary) if a pedestrian crossed their path. (Cars
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would also play an audible honking sound to alert pedestrians that
they were in danger of colliding with them.)

2.5 Signal behavior

Signals in the traffic intersection are represented in the model as
agents, but really just run as events that other agents interact with
as cues for their movement (i.e., agents do not have an influence
on the signals by pressing a crossing button, for example). We
included two types of signal agents: pedestrian signals and traffic
signals. Both are designed to work together. Traffic signals
regulate the flow of car traffic in the model, and pedestrian signals
notify pedestrians when it is safe to cross the intersection (using
a walk or don’t walk signal; see Figure 4 at left). We programmed
the timing of the signals to match the commensurate timing in the
corresponding real-world traffic intersection at our study site.

2.6 Road intersection and crossing behavior

Pedestrian-agents and car-agents were programmed with
dedicated movement rules when in the portions of the navigation
graph marked for road-crossing. Both car-agents and pedestrian-
agents were made aware of the state of the traffic signal and the
pedestrian signal respectively. Car-agents adhered to traffic rules:
if a traffic light changed state from green to amber to red, they
would slow to a stop at the cusp of the pelican crossing.
Additionally, if car-agents detected pedestrian-agents or ego-
agents in the crossing while the signal indicated green, they would
wait for the crossing to completely clear of agents before moving.
If the traffic light changed state to red while car-agents were in
the crossing, they were programmed to continue their movement.

Pedestrian-agents, upon entering the pelican crossing, can
actually see two pedestrian signals: one on the sidewalk at which
they are standing, as well as the opposing signal on the other side
of the road. We therefore had to be careful to build rules for
pedestrian-agents to follow. This is a situation that is common in
the real-world, where a pedestrian may judge how much time they
have to cross based on signals at the other side of the crossing.

2.7 Building a Virtual Geographic Environment (VGE).
~ =’ ] I “?‘.
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Figure 6: Our study site in downtown Brooklyn (map at left;
aerial image at right).

We developed a virtual geographic environment (VGE) for
simulation scenarios [20]. We modeled the VGE on a very busy
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intersection in downtown Brooklyn, NY, at the confluence of Jay
Street and Willoughby Street (Figures 6 and 7). Jay Street carries
a lot of vehicle traffic to and from the Brooklyn Bridge, as well as
large flows of commuters to nearby offices, schools, and
universities via the transit hub at Jay Street/MetroTech.
Willoughby Street typically caters to smaller volumes of local
residents and shoppers patronizing its small community shops;
vehicle traffic volumes are usually light. The mixture of the two
flows produces some interesting rhythms and motifs for
streetscape dynamics, with frequent potential for pedestrian-
vehicle interactions at its two signalized pedestrian crossings.

Figure 7: Our VGE model of the study site (left), with
walkable area (sidewalk and crossing) in blue (right).

2.8 Running VGEs as a Virtual Reality Environment
(VRE).

The VGE was rendered and presented to the users in experimental
scenarios as a virtual reality environment (VRE) (Figure 8). The
key design factor in developing the VRE was to present the VGE
with significant fidelity to appearance, dynamics, and particularly
to endow it with experiential immersion.

We rendered our VGE model via Unity 3D for participant use in
the HTC Vive Pro virtual reality headset. Several city blocks
around our study site were modeled with detail. This provided
both background sense of place and foreground recognition for
collision detection, use of waypoints from street and building
features, sense of movement, motion flow, sense of proximity, and
projection of users’ personal space into the VRE (Figure 8).

Figure 8: Geographically-faithful VGE background (left)
and foreground (right) urban environments rendered in the
VRE.

The VGE was rendered in the VRE in appreciably “real-time”. We
ran the entire VRE at 60 frames per second; users reported no
problems with jittering or lag during the experiments. The Vive
Pro provided tracking between the headset (and the user’s head
position and head movement) and a set of referenced base stations
in our laboratory. The Vive Pro allows the user to physically walk
around while engaged in the VRE. This allowed us to use a roughly
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100 m? (~1,000 sq. ft.) tangible space for participants to walk
around in our laboratory. We geo-fenced the area within the
corresponding VRE so that users were made visually aware when
they neared the limits of the physical space (see Figure 3). To map
the physical space of the laboratory to the VGE, we applied a
slight acceleration function to the user’s walking speed, so that
space covered in the real world corresponded to a larger space in
the VRE. Some users reported that this was somewhat strange, but
they quickly got used to it. Our colleague Xi Sun recently
introduced a technique for mitigating these accelerations, using a
folding technique that warps the VR space, alongside redirected
physical walking to yield the illusion of traversing large distances
[45]. The technique is not suitable for our approach here because
pedestrian movement is heavy-tailed. We also adjusted the height
of the agent representations in the VRE per experiment
participant to adjust for taller or shorter participants, so that the
user was always close to eye-level with the tallest agent-
pedestrians in the VRE.

A number of studies in psychology have reported that VR
environments can be useful proxies for real-world spatial
experiments, particularly those involving spatial behavior [46, 47].
Movement and vision within the Vive Pro produces rather faithful
representations of real-world perception when rendered through
Unity 3D. Users reported that the experience appeared and felt
realistic, particularly because they received tactile response to
walking, as well as their own physical feelings of balance and
acceleration while moving in the lab. Indeed, one of the first
things that users did upon entering the VRE was begin to look
around, followed quickly by quite confident walking. Similarly,
when departing from curbed areas in the VRE, users would lift
and release their feet as if negotiating a real three-dimensional
infrastructure.

We made limited use of audio to establish an aural sense of place
in the VRE. Specifically, the audio interactions between
pedestrian-agents (and between pedestrian-agents and ego-
agents) were scaled based on the ego-agent’s distance to colliders.
So, for example, if an ego-agent turns abruptly into a collision, the
audio will play loudly, but if there are collisions among other
agents far behind them, they will hear the audio more softly and
spatially displaced (using the HTC Vive built-in spatial audio
capabilities). Car-agents were also designed to play a honking
alert if pedestrians entered the roadway space and neared a
collision with them. This was also built with spatial audio, with
the result that users would receive a sudden alert in their near
proximity near a collision.

2.8.1 Immersive behavior of real human users within the VRE.
The behavior of the ego-agent was not modeled; it is directly
supplied by the perception, cognition, decision-making,
movement, locomotion, and social interactions of the human user
that participates in the experiment. The users are dropped into the
VRE and must rely on their perception and cognition of the VGE
to rapidly make sense of the simulated scene’s geography and
dynamics. Users reported no problems in building a sense of space
and place within the VRE. Most looked around briefly, commented
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that it felt realistic, and began engaging in the experiment tasks.
Most picked out the street corner at the intersection, and the
pelican (pedestrian light controlled) crossing consisting of a
pedestrian signal and a marked crossing area. All participants
adopted a shortest path to complete their traversal tasks in
experiments. They also engaged in collision avoidance with
agent-pedestrians and street objects (traffic signal poles). All
participants stayed within the bounds of the sidewalk. Most
participants also negotiated the curb at the pelican crossing
carefully. Behavior at crossing opportunities was mixed, with
some users waiting for walk signals and others jaywalking. This
mixture of behaviors is somewhat typical in New York.
Participants were all surprised when agent-characters would gaze
at them, and quite taken aback when they would talk to them.
Similarly, most participants would stop their movement abruptly
when a car honked at them as they were crossing. In essence, our
experiment allowed us to use real human users to drive character
movement in simulation, and our observations of the behaviors of
the human users in our physical setting enabled the discovery of
new behaviors that were not represented in the simulation,
particularly emotional behaviors (surprise) and rapid-onset
perception and cognition (being caught unawares, startled) that
correspond to spatial behaviors (abrupt movements, rapid
scanning of hyper-local surroundings to gather visual information
and update sense of space, proximity scanning around personal
space). Our focus in this paper is on determining what users were
gazing at during the simulation, but these anecdotal observations
from our time studying users in the VRE suggests that much more
could be done to examine users’ verbal and non-verbal
communications while in simulation. We propose that behavior
coding and motion capture could be useful to capture structured
and empirical data for these purposes.

2.8.2 In-VRE data collection using data listeners. Because the
experiment is conducted in a hybrid real/virtual environment (the
material space of our research laboratory and the virtual space of
our VGE city), we were able to generate a huge volume of high-
resolution empirical data during the experiment. We classified
these data using a three-fold information typology based on
Tuan’s theory of spatial information coding and processing [48].
Ego-centric data refers to the (behavioral) geography formed
between the human subject and objects that they perceive in the
space of the VGE/VRE. These data are sourced primarily through
the immersion-emission framework and constitute (real) visual
connections (by socio-visual gaze) between the user’s ego-
character and VGE objects. Allo-centric data are attributed to the
geography that forms between objects in the localized spaces of
the VGE/VRE. Allo-centric data are distinct from ego-centric data
in their lack of ego-connection to the user. While the user may
use allo-centric geography for spatial cues, the user does not
usually form a self-object relationship with allo-centric data. For
example, a user might identify open space between two
pedestrians on the simulated sidewalk and determine that she has
latitude to walk through that space. This is a different form of
spatial relationship than would be experienced when an agent-
character looks at the user and begins to walk toward them, for
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example. One key distinguishing factor is that for ego-centric
data, the user has a direct involvement in creating the geography;
for allo-centric data, the user is placed in more of an observer
relationship. We added a third class of data for events, which we
consider as key spatial interactions in the experiments through
collision. Specifically, ego-centric and allo-centric data are tagged
using event data, which allow us to focus our data queries on
important substantive incidents in the experiments. In particular,
we are therefore able to build data bundles for collision events that
include the event location and timing, as well as the ego-centric
and allo-centric data that correspond to that event. We refer to
these as context bundles. Each context bundle is structured using
a time stamp as well as a location stamp. We streamed context
bundle data to a dashboard for data collection and visualization
(Figure 9); this enabled us to fine-tune settings between
experiments if necessary.

2.9 The immersion—-emission model.

The aim for this paper is to explore whether closer-couplings
might be built between real human user experiences and
geosimulation, and we have proposed VGEs and VREs at
experimental media for building these connections. We propose a
specific method to facilitate tangible experiments and their
corresponding representation in the VGE/VRE, which we term as,
“immersion—emission”. The immersion component corresponds
to the virtual setting for the geosimulation, which in the case of
this paper is a realistic-appearing and lifelike-operating
streetscape with built fabric, logical geography, space-specific
events, and dynamic agent characters in the form of synthetic
pedestrians and cars with perceptive and interactive capabilities
that allow the VRE user to build spatial (and in some ways also
social) awareness of the geosimulation, using their natural spatial
behaviors and skills.

The emission component of our framework comes from the
techniques that we use to collect data in the model. Here, we
follow terminology from since-debunked science of the past,
which supposed that the human eye worked by generating rays
of light that would be cast toward objects [49]. Our computational
procedure follows a similar method, by ray-casting through a
focused window of the user’s field of view [50, 51]. Specifically,
we use ray-casting through the user’s field of vision to connect
their gaze with objects in the VGE scene graph (as shown
graphically in Figure 3). (Work on space syntax and visibility
graphs [52, 53] proposes that a similar scheme is used by
pedestrians in the real world to build natural movement responses
in built environments.) In our models, agents’ personality
provides the social components of this gaze. Immersion-emission
allows us to empirically and tirelessly build data about what the
user is looking at, for how long, and what other things were going
on in the model for those bundles of space and time. This produces
a huge amount of data as the users continually scan their
surroundings and shift their gaze as part of their normal stereo
vision and locomotion [54-56]. We may analyze these data for any
of the 60 frames per second that a user spends in the experiment,
or for any feature of interest in the VGE (see Figure 3, where we
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analyzed and visualized which components of a streetscape a user
gazed upon).

Gaze is just one modality in which we might examine how people
map their perception and cognition to their surroundings, and
clearly there remains many open questions about how other
aspects of their activity or non-verbal communications might be
studied while they participate in the geosimulation. In prior work,
we spent considerable time examining connections between affect
and spatial behavior, albeit through coded observation and
trajectory sampling over two-dimensional spaces [33, 34, 57].
Much of the same methodology could be applied within
VGEs/VREs, with the benefit that they VGE would return
empirical data to match observed codes. In our data analysis that
follows, we focused only on gaze at objects in the few seconds
before and after ego-agent collisions with car-agents. (This also
enables us to differentiate between normal saccade-type looks
from our human participants, and meaningful gaze fixation on
objects.)

3 REAL HUMAN USER EXPERIMENTS

To evaluate the utility of our approach, we conducted a series of
experiments with the system. We recruited ten participants to
individually spend between three and five minutes in the VRE.
(Admittedly this is a relatively small number of users, but our
intent was to demonstrate the viability of the platform. In future
work, we will demonstrate experiments with the system using
larger user cohorts that we have recruited.) Each participant was
tasked with performing a circuit of the modeled intersection (four
crossings) and they were instructed to take care to avoid walking
into the road and to avoid collisions with other pedestrians that
they might encounter, with the same care that they might afford
in real life. After the experiment, participants were given a
questionnaire survey designed to elicit qualitative information
about their experiences with road crossing in the real world, and
their experiences in the geosimulation.

Participants were recruited as volunteers and experiments were
conducted under an experimental design approved by the New
York University Institutional Review Board (IRB). The age range
of participants was 21-45 years (average age of 26.6 years) and
five female and five male participants participated in the
experiments. None of the participants reported physical disability.
Of the ten participants, six had no prior experience or little
experience with VR. As participants immersed themselves in the
VRE, one member of our team watched their physical movement
and checked-in with them verbally at regular intervals. The other
team member studied the incoming data as well as the
participant’s view within the VRE, using a dual projection to a
screen (Figure 1).

The survey instrument asked for participant background
information (age, sex, education, profession, and whether the
participant felt that they had a locomotive disability). Participants
were also asked to rate their experience with VR (“I have a very
good experience of interacting with the virtual reality
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environment”), as well as their potential susceptibility to motion
sickness (“I do not feel dizzy or tired or sick while interacting with
the virtual reality environment”). A second set of questions were
posed to elicit experiential feedback. Users were asked to rate their
locomotive skills, their driving skills, and their usual adherence to
traffic signals and pedestrian crossing. This latter question was
designed to evaluate participants’ sense of risk-taking in road-
crossing. A third set of questions asked participants to recall their
behavior within the VRE geosimulation. They were asked a free-
form question, “Please specify all events and objects that you
remember from your experience”. They were also asked to rate
the immersion and quality of the virtual experience. Finally,
participants were asked a free-form question about whether they
had faced any difficulty with the equipment or technology used to
run the experiment.

Street
Building 1

Street
Building 4

Traffic
Signal 7

Figure 9: A frequency visualization of objects that all users
gazed upon immediately before and during collisions with
cars in the geosimulation experiments.

4 RESULTS

4.1 Survey results.

All participants in our experiments responded with high self-
rating of their locomotion and driving skills (average rating of 8.1
out of 9, where 9 corresponds to “strongly agree”). They similarly
self-reported strong adherence to the rules of the road as
pedestrians and drivers (average 7.3 out of 9). All participants also
responded that they had enjoyed the experience of walking
through the geosimulation (average 8 out of 9). The only issues
reported with the technology were the limitations of using a wired
tether to the Vive Pro headset. (We have since developed a version
for untethered headsets, which we have tested on the Oculus
Quest.) The free-form responses to the recall question of objects
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and events that were encountered illustrated that participants
recalled looking at pedestrians, noticed cars passing them by as
they walked, were aware of traffic and pedestrian signals, and
noticed the built surroundings. These free-form reports match the
empirical data that we gathered from the geosimulation, which
suggests at least anecdotally that the immersion-emission model
is useful in collecting information that matches to real user
perceptions and experiences.

4.2 Immersion-emission data

As mentioned, we focused on the gaze-to-object connections
(fixation) in the few seconds preceding and during participants’
collision with cars in the geosimulation. The aggregate results are
shown visually in Figure 9, which scales the frequency of gaze to
the size of the circle in the visualization. The most frequent objects
of participants’ attention during collisions were other pedestrians
and cars. The next most-frequent set of objects were the ground
(participants were looking down when they collided). The least
frequent objects were individual buildings and traffic signals.

4 CONCLUSIONS AND FUTURE WORK

This work aims to expand connectivity between real human
behavior and geosimulation representations of that behavior. To
accomplish this, we developed a system for immersing human
participants directly in a geosimulation through a combination of
VGE and VRE. We coupled immersion with an emission-based
framework designed to collect data on human gaze fixation within
the environment. To establish tight-coupled links between
immersion and emission, we developed basic personality rules for
agent-characters, designed to elicit corresponding reactions and
interactions from the human participants. We ran a set of
experiments to test the approach. Our results show that the
system is effective in building human-in-the-loop connections to
geosimulation; in particular, it supports a range of natural
interactions between real human users and synthetic characters
designed to mimic human behavior in a complex urban setting.

The approach has a number of limitations. The VGE could be
developed with significantly more sophistication, including a
larger number of agent pedestrians and cars that would provide a
more faithful representation of a real urban scene. Similarly, the
buildings in our geosimulation were inert; this could be adapted
to produce more realistic interactions between agents and the
urban geography of the scene, to produce rhythms and motifs of
commuting, shopping, tourism, etc. Critically, the behavioral rule-
sets for the geosimulation could be expanded to produce high-
fidelity streetscape dynamics. (For example, cars turning right on
red lights is a large factor in road crossing safety in New York.)

The VRE could also be adapted to handle some technical and
immersion issues. Our use of the HTC Vive limited us to a fixed
space. In recent work we have begun to use wireless headsets that
free us from these limitations, but the graphical resolution of
those devices has proven problematic in supporting busy
geosimulations on VGEs. Our VRE experiments were limited to
single participants; this could be expanded to include multiple
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human users at once, which would allow for more realism and
would also expand the reach of the experiments into issues of
group behavior (e.g., peer influence). The HTC Vive is also limited
to head movements; in future work we hope to include full-body
representation using inertial measurement devices.

Data collection could be expanded. Indeed, the data production
capabilities of our system is one of its main advantages. We
focused narrowly on critical data during collision events, but this
could be expanded to generate data on all interactions within the
geosimulation, e.g., the spatial behavior of participant interactions
with agents (bias, leader-follower behavior, social gaze), and as
VGE objects corresponding to urban design factors.

The experiments that we ran were limited and could be expanded
in the future. In particular, we have an interest in exploring the
influence of different times of day (which can easily be
represented in the VRE). Similarly, weather effects (particularly
rain and its influence on visibility and urgency in movement)
could be accommodated. We could also develop a wider range of
experimental scenarios, as the geosimulation would support
perhaps limitless configurations. In particular, we have an interest
in examining the influence of gap acceptance (how much space
and time a crosser uses to move through an intersection) on road
crossing, as a canonical space-time concern that maps directly to
human perception, cognition, behavior, and spatial skill. We are
also interested in using the environment to assess design options
for urban infrastructure. For example, different signal timing, curb
geometries, traffic islands, and signage could be examined in
simulation before being considered for real-world applications.

We have recently run a series of experiments with a larger cohort
of participants (35 people). However, more users produce
(significantly) more data and we are currently exploring reliable
data-base schemes that can work in parity with the system (at 60
fps), as well as dashboard tools that can give us real-time feedback
about key performance indicators (KPIs) within the simulation.

Despite tlimitations, in conclusion, we hope to express that all of
these “fixes” are possible in the system that we developed. Indeed,
this is one of the advantages of connection geosimulation with
human-in-the-loop interactivity. The message that we have tried
to demonstrate here is that the intricacy of geosimulation and its
abilities to support huge swaths of what-if experimentation can
be brought to parity with the intricacies of human behavior, in a
way that supports empirical knowledge discovery.
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