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The topology of electronic states in band insulators with mirror symmetry can be classified in two different
ways. One is in terms of the mirror Chern number, an integer that counts the number of protected Dirac cones
in the Brillouin zone of high-symmetry surfaces. The other is via a Z2 index that distinguishes between systems
that have a nonzero quantized orbital magnetoelectric coupling (“axion-odd”), and those that do not (“axion-
even”); this classification can also be induced by other symmetries in the magnetic point group, including time
reversal and inversion. A systematic characterization of the axion Z2 topology has previously been obtained by
representing the valence states in terms of hybrid Wannier functions localized along one chosen crystallographic
direction, and inspecting the associated Wannier band structure. Here we focus on mirror symmetry, and extend
that characterization to the mirror Chern number. We choose the direction orthogonal to the mirror plane as the
Wannierization direction and show that the mirror Chern number can be determined from the winding numbers
of the touching points between Wannier bands on mirror-invariant planes and from the Chern numbers of flat
bands pinned to those planes. In this representation, the relation between the mirror Chern number and the axion
Z2 index is readily established. The formalism is illustrated by means of ab initio calculations for SnTe in the
monolayer and bulk forms, complemented by tight-binding calculations for a toy model.
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I. INTRODUCTION

The band theory of solids has been enriched in recent years
by a vigorous study of its topological aspects. That effort
resulted in a systematic topological classification of insula-
tors on the basis of symmetry, and in the identification of a
large number of topological materials. After an initial focus
on the role of time-reversal symmetry, it was realized that
crystallographic symmetries could also protect topological
behaviors, leading to the notion of “topological crystalline
insulators.”

The assignment of an insulator to a particular topological
class can be made by evaluating the corresponding topolog-
ical invariant. Depending on the protecting symmetry, that
invariant may assume one of two values (Z2 classification),
or it may assume any integer value (Z classification). Other
types of classifications such as Z4 also occur, but they do not
concern us here. When the invariant vanishes the system is
classified as trivial, and otherwise it is classified as nontrivial
or topological. Topological insulators typically display robust
gapless states at the boundary, which provide an experimental
signature of topological behavior.

In some cases, the same symmetry may induce two dif-
ferent topological classifications. This happens, for example,
with mirror symmetry, where a Z classification in terms of
the mirror Chern number (MCN) [1,2] coexists with a Z2

classification based on the quantized axion angle. The two
classifications are not independent, and elucidating the rela-
tion between them is one goal of the present work.

The axion Z2 classification of three-dimensional (3D) in-
sulators is based on the orbital magnetoelectric effect. In brief,
the isotropic part of the linear orbital magnetoelectric tensor
is conveniently expressed in terms of the axion angle θ , which
is defined only modulo 2π as a bulk property. In the presence
of “axion-odd” symmetries that flip its sign, the axion angle
can assume only two values: θ = 0 (trivial), and θ = π (topo-
logical) [3–8].

The axion Z2 index was originally introduced for time-
reversal invariant insulators, where it was shown to be
equivalent to the “strong” Z2 index ν0 = 0 or 1, that is, θ =
πν0. More generally, axion-odd symmetries can be classified
as proper rotations combined with time reversal (including
time reversal itself), and improper rotations (including in-
version and reflection) not combined with time reversal; in
both cases, the associated symmetry operation in the mag-
netic space group may include a fractional translation. This
results in a large number of magnetic space groups that can
host axion-odd topological insulators. A recent realization is
the MnBi2Te4 family of antiferromagnetic materials [7–9],
whose axion topology is protected by the time-reversal op-
eration combined with a half-lattice translation as envisioned
in Ref. [10].

To aid the computational search for axionic topological
insulators, it is useful to devise simple procedures for deter-
mining the (quantized) axion angle θ . Unfortunately, subtle
gauge issues make its direct evaluation from the valence Bloch
states rather challenging in general [5]. Notable exceptions are

2469-9950/2021/103(19)/195103(17) 195103-1 ©2021 American Physical Society



RAUCH, OLSEN, VANDERBILT, AND SOUZA PHYSICAL REVIEW B 103, 195103 (2021)

centrosymmetric insulators, both nonmagnetic and magnetic.
For such systems, the axion Z2 index can be obtained by
counting the number of odd-parity states at high-symmetry
points in the Brillouin zone (BZ) [11,12].

Recently, an alternative procedure was introduced based
on representing the valence states in terms of hybrid Wannier
(HW) functions that are maximally localized along a chosen
crystallographic direction z. The HW centers along z, also
known as “Wilson-loop eigenvalues,” form a band structure
when plotted as a function of kx and ky; in the presence of one
or more axion-odd symmetries, the quantized θ value can be
determined from this “Wannier band structure,” often by mere
visual inspection [13].

In the HW representation, axion-odd symmetries are nat-
urally classified as “z-preserving” or “z-reversing,” and the
rules for deducing the axion Z2 index are different in each
case (they also depend on whether or not the symmetry op-
eration involves a fractional translation along z) [13]. Time
reversal is an example of a z-preserving operation, while in-
version is z reversing. Mirror operations may be placed in one
group or the other, depending on whether the Wannierization
direction z lies in the reflection plane (vertical mirror) or is
orthogonal to it (horizontal mirror). In this work we make the
latter choice, so that the mirror operation of interest becomes

Mz: z → −z, (1)

which is manifestly z reversing.
A simple mirror symmetry without a glide component

protects not only the axion Z2 classification, but also a Z or
Z × Z classification based on one or two MCNs, depending
on the type of mirror. This raises the question of whether the
HW representation might also be convenient for determining
the MCNs, and for illuminating their relationship to the quan-
tized axion angle.

In this work, we address the above questions by inves-
tigating in detail the Wannier bands in the presence of Mz

symmetry. We clarify the generic behaviors that are expected
and discuss the rules for deducing the MCNs. By comparing
those rules with the ones obtained in Ref. [13] for the axion
Z2 index, we establish the relation between the two classifica-
tions.

The paper is organized as follows. In Sec. II we first distin-
guish between “type-1” and “type-2” crystallographic mirror
operations; we then review the definitions of Chern invariants
and MCNs in terms of the Bloch states in the filled bands;
finally, we introduce maximally localized HW functions span-
ning the valence states, and assign Chern numbers to isolated
groups of Wannier bands. This background material sets the
stage for the developments in the remainder of the paper. In
Sec. III we discuss the generic features of the Wannier band
structure in the presence of Mz symmetry, and obtain a relation
between Chern numbers and winding numbers in groups of
bands touching on a mirror plane. The rules for deducing
the MCNs from the Chern numbers and winding numbers on
the mirror planes are given in Sec. IV, where their relation
to the quantized axion angle is also established. In Sec. V
we describe the numerical methods that are used in Sec. VI
to apply the formalism to several prototypical systems. We
summarize and conclude in Sec. VII, and present in three

Appendixes some derivations that were left out of the main
text.

II. PRELIMINARIES

A. Two types of crystallographic mirrors

We begin by observing that if a crystal is left invariant
under an Mz reflection operation, then its Bravais lattice must
contain vectors pointing along z. To construct the shortest
such vector a3 = cẑ, we pick the shortest vector ã3 connecting
lattice points on adjacent horizontal lattice planes. If ã3 points
along z then we take it as a3, and we say that the mirror is
of type 1. Otherwise we choose the vector a3 = ã3 − Mz̃a3

connecting second-neighbor lattice planes, and the mirror is
of type 2.

The two types of crystallographic mirrors are exemplified
in two dimensions in Fig. 1, where the mirror lines z = 0 and
c/2 are labeled A and B, and the reciprocal-space lines kz = 0
and kz = π/c are labeled G and X. The same notation will be
used in three dimensions, where A and B (G and X) become
planes in real (reciprocal) space.

The distinction between mirror operations that leave
pointwise invariant two inequivalent planes in the BZ, and
those that leave invariant only one BZ plane, was made in
Refs. [14,15]. Since MCNs are defined on such planes [1,2],
a 3D insulator with a type-1 mirror is characterized by two
separate MCNs μG and μX, while for a type-2 mirror there is a
single MCN μG. If the crystallographic space group contains
additional mirror operations, there will be additional MCNs
associated with them.

B. Chern invariants in band insulators

1. Generic insulators

Before introducing MCNs for insulators with reflection
symmetry, let us define Chern invariants for generic two-
dimensional (2D) and 3D band insulators in terms of the
k-space Berry curvature of the valence states [5].

In two dimensions the Berry curvature of a Bloch state
|ψnk〉 with cell-periodic part |unk〉 is a scalar defined as

�nk = −2Im
〈
∂kx

unk

∣∣∂ky
unk

〉
, (2)

where k = (kx, ky), and the Chern number is given by

C =
1

2π

∫

2DBZ

J∑

n=1

�nk d2k, (3)

where the summation is over the J filled energy bands. Since
the Berry curvature has units of length squared, C is a dimen-
sionless number, and for topological reasons it must be an
integer. The Chern number is a global property of the manifold
of occupied states, remaining invariant under multiband gauge
transformations described by J × J unitary matrices at each k,
and it vanishes when the crystal has time-reversal symmetry.
If a 2D magnetic crystal has a nonzero Chern number C, when
that crystal is terminated at an edge there will be |C| edge
modes crossing the bulk gap, whose chirality will depend on
the sign of C.
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FIG. 1. The upper panel shows schematically a pair of 2D crystals lying on the (x, z) plane; each has one atom per primitive cell (black
dots), and lattice constant c along z. The crystal on the left has a rectangular lattice and a type-1 horizontal mirror, with inequivalent mirror
lines z = 0 mod c (A) and z = c/2 mod c (B), shown as dashed lines; the one on the right has a centered rectangular lattice and a type-2 mirror,
with equivalent mirror lines A and B. The lattice vectors a3 and ã3 are defined in the main text. The lower panel shows the reciprocal lattices,
with a separation of 2π/c between horizontal lattice lines G. On the left the periodicity along kz is 2π/c, and hence both kz = 0 mod 2π/c (G)
and kz = π/c mod 2π/c (X) are pointwise-invariant mirror lines, as indicated by the dashed lines. On the right, where the periodicity along kz

is 4π/c, G is a mirror-invariant line but X is not. The associated Brillouin zones are indicated by the shaded green areas.

Three-dimensional insulators are characterized by a Chern
vector

K =
1

2π

∫

3DBZ

J∑

n=1

�nk d3k, (4)

where now k = (kx, ky, kz ) and the Berry curvature has be-
come a vector field, �nk = −Im 〈∂kunk| × |∂kunk〉. The Chern
vector has units of inverse length, and is quantized to be a
reciprocal-lattice vector. Like the Chern number in two di-
mensions, the Chern vector always vanishes in nonmagnetic
crystals.

Given a set of lattice vectors a j and dual reciprocal-lattice
vectors b j , the expansion K =

∑
j C jb j defines a triad of

integer Chern indices C j . Let us orient the Cartesian axes such
that a3 = cẑ. The vectors b1 and b2 then lie on the (x, y) plane,
and the third Chern index can be expressed as

C3 =
c

2π

∫ 2π/c

0
C(kz ) dkz, (5)

where

C(kz ) =
1

2π

∫

2DBZ

J∑

n=1

�z
n(kx, ky, kz ) dkxdky. (6)

The integral in Eq. (6) is over a slice of the 3D BZ spanned
by b1 and b2 at fixed kz. By viewing it as an effective 2D
BZ and comparing with Eq. (3), it becomes clear that C(kz )
is a Chern number; and since in a gapped system its integer
value cannot change with the continuous parameter kz, Eq. (5)

reduces to C3 = C(kz ) evaluated at any kz. The Chern indices
of 3D insulators can therefore be evaluated as Chern numbers
defined over individual BZ slices.

2. Mirror-symmetric insulators

We now consider a 3D crystalline insulator with mirror
symmetry Mz, and assume that its Chern vector K vanishes.
A new integer-valued topological index, the MCN, can be
defined for such a system as follows [1,2].

On the mirror-invariant BZ planes, G and possibly X, the
energy eigenstates are also eigenstates of Mz. The eigenvalues
are iF p, where p = ±1 is the “mirror parity” and F = 0 or 1
when the electrons are treated as spinless or spinful particles,
respectively. The occupied Bloch states on those planes can
therefore be grouped into “even” (p = +1) and “odd” (p =
−1) sectors under reflection about the A plane z = 0, each
carrying its own Chern number. The Chern numbers of the
two sectors on the G plane kz = 0 are given by

C±
G =

1

2π

∫

2DBZ

J∑

n=1

f ±
nk�

z
n(kx, ky, kz = 0) dkxdky, (7)

where f +
nk = 1 − f −

nk equals one or zero for a state with p =
±1, respectively. The MCN is defined as

μG = 1
2 (C+

G − C−
G ), (8)

and it is guaranteed to be an integer since C+
G + C−

G = C3

vanishes by assumption. If the mirror is of type 1, the plane X
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carries a second MCN

μX = 1
2 (C+

X − C−
X ), (9)

where C±
X is obtained by replacing kz = 0 with kz = π/c in

Eq. (7). The MCNs remain invariant under multiband gauge
transformations that do not mix the two mirror-parity sectors.
When they are nonzero, protected gapless modes appear on
surfaces that retain the mirror symmetry Mz, with |μG| and
|μX| counting the number of Dirac cones on the two Mz-
invariant lines in the surface BZ [16].

In the case of a 2D or quasi-2D insulator with reflection
symmetry Mz about its own plane, the entire 2D BZ is left
invariant under Mz. Such a system has a unique MCN

μ2D = 1
2 (C+ − C−), (10)

where C+ and C− are obtained by inserting the 2D Berry
curvature of Eq. (2) in Eq. (7). When the net Chern number
C = C+ + C− vanishes, |μ2D| becomes an integer that counts
the number of pairs of counterpropagating chiral edge modes
[17].

We note in passing that spin-orbit coupling is required to
obtain non-vanishing MCNs in systems that are either non-
magnetic or whose magnetic order is collinear.

C. The hybrid Wannier representation

1. Hybrid Wannier functions and Wannier bands

HW functions are obtained from the valence Bloch states
of a 2D or 3D crystalline insulator by carrying out the Wannier
construction along a chosen reciprocal-lattice direction. They
are therefore localized along one direction only, in contrast to
ordinary Wannier functions which are localized in all spatial
directions.

Let us momentarily return to a generic 3D insulating crys-
tal, not necessarily mirror-symmetric. We denote by z the
chosen localization direction and let κ = (kx, ky), so that the
wave vector in the 3D BZ becomes k = (κ, kz). Given a gauge
for the Bloch states that is periodic in kz, |ψnκ,kz+2π/c〉 =
|ψnκkz

〉, the corresponding HW functions are defined as

|hlnκ〉 =
1

2π

∫ π/c

−π/c

e−ikz lce−iκ·r∣∣ψnκkz

〉
dkz, (11)

where the index l runs over unit cells along z, and n runs over
the J HW functions in one unit cell. By factoring out e−iκ·r,
we have made the HW functions cell periodic in the in-plane
directions, hlnκ(r + R) = hlnκ(r) for any in-plane lattice vec-
tor R. This will be convenient later on when we define Berry
curvatures and Chern numbers in the HW representation.

For each κ in the projected 2D BZ, we choose the multi-
band gauge for the Bloch states in such a way that the HW
functions have the smallest possible quadratic spread along
z. Such maximally localized HW functions satisfy the eigen-
value equation [18]

PκzPκ|hlnκ〉 = zlnκ|hlnκ〉, (12)

where Pκ is the projection operator onto the space of valence
states with in-plane wave vector κ. The eigenvalues in Eq. (12)
are the HW centers

zlnκ = 〈hlnκ|z|hlnκ〉, (13)

which form Wannier bands. These are periodic in real space
along z, as well as in the in-plane reciprocal space,

zlnκ = z0nκ + lc, zln,κ+G = zlnκ, (14)

where G is an in-plane reciprocal lattice vector.
A Wannier band structure is said to be gapped if it contains

at least one Wannier band per vertical cell that is separated
from the band below by a finite gap at all κ. When that is the
case, we choose the cell contents in such a way that the first
band, n = 1, has a gap below it.

2. Chern numbers of Wannier bands

The Berry curvature of a HW state is defined as

�ln = −2 Im
〈
∂kx

hln

∣∣∂ky
hln

〉
, (15)

and periodicity along z implies that �ln = �0n. (Here and in
the following, we will frequently drop the index κ.) When the
Wannier spectrum is gapped, it becomes possible to associate
a Chern number with each isolated group a of bands within a
vertical cell,

Cla =
1

2π

∫

2DBZ

∑

n∈a

�ln d2k = C0a. (16)

From the HW states in a given group, one can construct
Bloch-like states at any k = (kx, ky, kz ) by inverting Eq. (11).
In general these are not energy eigenstates, and their band
indices label Wannier bands rather than energy bands. Their
Berry curvatures along z are given by

�z
n(kx, ky, kz ) =

∑

l

eikz lc�0n,ln(kx, ky), (17)

where

�0n,ln = i
〈
∂kx

h0n

∣∣∂ky
hln

〉
− i

〈
∂ky

h0n

∣∣∂kx
hln

〉
(18)

is a matrix generalization of Eq. (15) [19]. To evaluate the net
Chern number Ca(kz ) of that group of Bloch-like states on a
slice of the 3D BZ, we insert Eq. (17) in Eq. (6) and restrict the
summation over n to n ∈ a. The contributions from the l �= 0
terms drop out,1 yielding

Ca(kz ) = C0a. (19)

Hence the Chern numbers are the same in the Bloch-like and
HW representations, as expected since the two representations
are related by a unitary transformation. When the group a

comprises all J Wannier bands in one vertical cell, its Chern
number becomes equal to the Chern index C3 of Eq. (5), which
vanishes by assumption.

1The expression for Ca(kz ) involves
∫ 2π/a

0 ∂kx
Y0n,ln(kx ) dkx where

Y0n,ln(kx ) =
∫ 2π/b

0 A
y

0n,ln(kx, ky ) dky, and another similar integral∫ 2π/b

0 ∂ky
X0n,ln(ky ) dky. When l �= 0 the quantity Y0n,ln(kx ) becomes

fully invariant under band-diagonal gauge transformations of the HW
states. Hence its value at kx = 2π/a must be the same as at kx = 0,
and the integral vanishes.
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III. MIRROR-SYMMETRIC WANNIER BANDS

With the above background material in hand, we now
return to our system of interest—a 3D insulator with Mz

symmetry—and construct HW functions localized along the
direction z orthogonal to the mirror plane. We begin this
section by discussing the generic features of Wannier band
structures with Mz symmetry.

A. Flat versus dispersive bands and the uniform

parity assumption

If Mz is a symmetry of the system, the operator PzP an-
ticommutes with Mz. It follows that if a HW function |hln〉
satisfies Eq. (12) with eigenvalue zln, Mz|hln〉 satisfies it with
eigenvalue −zln. Since zln is defined only modulo c, two
situations may occur. (i) |hln〉 and Mz|hln〉 are orthogonal, in
which case a pair of dispersive bands appear at ±zln. (ii) |hln〉
and Mz|hln〉 are the same up to a phase, in which case |hln〉
is an eigenstate of Mz, and a single flat band appears at either
z = 0 (A plane) or z = c/2 (B plane). The Wannier bands of
the system can therefore be classified into flat bands of even or
odd mirror parity at A; flat bands of even or odd mirror parity
at B; and dispersive pairs appearing at ±z.

If there are several flat bands on a given mirror plane and
not all of them have the same parity, those of opposite parity
will generally have a nonzero PzP matrix element between
them, and will tend to hybridize and split to form dispersive
pairs. Thus, all flat bands pinned at A are expected to have the
same parity pA, and all flat bands pinned at B are expected to
have the same parity pB. Following Ref. [13], we call this the
“uniform parity” assumption. As discussed in Ref. [13], this
assumption is closely related to a well-known theorem on the
minimum number of zero-energy modes in bipartite lattices
[20–22].

Under the uniform parity assumption, the numbers NA and
NB of flat bands at A and B can be expressed in terms of the
imbalance between even- and odd-parity valence Bloch states
at the mirror-invariant plane(s) in the BZ. For a type-1 mirror
we have

NA = 1
2 |�NG + �NX| (20)

and

NB = 1
2 |�NG − �NX|, (21)

where �NG and �NX denote the excess of even over odd
valence states at G and X, respectively. Hence if the mirror-
parity content is balanced at both G and X, flat Wannier bands
are absent from both A and B; if it is balanced only at G but
not at X or vice versa, the same number of flat bands is present
at A and at B; and if it is unbalanced at both G and X, the
number of flat bands at B can differ from the number at A.
The corresponding relation for a type-2 mirror is

NA = NB = 1
2 |�NG|. (22)

Equations (20)–(22) are derived in Appendix A.

B. Types of generic degeneracies

In this section, we consider the types of degeneracies
that are typical of the Wannier spectra of insulators with Mz

symmetry. We call a degeneracy generic when it occurs with-
out the assistance of any symmetries other than Mz. If in
addition the degeneracy is codimension protected, we call it
accidental.

Accidental degeneracies away from the A and B planes
have codimension three, and hence they require fine tuning.
On the mirror planes, there are two types of generic degen-
eracies: multiple flat bands pinned to the same plane, and
accidental touchings, at isolated points in the 2D BZ, between
one or more pairs of dispersive bands. Other possibilities
such as nodal lines are nongeneric and will not be considered
further. In the following we focus on the A plane z = 0, but
the discussion would be identical for the B plane z = c/2.

1. Point nodes between pairs of dispersive bands

If there are no flat bands pinned at z = 0, any bands near
z = 0 must come in dispersive pairs at ±z. If there is a single
pair, we construct from the two HW functions at each κ a pair
of orthogonal states with opposite parities about z = 0. In this
basis, the z operator is represented by a matrix of the form

(
0 fκ
f ∗
κ

0

)
, (23)

with eigenvalues zκ = ±| fκ|. The two bands touch at z = 0
when | fκ| = 0, and for that to happen both the real and
imaginary parts of fκ must vanish; this means that such de-
generacies have codimension two, and hence they occur at
isolated points in the 2D BZ. (When the bands disperse lin-
early close to the nodal point, the degeneracy is called a “Dirac
node.”) If more than one dispersive band pair is involved,
fκ becomes a matrix. The degeneracy condition det( fκ ) = 0
again leads to point nodes on the z = 0 plane. Generically,
these are simple nodes where only two bands meet. However,
with additional symmetries or fine tuning, more than one pair
of bands may become degenerate at a given node.

In summary, pairs of dispersive Wannier bands can touch
accidentally at isolated points on a mirror plane free of flat
bands. We note that the same happens, and for the same
mathematical reasons, with the energy bands of models with
sublattice symmetry [22].

2. Flat bands repel point nodes

When one or more flat bands are present at z = 0, they gap
out the point nodes. Let us show this for the simplest case
of one flat band surrounded by a dispersive pair. Choosing
a basis of Mz eigenstates within this three-band space, the
matrix representation of the z operator takes the form

⎛
⎝

0 fκ gκ

f ∗
κ

0 0
g∗

κ
0 0

⎞
⎠, (24)

where we have chosen the first basis state to have the opposite
mirror parity from the other two. The eigenvalues are zκ = 0
(flat band) and zκ = ±

√
| fκ|2 + |gκ|2 (dispersive pair). An

accidental degeneracy between the pair requires the real and
imaginary parts of both fκ and gκ to vanish (codimension
four). In general this cannot be achieved by adjusting κ alone;
it also requires fine tuning the parameters fκ and gκ.
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In conclusion, flat bands and point nodes do not generally
coexist on a mirror plane. Although we have shown this only
for the case of one flat band plus one dispersive pair, the
same result is expected to hold when several flat bands and/or
dispersive pairs are present. That scenario has in fact been
considered for the analogous problem of energy bands in
models with sublattice symmetry [22].

3. Spinful time-reversal symmetry excludes flat bands

The presence of flat bands on the mirror planes can some-
times be ruled out on the basis of symmetry. This is the
case for a crystal that has both Mz symmetry and spinful
time-reversal symmetry T . Since [PκzPκ, T ] = 0, the stan-
dard Kramers-degeneracy argument applies to the Wannier
bands: if |hκ〉 is an eigenstate of PκzPκ with eigenvalue zκ,
then |h′

−κ
〉 = T |hκ〉 is an orthogonal eigenstate with the same

eigenvalue. Now suppose that |hκ〉 is a flat-band state at A,
with Mz eigenvalue λ = ±i. Then |h′

−κ
〉 is also a flat-band

state, and using [Mz, T ] = 0 we find that its mirror eigenvalue
is λ∗ = −λ. Since the two flat bands have opposite mirror
eigenvalues, they will generally hybridize to form a dispersive
pair.

Another example is a crystal that has both Mz symmetry,
and spinful T combined with inversion I. The combined sym-
metry I ∗ T renders the energy bands Kramers-degenerate at
every k, and since [Mz, I ∗ T ] = 0 and Mz has purely imag-
inary eigenvalues, Kramers pairs of Hamiltonian eigenstates
on the invariant BZ planes have opposite Mz eigenvalues. The
mirror-parity content is therefore balanced on those planes,
and from Eqs. (20)–(22) we conclude that both NA and NB

vanish. (Note that while the energy bands are Kramers de-
generate in the presence of I ∗ T symmetry, the Wannier
bands are not. The difference is that I ∗ T commutes with
the Hamiltonian, but it anticommutes with PzP.)

In summary, spinful time-reversal symmetry, either by it-
self or in combination with inversion, rules out the presence
of flat Wannier bands on the mirror planes (under the uniform
parity assumption).

C. Chern numbers in gapped band structures

When an Mz-symmetric Wannier band structure is gapped,
the J bands per cell can be grouped into three internally con-
nected collections [13]: one containing bands that are pinned
at A (over the entire 2D BZ or at isolated κ points), another
containing bands that are pinned at B, and a third containing
“unpinned” bands, in the sense that they do not touch the
mirror planes anywhere in the 2D BZ. In Ref. [13] these three
collections were called origin-centered, boundary-centered,
and uncentered, respectively.

Letting α = A or B, in each vertical cell l there are in
general

(1) Nα+ flat bands at α of even parity
(2) Nα− flat bands at α of odd parity
(3) Ñα dispersive bands touching at α.
In the α-pinned collection, and ÑUC dispersive bands in

the unpinned collection. (At this stage we do not yet assume
uniform parity for the flat bands, nor do we invoke the fact
that flat bands repel point nodes.) In the home cell l = 0, the
dispersive bands in the A-pinned collection come in pairs at

±z, and those in the B-pinned collection come in pairs at z

and c − z. In the case of the unpinned collection we have
a choice, since the mirror-symmetric partners never become
degenerate; for definiteness, we choose the contents of the
home cell so that the bands in the unpinned collection come
in pairs at ±z.

For each of the seven groups listed above, we can add up
the Chern numbers in that group to get Cα± , C̃α , and C̃UC,
keeping in mind that their sum C3 vanishes by assumption,

CA + CB + C̃UC = 0, (25)

where Cα = Cα+ + Cα− + C̃α is the net Chern number of the
α-pinned collection. We further decompose each of the three
dispersive band subspaces into even and odd sectors under
reflection about their centers, and assign separate Chern num-
bers to them,

C̃α = C̃α+ + C̃α− , (26a)

C̃UC = C̃UC+ + C̃UC− . (26b)

In Appendix B we show that

C̃α+ − C̃α− = Wα, (27)

where Wα is the sum of the winding numbers of all the nodal
points in the projected 2D BZ on the α mirror plane.

The winding number of a nodal point κ j is defined as [23]

Wj =
1

2π

∮

c j

∂κγκ · dκ, (28)

where the integral is over a small circle around the node. Wj

is an integer, typically taking values ±1 according to how the
phase γκ changes going around the node. In the simplest case
where a single pair of bands meet at the node, γκ is the phase
angle of the complex matrix element fk appearing in Eq. (23).
If two or more pairs of bands meet at a node, fk becomes a
matrix and γκ becomes the phase angle of its determinant (see
Sec. V C).

Combining Eqs. (26a) and (27) we obtain

Wα = C̃α − 2C̃α− , (29)

which shows that C̃α has the same even or odd parity as Wα .
Since band pairs in the unpinned collection do not touch on the
special planes, by applying the same argument in Appendix B
that leads to Eq. (27) we obtain

C̃UC+ = C̃UC− , (30)

which implies that their sum C̃UC is always an even number.2

IV. MIRROR CHERN NUMBERS IN THE HYBRID

WANNIER REPRESENTATION

We are finally ready to evaluate the MCNs in the HW
representation, and then relate them to the axion Z2 index. In
Sec. IV A we consider the case of a gapped Wannier spectrum,
and in Sec. IV B we treat the gapless case.

2The fact that C̃UC is even can also be seen as follows [13]. The
unpinned collection is formed by two disconnected groups of bands
related by Mz symmetry, which imposes the same Berry curvature at
every κ in the two groups, and hence the same Chern number.
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TABLE I. Parities under a type-1 mirror Mz of Bloch-like states
constructed from HW functions that are maximally localized along
z. For spinful electrons, the parity is said to be “even” or “odd” when
the Mz eigenvalue is +i or −i.

Bloch representation
G+ = even about A (and even about B)
G− = odd about A (and odd about B)
X+ = even about A (and odd about B)
X− = odd about A (and even about B)

Hybrid Wannier representation
A+ = even about A, generates G+ and X+

A− = odd about A, generates G− and X−

B+ = even about B, generates G+ and X−

B− = odd about B, generates G− and X+

Pairs C and C′, generates G+G− and X+X−

A. Gapped Wannier band structure

To recap, a generic gapped Wannier band structure with
Mz symmetry consists of seven band collections per cell. The
four that are flat have well-defined mirror parities, and the
three that are dispersive can be decomposed into even and odd
sectors. This yields a total of 10 HW groups with well-defined
parities, each carrying its own Chern number.

1. Type-1 mirrors

To evaluate the MCNs μG and μX, we construct from
each of the 10 HW groups a group of Bloch-like states by
performing Bloch sums along z, and recall from Eq. (19) that
their Chern numbers on any constant-kz BZ slice (and, in
particular, at G and X) are the same as the Chern numbers of
the parent HW groups. The final needed ingredient is Table I,
which gives the mirror parities at G and X of the Bloch groups
coming from each of the HW groups. This table is valid for
both spinless and spinful mirror symmetry Mz, and it agrees
with the parity rules for inversion symmetry I in one dimen-
sion [13]; this is consistent with the fact that Mz = I ∗ Cz

2 acts
along z in the same way as I.

To evaluate μG, we need to split the occupied Bloch space
at G into even- and odd-parity sectors about A. According to
Table I, their Chern numbers are

C±
G = (CA± + C̃A± + C̃±

UC) + (CB± + C̃B± ), (31)

where the first and second groups of terms correspond to Wan-
nier groups that are even or odd about A and B, respectively.
Inserting this expression into Eq. (8) for μG and then using
Eqs. (27) and (30), we find

2μG = (CA+ − CA− ) + (CB+ − CB− ) + WA + WB. (32)

Under the uniform parity assumption the first group of terms
becomes pACA, where CA is the total Chern number of the
flat bands at A, all of the same parity pA = ±1; similarly, the
second group becomes pBCB. Thus we arrive at

μG = 1
2 (pACA + WA) + 1

2 (pBCB + WB), (33)

and via similar steps Eq. (9) for μX turns into

μX = 1
2 (pACA + WA) − 1

2 (pBCB + WB). (34)

Out of the three collections in a type-1 disconnected band
structure, the uncentered collection does not contribute to the
MCNs; and the A-centered and B-centered ones contribute as
in Eqs. (33) and (34).

Equations (33) and (34) are a central result of this work,
and in the following sections we will extract several conclu-
sions from them. In practical applications, those equations can
often be simplified: since flat bands and point nodes do not
generically coexist on the mirror planes, at least one of the two
terms inside each pair of parentheses will typically vanish.

Before proceeding, let us verify that Eq. (33) correctly
yields an integer value for μG when C3 = 0. First we eliminate
the winding numbers from Eq. (33) with the help of Eq. (29),
and then we take mod 2 on both sides of the resulting equation
to find

2μG mod 2 = (CA + C̃A + CB + C̃B) mod 2

= −C̃UC mod 2, (35)

where Eq. (25) was used to go from the first to the second line.
Given that C̃UC is an even number, we conclude that μG is an
integer. The proof is identical for Eq. (34).

We emphasize that the separate contributions from the A-
and B-centered collection to Eqs. (33) and (34) are not always
integer-valued. As can be seen from Eq. (37) below, those con-
tributions assume half-integer values when the axion angle is
quantized to θ = π by mirror symmetry; a concrete example
where this happens will be given in Sec. VI C.

2. Relation to the quantized axion coupling

As mentioned in the Introduction, mirror symmetry be-
longs to the group of “axion-odd” symmetries that reverse the
sign of the axion angle θ . When one or more such symmetries
are present in a 3D insulator with a vanishing Chern vector, θ

is restricted to be zero or π mod 2π , becoming a Z2 topolog-
ical index.

In the case of mirror symmetry, where the band topology is
already characterized by the MCNs, there should be a relation
between them and the quantized θ value. Below we derive that
relation for an insulator with a type-1 mirror and a gapped
Wannier spectrum. To that end, we make use of the formalism
of Ref. [13] for expressing θ in the HW representation.

First we write μG + μX by combining Eqs. (33) and (34),
and eliminate the winding numbers using Eq. (29). Then we
take mod 2 on both sides to find

(μG + μX) mod 2 = CA mod 2. (36)

Comparing with the relation θ/π = CA mod 2 [13], valid for
a gapped spectrum in the presence of a z-reversing axion-odd
symmetry such as Mz, we conclude that

θ

π
= (μG + μX) mod 2. (37)

Thus, the system is axion-even (θ = 0) or axion-odd (θ = π )
depending on whether the sum of the two MCNs associated
with Mz is even or odd. Previously, this result had been in-
ferred from an argument based on counting Dirac cones in the
surface BZ [14,15]. Here, we have obtained it directly as a
formal relation between bulk quantities expressed in the HW
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representation. As we will see shortly, the same relation holds
when the Wannier spectrum is gapless.

3. Type-2 mirrors

In a crystal with a type-2 mirror, where the planes A and
B are equivalent and G is the only mirror-invariant plane in
reciprocal space, the unique MCN μG is obtained by setting
pB = pA, CB = CA, and WB = WA in Eq. (33),

μG = pACA + WA. (38)

If flat bands are present at A, they repel the point nodes.
Hence WA = 0, and therefore |μG| = |CA|. Interestingly, in
this case the magnitude of the MCN does not depend on the
parity of the flat-band states; this simplifies considerably its
numerical evaluation, since one does not need to know how
the basis orbitals transform under Mz. Given that only the
magnitude (not the sign) of the MCN is needed to establish
the bulk-boundary correspondence, this is a potentially useful
result.

Inserting Eq. (29) for WA in Eq. (38), taking mod 2 on
both sides, and again comparing with θ/π = CA mod 2, we
conclude that in this case the relation between the axion Z2

index and the MCN reads

θ

π
= μG mod 2, (39)

as stated in Ref. [15].

4. Weakly coupled layered crystals

Consider a crystal composed of weakly coupled identical
layers that remain invariant under reflection about their own
planes. Following Ref. [24], we assume that the layers are
stacked exactly vertically. In this case the reflection symmetry
about the individual layers becomes a type-1 mirror of the 3D
structure, with two separate MCNs μG and μX. In the fully
decoupled limit where there is no kz dependence the G and X
reciprocal planes become equivalent, so that μX = μG ≡ μ2D

where μ2D is the MCN of an isolated layer [Eq. (10)]. But
since the MCNs are integers, they cannot change if a weak
interlayer coupling is introduced, and from Eqs. (33) and (34)
we obtain

μ2D = 1
2 (pACA + WA) (40)

for the unique MCN of a weakly coupled layered crystal.
If flat bands are present at A (the plane of a layer), then

WA = 0 and the net Chern number of the valence bands be-
comes CA + C̃UC; since the net Chern number vanishes by
assumption and C̃UC is even, μ2D = pACA/2 is clearly an
integer. In this case |μ2D| can be determined without knowing
the parity of the flat-band states, as in the case of a type-2
mirror with flat bands.

Let us now evaluate the axion Z2 index. Since μG + μX =
2μ2D is an even number, Eq. (37) yields

θ = 0 mod 2π. (41)

This is consistent with the assertion made in Ref. [24] that
weakly coupled layered topological crystalline insulators are
analogous to “weak topological insulators” with a vanishing
strong Z2 invariant ν0.

B. Gapless Wannier band structure

Let us now apply our formalism to a Mz-symmetric system
with a gapless Wannier spectrum. We start out by noting that
such a spectrum must have degeneracies at both A and B. On
those special planes the codimension is two, so point nodes
are allowed. Flat bands can be ruled out since they would repel
any nodes and generate a gap, and we assume that nodal lines
are absent as well.

We are left with a scenario where there are point nodes
at both A and B, and these are connected by Wannier bands.
The only way this can happen without the assistance of other
symmetries is if there are only two Wannier bands, one in
each half unit cell, since otherwise there is generically a gap
somewhere in each half cell (accidental degeneracies away
from A and B are not protected, since the codimension is
three). With the assistance of other symmetries, the gapless
spectrum may contain more than two bands per cell.

To treat the above scenario, we temporarily add a symmet-
ric pair of occupied orbitals at degeneracy-free planes ±z0,
and initially do not let them hop at all (completely isolated).
This will introduce flat bands on those planes. Now let the
added orbitals hybridize with other orbitals. Since accidental
degeneracies away from the mirror planes are not protected,
gaps will generally open up between the new and the old
Wannier bands (the only exceptions to this rule are treated
in the next paragraph). And since the added orbitals are topo-
logically trivial, they have no effect on the MCNs, which can
now be evaluated using the formalism of Sec. IV A for gapped
spectra. Setting CA = CB = 0 in Eqs. (33) and (34) therein,
we obtain

μG = 1
2 (WA + WB) (42)

and

μX = 1
2 (WA − WB). (43)

But since WA and WB cannot be affected by orbitals inserted
far from the A and B planes, we conclude that Eqs. (42) and
(43) can be directly applied to the original system with a
gapless Wannier spectrum.

The above argument needs to be refined if the system is
an axion-odd insulator that has, in addition to Mz symmetry,
one or more axion-odd symmetries that are z preserving and
symmorphic (e.g., spinful time reversal or vertical mirrors).
The Wannier spectrum is then guaranteed to be gapless, with
adjacent bands touching at an odd number of Dirac nodes
[13]. The solution is to weakly break all such symmetries via
some low-symmetry perturbation; the band connectivity then
becomes “fragile,” allowing gaps to open up once the added
orbitals hybridize with the original ones [13,25]. The rest of
the argument proceeds as before, again with the conclusion
that Eqs. (42) and (43) can be directly applied to the original
system with a gapless spectrum. This scenario is illustrated
in Sec. VI C 2, where the orbital insertion itself acts as the
symmetry-lowering perturbation.

To conclude, let us show that the relation (37) between the
MCNs and the axion angle remains valid for gapless spectra.
Equations (42) and (43) give μG + μX = WA, while θ is equal
to the sum of Berry phases of vanishingly small loops around
the nodes at A [13]. Since those Berry phases divided by π are
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equal to the node winding numbers modulo 2 [26], Eq. (37) is
immediately recovered.

V. METHODS

A. Tight-binding, ab initio, and Wannier methods

In this work, the formalism for evaluating MCNs in the
HW representation is implemented in the tight-binding (TB)
framework, using a modified version of the PYTHTB code
[27]. Illustrative calculations are carried out for 2D and 3D
models with mirror symmetry; some are simple toy mod-
els, while others are obtained from ab initio calculations as
described below. Each model is specified by providing the on-
site energies, the hopping amplitudes, and the matrix elements
of the position and mirror operators.

In the TB literature, it is common to assume that the po-
sition operator is represented by a diagonal matrix in the TB
basis,

〈ϕRi|r|ϕR′ j〉 = (R + τ i )δR,R′δi j, (44)

where τ i is the location of the ith basis orbital in the home
cell R = 0. This approximation is problematic for calculating
the Wannier bands of unbuckled monolayers, since it forces
all bands to lie flat on the z = 0 plane: when all basis orbitals
lie on the z = 0 plane and all off-diagonal matrix elements
〈ϕRi|z|ϕR′ j〉 vanish, the matrix Zκ that is diagonalized to ob-
tain the HW centers [see Eqs. (45) and (46)] is the null matrix.

To apply our formalism to flat monolayers, any flat Wan-
nier bands that may be present must be robust and satisfy
the uniform parity assumption, while all other bands must be
dispersive. To ensure that this is so, one should retain some
off-diagonal z matrix elements. For models based on ab initio

Wannier functions this occurs naturally, since the position
matrix elements between the Wannier functions are explicitly
calculated, and they are generally nonzero for nearby Wannier
functions. In the case of toy models, one needs to assign
nonzero values to some of the off-diagonal z matrix elements
under reasonable assumptions.

The material chosen for the ab initio calculations is SnTe,
which we study as a flat monolayer in Sec. VI A and as a bulk
phase in Sec. VI B. We first calculate the electronic structure
from density-functional theory (DFT) using the GPAW code
[28], and then use the WANNIER90 code [29] to construct well-
localized Wannier functions. Last, TB models are generated
by tabulating the matrix elements of the Kohn-Sham Hamil-
tonian and of the position operator between those Wannier
functions.

The self-consistent DFT calculations are performed with-
out including spin-orbit coupling, which is added after-
wards non-self-consistently [30]. We use the Perdew-Burke-
Ernzerhof exchange-correlation functional [31,32], and de-
scribe the valence-core interaction via the projector aug-
mented wave method [33]. The valence states are expanded
in a plane-wave basis with an energy cutoff of 600 eV, and
the BZ is sampled on �-centered uniform grids containing
6 × 6 × 1 and 6 × 6 × 6 points for monolayer and bulk SnTe,
respectively. The projector augmented wave setup includes the
4d semicore states of Sn in addition to the 5s and 5p states of
Sn and Te, yielding a total of 20 valence electrons for each

SnTe formula unit (one per cell for the monolayer, and two
for the bulk).

For each formula unit, we construct 16 spinor Wannier
functions of s and p character spanning the upper-valence and
low-lying conduction band states. The Sn 4d states, which
give rise to flat bands lying 22 eV below the Fermi level, are
excluded from the Wannier construction.

As a first step towards obtaining well-localized Wannier
functions, we extract from the space of ab initio Bloch eigen-
states at each grid point k an N-dimensional subspace with
the desired orbital character (N = 16 for the monolayer, and
N = 32 for the bulk). This is achieved via the “band disentan-
glement” procedure of Ref. [34], which involves specifying
two energy windows, known as the inner and the outer win-
dow, and a set of trial orbitals. The outer window encloses all
the valence bands except for the 4d semicore states, as well
as all the low-lying conduction states of 5s and 5p character.
To ensure that the valence states are exactly preserved in
the disentangled subspace, we “freeze” them inside an inner
window. An initial guess for the target subspace is obtained by
projecting atom-centered s and p trial orbitals onto the outer-
window states. This is followed by an iterative procedure that
yields an optimally smooth disentangled subspace across the
BZ [34].

Having extracted a suitable Bloch subspace, we proceed
to construct well-localized s- and p-like Wannier functions
spanning that subspace. This is done by projecting onto it the
same s and p trial orbitals that were used in the disentangle-
ment step, and then orthogonalizing the resulting orbitals via
the Löwdin scheme [18]. This one-shot procedure, without
additional maximal-localization steps [18], ensures that the
Wannier functions retain the orbital character of the trial or-
bitals.

To assess the quality of the Wannier basis we calculate the
energy bands from the Hamiltonian matrix elements in that
basis [34], and find that they are in excellent agreement with
the ab initio bands obtained using the GPAW code [35].

In addition to the Hamiltonian and position matrix ele-
ments, we also require the matrix elements of the mirror
operator Mz in the Wannier basis. These are needed to de-
termine the winding numbers of the nodal touchings between
Wannier bands on the mirror planes (see Sec. V C), as well
as the mirror parities pA and pB of the flat-band states. To
set up the matrix representation of Mz, we assume that the
Wannier functions transform under Mz in the same way as
pure s and p orbitals. We find that the eigenstates of the
Wannier Hamiltonian on the mirror-invariant BZ planes are,
to a good approximation, eigenstates of this approximate Mz

operator, which validates that assumption.

B. Construction of hybrid Wannier functions and

Wannier bands

Formally, maximally localized HW functions satisfy the
eigenvalue equation (12). For a 2D or quasi-2D system ex-
tended along x and y, the matrix elements of the z operator
appearing in that equation are well defined. It is therefore
straightforward to set up the matrix

Zmnk = 〈ψmk|z|ψnk〉, (45)
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where k = (kx, ky) and m and n run over the J occupied energy
bands, and to diagonalize it,

[U †
k ZkUk]mn = zmkδmn. (46)

The eigenvalues are the HW centers, and from the eigen-
vectors (the columns of the Uk matrix) we can construct the
maximally localized HW functions according to

|hnk〉 =
∑

m

e−ik·r|ψmk〉Umnk, (47)

where the phase factor has been included to render them in-
plane periodic.

For bulk systems, which are extended in all directions
including the Wannierization direction z, the above procedure
fails because the matrix elements in Eq. (45) become ill de-
fined. In such cases, it is still possible to construct maximally
localized HW functions by working in reciprocal space. We
now write k = (κ, kz ), and choose a uniform grid; for each
point κ in the projected 2D BZ, the problem reduces to the
construction of 1D maximally localized Wannier functions
along z. The procedure is detailed in Refs. [5,18]. Briefly, the
first step is to establish a “twisted parallel transport gauge”
for the valence Bloch states along the string of kz points at
each κ, obtaining as a byproduct the HW centers zlnκ. The
maximally localized HW functions |hlnκ〉 are then constructed
in this gauge using Eq. (11), with the integral over kz replaced
by a summation over the string of kz points.

C. Winding number of a point node of order N

1. Definition

Earlier we defined the winding number of a point node
where two Wannier bands meet on a mirror plane. Since there
are situations where N > 1 pairs of bands meet at a node,
we need to generalize that definition to handle such “higher-
order” nodes.

Given a point node κ j of order N � 1, we introduce the
2N × 2N matrix representation of Mz at a nearby point κ,

M
z
mnκ

= 〈hmκ|Mz|hnκ〉. (48)

Here, m and n run over the 2N Wannier bands that meet at κ j .
By diagonalizing Mz

κ
and then transforming the |hnκ〉 states

accordingly [see Eqs. (46) and (47)], we obtain a new set of
2N states |h̃nκ〉. Like the original ones they are cell-periodic
in plane and localized along z, but they have definite mirror
parities. We choose the first N to be even under Mz, and denote
them as |h̃+

lκ
〉; the remaining N are odd under Mz, and we

denote them as |h̃−
lκ

〉. In both cases, l goes from 1 to N . The
matrix representation of z in the new basis takes the form of
Eq. (23), where fκ is the N × N matrix with elements

fll ′κ = 〈h̃+
lκ|z|h̃

−
l ′κ〉. (49)

Letting

γκ = arg(det fκ ), (50)

the winding number can be evaluated from Eq. (28) irrespec-
tive of the order N of the node.

M

FIG. 2. (a) Atomic structure of monolayer SnTe. The black
square is the conventional unit cell with lattice constant a, and the
red square is the primitive cell with lattice constant a′ = a/

√
2.

(b) Brillouin zone and high-symmetry points.

2. Numerical evaluation

Suppose a single pair of Wannier bands meet at a point
node κ j . To evaluate the winding number (28), the phase γκ

must be smooth on c j . In practice, we establish a smooth
gauge for the states |h̃±

κ
〉 as follows. We pick a representation

of the two states at a reference point κ
′
j in the vicinity of the

node. Then at any point κ
′
j + �κ on the circle c j we choose

the gauge by enforcing maximal phase alignment with the
states at κ

′
j , i.e., by requiring that the overlaps 〈h̃+

κ′
j

|h̃+
κ′

j+�κ
〉

and 〈h̃−
κ′

j

|h̃−
κ′

j+�κ
〉 are real and positive. In other words, we carry

out a one-step parallel transport from κ
′
j to each circumference

point.
If several pairs of bands meet at a node, the strategy is

basically the same. The only difference is that one must now
use the multiband version of the parallel-transport procedure
[5,18].

VI. NUMERICAL RESULTS

In this section, we use our formalism to calculate the
MCNs of three different systems. The first is an unbuckled
monolayer of SnTe, a topological crystalline insulator pro-
tected by reflection symmetry about its plane. The second is
rock salt SnTe, a 3D topological crystalline insulator protected
by a type-2 mirror. Our last example is a 3D toy model based
on a modified Dirac equation. It is both a strong topological
insulator protected by time-reversal symmetry, and a topo-
logical crystalline insulator with a type-1 mirror. In the first
example the Wannier spectrum is trivially gapped, while in
the other two it is gapless.

A. Unbuckled monolayer of SnTe

The structure we consider is shown in Fig. 2(a). It consist
of a single unbuckled layer of Sn and Te atoms arranged in a
checkerboard pattern, which can be viewed as a single (001)
layer of the bulk rock salt structure.

DFT calculations reveal that the system with an optimized
lattice constant of a = 6.16 Å is situated 0.4 eV above the
convex hull and is dynamically unstable [36], and that a
buckled structure that breaks mirror symmetry is energetically
favored [37]. These results imply that a flat SnTe monolayer
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FIG. 3. (a) Energy bands of monolayer SnTe, with the s-type lower valence bands that are excluded from the Wannierization shown in gray.
All bands are doubly degenerate, and the Fermi level is indicated by the dashed line. (b) Wannier bands obtained from the Bloch states in the
six p-type upper valence bands. (c) Heat map plot of the gap function of Eq. (52) for the central pair of Wannier bands, where zero-gap points
(nodal points) appear as dark spots. Those with winding numbers Wj = ±1 are indicated by red or blue circles, while the one with Wj = −3
at the � point is indicated by a blue triangle. Dashed circles denote pairs of nearby nodes with equal and opposite winding numbers. When a
node falls on the BZ boundary, only one of the periodic images is shown.

is not likely to be experimentally relevant. This system is
nevertheless ideally suited for illustrating our methodology,
since it has reflection symmetry about its own plane and the
associated MCN is nonzero [38].

We carry out calculations using the primitive cell contain-
ing one formula unit. The Wannier-interpolated energy bands
are shown in Fig. 3(a), where all bands are doubly degenerate
due to time-reversal and inversion symmetry. There is a robust
inverted gap (0.3 eV) at the X point, and a tiny indirect gap
(0.17 meV) around the X point; when the lattice expands
the indirect gap increases, and when it shrinks the system
turns into a band overlap semimetal [37,38]. The lowest four
valence bands are predominantly s-type, and the remaining six
(plotted in red) are predominantly p-type.

Figure 3(b) shows the Wannier bands calculated from the
Bloch states in the p-type upper valence bands. The spectrum
consists of three mirror-symmetric band pairs that touch on
the A plane z = 0 at isolated points in the 2D BZ. There are
no flat bands on that plane, as expected from the presence of
time-reversal symmetry (Sec. III B 3). Equation (40) therefore
reduces to

μ2D = 1
2WA, (51)

and the MCN can be determined by evaluating the winding
numbers of the nodal points on the A plane.

To locate those nodal points, we plot in Fig. 3(c) the “gap
function”

gk = − log(�zk/c), (52)

where �z(k) is the separation between the central pair of
bands. Regions with a small gap appear in dark gray, and
nodal points as dark spots. The positions and winding num-
bers of all the nodal points are indicated in the figure, where
we have included only one of the periodic images when a node
falls on the BZ boundary. At � and M there are nodes where
three pairs of Wannier bands touch, with winding numbers
Wj = −3 and Wj = +1, respectively. All other nodes on the
z = 0 plane are simple Dirac nodes where only the two central
bands meet, and they have Wj = ±1. Adding up the winding
numbers of the 36 nodal points in the BZ we obtain WA = −4,

and from Eq. (51) we conclude that the group of six p-type
valence bands has a MCN of −2.

We repeat the calculation for the four s-type lower valence
bands, and find that their net winding number vanishes. The
net MCN of the occupied states is therefore μ2D = −2, with
the nontrivial topology coming from the p states. This result
agrees with the value |μ2D| = 2 inferred from a k · p analysis
of the simultaneous band inversions at the two X points in the
BZ [17,38].

B. Bulk SnTe

Bulk SnTe, which crystallizes in the rock salt structure,
is known both from theory [16] and experiment [39] to be a
topological crystalline insulator. The symmetry protecting its
nontrivial band topology is reflection about the {110} family
of planes. [Instead, the (001) mirror symmetry responsible for
the topological state of the monolayer is topologically trivial
in the bulk crystal.]

The lattice is face-centered cubic lattice, so that the shortest
lattice vector perpendicular to the (110) planes is a3 = ax̂/2 +
aŷ/2. Since its length is twice the separation between adjacent
planes, the (110) mirror operation is of type 2, as is typical of
centered lattices (see Fig. 1).

For our simulations we pick a tetragonal cell subtended by
a1 = −ax̂/2 + aŷ/2, a2 = aẑ, and a3, and reorient the axes
such that those vectors point along x̂, ŷ, and ẑ, respectively. In
this new frame, the (110) mirror operation of interest becomes
Mz. The simulation cell with two formula units is shown in
Fig. 4(a) and the associated BZ in Fig. 4(b).

In Fig. 5(a) we present the energy bands calculated along
the high-symmetry lines of the folded BZ. The nontrivial
topology arises from simultaneous band inversions at the two
L points in the unfolded BZ [16], which map onto the two R
points in Fig. 4(b). The inverted band gap at R and the global
indirect band gap amount to 0.3 and 0.1 eV, respectively.

From the full set of valence band states, we construct HW
functions localized along z. The Wannier spectrum is shown
in Fig. 5(b). Its periodicity is c/2 because the cell is doubled
along z, and only one period is shown. The spectrum is gap-
less, with two pairs of bands crossing in opposite directions,
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x y

z

FIG. 4. (a) Rock salt structure of bulk SnTe in a tetragonal con-
ventional cell. a is the lattice constant of the conventional cubic
cell, and b = c = a/

√
2. Green planes are equivalent mirror planes.

(b) Brillouin zone associated with the tetragonal cell, with its high-
symmetry points indicated in red and the unique Mz-invariant plane
in green. The projected 2D Brillouin zone with its high-symmetry
points is shown on top.

between X and �, the gap centered at z = c/4 (only one of
the two crossings is shown). This spectral flow arises from
the nonzero MCN associated with My symmetry (equivalent
to Mz), which leaves invariant the BZ plane containing the

�, X, R2, and Y2 points. For a discussion of such “in-plane”
Wannier flow associated with a nonzero MCN, see Ref. [40].

Since Mz is a type-2 mirror, we evaluate its unique MCN
using Eq. (38). And since the Wannier spectrum is gapless,
and hence devoid of flat bands, we set CA = 0 in that equation
to obtain

μG = WA, (53)

which says that the MCN equals the sum of the winding
numbers of all the point nodes on the z = 0 plane.

As indicated in Fig. 5(d), there are 16 independent point
nodes in total on that plane, all of them simple nodes where
only two bands meet. Seven have winding numbers +1 and
the other nine have winding numbers −1, yielding μG = −2
for the MCN. This value is in agreement with that origi-
nally obtained in Ref. [16] from a k · p analysis of the band
inversions. Using Eq. (39), we confirm that the system is
axion-trivial.

C. Modified Dirac model on a cubic lattice

In this section we study a 3D toy model constructed by
first modifying the free Dirac equation to enable topological
phases for certain parameter values, and then placing it on
a cubic lattice. The 4 × 4 Hamiltonian matrix in reciprocal
space reads [41,42]

H (k) =

⎛
⎜⎝

m − 2MK (k) 0 c sin kz c(sin kx − i sin ky)
0 m − 2MK (k) c(sin kx + i sin ky) −c sin kz

c sin kz c(sin kx − i sin ky) −m + 2MK (k) 0
c(sin kx + i sin ky) −c sin kz 0 −m + 2MK (k)

⎞
⎟⎠, (54)

where K (k) = 3 − cos kx − cos ky − cos kz, and c, m, and
M are dimensionless parameters inherited from the original
isotropic modified Dirac equation [41] by setting the rest mass
m0c2 to be the energy scale of the model [42].

The topological phase diagram of the half-filled model is
shown in Fig. 6 for c = 1.0. The system is gapped except on
the m = 0, 4M, 8M, 12M lines, where the gap closes at � =
(0, 0, 0), X = (π, 0, 0), M = (π, π, 0), and A = (π, π, π ),
respectively. As shown in Appendix C, those metallic lines
separate axion-trivial from axion-odd insulating phases.

The axion angle is quantized by several axion-odd sym-
metries. Some are z-reversing (inversion and horizontal
mirror Mz), and others are z-preserving (spinful time re-
versal and vertical mirrors). As Mz is a type-1 mirror, it
protects two MCNs that are related to the axion angle
by Eq. (37).

1. Axion-odd phase with protected Wannier flow

For our numerical tests we set c = m = 1.0 and M = 0.5 to
put the model in the axion-odd phase. The energy band struc-
ture is shown in Fig. 7(a). The bands are pairwise degenerate
due to the presence of time-reversal and inversion symmetry,
with a finite gap between the two pairs over the entire BZ. The
Fermi level is placed at midgap.

Since the system is axion-odd and has z-preserving axion-
odd symmetries, the connectivity (or “flow”) of the Wannier

bands is topologically protected [13]. In particular, spinful
time-reversal symmetry requires that the two bands per ver-
tical cell are glued together as follows: one band touches
the band above at one of the four time-reversal invariant
momenta (TRIM), and it touches the periodic image below
at the other three. As for the z-reversing axion-odd sym-
metries, the effect of Mz is to pin the up-touching to one
of the mirror planes and the three down-touchings to the
other, while inversion further constrains the four touchings
to occur at TRIM on those planes, as already mandated by
time reversal.

The pattern of band touchings described above is con-
firmed by Fig. 7(b), where we plot the Wannier bands. They
were obtained by placing at the origin the four basis orbitals
that belong to the home unit cell, and making the diagonal
approximation of Eq. (44) for the position matrix. There is
one band touching at � on the B plane, and three more on the
A plane: one at M, and the others at the two X points.

Since the Wannier spectrum is gapless, the MCNs μG

and μX are given respectively by the half-sum and the half-
difference of the net winding numbers on the A and B planes
[Eqs. (42) and (43)]. As indicated in the gap-function plots of
Figs. 7(c) and 7(d), the three nodes at A give WA = −1 and
the single node at B gives WB = −1, so that μG = −1 and
μX = 0. Note that μG + μX is an odd number, as required by
Eq. (37) for an axion-odd system.
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FIG. 5. (a) Energy bands of bulk SnTe along high-symmetry lines of the folded tetragonal BZ. The Fermi level is indicated by the dashed
line. (b) Wannier band structure obtained from the full set of valence states. (c) Detail of the Wannier bands around the z = 0 mirror plane.
(d) Heat map plot of the gap function of Eq. (52) for the central pair of Wannier bands around z = 0, with the nodal points color coded as in
Fig. 3(c).

2. Axion-odd phase with fragile Wannier flow

If the z-preserving axion-odd symmetries of the model
(time reversal and vertical mirrors) are weakly broken, the
system will remain in an axion-odd phase protected by Mz

and inversion. But since these are z-reversing operations, the
Wannier spectrum is no longer topologically required to be
gapless. The Wannier flow is protected only in a “fragile”
sense, and it can be destroyed, while preserving Mz, by adding
some weakly coupled trivial bands to the valence manifold
[13,25]. Below we carry out this procedure in two different
ways, and confirm that the MCNs remain the same as in the
original model.

a. Insertion of a symmetric pair of occupied orbitals. Here
we implement the strategy outlined in Sec. IV B. We insert in
the unit cell two more orbitals, denoted as |5〉 and |6〉, that
have opposite spins and the same on-site energy E = −4.0.
To break time reversal and the vertical mirrors while pre-
serving Mz and inversion, we place the spin-up orbital |5〉
at (x, y, z) = (0.0, 0.0, 0.2c), and the spin-down orbital |6〉
at (x, y, z) = (0.0, 0.0,−0.2c), keeping the original orbitals
|1〉 to |4〉 at the origin. Finally, we couple the new orbitals to
the old via the matrix elements 〈5|H |1〉 = 〈6|H |2〉 = 0.5. The
resulting model retains the Mz and inversion symmetries of
the original model, and it breaks the time-reversal and vertical
mirror symmetries in the Z matrix of Eq. (45) (but not in the
Hamiltonian).

−1.0 −0.5 0.0 0.5 1.0
m

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

M

θ = 0 θ = π

FIG. 6. Topological phase diagram of the model of Eq. (54) for
c = 1.0. Orange and blue regions denote axion-even (θ = 0) and
axion-odd (θ = π ) phases, respectively.

The energy and Wannier band structures are plotted in
Figs. 8(a) and 8(b). Because the Hamiltonian has both
inversion and time-reversal symmetry, the energy bands re-
main doubly degenerate as in Fig. 7(a). The breaking of
the z-preserving symmetries in the Z matrix is reflected in
the Wannier spectrum which is no longer connected as in
Fig. 7(b), with small gaps opening up near z = ±0.2c. The
node at � on the B plane and those at X1, X2, and M on the
A plane remain intact, protected by Mz and inversion. Their
winding numbers are also unchanged, leading to the same
MCNs as in the original model.

b. Insertion of a single occupied orbital at z = 0. An al-
ternative way of opening up a gap in the Wannier spectrum
is to insert a flat band on a mirror plane. To illustrate this
procedure, we add at the origin a single spin-up orbital |5〉
with on-site energy E = −4.0 and odd parity about that plane,
and couple it to the model via 〈5|H |1〉 = 〈5|H |4〉 = 2.0. Be-
cause the orbital is spin-polarized, it breaks time reversal; and
because the spin points in the vertical direction, it also breaks
all vertical mirrors while preserving Mz. In addition, the cou-
pling terms break inversion symmetry, leaving Mz as the only
axion-odd symmetry. The energy bands of the modified model
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FIG. 7. (a) Energy bands of the model described by Eq. (54) with
c = m = 1.0 and M = 0.5. The bands are doubly degenerate, and
the Fermi level (dashed line) has been placed at midgap. (b) Wannier
band structure obtained from the valence states. (c) and (d) Heat map
plots of the gap function of Eq. (52) about the z = 0 and z = c/2
planes, respectively, with the nodal points color coded as in Fig. 3(c).
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FIG. 8. (a) Energy bands of the same model as in Fig. 7, after
adding an extra pair of occupied orbitals with E = −4.0 at z =
±0.2c and coupling them to the other orbitals. The bands are doubly
degenerate, and the Fermi level (dashed line) has been placed at
midgap. (b) Wannier band structure obtained from the valence states,
with small gaps around z = ±0.2c due to the added orbitals.

are shown in Fig. 9(a). A new band has appeared below the
other four, so that there are now three valence bands in total,
leading to three Wannier bands.

The added orbital, which belongs to the A+ class in Table I,
generates an extra even-parity state at both G and X. This
creates an imbalance �NG = �NX = 1 between even- and
odd-parity states on the two mirror-invariant BZ planes, which
according to Eq. (20) results in a flat band at A. We emphasize
that this extra band remains flat even after the added orbital is
coupled to the model, as long as the coupling terms respect
Mz symmetry. As already mentioned, those terms are chosen
to break inversion symmetry. This is needed to ensure that
the three point nodes on the A plane are repelled by the flat
band in the manner described in Sec. III B 2, since inversion
symmetry would otherwise protect them.

The resulting Wannier bands are displayed in the upper
panel of Fig. 9(b); because of the lowered symmetry, the node
at z = c/2 is no longer pinned to � as in Fig. 7(b). The lower
panel reveals a perfectly flat band at z = 0, well separated
from a pair of dispersive bands whose three touchings on the
z = 0 plane in Fig. 7(c) have been gapped out. Under these
circumstances, Eqs. (33) and (34) for the MCNs reduce to

μG = 1
2 (pACA + WB) (55)

and

μX = 1
2 (pACA − WB). (56)
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FIG. 9. (a) Energy bands of the same model as in Fig. 7, after
adding an extra occupied orbital at z = 0 and coupling it to the other
orbitals. The Fermi level (dashed line) has been placed in the gap.
(b) Wannier band structure obtained from the valence states. The
added orbital generates a flat band at z = 0, which repels the nodal
points on that plane (lower panel).

The single node at B has the same winding number WB =
−1 as in the original model, while the net winding number
WA = −1 of the gapped-out nodes at A has been transferred
to the index pACA of the flat band (pA = −1, and CA = +1).
Overall, the MCNs remain unchanged.

VII. SUMMARY

In summary, we have investigated the topological prop-
erties of mirror-symmetric insulating crystals from the
viewpoint of HW functions localized along the direction or-
thogonal to the mirror plane. We first clarified the generic
behaviors of the associated Wannier bands, and then de-
rived a set of rules for deducing the MCNs. To validate and
illustrate the formalism, we applied it to SnTe in the mono-
layer and bulk forms, and to a toy model of an axion-odd
insulator.

In the HW representation, the MCNs are expressed in terms
of a set of integer-valued properties of the Wannier bands on
the mirror planes: the Chern numbers and mirror parities of
flat bands lying on those planes, and the winding numbers of
the touching points on those planes between symmetric pairs
of dispersive bands. One advantage of this representation is
that it reveals the relation between the MCNs and the axion
Z2 index from purely bulk considerations. That relation is
far from obvious in the standard Bloch representation, and
previously it had been obtained only via an indirect argument
involving surface states.

In some cases the axion Z2 index can be determined
by visual inspection of the Wannier band structure, e.g., by
counting the number of nodal points between certain bands
[13]. We have found that mere visual inspection does not
suffice for obtaining the MCNs since it does not reveal,
for example, the relative signs of the winding numbers of
different nodes.

Interestingly, in certain cases where flat Wannier bands
are present the magnitudes of the MCN can be determined
without having to divide the occupied manifold into two mir-
ror sectors. This follows from the uniform-parity assumption
for the flat bands, which has no counterpart in the Bloch
representation. Since the determination of the mirror parities
is the most cumbersome step in the calculation of MCNs, this
feature of the HW formalism could lead to a more automated
algorithm for computing MCNs. Even without such further
developments, the formalism has already proven useful for
discussing the topological classification of mirror-symmetric
insulators.
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APPENDIX A: DERIVATION OF EQS. (20)–(22)

According to Table I, the numbers of occupied states with
each mirror parity at G and X are

NG± = NA± + NB± + 1
2 Ñ, (A1a)

NX± = NA± + NB∓ + 1
2 Ñ, (A1b)

where Ñ = ÑA + ÑB + ÑUC is the total number of disper-
sive Wannier bands per cell. Letting �NG = NG+ − NG− and
�NA = NA+ − NA− , and defining �NX and �NB in the same
way, we find

�NA = 1
2 (�NG + �NX), (A2a)

�NB = 1
2 (�NG − �NX). (A2b)

Under the uniform parity assumption |�NA| = NA and
|�NB| = NB, resulting in Eqs. (20) and (21). In the case of
a type-2 mirror A and B are equivalent, and from Eq. (A1a)
�NA + �NB = �NG. Hence �NA = �NB = �NG/2, yield-
ing Eq. (22) under the same assumption.

APPENDIX B: DERIVATION OF EQ. (27)

Let us prove Eq. (27) for the case of a single pair of
dispersive Wannier bands connected by point nodes on the A
plane. In this case the matrix fκ of Eq. (49) reduces to the
scalar

fκ ≡ 〈̃h+
κ
|z|̃h−

κ
〉 = | fκ|eiγκ , (B1)

where |̃h±
κ
〉 are states of even or odd mirror parity constructed

from the pair of HW functions as described in Sec. V C 1.
These states are cell-periodic in plane and localized along
z, and we also define new states |ψ±

κ
〉 = eiκ·r |̃h±

κ
〉 that are

Wannier-like along z and Bloch-like in plane.
When the Chern numbers C̃A± are nonzero, it becomes

impossible to choose a gauge for the states |ψ±
κ

〉 that is both
smooth and periodic in the projected 2D BZ [5]. We assume
a square BZ with kx, ky ∈ [0, 2π ], and choose a smooth but
nonperiodic gauge for the |ψ−

κ
〉 states. To characterize the lack

of periodicity, let the phase relations between the edges of the
BZ be

|ψ−
R 〉 = e−iμ|ψ−

L 〉, |ψ−
T 〉 = e−iν |ψ−

B 〉, (B2)

where {L,R,T,B} = {left,right,top,bottom}, μ = μ(ky), and
ν = ν(kx ). Also let

�μ = μ(2π ) − μ(0), �ν = ν(2π ) − ν(0). (B3)

When computing the Berry phase around the BZ boundary as
an integral of the connection A−

κ
= i〈̃h−

κ
|∂κh̃−

κ
〉,

φ− =
∮

∂BZ
A−

κ
· dκ, (B4)

the contribution from the L and R segments cancel except for
terms coming from μ, and similarly for the top and bottom
segments. It follows that

φ− = �μ − �ν. (B5)

We assume a smooth but nonperiodic gauge for the |ψ+
κ

〉
states as well, so that the phase γκ in Eq. (B1) becomes a
smooth function of κ (except at the nodes, where fκ vanishes
and γκ becomes ill defined). Now we phase align |ψ+

κ
〉 with

|ψ−
κ

〉 by regauging as follows,

|ψ+
κ

〉′ = eiγκ |ψ+
κ

〉. (B6)

(In this new gauge f ′
κ

is real, and γ ′
κ

is zero everywhere.)
This will make a gauge for |ψ+

κ
〉′ that is also nonperiodic.

For the moment we assume only that this gauge is smooth
in a neighborhood extending some small distance inside the
boundary; we ignore what is going on deeper inside. It is
not hard to see that the same relations as in Eq. (B2), with
the same functions μ and ν, apply to the |ψ+

κ
〉′ states, and it

follows that

φ′
+ = φ− (call it φ). (B7)

Now, in the case of the |ψ−
κ

〉 states the interior was smooth, so
by applying Stokes’ theorem to

2πC̃A− =
∫

BZ
�−

κ
d2k, (B8)

where �−
κ

= ∂kx
A−

κ,y − ∂ky
A−

κ,x is the Berry curvature of state
|u−

κ
〉, we get

2πC̃A− = φ. (B9)

If the interior of |ψ+
κ

〉′ were also smooth, we would con-
clude that C̃A+ = C̃A− . Conversely, when the MCN is nonzero
there must exist nonanalytic points where the phase of |u+

κ
〉′

changes discontinuously. Those points are precisely the nodes
of fκ, which we label by j; they act as vortex singularities of
the Berry connection

(A+
κ

)′ = A+
κ

− ∂κγκ, (B10)

and we extract their winding numbers Wj using Eq. (28).
Let S be the interior of the projected BZ with a small circle

c j cut around each node, and apply Stokes’ theorem over the
region S to find

∫

S

�+
κ

d2k =
∫

∂BZ
(A+

κ
)′ · dκ −

∑

j

∮

c j

(A+
κ

)′ · dκ. (B11)

The first term on the right-hand side is equal to φ′
+ = φ =

2πC̃A− . In the limit of small circles the left-hand side becomes
2πC̃A+ , and the second term on the right-hand side reduces
to 2π

∑
j Wj [this follows from Eq. (B10) by noting that

A+
κ

is smooth everywhere]. Thus C̃A+ − C̃A− equals WA =∑
j∈A Wj , which is what we set out to prove. The same result

holds if more than one pair of bands meet at some of the
point nodes, in which case γκ is given by the more general
expression in Eq. (50).

APPENDIX C: PHASE DIAGRAM OF THE MODIFIED

DIRAC MODEL ON A CUBIC LATTICE

In this Appendix, we map out the topological phase
diagram of the model of Eq. (54) as a function of the pa-
rameters m and M, for c = 1.0. The band gap closes for m =
0, 4M, 8M, 12M at the points �, X, M, and A, respectively
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FIG. 10. Wannier bands of the modified Dirac model on a cubic
lattice [Eq. (54)], for m = 1.0 and varying M.

[43]. Those lines in the phase diagram mark the topological
phase transitions between axion-even and axion-odd phases.

To decide which phases are trivial and which are topolog-
ical, it is sufficient to inspect the Wannier band structures in
Fig. 10, obtained for representative states in each of the four
phases along the m = 1.0 line. Since the model has several
axion-odd symmetries (time reversal, inversion, and multiple
mirrors), we can base our analysis on either of them, applying
in each case the rules given in Ref. [13] to determine the
axion Z2 index. In the following, we choose to focus on
time-reversal symmetry.

The Wannier spectrum of an axion-odd phase with spin-
ful time-reversal symmetry must be gapless, with each band
touching the band above at one of the four TRIM and the band
below at the other three (or vice versa). From this criterion we
conclude that Figs. 10(a) and 10(c) correspond to axion-trivial
phases, and Figs. 10(b) and 10(d) to axion-odd topological
phases. Hence the system is topological for 0 < m/M < 4 and
8 < m/M < 12, producing the phase diagram in Fig. 6. This
is in agreement with Ref. [43], where the strong topological
index ν0 = θ/π of each phase was determined a from the
parity eigenvalues of the Bloch states at the eight TRIM in
the 3D BZ [11].
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