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Abstract

A Trusted Execution Environment (TEE) provides an isolated hardware environment for sensitive code
and data to protect a system’s integrity and confidentiality. As we discovered, programmers tend to overuse
TEE protection. When they place non-sensitive code in TEE, the trusted computing base (TCB) grows
unnecessarily, leading to long execution latencies and large attack surfaces. To address this problem, we
first study a representative sample of open-source projects to uncover how TEE is utilized in real-world
software. To facilitate the process of removing non-sensitive code from TEE, we introduce TEFE Insourcing,
a new type of software refactoring that identifies and removes the unnecessary program parts out of TEE.
We implemented TEE Insourcing as the TEE-DRUP framework, which operates in three phases: (1)
a variable sensitivity analysis designates each variable as sensitive or non-sensitive; (2) a TEE-aware
taint analysis identifies non-sensitive TEE-based functions; (3) a fully-declarative program transformation
automatically moves these functions out of TEE. Our evaluation demonstrates that our approach is correct,
effective, and usable. By deploying TEE-DRUP to discover and remove the unnecessary TEE code,
1

programmers can both reduce the TCB’s size and improve system performance".

Keywords: TEE, Program Analysis, and Code Transformation

1. Introduction

A soaring number of computing devices continuously collect massive amounts of data (e.g., biometric
ids, geolocations, and images), much of which is sensitive [2]. Sensitive data and code processing them are

the target of many data disclosure and code tampering attacks [3, 4, 5, 6, 7, 8]. An increasingly popular
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protection mechanism isolates sensitive code and data from the outside world? in a trusted execution
environment (TEE) (e.g., SGX [9] and OP-TEE [10]). However, if developers increase volumes of code run
in TEE (not all of that code is sensitive), then the trusted computing base (TCB) would grow unnecessarily,
causing performance and security issues.

When it comes to performance, prior research identifies the communication between TEE and the out-
side world as a performance bottleneck that can consume the majority of execution time [11]. For example,
numerous function invocations, entering or leaving TEE, trigger a large volume of in/out communication,
slowing down the entire system [12]. When it comes to security, prior works [13, 14, 15, 16, 17, 11]
move programmer-specified data or functions, even the entire system (e.g., Graphene [18], Haven [19], and
SCONE [20]) to TEE. As the trusted computing base (TCB) grows larger, so does the resulting attack sur-
face. Since security vulnerabilities increase proportionally to the code size [21], any vulnerable or malicious
functions inside TEE can compromise the security of the entire system. For example, memory corruption
attacks can exploit vulnerabilities within a TEE-based function® [22, 23]. Unfortunately, the research
community has given much less attention to the status quo of the presence of unnecessary (non-sensitive)
code and the resulting TCB sizes in real-world TEFE usages. To bridge this gap, this article first conducts
a comprehensively study of more than 400 open-source projects that use TEE. We found substantial ev-
idence of misplacing TEE-based functions, with 61% of the studied projects putting functions into TEE
unnecessarily; and the TCB size growing out of control, with 28% of the studied projects putting more
than 50% of their total codebase into TEE.

Motivated by our findings, we introduce a new software refactoring —TEE Insourcing— that inverses
the process of “execution offloading” to reduce the TCB size of legacy TEE projects. TEE Insourcing (1)
identifies sensitive data; (2) detects TEE-based code not operating on sensitive variables, and as such not
needing TEE protection; (3) moves that code to the outside world. Each of these phases presents challenges
that must be addressed. Moving sensitive code and data to the outside world would compromise security,
so all moving targets must be identified reliably in terms of accuracy, precision, and recall. Sensitive data
can flow cross the boundary between TEE and its outside world. However, existing flow analysis techniques
are inapplicable to such heterogeneous information flows. To correctly move code out of TEE, a developer
must be familiar with both the TEE programming conventions and the program logic, a significant burden
to accomplish by hand. However, existing automated program transformation techniques cannot alleviate

this burden.

2The normal (or outside) and secure worlds are standard TEE terms. In the secure world, code is protected; in the

normal world, code is unprotected and compromisable (see section 2).
3A TEE-based function is deployed and executed in TEE.
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We present TEE-DRUP, the first semi-automated TEFE Insourcing framework, whose novel program
analysis and transformation techniques help infer sensitive code to isolate in TEE, discover the misplaced
(non-sensitive) code that should not be in TEE, and automatically move the discovered non-sensitive code
to the outside world. In phase (1) above, an NLP-based variable sensitivity analysis designates program
variables as sensitive or non-sensitive, based on their textual information. Guided by these designations,
developers then verify and confirm which variables are sensitive. In phase (2), a novel TEE-aware taint
analysis links each TEE-based function to its normal world counterparts* to identify those TEE-based
functions that never operate on developer-confirmed sensitive variables. These functions are then flagged
as non-sensitive, so developers can verify and confirm which ones of them are to move to the outside world.
In phase (3), exposed via a declarative meta-programming model, an automated transformation modifies
the system’s intermediate representation (IR) to move the developer-confirmed non-sensitive functions to
the outside world.

Based on our evaluation, TEE-DRUP distinguishes between sensitive and non-sensitive variables with
satisfying accuracy, precision, and recall (the actual values are greater than 80% in the majority of evalu-
ation scenarios). Further, moving non-sensitive code out of the TEE always improves the overall system’s
performance (the speedup factor ranges between 1.35 and 10K). Finally, TEE-DRUP’s automated pro-
gram analysis and transformation require only a small programming effort.

The contribution of this article is as follows:

1. A comprehensive study of real-world TEFE practices. To our best knowledge, we conducted the first
study of over 400 open-sourced TEE-related projects to investigate the status quo of using TEE in
real-world software development.

2. TEEFE Insourcing, a novel approach to reducing the TCB size, concretely realized as TEE-DRUP
that offers:

e q variable sensitivity analysis that by using NLP designates program variables as sensitive or

non-sensitive, so developers can verify and confirm sensitive variables.

e o TEE-aware taint analysis that flags TEE-based functions not operating variables, so devel-

opers can verify and confirm non-sensitive functions.

e a compiler-assisted automated program transformation, supported by a declarative meta-programming

model that moves TEE-based non-sensitive functions to the outside world to satisfy dissimilar

requirements.

4«A normal world counterpart” is a function in the normal (or outside) world that directly invokes (or is invoked by) a

TEE-based function.
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3. An empirical evaluation of TEE-DRUP’s (a) correctness in distinguishing between sensitive and
non-sensitive variables, (b) effectiveness in improving system performance, and (¢) low programming

effort.

The rest of this article is organized as follows: Section 2 clarifies the definitions, enabling technologies,
and assumptions in this research; Section 3 describes our study of real-world TEE practices; Section 4 gives
an overview of TEE-DRUP with an example; Section 5, 6, and 7 detail the entire process of identifying
and migrating unnecessary code in TEE. Section 8 presents and discusses our evaluation results. Section 9

compares TEE-DRUP to the related state of the art. Section 10 presents concluding remarks.

2. Definitions, Enabling Technologies, and Assumptions

We use the following definitions, techniques, and assumptions for our approach:

2.1. Definitions

Sensitive € non-Sensitive: “Sensitive” describes all security-related objects (e.g., passwords, decryp-
tion keys, memory addresses) and operations (e.g., access control, encryption, memory accessing), with
the rest considered “non-sensitive”. These objects and operations correspond to what SANS® refers to as
“security terms” [24]. Sensitive data (or variables) store security-related information or are referenced in
security-related operations. Sensitive code (or functions) operates on sensitive data.

Normal € Secure worlds: The normal and secure worlds are standard TEE terms. In the secure world,
code is protected, while in the normal world unprotected. We also use the term “the outside world” to

refer to “the normal world”, and “TEE” to refer to “the secure world.”

2.2. Enabling Technologies

Intel’s Software Guard Extensions (SGX) [9]: To protect the integrity and confidentiality of sen-
sitive code and data, Intel’s SGX isolates a protected memory region—enclave—for trusted execution.
Hence, for a system to use SGX, its code must be divided into trusted and untrusted parts, with the former
running inside enclaves and the latter outside. To preserve the enclave’s trusted execution, the untrusted
part can invoke enclave functions (i.e., ECalls) only via SGX-provided communication channels. TEE-
DRUP’s design and implementation focuses on SGX, due to the maturity of this TEE implementation.

Natural language processing (NLP): NLP techniques for processing natural languages have been used
for identifying security information in program code [25, 26, 27]. TEE-DRUP’s NLP-based sensitivity

analysis designates sensitive variables that should be protected in TEE.

° An authoritative source for information security training, certification, and research.
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Taint Analysis is a powerful program analysis technique that tracks how the tainted data flows during
program execution. Mobile and IoT security researchers have applied taint analysis to detect malicious
behaviors and code vulnerabilities [28, 29, 30, 26, 31]. TEE-DRUP’s taint analysis confirms whether
sensitive variables are accessed by TEE-based functions.

LLVM [32] is a mature compiler infrastructure used for program analysis at the source-code and binary
levels. For source-code analysis, LLVM features 1ibtooling tool [33], while for binary analysis, it features
Pass [34]. TEE-DRUP customizes 1libtooling tool to extract the variable information from a system’s
source code, and introduces a series of new Passes that removes non-sensitive functions from TEE to run

outside.

2.3. Assumptions and Scope

We assume 1) the attacks are carried out only at runtime. That is, attackers would not be able to
modify the source code to mislead TEE-DRUP’s sensitivity analysis and taint analysis; 2) developers
name variables, functions, and files in a meaningful way that actually describes their usage or purpose.
For example, it is highly probable that a variable named “password” would represent some password-
related information. In fact, major IT companies, including Google [35], IBM [36], and Microsoft [37],
have established coding conventions requiring that program identifiers be named intuitively. Regular code
reviews often come up with suggestions how to rename identifiers to more meaningfully reflect their roles
and usage scenarios [38]; and 3) the users of TEE insourcing are application programmers who may not be
knowledgeable enough to be able to reliably identify sensitive data and code. This assumption is realistic,
as one cannot expect an application programmer to possess expertise in security and TEE as well as the
system’s business logic. Even the primary contributors to a major software project commonly forget the
project’s fine-grained implementation details [39]. In addition, since major TEE implementations (e.g.,

SGX and OP-TEE) only work with the C language, we only support C projects.

3. Analyzing Real-world TEE Practices

We analyzed a large set of GitHub repositories to identify how TEE is used in open-source software

projects. Our goal is to answer the following research questions:
¢ RQ1 (Unnecessary TEE-based code): Which percentage of projects uses TEE effectively?
e RQ2 (TCB size): What is the average TCB size in the studied projects?
e RQ3 (Features in TEE): Which features are placed into TEE most frequently?

We first introduce our data collection procedure, and then discuss the research questions above in turn.
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3.1. Data Collection

To obtain a realistic snapshot of the common usage of TEE® in open-source software, we used GitHub
as one of the most popular and largest repositories. To retrieve those repositories whose source code
integrates Intel SGX, we used GitHub’s search API [40]. Specifically, we searched for the repositories in
which any source file includes the sgz_urts.h header. Before running any secure code, a SGX based project
must first create an enclave” by invoking the create_enclave() function, whose header is in sgz_urts.h. To
automate the process, we created a Python script that automatically fetches the repositories that match
the aforementioned search criteria. The script creates a list of URLs of the matched GitHub repositories

to collect a total of 429 projects.

3.2. RQI1: Unnecessary TEE-based code

As recommended by Intel [41] and other guidelines [42, 43], we categorized the projects to identify if
they use TEE effectively. The parameters used in this identification process are based on the set of features
that were put inside the enclaves.

We manually analyzed each repository to identify the features that incorporate SGX enclaves. The

analysis places its subjects into one of the following categories:

1. Not Relevant: a repository contains no sensitive features in the enclaves, suggesting that these
features can be moved out.

2. Needs Refactoring: a repository contains an enclave whose content contains code that could have
been placed in the outside world.

3. Relevant: a repository’s enclaves contain the code of only sensitive features.

4. N/A: a repository does not use TEE but is a wrapper for a TEE or a library that makes use of TEE,

or a benchmark tool. However, the project itself is not a TEE-based.

Table 1: Repository Categorization

Category Number of Repositories
Relevant 133
Not Relevant 129
Needs Refactoring 82
N/A 85
Total 429

6In this paper, we focus on Intel SGX
"Enclave is the secure execution environment for an Intel SGX based system
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Results. Table 1 presents high-level results of the analysis of the GitHub repositories.

Recall that we pre-selected those repositories in which at least one source file included sgz_urts.h. Out
of the resulting 429 repositories, 85 repositories had no code running in TEE, while the remaining 344
repositories had some code isolated in TEE. These remaining repositories were selected for further analysis.

Out of the total 344 repositories, only 133 of them were found to use TEE effectively, isolating only
sensitive features, related to security or privacy. These projects were labelled as ‘Relevant’. The remaining

211 repositories (i.e., 61%) were found as either ‘Not Relevant’ or ‘Needs Refactoring’.

Answer to RQ1: 61% of the GitHub repositories that use Intel SGX, either do not use the enclave
for any sensitive features or include code in the enclave that does not cater to any sensitive code

mixed with the features that actually need to be isolated in the enclave.

3.3. RQ2: TCB size

In addition to accurately identifying features that should be protected in the TEE, it is also important
to ensure that the ratio of the resulting trusted computing base (TCB) to the complete project is as small
as possible. As TEE hardware is known to be slower than the main CPUs®, large TCBs can incur a high
performance overhead. More importantly, invoking each TEE-based functionality is expensive, due to the
significant communication overhead between the main operating system and the TEE.

We used the Python library pygount [44] to calculate the TCB ratio for the analyzed projects. Given a
project, we first use pygount to get its total number of lines of code (LoC). Then, we found all the Enclave
Definition Language (edl) files which have a .edl extension in the project and stored the directory in which
the edl file is placed. These edl files are the interface to the enclave, and all enclave code is most likely
placed in the same directory as the edl file. Once we had the directories of the edl files, we used pygount
again to count the lines of code within these directories to get the lines of code in the enclave. The TCB
size was then calculated as:

TCB Ratio = Enclave lines of code

(1)

Total lines of code

Results. Among the total of 429 projects, we obtained 333 valid values of the TCB ratio that is in
the range from 0 to 1, with the average of 0.341 and the median of 0.251. Furthermore, as shown in
Figure 1, among the 333 valid projects, 93 (28%) projects’ TCB ratio is greater than 0.5. That is, in these

93 projects, their code inside TEE accounts for more than 50% of their total lines of code.

80ne reason is that TEE hardware usually has limited resources (e.g., memory).



100

count

0.3 0.5 0.8 1

o

range
x-axis: the values of TCB ratio ranging from 0 to 1.

y-axis: the number of projects whose TCB ratio falls in each value scale (i.e., 0.1).

Figure 1: TCB Ratio

Answer to RQ2: among the 333 projects, for which we obtained their valid TCB ratio, about

one third of them put more than a half of their entire codebase into TEE.

3.4. RQ3: Features in TEE

To understand which program features are typically isolated, we further analyzed the 133 “Relevant”

s repositories. Specifically, we manually examined their enclave code, extracting TEE-isolated features,

having identified 65 such features in total.

Frequency

encryption remote sealing attestation secure
attestation communication

Figure 2: Top 5 TEE features as based on their frequency



Results. Fig 2 depicts the top 5 most frequent features along with their frequencies. As per this
figure, the feature ‘encryption’ has by far the highest frequency. The other 4 features ‘remote attestation’,
‘sealing’, ‘attestation’, and ‘secure communication’ have approximately similar frequencies. The remaining

10 60 features occurred only infrequently (i.e., between 2 and 10 times across all repositories).

Answer to RQ3: among the features effectively placed in TEE, all of the top 5 most frequent

features contain security-related operations.

3.5. Discussion

Based on our findings, we conclude that (1) the function misplacing issue is real: developers do overuse

TEE by isolating code and data that are not sensitive; (2) the TCB size does grow out of control: a

s considerable percentage of projects put more than a half of their entire codebase into TEE; (3) since the
most frequent features do contain security-related operations, one can reliably identify whether a function

should be placed into TEE by checking if it contains security-sensitive operations.

4. Solution Overview

Guided by above findings, we created TEE-DRUP to assist developers in identifying sensitive code
w0 to be protected in TEE and also reducing the TCB size by migrating non-sensitive code out of TEE. We
first describe the process of applying TEE-DRUP, and then present an example application.
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Figure 3: TEE-DRUP overview

4.1. TEE-DRUP Process

Figure 3 shows TEE-DRUP’s three main phase: (1) analyzing the sensitivity of variables (i.e.,

Info Collector, Pre-processor, and Sensitivity Analyzer), (2) identifying non-sensitive functions
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in TEE (i.e., Taint Analyzer), and (3) migrating the non-sensitive functions out of TEE (i.e., Function
Insourcer).

Phase (1) first applies Info Collector to obtain each variable’s textual descriptions (i.e., variable
name, type name, function, and file path). Then, it encodes the collected information as a textual vector
for further analysis. Then Phase (1) applies Pre-processor to merge duplicated vectors and remove un-
necessary information. Finally, Phase (1) applies Sensitivity Analyzer that by means of NLP computes
each variable’s sensitivity level from its textual attributes (i.e., name, type, file path, etc.) and designates
sensitive variables. With the designated variables at their disposal, developers then verify and confirm
which variables are indeed sensitive (i.e., step (a) in Figure 3).

Phase (2) applies Taint Analyzer, which takes as input developer-specified sensitive variables and
outputs which TEE-based functions are non-sensitive. Its dataflow-based traversal detects those TEE-
based functions that never operate on sensitive variables. With the reported non-sensitive functions at
their disposal, developers then verify and confirm which functions are to be moved to the outside world
(i.e., step (b) in Figure 3).

Phase (3) applies Function Insourcer to automatically adjust the TEE-related call interfaces, remove
their TEE metadata® from TEE, and merge developer-confirmed non-sensitive functions with those in the
code outside of TEE. It is through these steps that TEE-DRUP keeps the sensitive functions in TEE,

while moving the non-sensitive functions out.

4.2. A Motivating Example

Consider the following example that demonstrates how TEE-DRUP analyzes and modifies the code of
a legacy system that uses TEE. This example’s code is adapted from standard official samples of SGX-based
code [45], with the side-by-side code snippets appearing in Figure 4. On the left, function main is in the
outside world, while in the right corner, there are two TEE-based functions (i.e., get_airspeed and log_erros)
invoked from main. Within main, get_airspeed and log_errors invoke the corresponding TEE-based functions
with the same name, an example of “normal world counterparts” of TEE-based functions. The SGX
terminology refers to trusted execution regions as “enclaves” and TEE-based functions as “ECalls.” An
enclave is identified by its “enclave ID” (i.e., global_eid on line 7). To invoke ECalls, an enclave ID should
be passed as the first parameter (lines 18 and 22). Further, to obtain ECalls’ return value, a pointer should
be provided as another extra parameter (lines 17 and 21). Moreover, initialization (initialize_enclave, line
11) and cleanup (sgx_destroy_enclave, line 26) functions must be called both before and after interacting

with a TEE-based function.

9Metadata is used by TEE-related call interfaces only (e.g., enclave’s IDs in SGX).

10
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#include "Enclave_t.h"

1 #include <stdio.h> L L L e e e e oo
2 #include "Enclave u.h" 1

3 #include "sgx urts.h" | . -
4 #include "sgx:utils.h" I int () LR
5 |

6 /* Global EID shared by multiple khreads */ char 0O t...1
7 sgx_enclave id t: 0; 1

8 1 !
9 int main(int argc, char const *arbv([]) { 1
10 1 1
11 if initializeienclave|(&globhlieid, 1
12 "enclave.token", "enclbkve.signed.so") < 0 ) { 1
13 printf ("Fail to initializel enclave \n"); 1
14 return 1; 1 1
15 } | !
16 1 1
17 int : 0; 1 1
18 sgx_status_t status = |get7airspeed| ( |globalieid|, |&airspeed| )il
19 1
20 |
21 char* = malloc (100 * sizeof (char)); 1
22 sgx_status t status = Ilogierrosl ([global_eid]|, [serror_des|); 1
23 T 1
24 1 |
25 /* Destroy the enclave */ .~~~ ~—TTTTTTTTT=T7
26 |sgx_destroy_enclave|(global_eid);

27 ..

28

29 return 0;

30 ) Figure 4: Example code

The aforementioned three phases work as follows. For each variable (i.e.,airspeed, error_des, and
global_eid), Info Collector extracts and encodes their textual attributes into corresponding attribute
vectors. Then, Pre-processor removes the global_eid’s vector, as it only identifies a SGX enclave. After

610, and that of error_des as 3. Based on

that, Sensitivity Analyzer marks the sensitivity of airspeed as
these sensitivity level, Sensitivity Analyzer designates airspeed as sensitive variable while error_des as
non-sensitive variable. Having examined the designations, the developer verifies and confirms airspeed as
the sensitive variable. Using the sensitive variable (i.e., airspeed) as the source, and TEE-based functions
(i.e., get_airspeed and log_erros) as the sink, Taint Analyzer discovers that only get_airspeed manipulates
the sensitive variable (i.e., airspeed on line 18). Thus, Taint Analyzer generates a function list, in which

“non-sensitive.” The developer then verifies and confirms 1og_erros to be moved to

log_erros is marked as
the outside world. Finally, Function Insourcer extracts log_erros into a program unit executing outside

the enclave, and redirects its callers to invoke the extracted code instead!!.

10Here “6” and the following numbers in this Section are the example value (not real) for demonstrating our solution only.
H1If all functions are moved outside the TEE, Function Insourcer will remove the unnecessary metadata and functions

(i.e., global_eid, initialize_enclave and sgx_destroy_enclave) to the outside world.

11
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4.8. Assumptions and Scope

We assume 1) attackers would not be able to modify the source code to mislead TEE-DRUP ’s sensitivity
and taint analyses; and 2) developers name variables, functions, and files descriptively. For example, it
is highly probable that a variable named “password” would represent some password-related information.
In fact, major IT companies, including Google [35], IBM [36], and Microsoft [37], have established coding
conventions requiring that program identifiers be named intuitively. Regular code reviews often come up
with suggestions how to rename identifiers to more meaningfully reflect their roles and usage scenarios [38].
In addition, since major TEE implementations (e.g., SGX and OP-TEE) only work with the C language,
we only support C projects. We plan to extend this support to managed and multi language projects as a

future work direction.

5. Analyzing Variables Sensitivity

To help developers identify which variables are sensitive, TEE-DRUP offers a variables sensitivity
analysis that determines how and which textual information of a variable to collect (5.1, 5.2); how to
determine a variable’s sensitivity level from the collected textual information (5.3); and how to compute

a threshold to designate variables as (non-) sensitive (5.4).

5.1. Collecting Information

1) Eaxtracting Program Data. Given a parsed representation of a system’s source code, Info
Collector traverses the abstract syntax tree (AST) to locate variable nodes and collects their textual
information. The collected information for each variable includes the variable’s name, its type’s name, its
enclosing function’s name, and the source file’s path. This textual information determines the sensitivity
level of each program variable. Info Collector is implemented as a LLVM libtooling tool.

2) Encoding Variable Data. Info Collector encodes the extracted variables’ information into a
format that facilitates the subsequent operations for analyzing sensitivity. To that end, each variable is
associated with the textual-info records, which stores the variable’s textual description (encoded into string

vectors). Table 2 shows an encoded record for variable const int * the_password.

Table 2: Data Format: const int * the_password;

id var. name type function filepath

7  the_password int config  src/wifi_config.h

12



265

270

275

280

285

290

295

5.2. Pre-processing

1) Filtering Records. Because realistic systems can use a large number of variables, calculating
sensitivity levels for each of them could be quite computationally intensive. However, not all variables need
to be analyzed. To reduce the amount of required computation, Pre-processor identifies and removes
the unnecessary variable records. These variables are those that used exclusively within SGX enclaves and
those with names so short that the variable’s usage cannot be discerned. For example, enclave IDs are
used only within SGX enclaves, while variables named i or j are not indicative of their usage. In addition,
Pre-processor merges duplicated records.

2) Splitting Identifiers. Even for meaningfully named variables, types, functions, and file path,
their names can follow dissimilar naming conventions, such as delimiter-separated (e.g., the_password) or
letter case-separated (e.g., thePassword). To be able to process these names irrespective of their naming
conventions, the identifiers containing convention-specific characters are split into separate parts (e.g.,
thePassword and the_password would become identical arrays of “the” and “password.”)

3) Removing Redundancies. some parts of identifiers are indicative of their construct’s sensitiv-
ity, but others carry no such information. For example, in “the_password”, “password” indicates high
sensitivity, while “the” provides no additional sensitivity information. Hence, Pre-processor performs
dictionary-based removal of identifier parts that correspond to prepositions (e.g., in, on, at), pronouns,
articles, and tense construction verbs (i.e., be, have, and their variants). In our example, “password” will

be retained, but “the” will be removed.

5.83. Computing Sensitivity Levels

Although it is difficult to reliably determine and quantify a variable’s sensitivity, Sensitivity Analyzer
offers an NLP-based algorithm that provides a reasonable approximation. In short, TEE-DRUP computes
the similarity between a word in question and the words in the dictionary of security terms. The similarity
then determines the word’s most likely sensitivity level.

1) Rationales. When computing the similarity, the variable’s name, its type, function and file path

are taken into account as guided by the following rationales [46]:

a) Sensitive variables tend to appear in certain functions and files. For example, the variable “the_password”

is more likely to be sensitive if it is referenced by the “login” function in the “login.c” file rather than the
“unit_test” function in the “test_cases.c” file.

b) If a variable’s type is developer-defined (e.q., struct/class/union names), the resulting type name can
be indicative of its sensitivity. For example, as our evaluation demonstrates (8), many such variables in our
evaluation subjects (e.g., struct passwd in project “su-exec”) have type names that reveal their variables’

sensitivity.

13
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¢) Semantic-connections are closer for adjacent rather than nonadjacent words. That is, if an identifier
appears alongside a known sensitive identifier, it is likely to be semantically related to sensitive information.
For example, the variable “key” in the path “mapping/a/b/encryption/xx.c” should be more sensitive than
in the path “encryption/a/b/mapping/xx.c”, because “key” is closer to “encryption” in the former case.
That is, the variable “key” is more likely to store the key of encryption rather than the key of key-value
pairs for mapping.

d) A wvariable’s textual information impacts its sensitivity level to varying degrees. Our variable sen-
sitivity analysis involves four kinds of textual information: variable name, type name, function name,
and file path, each of which impacts its variable’s sensitivity level dissimilarly. The variable name has
the highest impact, followed by type and function names, with file path the lowest. When computing a

variable’s sensitivity level, each of its textual information components is weighted accordingly.

Algorithm 1: TEE-DRUP’s variable labeling.
Input : textual_info_list (i.e., variables’ textual info list)

dict (i.e., a collection of security terms)
A (i.e., the attenuation rate for file paths)

Output: variables with sensitivity levels

[

Function: get_similarity(word_array, dict, A):

sim 0

N

w

foreach word : word_array do

4 txt + find_most_similar(word, dict)
5 d « similarity(word, txt)

6 increase sim by d * A

7 end

8 avg + average(sim)

©

return avg

10 Function: calculating main(textual_info_list, dict):

1

-

foreach var : textual_info_list do

/* for variable name. */
12 var_name <— get_var_name(var)
13 sim_var < get_similarity(var_name,dict, 1)

/* for type name. */
14 type_name <— get_type_name(var)

15 sim_type < get_similarity(type_name,dict, 1)

/* for function name. */
16 func_name < get_func_name(var)
17 sim_func + get_similarity(func_name,dict, 1)

/* for file path. */

18 path < get_path(var)

19 sim_path < get_similarity(path,dict, 0.8)

20 var.sensitivity < (sim_var 4+ sim_func * 0.8 + sim_type * 0.8 + sim_path * 0.5)

21 end
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2) Sensitivity Computation Algorithm. Algorithm-1’s function calculating_main outputs variables
with sensitivity levels, given the variables’ textual information list (i.e., textual_info_list) and a security
term dictionary (i.e., dict). First, each variable’s textual information is obtained (line 11). Then, identifiers
are extracted from the pre-processed variable’s name, type, function, and file path (lines 12,14,16,18). Next,
function get_similarity computes the similarity between an extracted identifier and known security terms
(lines 13,15,17,19). Each extracted identifier is broken into constituent words (e.g., error_des is broken
into error, des). For each word, the algorithm computes the similarity to the most closely similar known
security term (lines 4 and 5). The similarities are accumulated (line 6), averaged (line 8), and returned
(line 9). An attenuation rate, A, differentiates adjacent vs. nonadjacent semantic connections. Next,
the obtained similarities are weighted as follows: “1”—variable name, “0.8”-type and function names, and
“0.5"file path. These weighted similarities are summed into the variable’s sensitivity (line 20).

3) An Example: Following the example in 4.2, consider how Sensitivity Analyzer would calculate
the sensitivity levels for variables in the input textual-info list. The textual-info list contains variable
airspeed With type struct ControlData, and variable error_des with type struct ReportInfo. airspeed is accessed
in function get_my_airspeed, defined in “src/navigator.c”, while error_des is accessed in function report_tor,

defined in “report/log.c”.

Pre-processing creates the arrays of airspeed’s name, type, function, and file path to [airspeed], [control, data],

[get, airspeed}7 and [src, navigator], respectively; while that of error_des to [error, des], [report, info],

[report], and [report, log], respectively.

To demonstrate how sensitivity levels are calculated, take the variable error_des as an example: Sensitivity

Analyzer first obtains the first word error from error_des’s name array [error, des|, finds its closest se-
curity term (assume the term is “exception”) from the dictionary of security terms, and calculates the
similarity value (assume the value is 0.8). Afterwards, Sensitivity Analyzer obtains the second word
des’s similarity (assume the value is 0.2). Then, error_des’s variable name array [error, des]’s similarity
is calculated as 0.5 (i.e., (0.8 + 0.2)/2). Similarly, Sensitivity Analyzer computes the similarities of
error_des’s type, function, and path arrays. Finally, the computed similarities are weighted and summed
into error_des’s sensitivity.

Note that, when calculating the similarity for the file path array, Sensitivity Analyzer will scale the
result by A (the value is 80% by default). That is, for error_des’s file path array [report, log|, Sensitivity
Analyzer scales the similarity of report by 80%. If the original similarity of report is 1, the it will be 0.8
after the scaling (i.e., the original value multiplies A: 1% 80%).

Similarly, variable airspeed’s sensitivity level will also be calculated and assigned. Assume that airspeed’s
sensitivity level is 3 while that of error_des 1.5. Since 3 > 1.5, the semantic meaning of airspeed is closer

to known security terms, so it is more sensitive than error_des.
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4) Implementing Sensitivity Analysis. Our algorithm computes the similarity with Word2vec,
a Google’s word embedding tool [47]. The dictionary of security terms (i.e., security-related objects and
operations) comes from SANS, recognized as one of the largest and trusted information security training,
certification, and research sources [24]. Further, with TEE-DRUP, developers can add their own words
to the dictionary of security terms. For example, a developer can add “airspeed” as a security term, or
customize the attenuation rate (i.e., \), thus potentially improving the accuracy. Despite its heuristic
nature and inability to handle certain corner cases, TEE-DRUP’s Sensitivity Analyzer turned out
surprisingly accurate in generating meaningfully sensitivity levels that can guide the developer, as we

report in 8.

5.4. Designating Variables as (non-)Sensitive

Given the computed sensitivity levels of the program variables, developers then designate variables as
either sensitive or non-sensitive. TEE-DRUP provides an automatic designation algorithm, inspired by
the P-tile (short for “Percentile”) thresholding method, a classic method that calculates the threshold based
on a given percentile [48]. Specifically, given a percentage of program variables, if a variable’s sensitivity
is higher than the given percentage, TEE-DRUP designates it as sensitive; if lower, non-sensitive. For
example, given a percentage “1%”, TEE-DRUP would designate the top 1% variables as sensitive, while
the bottom 1% as non-sensitive. By default, TEE-DRUP recommends the percentages of 10%, 20%, 30%,
40%, and 50%. Note that, although our evaluation indicates the effectiveness of our designation heuristic,
it simply follows empirical principles. Developers can always rely on other mechanisms in search for higher

accuracy.

6. Identifying Non-Sensitive Functions

Developers manually confirm which TEE-DRUP-designated variables are indeed sensitive via a custom
annotation sens. TEE-DRUP then automatically identifies those TEE-based functions that reference none
of the annotated variables. Such functions are to be moved out of TEE to the normal world. To that end,
we developed a novel TEE-aware taint analysis that (1) models call graph and data flow across both the
normal and secure worlds of TEE projects (6.1); (2) determines whether a given TEE-insourcing can be

performed (6.2).

6.1. TEE-Aware Taint Analysis

Since SGX invokes functions from the normal to the secure world (ECall) and vice versa (OCalls), our
analysis statically traces information flows both from sensitive sources (variables) in the normal world to

trusted sinks (functions) in the secure world and conversely from trusted sources (functions) in the secure
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world to sensitive sinks (variables) in the normal world. Then, it connects the traced information flows by
building an entire call graph across the normal and secure worlds.

1) building TEE-aware Information Flow Graphs. Our analysis first generates individual call
graphs for the normal and secure worlds. Then, these call graphs are combined into a TEE-aware Call
Graph (TCG) by mapping each TEE-based function to its normal world counterpart'?. To be able to locate
normal world counterparts efficiently, the analysis uses the TEFE-aware function mapping data structure,
which maps TEE-based function signatures (name, parameters, source file) to the corresponding normal
world function signatures. TFEE-aware function mappings are built by consulting the SGX EDL files.
Similarly, by consulting the built TCG, the analysis builds and conflates the data-flow graphs of the
normal and secure worlds. Our analysis disregards function pointers, which are unsupported in SGX [49].

2) modeling TEE-aware Taint Flow. To model taint flows across the normal and secure worlds,
our analysis treats each annotated variable as both the source and the sink. As is shown in Figure 5, as
a source, a variable (i.e., data) can flow to Ecalls (i.e., sink in this case) in SGX through their normal
world counterparts (i.e., @@). Also, as a sink, a variable can be impacted by the data flowing from Ecalls
(i.e., source in this case) and their normal world counterparts (i.e., ®@). For these two cases (00, and
00), TEE-DRUP performs forward and backward analysis, respectively. Specifically, TEE-DRUP first
obtains the system’s data-flow graph. Then, with the annotated sensitive variables as the entry point,
TEE-DRUP forward traverses the graph to check whether the variables’ value flows to the ECalls (i.e., @
— @), and backward traverses the graph to check whether the variables’ value is impacted by the ECalls
(i.e., ® < @). If the source (i.e., sensitive variables in case @@, ECalls in case ®®) flows into the sink (i.e.,
ECalls in case @@, sensitive variables in case @), the ECalls are marked as sensitive, while the remaining

functions are marked as non-sensitive. All analysis algorithms are implemented as custom LLVM passes.

Figure 5: TEE-DRUP’s taint-flow analysis

12«A normal world counterpart” is a function in the normal world that directly invokes (or is invoked by) a TEE-based

function (see an example in 4.2.)
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6.2. Insourcing Rules

1) call frequency: A TEE-based non-sensitive function could frequently invoke (or be invoked by) func-
tions in both the secure and normal worlds. Consider a TEE-based function with 10 callers and 10 callees
in the secure world, and 5 callers and 5 callees in the normal world. If the invocations from the secure
world are more frequent than those from the normal world, it would be beneficial for the function to remain
in the secure world, so as to avoid the high inter-world communication costs. To assist developers, our
analysis extracts and matches the number callers and callees for each non-sensitive TEE-based function,
grouping them into the normal and secure worlds. Further, our loop analysis labels each caller/callee as
in or out of a loop. All the analysis results are presented to developers to help make an informed decision
whether to move each TEE-based non-sensitive function out of the TEE.

2) global variable: A global variable and functions accessing it must be co-located in the same world.
Hence, a non-sensitive TEE-based function accessing a global variable cannot move to the normal world,
as distributed global states cannot be maintained. Our analysis detects and reports such occurrences, so
developers can decide whether to keep a function in TEE or add logic for maintaining a distributed global

state.

7. Insourcing TEE-based Functions

From the suggested list of non-sensitive functions, developers confirm which ones were placed in TEE
by mistake (7-I). Function insourcer then insources the confirmed non-sensitive functions from the TEE
to the outside world (7-1T).

I. Refactoring Interface. For developers to specify functions-to-insource, TEE-DRUP provides
a custom annotation, nonsens, to mark non-sensitive functions. It is through this annotation, Function
Insourcer identifies which functions to extract and migrate from the secure world to the normal world.
The design and implementation of all our custom annotations (including sens in 6 and nonsens) follow the
Clang annotation scheme [50] and the GNU style [51].

II. Insourcing Process. Function insourcer moves the relevant ECalls outside SGX in the fol-
lowing 3 steps: @ extract ECalls: by customizing an existing LLVM Pass (GVExtractionPass), Function
insourcer extracts the annotated ECalls from the system’s TEE codebase and place them in a separate
binary file. @ remove “enclave IDs”: since ECalls’ normal world counterparts take “enclave ID” as the
first parameter, Function insourcer re-constructs these callers’ parameter lists without the “enclave ID”
parameter. ® construct call-chain: SGX’s programming restrictions require that the code in the outside
world provide a dedicated pointer to store the values returned by ECalls. Hence, to pass the returned

value and construct the call-chain from the outside caller to the extracted ECalls, Function insourcer
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creates a wrapper function to bridge the callers and the extracted ECalls. That is, each caller invokes its

wrapper function, which in turn invokes the extracted ECall and returns the result.

char *error _des = malloc (1l

sgx_status_t status = |1

: = ; e
1 Evoid wrapperilogierrosl (char*|error_des|) { E e
Jvrd}:>~,r7lJ~J7@rIbD| (|error_des |) ,E char * ret =|log erros| (); ! E char* O { ... )s
' " !
e H memcpy (error_des |,j ret, 100 * sizeof (char))y: !
H [ i i e, —————— !
H '

Figure 6: The TEE Insourcing Refactoring

Figure 6 shows an example of the aforementioned insourcing process. The code snippet at the top
is the call-chain before insourcing. That is, the normal world counterpart log_erros invokes its Ecall
(int log_erros()), passing global_eid (“enclave ID”) and error_des (the pointer to the returned values) as
parameters. The code snippet at the bottom is the re-constructed call-chain after insourcing: in the
aforementioned step @ (i.e., extract ECalls), the ECall error_des, extracted and placed in a separate file
to be moved to the outside world; step @ removes the caller’s global_eid parameter (i.e., remove “enclave
IDs”); step @ creates function wrapper_log_erros (i.e., construct call-chain). The first invoked function
is the created wrapper_log_erros function, which in turn invokes the extracted log_erros function, whose
returned value is assigned to the caller-provided pointer error_des. As log_erros is moved from an SGX
enclave to the outside world, all the aforementioned invocations take place in the outside world as well.
After moving the annotated ECalls to the outside world, Function Insourcer removes the “enclave ID”

and initialization/cleanup functions if no SGX enclave needs these unneeded parameters and functions.

8. Evaluation

To evaluate TEE-DRUP’s correctness, effectiveness, and programming effort, our evaluation seeks to
answer the following questions: Q1. Correctness: Does our approach correctly detect which variables are
sensitive? Q2. Effectiveness: How does our approach affect the system’s performance? Q3. Efforts:
How much programming effort it takes to perform each of TEE-DRUP’s tasks: collecting/pre-processing
information, computing sensitivity levels, designating variables, annotating/insourcing non-sensitive func-

tions?
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Table 3: Projects Information

Project Author Tnfo Domain Code-base Info Variable Number
C/C++ filenum LOC | total after pre-processing remove tests

GPS Tracker [52] 1 contributor GPS 76 62746 | 1993 1298 NA
PAM module [53] 2 contributors Authentication 4 709 66 28 NA
su-exec [54] 3 contributors Privileges 1 109 16 13 NA
mkinitepio-ykfde [55] 5 contributors Encryption 3 1107 88 79 NA
Spritz Library [56] 4 contributors Encryption 1 614 138 126 NA
libomron [57) Nonpolynomial Labs Health Care 7 1544 166 150 128
ssniper [58] Technology Services Group (UIUC) | Personal Info (SSN) 12 2421 | 618 285 253
emv-tools [59] 1 contributor Bank & Credit 37 9684 | 1104 995 862

8.1. Environmental Setup

TEE-DRUP’s Info Collector uses Clang 6.0°s libtooling tool. Pre-processor and Sensitivity

Analyzer are implemented in Python-2.7. Taint Analyzer, Function Insourcer, and IAs are integrated
with the public release of LLVM 4.0. The TEE is Intel SGX for Linux 2.0 Release. To calculate the word
semantic similarity, we use Google’s official pre-trained model (Google News corpus with 3 billion running
words [60]). All experiments are performed on a Dell workstation, running Ubuntu 16.04, 3.60GHz 8-core
Intel i7-7700 CPU, with 31.2 GB memory.
Real-World Scenario and Micro-benchmarks. a) To evaluate correctness, we selected real-world,
open-source projects that fit the following criteria: 1) must include C/C++ code, as required by SGX,
a popular TEE implementation in GitHub; 2) must operate on sensitive data; 3) should have a codebase
whose size would not make it intractable to manually check the correctness of TEE-DRUP’s designation
results. Based on these requirements, we selected 8 open-source projects whose codebases include at most
2000 variables. These 8 evaluation subjects cover diverse security and privacy domains (“Domain” column
in Table 3) for evaluating the correctness of designating.

b) To evaluate effectiveness and programming effort, we applied TEE-DRUP to the micro-benchmarks
comprising implementations of conventional cryptography algorithms (CRC32, DES, RC4, PC1, and
MD5), in use in numerous IoT and mobile systems. Typically, cryptographic operations should be placed
in the secure world under TEE protection. However, many TEE implementations have already been
integrated with their official cryptographic library (e.g., Intel® SGX SSL [61], OP-TEE Cryptographic
APT [62]), which includes all the standard cryptography algorithms. In fact, secure coding guidelines rec-
ommend that programmers use the official cryptographic libraries in their code rather than some custom
cryptographic implementations. As a result, using custom conventional cryptography algorithms inside
TEE would be considered unnecessary and unsafe. In addition, if a system prioritizes performance over

security, placing these custom algorithms into the normal world would be conducive to satisfying the re-
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quirements. So, their TEE-based code should be removed along with the rest of their implementation. In
our micro-benchmarks, we emulate the first step of getting rid of this unnecessary code, and then use its

execution in the normal world for our performance measurements.

8.2. Fwvaluation Design

1) Correctness: As shown in Table 3, from each project, we extracted all of its variables!?, creating
the initial dataset (the “total” column). Then, we pre-processed the initial dataset to remove invalid items
and merge duplicated variables (the “after pre-processing” column). After that, we applied TEE-DRUP’s
sensitivity analysis (5) to determine the sensitivity level of each program variable, with the levels used to
designate variables as sensitive or non-sensitive. Finally, we manually checked whether the results are as
expected. That is, we requested a volunteer (6+ years C/C++ experience) to manually label all variables’
sensitivity for each project (i.e., 1 — sensitive, 0 — unsure, -1 — non-sensitive) and compared the result
with what the TEE-DRUP designated as sensitive and non-sensitive variables (see 8.3).

To demonstrate the relationship between p-tile and how TEE-DRUP designates variables as sensitive
and non-sensitive designation, our evaluation used the 10%, 20%, 30%, 40% and 50% percentages as p-tile
(discussed in 5.4). That is, TEE-DRUP designates the variables with sensitivity scores in the top p-tile
as sensitive and the variables with sensitivity scores in the bottom p-tile as non-sensitive. We evaluate
the correctness of designation for each p-tile scenario. We also made use of the project-provided test code
in “libomron”, “ssniper”, and “emv-tools”, whose variables are expected to be non-sensitive, to evaluate
whether the presence of this test code impacts our correctness results. In other words, running TEE-
DRUP on these programs with or without their test code should show dissimilar results (after removing
test code, # of variables is in the “remove tests” column).

Metrics and Calculation. Since variables can be labeled as “unsure” during a manual analysis, our
evaluation metrics comprise the unsure and miss rates in addition to accuracy, precision, and recall. To
calculate accuracy, precision, and recall, we measure the number of true/false positives and negatives
14 among the TEE-DRUP-designated variables (non-designated variables are not used for calculating
accuracy, precision, and recall). To calculate the unsure rate, we measure the number of variables volunteer-

labeled as “unsure” among the TEE-DRUP-designated variables and all variables. To calculate the miss

13To manage the manual labeling effort, we considered only the variables declared in the evaluation subjects’ source code,

omitting all system and library variables.
Mtrue positives/negatives: human-labeled sensitive/non-sensitive variables are designated as sensitive/non-sensitive; false

positives: human-labeled non-sensitive variables are designated as sensitive; false negatives: human-labeled sensitive variables
are designated as non-sensitive. Note that, human-labeled unsure variables are not counted, which is quantified by “unsure

rate.”
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rate, we measure the number of volunteer-labeled sensitive variables missing among the TEE-DRUP-
designated variables.

2) Effectiveness: We applied TEE-DRUP to move the micro-benchmarks back to the normal world.
Before the move, the micro-benchmarks’ core functions are placed in SGX. We first annotated these
functions as non-sensitive, and applied TEE-DRUP’s Function Insourcer to migrate them to the normal
world. We measured the system’s execution overhead before and after the move. Because every time an
SGX function is invoked, its caller must initialize the SGX enclave at first (i.e., “initialize_enclave”) and
destroy the enclave at the end (i.e., “sgx_destroy_enclave”), without loss of generality, we consider the
SGX enclave’s initialization and destruction operations as unavoidable operations and include them in the
system’s TEE-based execution performance as a whole.

3) Programming Effort: We estimated the TEE-DRUP-saved programming effort by counting the un-
commented lines of code (ULOC) and computing the difference between the amount of code automatically
transformed and the number of manually written TAs that it took. That is, TEE-DRUP save programmer
effort, as otherwise all code would have to be transformed by hand. Without loss of generality, we assumed

that all IAs were default-configured.

8.3. Results

1) Correctness: TEE-DRUP’s computing and designating results are discussed in turn next.

Tables 4,5 shows how correctly TEE-DRUP designated sensitive and non-sensitive variables. Over-
all, among the 55 independent evaluations in 11 different scenarios, TEE-DRUP performed satisfactorily
in accuracy (lowest:61.7% highest:100%, 37 times > 80%, never < 60%), precision (lowest:48.6% high-
est:100%, 41 times > 80%, 6 times < 60%), and recall (lowest:65.9%, highest:100%, 42 times > 80%,
never < 60%). The p-tile value impacts these metrics: for small p-tiles, e.g., 10%, only the variables with
sensitivity scores in top/bottom 10% are designated as sensitive/non-sensitive, resulting in high accuracy,
precision, and recall. In contrast, for large p-tiles (e.g., 50%), some variables with relatively lower sensitiv-
ity scores are designated as sensitive, while some variables with higher sensitivity scores as non-sensitive.
Hence, a large p-tile may lead to high false positives/negatives, lowering accuracy, precision, and recall.

For the miss rate (the “Miss Rate” column): TEE-DRUP’s miss rate is negatively correlated to p-
tile. That is, the larger the p-tile, the more variables are designated as sensitive, and fewer sensitive
variables missed, yielding lower miss rates. For the unsure rate (the “Unsure Rate” column): We evaluate
two types of the unsure rate, the unsure rate of all variables (the “all vars” column), and that of TEE-
DRUP-designated variables (the “designated vars” column). The former shows the number of variables the

¢

volunteer labeled as “unsure” among all variables, which represents the volunteer’s understanding level of

the evaluation subject. The latter shows the number of variables the volunteer labeled as “unsure” among
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Table 4: Correctness - A

Unsure Rate
Project P-tile Accuracy Precision Recall Miss Rate
designated vars  all vars

10% 90.6% 93.8% 96.2% 67.3% 70.8%
20% 89.5% 93.7% 95.0% 70.6% 48.2%
GPS Tracker 30% 88.1% 93.0% 94.0% 74.0% 77.2% 33.1%
40% 85.3% 91.1% 92.4% 771% 24.5%
50% 84.1% 90.3% 91.4% 77.2% 8.6%
10% 100% 100% 100% 0% 78.6%
20% 100% 100% 100% 16.7% 57.1%
PAM module 30% 92.3% 100% 88.9% 18.8% 21.4% 42.9%
40% 81.2% 100% 5% 27.3% 35.7%
50% 72.7% 83.3% 71.4% 21.4% 28.6%
10% 100% 100% 100% 0% 66.6%
20% 100% 100% 100% 16.7% 33.3%
su-exec 30% 100% 100% 100% 12.5% 30.8% 0%
40% 100% 100% 100% 20% 0%
50% 88.9% 5% 100% 30.8% 0%
10% 100% 100% 100% 50.0% 61.1%
20% 92.3% 90.9% 100% 59.4% 44.4%
mkinitepio-ykfde  30% 90.0% 94.1% 94.1% 58.3% 64.6% 11.1%
40% 87.5% 88.9% 94.1% 62.5% 11.1%
50% 78.6% 80.0% 88.8% 64.6% 11.1%
10% 100% 100% 100% 50.0% 74.5%
20% 96.3% 96.0% 100% 46.0% 52.9%
Spritz Library 30% 97.3% 96.8% 100% 51.3% 46.8% 41.2%
40% 86.5% 92.1% 89.7% 48.0% 31.4%
50% 82.0% 93.3% 82.4% 46.8% 17.6%

the TEE-DRUP-designated variables, which shows that the volunteer can refer to the TEE-DRUP-
designated sensitive variables when deciding whether an “unsure” variable is sensitive. Overall, the unsure
rates of small and straightforward projects (e.g., “pam module” and “su-exec”) are relatively lower than
those of the complex and large ones. Not surprisingly, the volunteer could easily recognize and correctly
label the sensitive variables in small and straightforward projects, but had a harder time performing the
same task in larger and more complex systems.

For the test code impact, excluding the test code increases the correctness metric (see rows “with tests”
and “no tests” in Table 5). That is, the volunteer labeled all the test code’s variables as non-sensitive,

but certain test variables’ identifiers may mislead TEE-DRUP into designating them as sensitive (e.g.,
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Table 5: Correctness - B (with/without tests)

Unsure Rate
Project P-tile Accuracy Precision Recall Miss Rate
designated vars  all vars

10% 64.7% 57.1% 100% 43.3% 69.2%
20% 66.7% 55.6% 100% 40.0% 42.3%
libomron (with tests)  30% 61.7% 48.6% 100% 47.8% 52.0% 34.6%
40% 64.9% 52.5% 95.5% 52.5% 19.2%
50% 66.7% 52.1% 96.2% 52.0% 3.8%
10% 93.3% 91.7% 100% 42.3% 57.7%
20% 92.6% 89.5% 100% 48.1% 34.6%
libomron (no tests) 30% 93.8% 91.3% 100% 57.9% 60.9% 19.2%
40% 92.9% 89.3% 100% 58.8% 3.8%
50% 82.0% 75.8% 96.2% 60.9% 3.8%
10% 84.8% 79.2% 100% 43.1% 77.6%
20% 88.5% 86.5% 97.0% 54.4% 62.4%
ssniper (with tests) 30% 75.9% 85.4% 77.4% 54.1% 51.6% 51.8%
40% 71.2% 78.1% 73.5% 51.3% 41.2%
50% 62.3% 70.9% 65.9% 51.6% 34.1%
10% 100% 100% 100% 42.0% 76.5%
20% 97.7% 100% 96.9% 56.9% 63.5%
ssniper (no tests) 30% 85.1% 100% 80.0% 55.9% 58.1% 52.9%
40% 80.2% 98.0% 75.8% 57.4% 41.2%
50% 72.6% 96.7% 68.2% 58.1% 31.8%
10% 85.5% 92.0% 88.5% 65.5% 69.3%
20% 75.3% 80.0% 80.0% 61.3% 49.2%
emv-tools (with tests)  30% 72.0% 72.4% 76.7% 63.5% 61.8% 40.7%
40% 69.7% 63.5% 78.8% 62.3% 28.0%
50% 65.5% 54.4% 78.7% 61.8% 21.3%
10% 91.5% 100% 89.6% 65.7% 71.3%
20% 84.3% 98.7% 81.5% 66.6% 50.0%
emv-tools (no tests) 30% 79.2% 95.6% 76.3% 71.2% 71.3% 42.0%
40% 74.7% 84.1% 77.9% 71.3% 29.3%
50% 70.4% 74.2% 78.6% 71.3% 21.3%

variable “key” is tested by the test code in “ssniper”).

2) Effectiveness: Table 6 shows the execution performance of the micro-benchmarks (in microseconds
us). Taking as the baseline the system’s TEE-based performance (“in-TEE” column), automatically
moving code to the normal world sharply decreases the execution time (“Move-outside” column). The

decreases are due to the eliminated overheads of setting-up/cleaning enclaves and communication between
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the normal world and TEE. The shorter is a subject’s execution time in the normal world, the more
pronounced is its performance improvement (e.g., moving back DES to the normal world increased its

execution performance by a factor of 10K).

Table 6: Effectiveness (microseconds — us)

Algorithm  in-TEE  Move-outside

DES 45601.1 24
CRC32 41374.9 252.1
MD5 92011.6 68193.4
PC1 50693.1 20190.1
RC4 111412.0 51312.5

3) Programming Effort: Table 7 shows how much programming effort it takes to use TEE-DRUP to
move the mirco-benchmarks to the normal world. Since we assumed that all TAs were default-configured,
the rest of the subjects in our micro-benchmark suite share similar results. That is, to automatically
transform these mirco-benchmarks, developers only add two lines of IAs to annotate per a non-sensitive
function. During the transformation, TEE-DRUP generates/transforms about 15 ULOC (including the IR
and source code). Finally, a developer needs to clean up the source code to remove the SGX headers (e.g.,
“Enclave_t.h”). Thus, with TEE-DRUP, developers only need to specify the non-sensitive functions, and
manually remove some no-longer used headers. TEE-DRUP performs all the remaining transformation

and generation tasks automatically.

Table 7: Programming Effort (ULOC)

Algorithm IAs Generate & Transform  Adjust

DES/CRC32/MD5/PC1/RC4  ~2 ~15 ~1

8.4. Discussion
1) Correctness: Based on our results (Tables 4,5), TEE-DRUP shows satisfying accuracy, precision,
and recall, but suffers from an unstable miss rate (lowest 0%, highest 78.6%). This unstable rate is due
to: (a) low p-tile numbers cause TEE-DRUP to designate fewer variables, (b) variable may not be named
according to common naming convention (e.g., in “PAM module”, “pw” rather than “pwd” or “password”,
designates stored passwords), and (c) some identifiers may not be included from our dictionary of security
terms (e.g., because the dictionary does not include ‘ssn”, TEE-DRUP omits variables “ssn*” in “ssniper”
as sensitive).

To reduce the miss rates, we recommend that developers select a suitable p-tile. In general, the larger

the p-tile, the lower the miss rates. However, if the p-tile is too large, too many variables end up desig-
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nated as sensitive/non-sensitive with their accuracy/precision/recall calculated (the metric calculation is
detailed in 8.2-1), causing a low miss rate but a high number of false positives/negatives and low accu-
racy/precision/recall (row “50%” in Tables 4,5). Also, developers can add additional domain terms (e.g.,
ssn) to the dictionary, so the corresponding identifiers’ sensitivity scores would increase. Besides, to fur-
ther improve TEE-DRUP’s performance, we recommend that developers exclude all testing functionality
before analyzing any project.

Overall, TEE-DRUP’s satisfactory accuracy, precision, and recall make it a better fit as a recommen-
dation rather than a decision-making system. To help developers analyze realistic systems, TEE-DRUP
automatically infers the sensitivity levels for all program variables, designating them as sensitive/non-
sensitive. Then, by consulting the resulting sensitivity levels and designations, a developer can verify and
confirm which variables are indeed sensitive.

Further, our experiences with TEE-DRUP show that NLP can be effective in determining variable
sensitivity. Even with a general NLP model and a common security term dictionary, TEE-DRUP’s NLP
technique computes variables’ sensitivity accurately enough to make it a practical recommendation system.
By refining NLP models and term dictionaries, one can increase both the accuracy and applicability of
our technique.

2) Effectiveness: Our results illustrate how moving non-sensitive functions to the normal world dras-
tically increases system performance. Hence, TEE-DRUP can improve real-time compliance (e.g., a
TEE-based function failing to meet execution deadlines) and help mitigate DoS attacks. Besides, by re-
ducing the attack surface, these moves would also can help mitigate other TEE-based vulnerabilities (e.g.,
buffer overflows in TEE-based functions). Hence, TEE-DRUP can increase both system performance and
security protection.

3) Programming Effort: To move our benchmarks to the normal world, TEE-DRUP requires ~3
ULOC (i.e., =2 for TAs, ~1 for adjusting). To manually reproduce the code transformation/generation
of TEE-DRUP would require modifying =15 ULOC. Although this number may seem like a reasonable
manual task, it is rife with hidden costs that can be significant. To perform this refactoring correctly
requires 1) understanding the source code; 2) manually locating Ecalls, “Enclave id”, and the set up/clean
functions; 3) ensuring that all the manual transformations are correct. By automatically insourcing code,
TEE-DRUP eliminates all these hidden costs.

4) Applicability: Currently, TEE-DRUP works with SGX projects written in C/C++. Although
SGX is a popular TEE implementation and C/C++ are SGX-supported programming languages, other
TEEs, including Trustonic Kinibi, Huawei’s TrustedCore, and Qualcomm’s QTEE, have also been in use
in domains of Internet of Things (IoT) and Cyber-Physical Systems (CPS) [63, 64]. Furthermore, the

analysis of open-source repositories reveals that TEEs are also used with other languages (e.g., RUST [65],
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Java [66]). Thus, one applicability question is whether TEE-DRUP can be applied or extended to other
TEEs and programming languages.

Recall that TEE-DRUP comprises (a) a heuristic for identifying sensitive/non-sensitive data and (b)
an automated refactoring for removing non-sensitive code out of TEE. These parts are independent of

each other, so we discuss their respective applicability in turn.

e For (a), to support other programming languages, only the variable information collection module
(Section 5.1) needs to be modified. Our current solution implements a libtooling tool program that
extracts variable information (e.g., name, type, file path) from a given source code. However, the
libtooling tool only supports C/C++. Hence, to extract information from projects written in other
languages, we need to apply their specific code analysis tools or frameworks. For example, we
can leverage Soot [67] to extract variable information from Java bytecode. Once we obtain this
information, the rest of the analysis processes in (a) remain intact for all programming languages.

Besides, the specifics of TEE implementations have no bearing on (a)’s variable sensitivity analysis.

e For (b), to support other programming languages, TEE-DRUP needs to apply different LLVM front-
ends. TEE-DRUP’s current code refactoring process includes taint analysis, program partitioning,
and code generation, all of which work with the LLVM intermediate representation (IR) level. Hence,
TEE-DRUP applies the LLVM front-ends to convert the original source code into LLVM IR code
for further analysis and transformation. Although LLVM’s official front-end is Clang for C/C++
only [68], open-source contributors have been creating LLVM-based front-ends (e.g., llgo for Go [69],
kaleidoscope for Haskell [70], Rubinius for Ruby [71]). Thus, by leveraging these front-ends, TEE-
DRUP can be applied to other programming languages. In this case, a major technical hurdle is

that some open-source front-ends may be unreliable, and some languages remain unsupported.

Moreover, to support interpreted languages or those that require Just-In-Time compilation, they must
first execute within a TEE. Specifically, to make it possible, the runtime systems of these languages
might need to be customized and placed into a TEE. Note that, these runtime systems would need

to be customized for individual TEEs, thus introducing a considerable engineering overhead.

Similarly, to support other TEEs, TEE-DRUP also needs to adjust its taint analysis and code trans-
formation modules for their particular communication interfaces (e.g., SGX uses sgx_create_enclave t0
initialize the communication session while OP-TEE uses TEEC_InitializeContext). The taint analysis
module depends on these interfaces to track when and where a caller invokes a TEE function. The
code transformation module adapts these interfaces to decide how and where it should remove the
unnecessary TEE code after moving each function out. However, accommodating these TEE-specific

differences would unduly increase the required engineering effort.
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To sum up, it would only take an additional engineering effort to extend our approach to other TEEs
and programming languages. Since it would not uncover additional conceptual insights, we chose to focus
our efforts on a popular TEE platform, Intel SGX. However, developers can leverage our technical insights
to implement similar solutions for other TEEs or languages, taking into account the tradeoffs between
utility, reliability, and engineering workload for each implementation scenario.

5) Miscellanea: For TEE-DRUP’s toolchain performance: the time taken by program and data anal-
yses tasks is rarely a decisive factor that determines their utility and value, the entire toolchain exhibits
acceptable runtime performance. The most time-consuming task—sensitivity computing—takes ~ 10 min-
utes for the largest evaluation subject (i.e., GPS Tracker). The remaining TEE-DRUP’s tasks complete
in seconds.

6) Threats to wvalidity: The internal validity is threatened by our procedure that obtains the ground
truth for sensitive variables. In fact, since we evaluate with third-party real-world subjects, it would
be unrealistic to expect that our volunteers could designate the variables in these subjects with perfect
certainty. To mitigate this threat, we apply the reported “unsure rate” to quantify the reliability of
TEE-DRUP’s results.

The external validity is threatened by evaluating only eight third-party C/C++ projects. In fact, the
major reason hindering us from studying more projects is the need to verify our approach’s correctness
by hand. In particular, we need to manually check if our approach designates sensitivity for each variable
correctly or not. Hence, we only evaluate our approach on eight open-source projects, which cover com-
mon sensitive variable scenarios (e.g., location, authentication, encryption, financial account) and include
2000+ variables in total. Enlarging the codebase would increase the number of variables and make it
intractable to verify the results manually. To mitigate this threat, we plan to open-source our imple-
mentation after publishing the article, so fellow researchers and practitioners could apply it to additional

evaluation subjects, with their experiences further validating the practical applicability of our approach.

9. Related work

TEE-DRUP is related to detecting code vulnerabilities, taint analysis, and reducing trusted computing
base.
1) Code Vulnerability Detection. Much of prior work focuses on detecting various code vulnerabilities,
including bugs, security risks, and anomalous operations.

a) Traditional program analysis: Traditional program analysis, both static and dynamic, has been
applied to detect exploitable bugs and other vulnerabilities [72, 73, 74, 75, 76, 77]. By relying on pre-

defined rules or known program properties for detection, static analyses cannot handle Zero-Day exploits.
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By relying on code instrumentation, dynamic approaches cannot cover all possible inputs and runtime
states.

b) Detecting vulnerabilities via machine learning: To mitigate the limitations of tradition program
analysis, machine learning techniques have been applied to detect vulnerabilities. By analyzing 183 known
vulnerabilities of the Linux kernel and Apache server projects, Younis et al. create a prediction model that
identifies which characteristics of vulnerable code make it most exploitable [78]. By combining function
embedding and taint analysis, Yamaguchi et al. automatically detect missing security checks in vulnerable
codebases [79]. By training a large amount of collected test cases, Grieco et al. build a predictor that
detects potentially vulnerable test cases [80]. By mining the encoded information from the discovered
vulnerabilities in a large volume of categorized repositories, Sadeghi et al. improve the efficiency of static
analysis for detecting vulnerabilities [81].

¢) Semantics resolution for detecting vulnerabilities: Since textual information can expose sensitive
data, potential security and privacy risks can be detected by resolving sensitive data semantics. Indepen-
dently implemented SUPOR, and UIPicker automatically identify sensitive user input by applying NLP
techniques on the extracted Ul resources to identify suspicious keywords [26, 27]. UiRef solves the same
problem while also resolving ambiguous words [82]. ICONINTENT identifies sensitive UI widgets in An-
droid apps by both resolving textual labels and classifying icons [83].

In summary, to detect vulnerable code or anomalous operations, traditional code analysis techniques
rely on pre-defined rules or custom instrumentation. Machine learning techniques either infer rules from
regular codebases or identify patterns from known vulnerable code samples. Semantic resolution techniques
supplement source code information with that of UI labels. In contrast, TEE-DRUP focuses on data as
the origin of vulnerabilities by analyzing variables. It provides an NLP-based sensitivity analysis that
identifies sensitive variables in danger of exploitation or leakage. Both the aforementioned approaches
and TEE-DRUP suffer from false positives and negatives. However, as a recommendation rather than
a decision-making system, TEE-DRUP is not as impacted by these problems. It identifies and presents
potentially sensitive variables to developers, who ultimately decide which variables must be protected in
TEE.

2) Taint Analysis. TaintDroid [29] tracks the data flow in Android apps, with many related techniques
developed to detect code vulnerabilities in IoT and mobile systems [28, 26, 31, 84, 30, 85, 86]. JN-SAF
enhances taint analysis to track inter-language dataflow in Android apps, whose codebase contains both
Java and native (C/C++) files [87]. However, no existing taint-based techniques focus on capturing tainted
dataflow in systems that rely on TEE. By mapping the TEE-based functions to their callers in the outside
world, TEE-DRUP extends taint analysis to TEE-based systems.

3) Reduce Trusted Computing Base (TCB) Singaravelu et al. identify the problem of large TCBs and
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how to reduce them in three real-world applications [88]. Lind et al. present an automated partition tool,
Glamdring, that partitions a system by placing only the sensitive data and code in the TEE [16]. Similarly,
RT-Trust and Ptrsplit automatically move developer-specified functions to TEE to reduce TCB [11, 14].
Qian et al. reduce the size of deployed binaries by developing RAZOR, an automatic code-debloating
tool [89]. Rubinov et al. use FlowDroid’s taint analysis to track developer-specified data, so only the
relevant functions can be moved to TEE [13].

In general, TEE-DRUP differs from these prior approaches, which focus on moving “sensitive” code
and data into TEE (i.e., forward direction). In contrast, it focuses on 1) identifying (non-)sensitive data
and code and 2) moving non-sensitive code out of TEE (i.e., backward direction). Both of these refactoring
techniques are designed to place the necessary code and data in the correct environments (i.e., inside or
outside TEE). In particular, based on our findings, oftentimes code is placed in TEE unnecessarily, thereby
necessitating the TEE-DRUP’s backward direction refactoring. By deploying TEE-DRUP, developers
can discover and remove the unnecessary TEE code, thereby reducing the TCB’s size and improving system
performance. Drilling down to specific technical details, some prior approaches (e.g., Glamdring) work at
the source code level. Given multiple source code files, these approaches have to analyze each code file
one by one, or merge several files into a single one. Also, they need to handle the dependencies between
different source code files. In contrast, TEE-DRUP works at the LLVM intermediate representative (IR)
level. Since IR code can be easily combined via LLVM’s toolchain, TEE-DRUP can analyze a combined
single IR code file, including all the given project information.

4) Enable Unmodified Program to Run inside TEE. SCONE [90], SGX-LKL [91], and Gramine
(formerly Graphene) [92] provide a small but featured library OSes running inside TEE, enabling unmod-
ified applications to be directly executed in TEE under protection. These approaches eliminate the need
for code transformation/generation to move it in and out of TEE. However, the problem of identifying
which code is sensitive and needs to be protected in TEE does not go away. Hence, our variable sensitivity
analysis remains applicable. Besides, when an entire project is placed in TEE, the resulting performance
overhead can be high. For example, under SGX, code inside enclaves cannot make system calls, thus
slowing down dependent functionalities (although SCONE mitigates this issue, it still cannot match the
performance of running the code outside the enclave). A promising future work direction would be to

study the performance characteristics of these TEE-based library OSes.

10. Conclusions

In this article, we investigated the status quo of using TEE in real-world software development by

conducting the first study of over 400 open-source TEE-related projects. Our study uncovered that (1)
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developers frequently overuse TEE by isolating code and data that are not sensitive, and (2) a considerable
number of projects put more than a half of their entire codebase into TEE. Motivated by these findings, we
created TEE-DRUP, an semi-automated toolchain whose program analysis and transformation techniques
(1) designate sensitive variables in a given codebase via NLP-based variable sensitivity analysis; (2) discover
non-sensitive functions via a TEE-aware taint analysis; (3) automatically refactor binary code by moving
the non-sensitive functions out of TEE. By applying TEE-DRUP, developers can reduce TCB, thus both
improving system performance and decreasing attack surface. Our evaluation shows that TEE-DRUP
effectively and correctly performs these program analyses and transformations, thus improving system
security /privacy, increasing performance (with the speedup ranging between 1.35 and 10K), and saving

programmer effort.
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