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Abstract— Dielectric elastomers (DEs) are electro-active poly-
mers that deform and change their shape when an electric
field is applied across them. They are used as soft actuators
since they are flexible, resilient, lightweight, and durable.
Many models have been proposed to describe and capture
the behavior of these actuators such as circuit representation,
lumped parameter modeling, and physics-based modeling. In
this paper, a hybrid between the physics and lumped parameter
model is presented which is used to control the actuator. The
focus of this paper is on a tubular dielectric elastomer actuator
(DEA). The model proposed is validated with experimental
data to evaluate its approximation to the physical actuator. The
physics model offers the ability to describe how the material
properties and actuator’s geometry affect the dynamics and
behavior of the actuator under different states. The lumped
parameter model accounts for physical quantities that may
not be fully expressed when formulating the physics-based
equations. The discussed model performance is found to have
an error less than 10% for the sinusoidal signals discussed.

Keywords— Dielectric elastomer actuator, Tubular actuator,
Finite Element

I. INTRODUCTION

Dielectric elastomer actuators (DEAs), a class of electro
active polymers, offer promising properties over conventional
actuators in that they are compact and do not require a large
amount of space to operate [1]. They are flexible and as
such can be molded to take up different shapes yet still
offer optimal performance. They are also quiet hence reduce
noise pollution under operation compared to conventional
rigid actuators. Due to their low noise production, DEAs
can be employed in research areas such as marine and
aquatic research to effectively study fish and marine life
with minimal interference [2]. In their simplest configuration,
they are easy to manufacture and the material is readily
available [3]. The actuators are light weight which means
that they can be carried easily such as on an individual’s
body, in generators, and loud speakers [4]. In addition, they
offer large amounts of strain when a voltage is applied
across the membranes of the actuators. They have a high
elastic energy density that can be harnessed to produce large
deformations and electric generation [5]. The DEAs are also
called artificial muscles used to mimic the movement of
muscles in the design of bionic robots and in prosthesis to
help disabled people recover their movement and function
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of lost limbs [6]. The DEA’s performance and characteristics
render them ideal in soft robotics. Current work on dielectric
tubular actuators has found its application in refreshable
braille displays [7], push actuators [8], and active vibration
isolation [9] to mention but a few.

With all these benefits however, the dielectric actuators
are challenging to model and their behavior is unpredictable
in certain configurations [10]. To achieve all the benefits
that DEAs offer, research has been conducted to study and
model the dielectric elastomers. Circuit based models have
been devised along with frequency based models that capture
the actuator’s dynamics [11], [12] to analyze the dynamics
of the actuators. These methods ignore the actual physics
of the actuators and as such do not explain in effect the
coupling between the mechanical and electrical quantities of
the actuator as well as its geometry. The control of these
actuators is also still challenging and is an area of open
research [13]. Research is also focused on developing fun-
damental models from which more complex models can be
developed to advance the development of dielectric actuators
[14]. Current physics model based work depends on static
based analysis of the actuators. In this paper the quasi static
model is extended into a dynamic model do analyze the
dynamics of the actuator.

Different configurations exist for dielectric actuators such
as stacked, diaphragm, rolled, and tubular. Stacked and rolled
configurations offer the ability for increased displacement
and force generated by the actuator. The diaphragm can be
made as thin as possible but occupies space in the transverse
direction. The tubular actuator combines the advantage of the
stacked and diaphragm actuator to allow space conservation
while still maintain a reasonable amount of displacement and
force that can be produced by the actuator. A physics-lumped
parameter based model of the tubular dielectric actuator
which can be used to predict the behavior of the DEA
is presented in this paper. The derivation process follows
closely that of Tianhu He et al. [15] with modifications
specific to the tubular dielectric actuator.

Since the actuator is a physical system, the governing
equations must produce positive stretch values for the actua-
tor. The major contribution of this paper is the introduction of
a methodology in solving the differential equations that arise
from the physics of the actuator to guarantee positive stretch
values while solving the differential equations. As will be
seen in the following discussion, the longitudinal stretch of
the actuator is solved from a quadratic algebraic equation
which poses a challenge of having multiple solutions to the
stretch. Instead of solving the roots of the algebraic equation
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each time, the equation is transformed into a differential
equation to track the locus of the positive stretch value of
the actuator. The advantage is that instead of solving three
ordinary differential equations (ODEs) with a constraint,
the numerical problem simply becomes one of solving four
ODEs without constraint. Lastly, this also ensures that we
arrive at one unique solution for the tubular actuator given
the fact that the shooting method, which may potentially
produce multiple solutions, is used to arrive at the desired
solution. Secondly, since the equations derived are quasi-
static, a case of a fictitious damping coefficient is introduced
into the system by taking the derivative of the algebraic
equation with velocity to account for the viscoelasticity of
the actuator.

The rest of the paper is organized as follows: Section II
presents a quasi-static nonlinear electromechanical model of
the DEA. Section III covers the state space model of the
DEA, Section IV discusses the numerical simulation for the
tubular actuator. Section V provides the experimental setup
and validation of the tubular actuator model. Section VI
discusses the conclusions and future work.

II. MODELING OF THE DIELECTRIC ELASTOMER (DE)
TUBULAR ACTUATOR

In this section, the governing equations that describe the
shape and behaviour of the tubular actuator are derived.
Figure 1 shows a cross section of the tubular actuator in
the undeformed state (a) and deformed state (b).
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Fig. 1.  Cross section of tubular actuator in undeformed state (a), and
deformed state (b).

In the current configuration, the actuator is fixed at the
top and free to move at the bottom. The actuator is given a
pre-stretch in the longitudinal direction (X-axis) by attaching
a weight at the bottom. The attached weight has significant
effects on the behavior of the actuator since it shifts the
actuator from one mode (state) to another.

Considering specific points (particles) on the membrane
at A and B. The particles at A are constrained by the fixed

disk to disk radius R. All other points on the membrane are
located at the radius R and depth X forming the reference
coordinate system (X,R) where R is fixed in the undeformed
state. A general particle p at (X,R) in the undeformed state
moves to a location (r,z) in the current coordinate system
(deformed state) when a vertical force F, or an applied
voltage ®, or both are exerted onto the membrane.

Take an element on the actuator with one end at (X,R)
and another at (X +dX,R) where dX is the elemental length
in the undeformed state. These ends undergo deformation to
occupy the new locations (r(X),z(X)) and (r(X +dX),z(X +
dX)) respectively. Let the particles in the deformed state
be separated by a distance d! forming an angle 6 with the
horizontal measured from the second point counterclockwise.
The change in r and in z is given by dr = r(X +dX) —
r(X) and dz = z(X + dX) — z(X). Since the orientation of
the element changes with X, then

dr=—dlcos(0) dz =dlsin(0). (1)

For this element, dI> = dr’ 4+ dz*>. The geometry of the
actuator is thus fully described.

To characterize the mechanical and electrical components
of the actuator, three parameters are defined: The longitudinal
stretch (along the X-axis), A, and latitudinal (circumferen-
tial) stretch, Ay,

2rr r

dl dr,  dz
)% 2= 5 R =R @)

— 2
“ax V@& &
and the nominal charge density, D = i where g is the
charge on the element and Ay is the elemental area in the
undeformed state. These three parameters A1, A, and D fully
describe the deformation of the actuator to an applied load
F and/or voltage ®. The total charge Q on the actuator is
given as Q = 27R [ DdX.

Since the actuator relies on the ability of the dielectric
membrane to undergo large strain deformations, Helmholtz’s
energy, Ey = 2nRH [WdX is used do describe the energy of
the actuator. W is the nominal Helmholtz’s energy assumed
to be a function of Ay, A», and D and H the thickness of the
membrane in the undeformed state. For a small change in
A1, A2, and D, the Helmholtz’s energy undergoes a change
OW =516\ +520A, +E5D7 where

_ W _ 9w
oA 27 0n,

s1, s, and E are the longitudinal nominal stress, the cir-
cumferential nominal stress, and the nominal electric field
respectively.

In a state of equilibrium, the change in the Helmholtz’s
energy of the actuator is equal to the work done in moving
the actuator from one state to another through the work done
by the applied force and voltage. Therefore

A

=W

S1 8D

SEy — 2mRH / SWdX = F8z5 + P80, )

top disk and do not move during actuation while those at B also o
are free to move vertically but are constrained by the bottom / OWdX = / (51641 + 52622 + ESD)dX, o)
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where

d(5r) d(82)

oA = —cos(G)W +sin(0) X (6)
_or -~ 00

To this end, solving Eq. 5 over the entire length of the
actuator from A to B and substituting into Eq. 4 gives

d(s1cos0) 52

ax R’

Eq. 8 describes the equations of state of the actuator.

For the material model of the actuator, the actuator is
assumed to be an ideal in-compressible dielectric elastomer.
In assuming in-compressibility, the stretch in the thickness
direction is given by A3=1/A;A;. For the ideal actuator,
the dielectric property of the actuator is not affected by
deformation hence the dielectric constant, & is assumed to
be fixed. For simplicity, a neo-hookean model is chosen to
characterize the actuator’s free-energy density. Other models
such as the Yeoh model, and the Ogden model may be
employed to get more accurate results that cover larger
strains in the actuator [16]. The neo-hookean model is given
by

27RHs sin@ =F, HE=®. (8)

i P>
Wkl D) = S+ 4472257 =3) + A5,

where p is the shear modulus of the actuator and € the
permittivity of the membrane. From Eq. 9, Eq. 3 is solved
to obtain

—349 -2 D? —34 -2
st = ph—A7A )*?ll A )
3,0, D* 50
52 = plh—A7A )_?)Lz A (10
E = gx;%;z. (11)

To investigate this model, the differential equations that
characterize the shape of the actuator as well as the mechan-
ical and electrical properties of the actuator are normalized
as follows: The applied load as F*=F/2xHpu, the applied
voltage ®*=®/(H./p/¢€), the vertical deformed position
z*=z/L, and the radial deformation r*=r/R.

Eq. 1 and Eq. 2 give

dr

dz .
ﬁ——llcose, ﬁ—llsme.

Differentiating the second equation in Eq. 8 with respect to
X and combining it with the first equation in Eq. 8 gives

(12)

(13)

Finally the algebraic equation from 27RHs; sin @ = F can be

written as
2
R
— () =0. (14)
P

(5]

Eq. 12-14 form the governing equations of the tubular
actuator.

F*
4_7&3
I Rsin(6) !

ITI. STATE SPACE MODEL OF DE TUBULAR ACTUATOR

A dynamic model is developed from the quasi-static model
established in section II using the theory of elasticity and
electrostatics and combining with Newton’s second law of
motion. To account for viscous effects, lumped parameter
damping is introduced into the force balance of the actuator.
The acceleration of the actuator is given by

.. Rsin(6) @\’ ,4 (R ¢
“T8 T mA; ([1_<R> A r m

where a* = a/2mHy is the normalized acceleration, g* =
g/2mHu the normalized gravity, ¢* = ¢/2nHu the normal-
ized damping coefficient, and v the velocity of the actuator.
Taking the total stretch as A; = A#A/ with A7 as the stretch
due to actuation, lip the pre-strech due to the added weight,
and i = 1,2,3, the acceleration can be written as

o= Rsin@ VNTYY 1 Sy b
(A} {“ 6D+ (g ) o

+ (d)*rkg%f)zlf(lf’)“} .

Assuming small prestretch, A/ &~ 1, the acceleration may be
rewritten to include only the actuated stretch terms

. Rsin(0) P 2., R 2 c*
“= mA} ([1_<R> A r m

where A{ is replaced with A; for neatness.

Eq. 14 is rewritten to serve as the spring for the actuator.
Treating the actuator as a classic RC circuit for simplifica-
tion purposes, a relationship between the driving nomalized
voltage, u*, and the nomalized voltage on the membrane, ®*,
is given by

. oyt
P = —— + —,
RC RC
where R is the circuit resistance and C is the membrane

i * —u [E
capacitance and u* = 5 0

Let x; be the position of the bottom disk of the actuator
and v = x, = X the velocity. Then its acceleration is a* =
X) = Xp. Finally let x3 = ®*, this gives the dynamic model
of the tubular actuator as Eq. 12, 13 and

X1 = X2,

) Rsin(0) x3r\2] .4 R\? c*

[y ()5
2 mA? ([ R ]1 r m
PR L

7 "RC " RC

The dynamics are evaluated at the equilibrium point where
the tubular actuator settles under a constant mechanical load.
It is at this point that the model is also linearized. In order
to complete linearization, note that r, z, 6, and A; are also
functions of xi, x3, and time ¢. Assuming small perturbations
about the equilibrium point and that the shape of the actuator
does not change significantly for small actuation, the first
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three differential equations may be ignored which helps to
reduce the order of the system to leave behind three states
(x1,x2,x3). The Jacobian, J of the system takes the form

. dm o

(9)(1 axz aX3 0 1 0
— | b dn| _
J - 8x| 8x2 8x3 - f 1 f 2 f 3
9% 03 diz _ L
dx; dx;  dx3 0 0 RC

The linearized state space model is therefore

X 0 1 0 X1 0
|=\A f ||| +]|0|u (15)
X3 0 O 7Rflc X3 %

It can be observed from the second state that the actuator
acts as a spring-mass-damper system with f| as the spring
constant and f, the damping ratio. For a model without
viscosity, f> = 0. f3 serves as the input gain from the voltage
applied onto the membrane. Hence, X; and X, serve as a
second order system that is driven by x3 a first order system
for the circuit model of the tubular actuator. Furthermore an
expression of the transfer function of the voltage input u to
the disk position x; is given as
1{%

s) = . 16

-
The parameters fi, f>, f3, and % can now be determined
with frequency response analysis by inspecting the frequency
response of the actuator over the range [0.02 — 8] Hz and
fitting a transfer function onto the data.

IV. NUMERICAL SIMULATION AND RESULTS

The algebraic equation is analyzed to establish the number
of permissible stretch values of A;. It is worth noting that
the stretch must be a positive value at all times since this is

a physical system. Let
A F* R\’
1-— B= C=|—-
< R > ’ Rsin(0)’ <r>
such that the algebraic equation becomes

AA—BA} —C=0.

A=

7)

It can be observed that for the tubular actuator described
above, B and C can never have a sign change since for B
the interval for O is (0,290]. On the other hand, A can have

a sign change if (%) > 1. This condition can be used to
find the maximum allowable theoretical voltage that may be
applied on the actuator before it breaks down. It is required
that A be positive at all times. Using Routh Hurwitz stability
criterion,

It can be observed that the elements above and below the
€ in the first column have the same sign therefore a pair
of imaginary roots exists in the algebraic equation. There
is also a single sign change which implies that there is
always one positive root whenever A is positive. The fourth
remaining root is therefore negative. From this observation
the requirement for keeping A positive at all times can
be justified. This observation is useful when running the
numerical simulation as it is the basis used to keep track of
the positive root locus of the algebraic equation when solving
the differential equations. To track this root, the algebraic
equation is differentiated with respect to X to end up with

7F*00567Ll3 a9 _ |:R2r(q;;)2lf{| dr

dA Rsin26  dX r dx
1 sin 19

ax (4[1= ()| 1 - g ) A7

The four differential equations 12-13, and 19 can now
be solved numerically. Considering the boundary conditions,
the actuator is a two boundary valued problem with the
boundaries being r(0) = (L) = R where L is the total length
of the actuator in the undeformed state. z(0) = 0 but z(L)
is unknown as well as 6(0), 8(L) and A;(0). In order to
establish A;(0) we need to solve the algebraic equation
given r(0) and 6(0). As such, the system is solved using
the shooting method in which an initial guess of 6(0) that
satisfies the two boundary conditions r(0) = r(L) = R is
made. The parameters used in the simulation are R = 7.5
mm, H =0.26 mm, and L = 80 mm.

The value of the shear modulus is chosen and calibrated
to closely fit the experimental data collected for multiple
applied loads. It should be noted that the shear modulus is
a function of temperature and frequency of actuation of the
actuator attributed to the viscous effect of the VHB tape [17].
The simulation is run with F =20 g and ® =0 V along
with the following parameters: A membrane thickness of
0.25 mm, a height of 80 mm, a shear modulus of 18.5 kPa,
and relative permittivity of 2.7. This particular simulation is
performed using MATLAB R2019a. For a given 6(0) the
positive value of A;(0) is calculated by solving the roots of
the algebraic equation and choosing the positive root. This
value is the one that is then used to solve Eq. 19 and with
this, each iteration of the numerical simulation ensures that
A1 is always positive since the starting value of the iteration
is positive. With r(0), 6(0), z(0), and A;(0), the rest of
the differential equations are solved using ode45 to produce
r(X), z(X), 6(X), and A;(X). Post processing is performed
on these variables such as estimating the behavior and trend
of displacement vs applied voltage and displacement vs
load. Figure 2 and Fig. 3 show these trends respectively.
Furthermore the model can be used to perform closed loop
control.

V. EXPERIMENTAL SETUP AND MODEL VALIDATION

A} e —C (18)  A. Experimental setup
1 —BC
)‘}) e The actuator is made from VHB material of 10 cm by
Ay —C 5.6 cm size cut from a tape roll. Both ends are fixed on
4475
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Fig. 3. Stretch vs applied load.

plastic cylinders. The edges of the sides are then covered
with insulating tape to avoid short circuit between the two
electrodes. Graphite powder is pasted on both sides of the
DE membrane uniformly, and a load of 20 g is fixed on the
lower end to contribute a vertical pre-stretch of 137.5 %.
The final length of the DE tube is 110 mm. The DE tube
membrane actuator and full experimental setup is shown in
Fig. 4. The laser sensor measures the movement of the DE
tube by measuring the displacement between the laser sensor
and the wooden balance plate.

B. Model validation

A sinusoidal input signal of amplitude 2 kV is used. The
output for the displacement magnitude of the DE tube is
measured by the laser sensor with units in mm. A 20 g load is
placed on the free end of the DE tube. The actuation voltage

Electrodes

Support
Stand

HVA

Fig. 4. Experimental setup

is provided by a high voltage amplifier (SHVA24-BP1-F).
A transfer function is estimated from the experimental data
from which the values of f1, f2, f3, and 1/RC can be
calculated. Figure 5 shows the bode diagram of the tubular
actuator.
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Fig. 5. Frequency response of the actuator.

The transfer function of the tubular actuator is given as:

1.1
G(s) = .
() = 3165 + 9005 + 3000
The parameters fi, f2, f3, and Rl—c are thus determined as f; =
—856.2159, f, = —12.4962, f3 =0.3139, and % =3.5038.
The time constant 7 for the electric circuit is therefore 0.2854
s. The state space model is:

(20)

X1 0 1 0 X 0
X2 | = |—856.2159 —12.4962 0.3139 x| + 0 u. (21)
X3 0 0 —3.5038] |x3 3.5038

Reference tracking with PI control is performed using the
model and compared with experimental data. Figure 6 shows
the comparison between the linear model and experimental
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data. The model closely predicts the displacement of the
tubular DEA.
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Fig. 6. (a) 0.05 Hz sinusoidal and (b) 0.1 Hz sinusoidal reference tracking.

The error between the model and the experimental data
is (5.70%, 3.64%) corresponding to a 0.05 Hz, 0.1 Hz
sinusoidal reference tracking. This is obtained by taking the
root-mean-square value of the error between the experimental
data and the simulated data. The model can fairly track
and predict the actuator response even with the constraints
imposed from the simplifications made. Since the actuator
acts as a low pass filter, the limitation of the proposed model
is that it cannot predict accurately the response at higher
frequencies greater than 1 Hz which is the pass band of the
tubular actuator.

VI. CONCLUSION AND FUTURE WORK

The results show that the displacement of tubular DEA can
be predicted closely by using a hybrid model that combines
the physics based approach and lumped parameter modeling
of the tubular actuator. The error between the predicted
displacement and experimental displacement is small and
hence the model may be used for dynamic analysis of the
tubular DEA by generating a state space model.

Future work involves utilizing a more complex model to
accurately predict displacements over large mechanical loads
and strains as well as to account for the membrane stiffening.
The Gent, Ogden, and Yeoh models are good candidates to
use as a model that can cover large stretch regions. Since

the VHB dielectric elastomer membranes have high viscous
effects, it is worth looking into models that incorporate this
effect with a relaxation time that affects the dynamics of the
membrane with time during loading and unloading as well
as with the frequency of the membrane actuation.
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