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Abstract Dielectric elastomers (DEs) deform and change
shape when an electric field is applied across them. They
are flexible, resilient, light weight, and durable and as such
are suitable for use as soft actuators. In this paper a physics-
based and control-oriented model is developed for DE tubu-
lar actuator using a physics-lumped parameter modeling ap-
proach. The model derives from the nonlinear partial dif-
ferential equations (PDE) which governs nonlinear elastic-
ity of the DE actuator and the ordinary differential equation
(ODE) which governs the electrical dynamics of the DE ac-
tuator. With the boundary conditions for tubular actuator, the
nonlinear PDEs are numerically solved and a quasi-static
nonlinear model is obtained and validated by experiments.
The full nonlinear model is then linearized around an oper-
ating point with an analytically derived Hessian matrix. The
analytically linearized model is validated by experiments.
Proportional–Integral–Derivative (PID) and H∞ control are
developed and implemented to perform position reference
tracking of the DEA and the controllers’ performances are
evaluated according to control energy and tracking error.

Keywords Dielectric elastomer actuator · Tubular actuator ·
Finite Element · Control

1 INTRODUCTION

Dielectric elastomer actuators (DEAs), a class of electro ac-
tive polymers, offer promising properties over conventional
actuators in that they are compact and do not require a large
amount of space to operate [1]. They are flexible and as such
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can be molded to take up different shapes yet still offer good
performance due to the fact that the performance is primar-
ily influenced by the elastomer prestretch, mechanical stiff-
ness, permittivity, and compliant electrodes [2]. They can
be made to be resilient and durable able to reach large linear
actuation strains and maintain good performance for many
cycles of actuation [3]. They are also quiet and hence reduce
noise pollution under operation compared to conventional
rigid actuators. Due to their low noise production, DEAs
can be employed in many research areas such as marine
and aquatic research to effectively study fish and marine life
with minimal interference [4]. In their simplest configura-
tion, they are easy to manufacture and the material is readily
available [5–8]. The actuators are light-weight, which means
that they can be carried easily for instance on an individual’s
body, in generators, and loud speakers [9]. In addition, they
offer large amounts of strain when a voltage is applied across
the membranes of the actuators. They have a high elastic en-
ergy density that can be harnessed to produce large deforma-
tions and electric generation [10]. The DEAs are also called
artificial muscles used to mimic the movement of muscles
in the design of bionic robots and in prostheses to help dis-
abled people recover their movement and function of lost
limbs [11, 12]. The DEA’s performance and characteristics
render them ideal in soft robotics. Current work on dielec-
tric tubular actuators has found its application in refreshable
braille displays [13], push actuators [14], and active vibra-
tion isolation [15] to mention but a few.

With all these benefits however, the dielectric actuators
are challenging to model and their behavior is unpredictable
in certain configurations [16]. To analyze the dynamics of
the actuators, circuit based models have been devised along
with frequency based models that capture the actuator’s dy-
namics [17–20]. These methods ignore the actual physics
of the actuators and as such do not explain in effect the cou-
pling between the mechanical and electrical quantities of the
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actuator as well as its geometry as a whole. Most physics
model based work depends on static based analysis of the ac-
tuators. The dynamic analysis on the other hand involves the
use of rheological models to account for the the viscoelas-
tic behaviour of the actuators. In this paper the quasi static
model is extended into a dynamic model to analyze the dy-
namics of the actuator. The advantage of a physics model
is its ability to describe how material properties and the ac-
tuator’s geometry affect the dynamics and behavior of the
actuator under different states [21]. The lumped parameter
model accounts for the physical quantities that are not fully
expressed when formulating the physics based model.

The control of these actuators is also still challenging
and is an area of open research [22]. Previous work by G
Rizzello et al [23] and Zhihang Ye et al [24] successfully im-
plemented PID and H∞ control respectively on a diaphragm
DEA. This paper intends to apply the same controls on the
tubular DEA and compare the performance of the controllers.
Other types of control have been implemented such as adap-
tive control and sliding mode control [25,26] to mention but
a few.

Different configurations exist for dielectric actuators such
as stacked, diaphragm, rolled, and tubular [27–30]. In this
paper a physics-lumped parameter based model of the tubu-
lar dielectric actuator is presented which can be used to pre-
dict and control the deformation of the DEA. The derivation
process follows closely that of Tianhu He et al. [31] with
modifications made specific to the tubular dielectric actu-
ator. The distinction here is that the tubular actuator mem-
brane varies longitudinally while the diaphragm actuator mem-
brane for He varies radially. As a result one of the equations
of state changes to reflect the change in geometry. Further-
more, a bridge is made between the field of material sci-
ence to that of control systems by converting the quasi static
model to a dynamic model through the algebraic equation.

One of the main contributions of this paper is the intro-
duction of a methodology in solving the differential equa-
tions that arise from the physics of the actuator to ensure
that physical values, that is, positive stretch values of the ac-
tuator, are accounted for in solving the equations. As will
be seen in the following discussion, the longitudinal stretch
of the actuator is solved from a quartic algebraic equation
which poses a challenge of having four solutions to the stretch.
Instead of solving the roots of the algebraic equation each
time, the equation is transformed into a differential equa-
tion to track the locus of the positive stretch value of the
actuator. The challenge of solving three ordinary differen-
tial equations (ODEs) with a constraint is thus transformed
to one of solving four ODEs without constraints. This ap-
proach ensures one unique solution for the tubular actuator
given the fact that the shooting method, which may poten-
tially produce multiple solutions, is used to arrive at the de-
sired solution.

Secondly, a bridge is made between the quasi-static model
and the dynamic model from which one can observe the in-
teraction or influence the physical parameters have on the
system model. Since the dynamic model is derived from the
algebraic equation, a fictitious damping coefficient is intro-
duced into the system by taking the derivative of the alge-
braic equation with velocity to account for the viscoelastic-
ity of the actuator. This forms the physics-lumped parameter
model of the actuator. This interaction cannot be observed
when a black-box model is used in the control of the ac-
tuator since the model structure identified by this method
is not unique. Lastly, an attempt is made to determine the
linearized model parameter coefficients of the actuator ana-
lytically. This allows for fast adjustment and model update
when the operating point of the actuator changes removing
the need to run experiments each time in identifying these
values.

The rest of the paper is organized as follows: Section 2
discusses a nonlinear quasi-static elastic model of the tubu-
lar DEA along with its simulation and validation. Section 3
presents the dynamic model, analytical parameter identifi-
cation, and model identification developed from the quasi-
static model using frequency response analysis. Section 4
discusses the control system design using PID and H∞. Sec-
tion 5 discusses experimental results for the tubular actuator
with the designed controllers. Finally, section 6 discusses
the conclusion and future work.

2 Modeling of tubular DEA

2.1 The quasi-static model

In this section, the governing equations that describe the
shape and behavior of the tubular actuator are derived. Fig-
ure 1 shows a cross-section of the tubular actuator in the
undeformed state (a) and deformed state (b).

In the current configuration, the actuator is fixed at the
top and free to move at the bottom. The actuator is given a
pre-stretch in the longitudinal direction (X-axis) by attach-
ing a weight at the bottom. The attached weight has signifi-
cant effects on the behavior of the actuator since it shifts the
actuator from one mode (state) to another. Consider specific
points (particles) on the membrane at A and at B. The par-
ticles at A are constrained by the fixed top disk and do not
move during actuation. The particles at B are free to move
vertically but are constrained by the bottom disk with the
disk radius R. All other points on the membrane are located
at the radius R and the depth X forming the reference co-
ordinate system (X ,R) where R is fixed in the undeformed
state. A general particle p at (X ,R) in figure 1(a) moves to a
location (r,z) in the current coordinate system (figure 1(b))
when a vertical force F , or an applied voltage Φ , or both are
exerted onto the membrane.
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Fig. 1 Cross section of tubular actuator in undeformed state (a), and
deformed state (b).

Consider an element on the actuator with one end at
(X ,R) and another at (X +dX ,R) where dX is the elemental
length in the undeformed state. This ends undergo deforma-
tion to occupy the new locations (r(X),z(X)) and (r(X +
dX),z(X + dX)) respectively. Let the particles in the de-
formed state be separated by a distance dl forming an angle
θ with the horizontal measured from the second point coun-
terclockwise. This produces a change in r and in z, which is
given by

dr = r(X +dX)− r(X) and dz = z(X +dX)− z(X).

Since the orientation of the element changes with X , then

dr =−dl cos(θ), dz = dl sin(θ), (1)

where θ is taken as the angle of the element with respect to
the horizontal. For this element,

dl2 = dr2 +dz2. (2)

The geometry of the actuator is thus fully described.
To characterize the mechanical and electrical compo-

nents of the actuator, three parameters are defined: The lon-
gitudinal stretch (along the X-axis), λ1

λ1 =
dl
dX

=

√
(

dr
dX

)2 +(
dz
dX

)2, (3)

the latitudinal (circumferential) stretch, λ2

λ2 =
2πr
2πR

=
r
R
, (4)

and the nominal charge density, D̄

D̄ =
q

A0
, (5)

where q is the charge on the element and A0 is the elemental
area in the undeformed state. These three parameters λ1, λ2,
and D̄ fully describe the deformation of the actuator under
an applied load F and/or voltage Φ . The total charge Q on
the actuator is given as

Q = 2πR
∫

D̄dX . (6)

Since the actuator relies on the ability of the dielectric
membrane to undergo large strain deformations, Helmholtz’s
energy, EH is used to describe the energy of the actuator as

EH = 2πRH
∫

WdX , (7)

where W is the nominal Helmholtz’s energy assumed to be
a function of λ1, λ2, and D̄. H is the thickness of the mem-
brane in the undeformed state. For a small change in λ1, λ2,
and D̄, the Helmholtz’s energy undergoes a change

δW = s1δλ1 + s2δλ2 + Ēδ D̄, (8)

where

s1 =
∂W
∂λ1

,s2 =
∂W
∂λ2

, Ē =
∂W
∂ D̄

. (9)

s1, s2, and Ē are the longitudinal nominal stress, the circum-
ferential nominal stress, and the nominal electric field re-
spectively.

In a state of equilibrium, the change in the Helmholtz’s
energy of the actuator is equal to the work done in moving
the actuator from one state to another through the work done
by the applied force and voltage. Therefore

δEH = 2πRH
∫

δWdX = Fδ zB +ΦδQ, (10)

also∫
δWdX =

∫
(s1δλ1 + s2δλ2 + Ēδ D̄)dX , (11)

where

δλ1 =−cos(θ)
d(δ r)

dX
+ sin(θ)

d(δ z)
dX

, (12)

δλ2 =
δ r
R
, δ D̄ =

δq
A0

. (13)
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To this end, solving Eq. 11 over the entire length of the
actuator from A to B and substituting into Eq. 10 give

d(s1 cosθ)

dX
=− s2

R
, (14)

2πRHs1 sinθ = F, (15)

HĒ = Φ . (16)

Eq. 14 to 16 are the equations of state of the actuator.
For the material model of the actuator, the actuator is

assumed to be an ideal incompressible dielectric elastomer.
In assuming in-compressibility, the stretch in the thickness
direction is given by λ3=1/λ1λ2. For the ideal actuator, the
dielectric property of the actuator is not affected by defor-
mation hence the dielectric constant, εr is assumed to be
fixed. For simplicity, a neo-hookean model [32] is chosen to
characterize the actuator’s free-energy density. Other mod-
els such as the Yeoh model [33], and the Ogden model [34]
may be employed to get more accurate results that cover
larger strains in the actuator. The neo-hookean model is given
by

W (λ1,λ2, D̄) =
µ

2
(λ 2

1 +λ
2
2 +λ

−2
1 λ

−2
2 −3)+

D̄2

2ε
λ
−2
1 λ

−2
2 ,

(17)

where µ is the shear modulus of the actuator and ε the per-
mittivity of the membrane. From Eq. 17, Eq. 9 is solved to
obtain

s1 = µ(λ1−λ
−3
1 λ

−2
2 )− D̄2

ε
λ
−3
1 λ

−2
2 , (18)

s2 = µ(λ2−λ
−3
2 λ

−2
1 )− D̄2

ε
λ
−3
2 λ

−2
1 , (19)

Ē =
D̄
ε

λ
−2
1 λ

−2
2 . (20)

To investigate this model, the differential equations that char-
acterize the shape of the actuator as well as the mechanical
and electrical properties of the actuator are normalized as
follows: The applied load as F∗=F /2πHµ , the applied volt-
age Φ∗=Φ /(H

√
µ/ε), the vertical deformed position z∗=z/L,

and the radial deformation r∗=r/R. Eq. 1 and Eq. 3 give

dr
dX

=−λ1 cosθ ,
dz
dX

= λ1 sinθ . (21)

Differentiating Eq. 15 with respect to X and combining it
with Eq. 14 give

dθ

dX
=

s2

s1R
sinθ . (22)

Finally the algebraic equation from Eq. 15 can be written as[
1−
(

Φ∗r
R

)2
]

λ
4
1 −

F∗

Rsin(θ)
λ

3
1 −

(
R
r

)2

= 0. (23)

Eq. 21–23 form the governing equations of the tubular actu-
ator.

2.2 Simulation of tubular DEA Model

The algebraic equation is analyzed to establish the number
of permissible stretch values of λ1. It is worth noting that
the stretch must be a positive value at all times since this is
a physical system. Let

A =

[
1−
(

Φ∗r
R

)2
]
, B =

F∗

Rsin(θ)
, C =

(
R
r

)2

.

such that the algebraic equation becomes

Aλ
4
1 −Bλ

3
1 −C = 0. (24)

It can be seen that for the tubular actuator described above,
B and C can never have a sign change since for B the interval
for θ is (0,90]. On the other hand, A can have a sign change
if(

Φ∗r
R

)2

> 1.

This condition can be used to find the maximum allowable
theoretical voltage that may be applied on the actuator be-
fore it breaks down. It is required that A be positive at all
times. Using Routh Hurwitz stability criterion [35],

λ 4
1 A 0 −C

λ 3
1 −B 0 0

λ 2
1 ε −C

λ 1
1
−BC

ε

λ 0
1 −C

(25)

It can be observed that the elements above and below the
ε in the first column have the same sign therefore a pair of
imaginary roots exist in the algebraic equation. There is also
a single sign change which implies that there is always one
positive root whenever A is positive. The fourth remaining
root is therefore negative. From this observation the require-
ment for keeping A positive at all times can be justified. This
observation is useful when running the numerical simulation
as it is the basis used to keep track of the positive root lo-
cus of the algebraic equation when solving the differential
equations. To track this root, the algebraic equation is dif-
ferentiated with respect to X to end up with

dλ1

dX
=

−F∗ cosθλ 3
1

Rsin2 θ
· dθ

dX −2
[

R2

r3 − r
(

Φ∗
R

)2
λ 4

1

]
dr
dX(

4
[
1−
(

Φ∗r
R

)2
]

λ1− 3F∗
Rsinθ

)
λ 2

1

. (26)

The four differential equations 21, 22, and 26 can now be
solved numerically. Considering the boundary conditions,
solving these PDEs becomes a two boundary valued prob-
lem with the boundaries being r(0) = r(L) = R where L
is the total length of the actuator in the undeformed state.
z(0) = 0 but z(L) as well as θ(0), θ(L) and λ1(0) are un-
known. In order to establish λ1(0) the algebraic equation
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needs to be solved given r(0) and θ(0). As such, the PDEs
are solved using the shooting method in which an initial
guess of θ(0) that satisfies the two boundary conditions r(0)=
r(L) = R is made.

The value of the shear modulus is chosen and calibrated
to closely fit the experimental data collected for multiple
applied loads. Since the model used is the Neo-Hookean
model, it is important that the correct shear modulus of the
actuator is chosen to accurately predict the displacement.
It should be noted that the shear modulus is a function of
temperature and frequency of actuation of the actuator at-
tributed to the viscous effect of the VHB (Very High Bond)
tape [36]. VHB (3M) is an acrylic elastomer that is used as
the dielectric elastomer of choice for the DEA throughout
this paper. The simulation is run with F = 20 gf (gram-force)
and Φ = 0 V. This particular simulation is performed using
MATLAB R2019a [37]. For a given θ(0), the positive value
of λ1(0) is calculated by solving the roots of the algebraic
equation and choosing the positive root. This value is the
one that is then used to solve Eq. 26 and with this, each iter-
ation of the numerical simulation ensures that λ1 is always
positive since the starting value of the iteration is positive.
With r(0), θ(0), z(0), and λ1(0), the rest of the differen-
tial equations are solved using ode45() to produce r(X),
z(X), θ(X), and λ1(X). Post processing is performed on
these variables such as estimating the behavior and trend of
displacement vs applied voltage and displacement vs load.
Figure 2 and Fig. 3 show these trends respectively. Further-
more the model can be used to perform closed loop control
as is discussed in section 3.
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Fig. 2 Simulation of stretch vs Applied voltage.
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Fig. 3 Simulation of stretch vs applied load.

2.3 Quasi-static Model Validation

The geometrical parameters of the tubular DEA used in the
simulation are shown in Table 1 below. The actuator is made

Table 1 Geometry parameters for simulation and validation

Parameter Value Unit
Radius 20.66 (mm)
Thickness 1 (mm)
Height 78 (mm)

from 3M VHB 4910 material of 130 cm by 78 cm size cut
from a tape roll. The VHB is rolled and attached onto two
plastic cylinders. One acts as the support (fixed end) while
the other is free to move (bottom end). The ends of the mem-
brane are covered with insulating tape to prevent short cir-
cuit between the two electrodes one on the outer side of
the membrane and the other on the inner side of the mem-
brane. Carbon grease(MG Chemicals) is used as the com-
pliant electrode and is pasted on both sides of the DE mem-
brane uniformly. A load of 20.04 gf is fixed on the bottom
end of the actuator producing a strain of 3.846 %. The fi-
nal length of the DE tube is 81 mm. The experimental setup
is shown in Figure 4(a). The data for the actual shape of
the DEA is extracted from the image using image digitizing
software and compared with the simulated shape. A com-
parison is shown in Figure 4(b).
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Fig. 4 Experimental validation. (a) Experimental setup; (b) Experi-
mental vs simulated shape.

It may be observed that the actual shape curvature is
more pronounced than the simulation. The model is also
tested on how well it predicts the displacement of the ac-
tuator with various weights. Figure 5 shows a comparison
between the experimental and simulated displacements with
various weights applied on the actuator.
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Fig. 5 Experimental vs simulated stretch.

As may be observed, the model does not account for the
viscous effects in the actuator so it provides the final equilib-
rium displacement of the DEA while the experimental data
has to go through the transient stages in order to reach the
equilibrium state for an applied load. Table 2 shows the er-
ror between the predicted and experimental displacements
for various weight values. The model, though simple can

Table 2 Percentage error for displacement prediction for various loads

F (gf) 20.04 31.21 34.22 54.27
Error(%) 1.62 2.26 0.69 1.80
F (gf) 57.18 63.22 68.36 73.86
Error(%) 1.52 0.01 0.47 1.07

predict the displacement of the tubular actuator and its sen-
sitivity can be tuned to perform well around a given fixed
load.

3 Dynamic model of the DEA

3.1 State Space Model of DE Tubular Actuator

A dynamic model is developed from the quasi-static model
established in section 2 using the theory of elasticity and
electrostatics by rewriting the algebraic equation and com-
bining it with Newton’s second law of motion. To account
for viscous effects that are not captured by the quasi-static
model, a lumped parameter damping is introduced into the
force balance of the actuator. The acceleration of the actua-
tor is given by

a∗ = g∗− Rsin(θ)
mλ 3

1

([
1−
(

Φ∗r
R

)2
]

λ
4
1 −

(
R
r

)2
)
− c∗

m
v,

(27)

where a∗ = a/2πHµ is the normalized acceleration, g∗ =
g/2πHµ the normalized gravity, c∗ = c/2πHµ the normal-
ized damping coefficient, and v the velocity of the actuator.
Taking the total stretch as λi = λ a

i λ
p
i with λ a

i as the stretch
due to actuation, λ

p
i the pre-stretch due to the added weight,

and i = 1,2,3, the acceleration can be written as

a∗ =
Rsinθ

m(λ p
1 )

3

{
(1−λ

a
1 )(λ

p
1 )

4 +

(
1

(λ a
2 )

2(λ a
1 )

3 −1
)

1
(λ p

2 )
2

+
(
Φ
∗rλ

a
2 λ

p
2

)2
λ

a
1 (λ

p
1 )

4

}
− c∗

m
v.

Assuming small pre-stretch, λ
p
i ≈ 1, the acceleration may

be rewritten to include only the actuated stretch terms

a∗ =−Rsin(θ)
mλ 3

1

([
1−
(

Φ∗r
R

)2
]

λ
4
1 −

(
R
r

)2
)
− c∗

m
v,

(28)

where λ a
i is replaced with λi for neatness.

Eq. 23 is rewritten to serve as the spring for the actuator.
Treating the actuator as a classic RC circuit for simplifica-
tion purposes, a relationship between the driving normalized
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voltage, u∗, and the normalized voltage on the membrane,
Φ∗, is given by

Φ̇
∗ =−Φ∗

RC
+

u∗

RC
,

where R is the circuit resistance and C is the membrane ca-
pacitance and

u∗ =
u
H

√
ε

µ
.

Let x1 be the position of the bottom disk of the actuator
and v = x2 = ẋ1 the velocity. Then its acceleration is a∗ =
ẍ1 = ẋ2. Finally let x3 = Φ∗, which gives the dynamic model
of the tubular actuator as Eq. 21, 22 and

ẋ1 = x2, (29)

ẋ2 =−
Rsin(θ)

mλ 3
1

([
1−
(x3r

R

)2
]

λ
4
1 −

(
R
r

)2
)
− c∗

m
x2,

(30)

ẋ3 =−
x3

RC
+

u∗

RC
. (31)

The dynamics is evaluated at the equilibrium point where
the tubular actuator settles under a constant mechanical load.
At this point, the model is linearized. In order to complete
linearization, note that r, z, θ , and λ1 are also functions of
x1, x3, and time t. Assuming small perturbations about the
equilibrium point and that the shape of the actuator does not
change significantly for small actuation, the first three dif-
ferential equations may be ignored which helps reduce the
order of the system to leave behind three states (x1,x2,x3).
Linearization introduces an error in the model and is ac-
counted for using the model uncertainty ∆G to ensure that
the controllers developed remain stable around the equilib-
rium point. The Jacobian, J of the system takes the form

J =


∂ ẋ1
∂x1

∂ ẋ1
∂x2

∂ ẋ1
∂x3

∂ ẋ2
∂x1

∂ ẋ2
∂x2

∂ ẋ2
∂x3

∂ ẋ3
∂x1

∂ ẋ3
∂x2

∂ ẋ3
∂x3

=


0 1 0

f1 f2 f3

0 0 − 1
RC

 .
The linearized state space equation is thereforeẋ1

ẋ2

ẋ3

=


0 1 0

f1 f2 f3

0 0 − 1
RC


x1

x2

x3

+


0

0
1

RC

u. (32)

It can be observed from the second state that the actuator
acts as a spring-mass-damper system in series with the RC
series circuit. f1 = ω2

n is the term that describes the natural
frequency of the system. It is through f1 that the stretch af-
fects the dynamics of the system as seen in Appendix C. For
this nonlinear problem, f1 varies also with voltage hence in
practice the spring constant is a variable parameter during

the actuation of the DEA. f2 = 2ζ ωn serves as the damp-
ing term. This is where the viscous effects of the membrane
affect the dynamics of the actuator. For a model without
viscosity, f2 = 0, which is true for the quasi-static model.
f3 = K f1 serves as the input gain from the voltage applied
onto the membrane where K is the constant gain of the sys-
tem. The overall gain, f 3/RC increases with increasing dis-
placement and voltage. Also the gain will increase with a
decreasing time constant. ẋ1 and ẋ2 make the second order
system that is driven by ẋ3, a first order system for the RC se-
ries circuit of the tubular actuator whose time constant con-
tributes to the control gain of the system. The expression of
the transfer function of the voltage input u to the disk posi-
tion x1 is given as

G(s) =
f3

RC

s3 +( 1
RC − f2)s2− ( f1 +

f2
RC )s−

f1
RC

. (33)

The parameters f1, f2, f3, and 1
RC can now be determined

with frequency response analysis by inspecting the frequency
response of the actuator over the range [0.02−8] Hz and fit-
ting a transfer function onto the data. At this point one can
trace how the physical parameters like stretch and the time
constant of the actuator affect and interact with the actuator
performance, control, and model. The model developed in
this manner is thus unique.

3.2 Determining f1, f2, and f3 analytically

In this section an attempt is made to determine f1, f2, and f3
analytically by making some assumptions on the non-linear
model to further simplify the process. Since the curvature of
the DEA is small, the DEA shape is assumed to retain the
un-stretched shape such that θ ≈ 90◦. r is also assumed to
be constant such that r≈ R. This gives the acceleration ẋ2 in
the non-normalized form as

ẋ2 =
−2πHµRL3

mx3
1

([
1−

εx2
3

µH2

]
x4

1
L4 −1

)
− c

m
x2. (34)

From this expression f1 becomes

f1 =
−2πHµR

mL

[
−1+

ε

H2µ
x2

3−
3

λ 4
1

]
×2πHµ. (35)

f2 is given as

f2 =−
c
m
×2πHµ, (36)

where the value of c is determined from the exponential de-
cay of the tubular actuator. f3 is determined using

f3 =
4πRε

mH
λ1x3×2πHµ. (37)

By inserting the operating point values of x3, λ1, and c, f1,
f2, and f3 can be determined.
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3.3 Experimental Setup and Frequency Response Analysis

Figure 6 shows the experimental setup. A sinusoidal input
signal of amplitude 2 kV running at a different frequency is
used for each experiment. The output for the displacement
magnitude of the DE tube is measured by the laser sensor
(OADM 2016441/S14F) with units in millimeters (mm). A
20 gf load is placed on the free end of the DE tube. The
actuation voltage is provided by a high voltage amplifier
(20HVA24-P2-F). The geometric parameters of the tubular
actuator are shown in Table 3. All data is collected using
dSpace [38].

Table 3 DE tube geometry parameters

Parameter Value Unit
R 8.2 (mm)
H 0.52 (mm)
L 80 (mm)

Fig. 6 Experimental setup.

A transfer function is estimated from the experimental
data from which the values of f 1, f 2, f 3, and 1/RC can be
calculated. The transfer function is determined empirically
by tuning the transfer function coefficients to fit the exper-
imental data as close as possible. Figure 7 shows the bode
diagram of the tubular actuator along with the experimental
data. The transfer function of the tubular actuator is given
as:

G(s) =
1.1

s3 +16s2 +900s+3000
. (38)

The parameters f1, f2, f3, and 1
RC are thus determined as

f1 = −856.2159, f2 = −12.4962, f3 = 0.3139, and 1
RC =

3.5038. The time constant τ for the electric circuit is there-
fore 0.2854 s. The state space model is:ẋ1

ẋ2

ẋ3

=

 0 1 0

−856.2159 −12.4962 0.3139

0 0 −3.5038


x1

x2

x3

+
 0

0

3.5038

u. (39)
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Fig. 7 Frequency response of the actuator.

For this setup, the operating point values are those used in
running the frequency response of the actuator, x3 = 2000
V and λ1 = 1.1127. Taking µ = 76500 and ε = 5.6234×
10−11 the parameters are determined analytically as f1 =
−870.0983 and f3 = 0.3093. This is in close agreement with
those determined using the frequency response.

4 Control System Design

4.1 PID control

A PID controller is designed using the Simulink [39] PID
tuner with the nominal model to meet the desired perfor-
mance requirements of having a settling time within two
seconds and zero overshoot. The focus of the tuner is set
to balance between reference tracking and disturbance re-
jection. For further details see [40]. The controller that is
identified is

KPID = 2623+
7764

s
−196

9.18
1+ 9.18

s

. (40)

Note that the derivative filter coefficient, N = 9.18 is
set to be higher than the bandwidth of the actuator which
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is 3.592 rad/s. A performance gain of 1.43× 10−5 is used
for slow reference tracking while a gain of 2×10−4 is used
for fast reference tracking.

4.2 H∞ Synthesis

An H∞ controller is also chosen to handle system uncer-
tainties arising from the non-linearity of the actuator which
is not captured by the linearized model. As a robust con-
troller it can also reject external disturbance and reduce sen-
sor noise. Figure 8 shows the schematic of the controller.

Fig. 8 Mixed sensitivity loop shaping for H∞ controller.

The reference signal is r, e is the error signal between
the model output signal mixed with sensor noise d2, u is
the control input from controller K, d1 is the external distur-
bance that goes into the model G, Ws and Wks are the error
sensitivity weight and control sensitivity weight respectively
while z1 and z2 are the corresponding performance signal
outputs. In selecting the weights, the objective is to main-
tain good signal tracking and disturbance rejection which
amounts to setting the sensitivity function, S small for low
frequencies. The controller is also required to reject sens-
ing noise and also account for model uncertainty, ∆G which
amounts to setting the sensitivity function close to unity for
high frequencies. As a results the weights are chosen as

Ws =
0.2s+6.283

s+0.0006283
, (41)

Wks =
0.0012s+0.001508

0.0001s+6.283
. (42)

The controller synthesized using these weights turns out to
be

K = 68.07s4+4.278×106s3+6.849×107s2+3.849×109s+1.283×1010

s5+317.8s4+6927s3+2.951×105s2+2.001×106s+1257 .

(43)

The controller is of a higher order and is difficult to im-
plement in real time control so a reduced order controller

Kr is generated from K. The controller is obtained using
the balred command in Matlab. The controller generated
is given by

Kr =
−34.99s2 +1.39×104s+4.911×104

s2 +7.657s+0.004811
. (44)

Kr is further multiplied by a performance gain of 5× 10−4

for fast reference tracking and a gain of 7× 10−5 for slow
reference tracking. The gains reduce the controller sensitiv-
ity and conserve control energy while controlling the tubular
actuator.

To ensure internal stability of the system, M(s) in the
presence of model uncertainty, the impact of ∆G on the
overall system is analyzed. ∆G is added from the plant input
to the plant output such that the true plant, Gtrue = G+∆G.
Using small gain theory, the system is stable if ||M||∞ <

1
||∆G||∞ . From figure 8, M = K

1+KG and ||M||∞ = 2,778.86.

The model uncertainty is bounded by ∆Gb = 0.063
s2+54s+900 .

Figure 9 shows the modeled uncertainty used to bound the
model error. Since ||∆G||∞ < ||∆Gb||∞ = 7×10−5, the inter-
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Fig. 9 Model uncertainty.

nal stability condition is met ||M||∞ < 1
||∆G||∞ = 14,285.71

5 Experimental Results

The controllers are implemented digitally via Simulink [39]
in connection with dSpace to evaluate their performance.
The sampling time for all the experiments carried out is
0.001 s. In comparing the performance of the controllers,
they are evaluated based on the reference tracking error, e(mm)
and control energy consumption, u(V ). The performance for
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both is evaluated using the root mean square (rms) value of
the signals defined by

∗rms =

√
∑(∗)2

N
, (45)

where ∗ is the signal in question and N is the length of the
signal (total number of elements in the signal). The con-
trollers are tested on how well they reject external distur-
bances and reduce sensor noise.

The external disturbance introduced into the system may
be treated as an impulse or pulse. It is generated by tapping
on the stand that supports the tubular actuator and as a result
causes it to swing back and forth. This causes an increase in
the magnitude of the error signal that the controllers com-
pensate for to maintain good reference tracking. Figures 10
and 11 show the results for position reference tracking of the
tubular actuator using PID and H∞ control respectively for a
0.003 Hz sinusoidal reference while Figure 12 and 13 show
the results for position reference tracking at higher frequen-
cies of actuation for a sinusoidal reference of 1 Hz. Even
with sensor noise, the controllers are able to track the refer-
ence signal but with a steady state error.

The reference tracking performance in terms of RMS at
different frequencies and amplitudes without external distur-
bance is shown in figure 14. It is observed that H∞ performs
better than the PID controller without any external distur-
bance. This is as expected due to the fact that in designing
the H∞ controller, sensing noise is taken into account, this
being a more robust controller. The control effort for both
controllers is comparable as shown in figure 15.

When external disturbances are introduced, the PID con-
troller performs better at higher frequency actuation while
H∞ is better at lower frequency actuation as seen in figure
16. On the other hand the H∞ controller still conserves the
control effort more than the PID controller as is shown in
figure 17.

The difference in performance may be attributed to the
fact that the gain used for the H∞ controller is high, making
the controller sensitive and in effect causing the controller
to use more control effort for better reference tracking and
noise rejection than the PID controller. A lower gain might
help the controller use even less control effort while still
maintaining good reference tracking.

6 Conclusion and Future Work

In this exercise, it is shown how the quasi-static model can
be converted into a dynamic model for control purposes.
The dynamic model is linearized about an operating point
and the parameters of the linearized model are determined
analytically and experimentally.The analytic approach al-
lows for fast adjustment and model update when the oper-
ating point of the actuator changes removing the need to run

0 50 100 150 200 250 300
0

2

4

P
o
s
it
io

n
 (

m
m

)

Experimental data

Reference

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4

0.6

E
rr

o
r

0 50 100 150 200 250 300

Time (sec)

0

2000

4000

6000

8000

10000

V
o
lt
a
g
e
 (

V
)
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(b) 0.003 Hz sine wave with disturbance

Fig. 10 0.003 Hz sinusoidal reference tracking using PID controller.
(a) without disturbance (b) with disturbance around 20, 90, 190, and
250 s.

experiments each time in identifying these values. The in-
fluence of how the pre-stretch, applied voltage, and shear
modulus affect the system is also shown. Reference track-
ing is finally performed to show that the non-linear tubu-
lar actuator can be controlled using PID and H∞ controls in
the presence of sensing noise and external disturbance. The
H∞ robust controller is designed to reduce on energy con-
sumption while maintaining good reference tracking. The
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Fig. 11 0.003 Hz sinusoidal reference tracking results using H∞ con-
troller. (a) without disturbance (b) with disturbance around 50, 70, 140,
and 220 s.

controller can also manage noise and disturbance rejection
without considerable loss in performance.

Future work has to be done in utilizing a more com-
plex model to accurately predict displacements over large
mechanical loads and strains as well as to account for mem-
brane stiffening during actuation. The Gent, Ogden, and Yeoh
models are good candidates to use as a model that can cover
large stretch regions. Since the VHB dielectric elastomer
membranes have high viscous effects, it is worth looking

(a) 1 Hz sine wave without disturbance

(b) 1 Hz sine wave with disturbance

Fig. 12 1 Hz sinusoidal reference tracking using PID controller. (a)
without disturbance (b) with disturbance between 6 and 8.5 s.

into models that incorporate this effect with a relaxation
term that affects the dynamics of the membrane with time
during loading and unloading as well as with the frequency
of the membrane actuation.

Acknowledgements This work was supported by the National Sci-
ence Foundation under Grant CMMI #1747855.
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(a) 1 Hz sine wave without disturbance

(b) 1 Hz sine wave with disturbance

Fig. 13 1 Hz sinusoidal reference tracking results using H∞ controller
(a) without disturbance (b) with disturbance between 7 and 9 s.

APPENDIX

6.1 APPENDIX A: Derivation of Equations of State

Starting with Eqn. 10,

δEH = 2πRH
∫

δWdX = Fδ zB +ΦδQ.

Here,∫
δWdX =

∫
(s1δλ1 + s2δλ2 + Ēδ D̄)dX . (46)

Fig. 14 Comparison of tracking error with no external disturbance ap-
plied.

Fig. 15 Comparison of control effort without external disturbance.

A small change in λ1 is given by

δλ1 =
∂λ1

∂dl
δdl =

δdl
dX

(47)

and from Eqn. 2, taking a small change in dl

δdl =
dr
dl

δdr+
dz
dl

δdz.

Substituting Eqn. 1 into this result gives

δdl =−cosθδdr+ sinθδdz.

Finally Eq. 47 is written as

δλ1 =−cosθ
d(δ r)

dX
+ sinθ

d(δ z)
dX

. (48)
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Fig. 16 Comparison of tracking error with external disturbance.

Fig. 17 Comparison of control effort with external disturbance.

Also a small change in λ2 is given by

δλ2 =
∂λ2

∂ r
δ r =

δ r
R
. (49)

Finally, from Eqn. 5, a small change in D̄ is given by

δ D̄ =
δq
A0

. (50)

With these, Eqn. 46 becomes∫ [
s1

(
−cosθ

d(δ r)
dX

+ sinθ
d(δ z)

dX

)
+ s2

δ r
R

+ Ē
δq
A0

]
dX

=
∫ [
−s1 cosθ

d(δ r)
dX

+ s1 sinθ
d(δ z)

dX
+ s2

δ r
R

+ Ē
δq
A0

]
dX .

Integrating by parts gives

s1(−cosθδ r+ sinθδ z)
∣∣∣B
A

+
∫ [(d(s1 cosθ)

dX
+

s2

R

)
δ r− d(s1 sinθ)

dX
δ z+ Ē

δq
A0

]
dX .

By comparing the left hand side with the right hand side
of the equation, the following is observed from the δ z term
inside the integral

d(s1 sinθ)

dX
= 0 =⇒ s1 sinθ =Constant. (51)

Since there is no δ z on the right hand side, physically this
means that the vertical longitudinal stress component is fixed
for a given applied load. This is the expected condition for
the membrane in static equilibrium since the vertical force
components must cancel out each other. Evaluating the bound-
aries gives

2πRH

{
s1(−cosθBδ rB + sinθBδ zB)

− s1(−cosθAδ rA + sinθAδ zA)

}
= Fδ zB.

The boundary conditions for the tubular actuator require that
δ rB = δ rA = δ zA = 0. Therefore

2πRHs1 sinθBδ zB = Fδ zB

2πRHs1 sinθ = F.
(52)

This corresponds to Eqn. 15. Moving back into the integral
is Eqn. 14 directly from

d(s1 cosθ)

dX
+

s2

R
= 0

d(s1 cosθ)

dX
=− s2

R
.

(53)

This result is from the fact that there are no external forces
acting on the surface of the membrane radially as would be
the case if the actuator were to be under compression or ten-
sion by an applied pressure on the membrane [41]. Finally,

2πRH
∫

Ē
δq
A0

dX = ΦδQ.

Taking the actuator as a cylindrical capacitor, Ē does not
vary along the longitudinal direction and hence is a constant
with respect to the X-direction. This gives

HĒ ·2πR
∫

δq
A0

dX = ΦδQ.

And from Eqn. 6

δQ = 2πR
∫

δq
A0

(54)

therefore

HĒ = Φ . (55)
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6.2 APPENDIX B: Derivation of the governing differential
equations

This is the extended derivation of equations 21 to 23: Divide
Eqn. 1 by dX to get

dr
dX

=− dl
dX

cosθ ,
dz
dX

=− dl
dX

sinθ .

But dl
dX = λ1. This gives Eqn. 21 which is

dr
dX

=−λ1 cosθ ,
dz
dX

= λ1 sinθ .

Using Eqn. 14 and 51 one can get Eqn. 22. Solving Eqn. 14
gives

ds1

dX
cosθ = s1 sinθ

dθ

dX
− s2

R
(56)

and solving Eqn. 51 gives

ds1

dX
sinθ =−s1 cosθ

dθ

dX
. (57)

Dividing Eqn. 57 by Eqn. 56 gives

tanθ =
−s1 cosθ

dθ

dX

s1 sinθ
dθ

dX −
s2
R

.

Solving for dθ

dX gives

s1 (tanθ · sinθ + cosθ)
dθ

dX
=

s2

R
tanθ

s1
dθ

dX
=

s2

R
sinθ

Expanding tanθ gives

s1

(
sinθ

cosθ
· sinθ + cosθ

)
dθ

dX
=

s2

R
tanθ ,

s1

(
sin2

θ + cos2 θ

cosθ

)
dθ

dX
=

s2

R
tanθ ,

and using the trigonometric identity sin2
θ + cos2 θ = 1 and

multiplying through by cosθ

s1
gives us Eqn. 22 as

dθ

dX
=

s2

s1R
sinθ . (58)

Now the algebraic equation 23 can be derived by solving
for s1 in Eqn. 15 and Eqn. 18 and setting the two equations
equal to each other. From Eqn. 15

s1 =
F

2πRH sinθ
.

Using the normalized load F∗ gives

s1 =
µF∗

Rsinθ

and with Eqn. 18

s1 = µ

(
λ1−

1
λ 3

1 λ 2
2

)
− D̄2

ελ 3
1 λ 2

2
=

µF∗

Rsinθ

µελ 4
1 λ 2

2 −µε− D̄2

ελ 3
1 λ 2

2
=

µF∗

Rsinθ
.

From Eqn. 20, D̄ = ελ 2
1 λ 2

2 Ē so,

µελ 4
1 λ 2

2 −µε− ε2λ 4
1 λ 4

2 Ē2

ελ 3
1 λ 2

2
=

µF∗

Rsinθ

λ
4
1

(
1− εĒ2

µ
λ

2
2 )

)
− 1

λ 2
2
=

F∗

Rsinθ
λ

3
1

From Eqn. 16, Ē2 = Φ2

H2 . Substituting this in the above ex-
pression gives

λ
4
1

(
1− ε

µ
· Φ̄

2

H2 λ
2
2 )

)
− 1

λ 2
2
=

F∗

Rsinθ
λ

3
1

Using the normalized applied voltage on the membrane gives
the algebraic equation[

1−
(

Φ∗r
R

)2
]

λ
4
1 −

F∗

Rsinθ
λ

3
1 −

(
R
r

)2

= 0. (59)

6.3 APPENDIX C: Jacobian elements

∂ ẋ1

∂x1
= 0,

∂ ẋ1

∂x2
= 1,

∂ ẋ1

∂x3
= 0.

f1 =
∂ ẋ2

∂x1
=

1
m

{
Rcosθ

([
1−
(

x∗3r
R

)2
]

λ1−
R2

r2λ 3
1

)
∂θ

∂x1

+2Rsinθ

(
R2

r3λ1
−

rλ1x2
3

R2

)
∂ r
∂x1

+Rsinθ

(
1−
(

x∗3r
R

)2

+
3R2

rλ 4
1

)
∂λ1

∂x1

}
,

f2 =
∂ ẋ2

∂x2
=−c∗

m
,

f3 =
∂ ẋ2

∂x3
=

2r2λ1x∗3
mR

sinθ ,

and

∂ ẋ3

∂x1
= 0,

∂ ẋ3

∂x2
= 0,

∂ ẋ3

∂x3
=− 1

RC
.



Physics-Lumped Parameter Based Control Oriented Model of Dielectric Tubular Actuator 15

References

1. P. Brochu and Q. Pei, “Advances in dielectric elastomers for actu-
ators and artificial muscles,” Macromolecular rapid communica-
tions, vol. 31, pp. 10–36, 01 2010.

2. L. Romasanta, M. Lopez-Manchado, and R. Verdejo,
“Increasing the performance of dielectric elastomer actuators
A review from the materials perspective,” Progress in
Polymer Science, vol. 51, pp. 188–211, 2015, environmentally
Relevant and Hybrid Polymer Materials. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0079670015000921

3. H. Stoyanov, P. Brochu, X. Niu, C. Lai, S. Yun, and Q. Pei, “Long
lifetime, fault-tolerant freestanding actuators based on a silicone
dielectric elastomer and self-clearing carbon nanotube compliant
electrodes,” RSC Adv., vol. 3, pp. 2272–2278, 2013. [Online].
Available: http://dx.doi.org/10.1039/C2RA22380E

4. R. K. Katzschmann, J. DelPreto, R. MacCurdy, and D. Rus, “Ex-
ploration of underwater life with an acoustically controlled soft
robotic fish,” Science Robotics, vol. 3, no. 16, 2018.

5. A. Marchese, C. Onal, and D. Rus, “Autonomous soft robotic fish
capable of escape maneuvers using fluidic elastomer actuators,”
Soft Robotics, vol. 1, pp. 75–87, 03 2014.

6. R. Pelrine, R. Kornbluh, Q. Pei, S. Stanford, S. oh, J. Eckerle,
and K. Meijer, “Dielectric elastomer artificial muscle actuators:
Toward biomimetic motion,” Proc. SPIE, vol. 4695, pp. 126–137,
07 2002.

7. C. Jordi, S. Michel, and E. Fink, “Fish-like propulsion of an air-
ship with planar membrane dielectric elastomer actuators,” Bioin-
spiration & biomimetics, vol. 5, p. 026007, 06 2010.

8. F. Carpi, S. Bauer, and D. de rossi, “Stretching dielectric elastomer
performance,” Science (New York, N.Y.), vol. 330, pp. 1759–61, 12
2010.

9. R. Pelrine, P. Sommer-Larsen, R. D. Kornbluh, R. Heydt, G. Ko-
fod, Q. Pei, and P. Gravesen, “Applications of dielectric elastomer
actuators,” in Smart Structures and Materials 2001: Electroactive
Polymer Actuators and Devices, Y. Bar-Cohen, Ed., vol. 4329, In-
ternational Society for Optics and Photonics. SPIE, 2001, pp.
335 – 349.

10. R. Pelrine, R. D. Kornbluh, J. Eckerle, P. Jeuck, S. Oh, Q. Pei, and
S. Stanford, “Dielectric elastomers: generator mode fundamentals
and applications,” in Smart Structures and Materials 2001: Elec-
troactive Polymer Actuators and Devices, Y. Bar-Cohen, Ed., vol.
4329, International Society for Optics and Photonics. SPIE, 2001,
pp. 148 – 156.

11. G. Kovacs, P. Lochmatter, and M. Wissler, “An arm wrestling
robot driven by dielectric elastomer actuators,” Smart Material
Structures, vol. 16, pp. 306–, 04 2007.

12. B. Massa, S. Roccella, M. C. Carrozza, and P. Dario, “Design and
development of an underactuated prosthetic hand.” in Proceedings
ICRA ’02, IEEE International Conference on Robotics and Au-
tomation, vol. 4, 01 2002, pp. 3374–3379.

13. P. Chakraborti, H. K. Toprakci, P. Yang, N. D. Spigna], P. Franzon,
and T. Ghosh, “A compact dielectric elastomer tubular actuator for
refreshable braille displays,” Sensors and Actuators A: Physical,
vol. 179, pp. 151 – 157, 2012.

14. M. Tryson, H.-E. Kiil, and M. Benslimane, “Powerful tubular core
free dielectric electro activate polymer (DEAP) push actuator,”
in Electroactive Polymer Actuators and Devices (EAPAD)
2009, Y. Bar-Cohen and T. Wallmersperger, Eds., vol. 7287,
International Society for Optics and Photonics. SPIE, 2009, pp.
447 – 457. [Online]. Available: https://doi.org/10.1117/12.815740

15. R. Sarban, R. Jones, B. Mace, and E. Rustighi, “A tubular dielec-
tric elastomer actuator: Fabrication, characterization and active
vibration isolation,” Mechanical Systems and Signal Processing,
vol. 25, no. 8, pp. 2879 – 2891, 2011.

16. J.-S. Plante and S. Dubowsky, “Large-scale failure modes of di-
electric elastomer actuators,” International Journal of Solids and
Structures - INT J SOLIDS STRUCT, vol. 43, 04 2006.

17. R. Sarban, B. Lassen, and M. Willatzen, “Dynamic electrome-
chanical modeling of dielectric elastomer actuators with metallic
electrodes,” IEEE/ASME Transactions on Mechatronics, vol. 17,
no. 5, pp. 960–967, Oct 2012.

18. R. Sarban and R. W. Jones, “Physical model-based active vibration
control using a dielectric elastomer actuator,” Journal of Intelli-
gent Material Systems and Structures, vol. 23, no. 4, pp. 473–483,
2012.

19. R. van Kessel, P. Bauer, and J. A. Ferreira, “Electrical modeling
of cylindrical dielectric elastomer transducers,” Smart Materials
and Structures, vol. 30, no. 3, p. 035021, feb 2021. [Online].
Available: https://doi.org/10.1088/1361-665x/abde4f

20. P. Huang, J. Wu, P. Zhang, Y. Wang, and C.-Y. Su, “Dynamic
modeling and tracking control for dielectric elastomer actuator
with model predictive controller,” IEEE Transactions on Indus-
trial Electronics, pp. 1–1, 2021.

21. G.-Y. Gu, U. Gupta, J. Zhu, L.-M. Zhu, and X. Zhu, “Modeling of
viscoelastic electromechanical behavior in a soft dielectric elas-
tomer actuator,” IEEE Transactions on Robotics, vol. 33, no. 5,
pp. 1263–1271, 2017.

22. G. Rizzello, D. Naso, A. York, and S. Seelecke, “Closed loop con-
trol of dielectric elastomer actuators based on self-sensing dis-
placement feedback,” Smart Materials and Structures, vol. 25,
no. 3, p. 035034, feb 2016.

23. ——, “Closed loop control of dielectric elastomer actuators based
on self-sensing displacement feedback,” Smart Materials and
Structures, vol. 25, no. 3, p. 035034, 02 2016.

24. Z. Ye, Z. Chen, R. Asmatulu, and H. Chan, “Robust
control of dielectric elastomer diaphragm actuator for hu-
man pulse signal tracking,” Smart Materials and Structures,
vol. 26, no. 8, p. 085043, jul 2017. [Online]. Available:
https://doi.org/10.1088/1361-665x/aa75f7

25. S. Xie, P. Ramson, D. Graaf, E. Calius, and I. Anderson, “An adap-
tive control system for dielectric elastomers,” in 2005 IEEE Inter-
national Conference on Industrial Technology, 2005, pp. 335–340.

26. T. Hoffstadt and J. Maas, “Adaptive sliding-mode position control
for dielectric elastomer actuators,” IEEE/ASME Transactions on
Mechatronics, vol. 22, no. 5, pp. 2241–2251, 2017.
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