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Abstract

The landfall of Hurricane Harvey in August 2017 provided the opportunity to study the impact of extreme freshwater discharge
on chromophoric dissolved organic matter (CDOM) properties in a subtropical estuary (Galveston Bay, Texas). Both fluores-
cence spectroscopy (excitation-emission matrices) and a three-component parallel factor analysis (PARAFAC) model identified
changes in CDOM properties. Comparing to Coble’s peaks, component 1 was similar to peak C, component 2 to peak M, and
component 3 to peak B. Results clearly show three periods with distinct CDOM properties: a dry season, a wet season, and
Hurricane Harvey. The dry season was characterized by higher values of the spectral slope and fluorescence and biological
indices. The wet season was characterized by high values of PARAFAC components 1 and 2 (humic-like) and the absorption
coefficient at 350 nm. Some CDOM components were highly correlated with salinity, indicating conservative mixing.
Component 3 (protein-like) had a low correlation to salinity, suggesting degradation or production processes in the bay.
Silicates and NO3™ + NO,™ had negative relationships with salinity and a positive one with PARAFAC components 1 and 2.
PARAFAC component 3 was correlated with dissolved oxygen and chlorophyll @, suggesting a relationship between CDOM
fluorescent components and phytoplankton activity. High values of the humification index were observed immediately after
Hurricane Harvey, indicating increased input of terrestrial organic matter into the bay. Hurricane Harvey increased CDOM levels
and humification, and the variability and changes seem to be mostly due to freshwater discharge from the San Jacinto River and
not the Trinity River. The influx of freshwater was sufficient to eliminate the salinity gradient in Galveston Bay and significantly
change CDOM properties. Galveston Bay recovered quickly from the hurricane and associated flux of freshwater, returning to
pre-hurricane CDOM characteristics in less than 2 months.
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Introduction

Hurricane Harvey hit the Texas coast on August 25th, 2017,
as a Category 4 hurricane. The storm stalled over Houston for
several days, resulting in over 1 meter of rainfall, making it the
wettest tropical cyclone recorded in North America (Du et al.
2019; van Oldenborgh et al. 2018). Most of this water ran off
into Galveston Bay, which is a highly anthropogenically al-

) ) tered estuary (Al Mukaimi et al. 2018). Estimates of the vol-
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The light emitting properties of CDOM affects water quality,
primary productivity, and dissolved oxygen levels (Stedmon
et al. 2000). Analysis of CDOM has applications in carbon
cycling, tracking of primary productivity, geochemical cy-
cling, and tracing of inputs to water bodies (Kowalczuk
et al. 2003). Blough et al. (1993) demonstrated the usefulness
of CDOM as a tracer through sampling in the eastern
Caribbean Sea. They found areas near the mouth of the
Orinoco River had higher concentrations of CDOM than areas
further from freshwater sources, indicating that freshwater in-
puts account for a significant amount of the CDOM in nearby
water bodies. CDOM has been used to trace the chemical
evolution and transformation of oil in the water column of
the Gulf of Mexico following the Deepwater Horizon oil spill
(Bianchi et al. 2014), and as an indicator of the microbial
transformation of organic matter released by phytoplankton
(Zheng et al. 2019).

There are few reports of hurricane affects on CDOM dy-
namics in estuaries. Studies exploring hurricane dynamics
have focused on other components of dissolved organic matter
(DOM) and have not produced consistent results, possibly due
to differences between sites and the storms (i.e., wind speeds,
rainfall). Hurricane Irene (2011) resulted in an increase of
dissolved organic carbon (DOC) from 7 to 18 mg/L in the
Neuse River estuary (Brown et al. 2014), but Hurricane
Katrina (2005) produced no significant change in DOC, and
only a small, but significant, change in colloidal lignin in the
East Pearl river (Shiller et al. 2012). Typhoon Goni resulted in
an increase of DOC from 1.2 to 2.48 mgC/L in a mangrove
river in Okinawa, Japan (Kida et al. 2018). For Galveston Bay,
high CDOM absorption and DOC and low spectral slopes
were reported after Harvey (D’Sa et al. 2018), indicating a
large input of terrestrial organic matter. In the first week after
the storm, floodwaters discharged 87 + 18 Gg of DOC of
terrestrial origin (Yan et al. 2020).

At 1600 km?, Galveston Bay is the largest estuary in Texas
and 7th largest in the USA. Nutrient concentrations are in-
creasing in the bay, resulting in increased eutrophication
(Bugica et al. 2020). The main freshwater inputs into the
bay are the Trinity and San Jacinto Rivers, with several small-
er inputs from bayous. The Trinity River’s watershed extends
north to the Dallas-Fort Worth metropolitan area and contrib-
utes roughly 80% of the freshwater input to the bay. The San
Jacinto River’s watershed includes the Houston metropolitan
area and contributes roughly 10% of the freshwater input to
the bay. Together, the two watersheds make a system that is
roughly 72,500 km? and is home to roughly one half of the
state’s population. These rivers play an integral role in the
water chemistry of Galveston Bay. It has been estimated that
80% of the nitrogen and phosphorus present in the bay are
from these two sources. Both rivers are managed, and Lake
Houston on the San Jacinto River and Lake Livingston on the
Trinity River provide some attenuation of runoff and pollutant
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loads into the bay (Galveston Bay Estuary Program 2002).
Urbanized estuaries, such as Galveston Bay, show changes
in the spectroscopic characteristics of CDOM, with increased
concentrations of Coble’s peak T, a tryptophan-containing
protein-like component of CDOM (Tzortziou et al. 2015) as-
sociated in particular with sewage discharges in urban envi-
ronments (Hudson et al. 2007), and decreased aromaticity and
relative molecular weight (Gold et al. 2020; Carstea et al.
2009).

The original objectives of this study were to analyze the
spatial and temporal changes of CDOM components in
Galveston Bay and to determine if the CDOM components
of the two main rivers draining in the bay are different. The
landfall of Hurricane Harvey during the study period provided
the opportunity to investigate the impact of hurricanes and
elevated freshwater discharge on the CDOM components of
Galveston Bay. A fire and spill at the Intercontinental
Terminal Company (ITC) on the bank of the Houston Ship
Channel, in Houston, Texas, on March 2019 (Aly et al. 2020)
was an additional event with the potential to affect CDOM
components in Galveston Bay during the study period.

We hypothesize that terrestrial CDOM components in-
creased after Hurricane Harvey, they are different in the dry
months from those in the rainy months, and that CDOM has a
more urbanized signature in the San Jacinto River than in the
Trinity River due to differences in their catchment areas.

Methods

Water samples were taken at eight stations in a sampling de-
sign from the mouth of the Trinity River (the main source of
freshwater into the bay) to the main opening into the Gulf of
Mexico (Fig. 1). Samples were taken at six sampling stations
using 5 L Niskin bottles, at the surface (1 m depth) and bottom
(1 m above the bottom) of Galveston Bay, Texas (Fig. 1),
during June and September, and in nine sampling stations in
November of 2017; March, June, September, and November
2018; and March 2019. In March 2019, additional samples
were taken as close as possible to the chemical spill site from
the ITC facilities (Aly etal. 2020). In June 2019, samples were
collected in triplicate from both the Trinity and San Jacinto
Rivers (Fig. 1) to evaluate the two main sources of freshwater
into Galveston Bay.

Salinity was measured from water samples taken from the
Niskin bottles and measured in a GuildLine Instruments
Model 8400B salinometer. Salinity was calculated from con-
ductivity using the equation for practical salinity by
UNESCO/ICES/SCOR/IAPSO (1980). Nutrients were ana-
lyzed using an Astoria-Pacific Analyzer. Nitrates and nitrites
were analyzed following the method by Armstrong et al.
(1967), ammonium by the method of Harwood and Kuhn
(1970), silicates by the method of Armstrong et al. (1967),
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Fig. 1 Galveston Bay, with the sampling stations used in this study. Stations circled were added in March 2019 close to the Intercontinental Terminals

Company (ITC) facilities and are close to the mouth of the San Jacinto River

and orthophosphates by the method of Bernhardt and
Wilhelms (1967). Dissolved oxygen was determined by the
Winkler titration method (Strickland and Parsons 1972) using
a potentiometric titrator. Dissolved oxygen data is not avail-
able for the September 2017 sample collection.

Water samples from the Niskin bottles were filtered onto 47-
mm glass fiber filters (GF/C, Whatman) for pigment analysis.
The filters were placed in 15 mL centrifuge tubes kept on dry ice
in the dark and transferred to a — 20 °C freezer on return to the
laboratory. Chlorophyll @ was extracted from the filters using 10
mL of ice-cold 90% acetone in centrifuge tubes. Following son-
ication (QSonica Q125) for 1 min, the filters were extracted
overnight at 4 °C in the dark. The following day, the pigment
extraction was centrifuged to remove suspended particles, and
the supernatant was decanted and diluted 10-fold if the extrac-
tion was visibly green. For analysis, 3 mL aliquots were placed
in quartz glass cuvettes (10 mm, Firefly Sci.), and chlorophyll a
concentration was measured by fluorescence using a TD-700
fluorometer (Turner Designs) calibrated with a chlorophyll a
standard (Arar and Collins 1997).

For CDOM absorbance and fluorescence, water samples
were gravity-filtered through pre-combusted glass fiber filters
(GF/C, Whatman). Excitation-emission matrices (EEM) and
absorbance spectra were obtained with a Horiba Aqualog
fluorometer in a 1-cm quartz cuvette, with excitation wave-
lengths from 240 to 500 nm every 2 nm. Emission values were
recorded every 2 nm. Fluorescence and absorption spectra
were corrected by subtracting a high-purity water sample

(Raman Water Fluorescence Reference, Starna Scientific).
Following the procedure of Kothawala et al. (2013), fluores-
cence spectra were corrected by inner filter effect using the
Aqualog software, and intensities were converted to Raman
units (excitation at 350 nm, emission from 371 to 428 nm)
(Lawaetz and Stedmon 2009) using the daily high-purity stan-
dard. Fluorescence (intensity at 450 nm divided by the inten-
sity at 500 nm, both at 370 nm excitation (McKnight et al.
2001)), humification (ratio of the sum of the fluorescence
between 435 and 480 nm and between 300 and 345 nm at a
fixed excitation of 254 nm (Ohno 2002)), and biological or
freshness (intensity 380 nm divided by the intensity at 430
nm, both at an excitation of 310 nm (Huguet et al. 2009))
indices were calculated (Gabor et al. 2014) using the
“eemR” package (Massicotte and Markager 2016).

Absorbance measurements were converted to Napierian
absorption coefficients by:

a(A) = 2.303 A(\)/1

where a(]) is the absorption coefficient at wavelength A, A(A)
is the measured absorbance at wavelength A, and 1 is the cu-
vette path length in meters. The absorption coefficient at
350 nm (a350) was used as a proxy for CDOM concentrations
(Massicotte et al. 2017). Spectral slopes (S) of absorption
spectra (Loiselle et al. 2009) were calculated by fitting a
Gaussian curve to the spectra in the 240 to 500 nm range.
Spectral slope ratios (Sr) (Helms et al. 2008) were calculated
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as the ratio of the slope from 275 to 295 nm divided by the
slope from 350 to 400 nm. Spectral slopes and spectral slope
ratios were calculated using the “cdom” package (Massicotte
and Markager 2016). Packages “eemR” and “cdom” were run
with R version 3.5.2 (R Core Team 2018).

A parallel factor analysis (PARAFAC) model was fitted to the
fluorescence data (Stedmon et al. 2003) using the “drEEM” tool-
box version 0.5 for MATLAB (MathWorks Inc.) (Murphy et al.
2013). A model was fitted to the data using non-negativity con-
straints in all modes. During the exploratory phase, one sample
and one excitation wavelength were removed due to high lever-
age, leaving a total of 122 samples in the dataset. The intensities
of fluorescence of the four components are reported relative to
the maximum intensity of each component. A three-component
model was fitted to the data, with a core consistency of 74.3 and a
fit of 96.6%. The model was validated using split-half analysis
(Stedmon and Bro 2008).

A permutational multivariate analysis of variance (Anderson
2001) was performed on the PARAFAC components, the three
fluorescence indices, azsg, S, and Sr by transforming the data
using the Hellinger transformation (Legendre and Gallagher
2001) with the Euclidean dissimilarity index with 9999 permu-
tations. Function “nested.anova.dbrda” in package
“BiodiversityR” was used. A post hoc test was performed with
the function “betadisper” in package “vegan,” correcting by bias
(Stier et al. 2013). Both packages were used with R version 3.5.2.
Redundancy Analysis (RDA) was done using CANOCO (ver-
sion 5.12) (ter Brak and Smilauer 2012). Maps were made with
Ocean Data View version 5.2.1 (Schlitzer 2020. Ocean Data
View. https://odv.awi.de).

Results and discussion

Spectral loadings and excitation-emission plots for the three
components of the PARAFAC model are shown in Fig. 2.
Component 1 has an excitation wavelength of 336 nm and
emission at 489 nm; component 2 has an excitation
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wavelength of 292 nm and emission at 394 nm; and compo-
nent 3 has excitation at 280 nm and emission at 317 nm.
Component 1 is similar to peak C, component 2 to peak M,
and component 3 to peak B (Stedmon et al. 2003; Coble 1996,
2007). Results were incorporated into the OpenFluor online
database (Murphy et al. 2014) and compared with other results
with a similarity of 0.95 or higher. Components 1, 2, and 3 are
similar to components D, B, and C, respectively, in Shutova
et al. (2014), who interpreted their component D as peaks A
and C, component B as humic-like, and component C as pro-
tein-like. Component 1 is component 1 in Catala et al. (2015),
Tanaka et al. (2014), and Kulkarni et al. (2018) who all
interpreted it as a humic-like component. Component 2 is
component 2 in Kulkarni et al. (2018) who interpreted it as a
humic-like component, and component 3 is component 5 in
Yamashita et al. (2010) who interpreted it as a protein-like
component.

There were no significant differences between the surface
and bottom samples (t-test, all P values above 0.05) for all
parameters analyzed, and all values were combined for further
analysis. In September 2017, immediately after Harvey made
landfall in the Houston area, none of the parameters had a
significant correlation with salinity, likely due to the very large
amount of water going through the bay (D’Sa et al. 2018)
eliminating the salinity gradient from the Trinity and San
Jacinto Rivers. Salinity in September 2017 dropped from a
median value of approximately 16 ppt in June 2017 to 3.4
ppt and increased to 16 ppt again in November 2017. The
highest median salinity values were observed in June 2018,
with a median value of 25.9 ppt (Fig. 3).

The minimum median temperature (17.3 °C) was observed
in March 2019 and the maximum (30.2 °C) in June 2018,
which was also the driest month (Fig. 3A). The minimum
median dissolved oxygen concentration (171 pwmol/L) was
observed in June 2018 when salinity was highest. The lowest
temperature (Fig. 3C) was associated with the highest median
oxygen concentration (360 pmol/L) in March 2019. The low-
est median chlorophyll a concentration (5.6 ug/L) was

400 500 300 400 500 300 400 500
Ex. (nm)

Fig. 2 Spectral loadings (A) and excitation-emission plots (B) for the three components of the PARAFAC model obtained for Galveston Bay, color-

coded for fluorescence intensity in Raman units
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observed in November 2017, whereas the highest (21.2 ug/L)
was in June 2018 (Fig. 3D). June 2018 had the highest median
salinities, temperatures, and chlorophyll a values.

Relatively high and variable nitrate plus nitrite (NO;™ +
NO;’) concentrations were observed in Galveston Bay during
the last two surveys (November 2018 and March 2019),
whereas nitrate plus nitrite concentrations were low and rela-
tively constant on all other sampling occasions (Fig. 4).
Ammonium and phosphates had a similar temporal pattern,
with maximum median values in November 2017 (Fig. 4).
Silicates had a significant inverse relationship with salinity,
suggesting conservative mixing. There were some outlying
values corresponding to the March 2019 sampling (Fig. 1,
Supplementary Information). The spatial distribution of salin-
ity follows a distinct pattern, increasing to the south as sam-
pling stations get closer to the mouth of the estuary (Fig. 5).
The gradient was stronger during the driest month
(June 2018), and there was no salinity gradient a few days
after Hurricane Harvey (September 2017).

The humification index (HIX) and spectral slope (S) did
not show a strong spatial gradient, except for HIX in the
September 2017 sampling, with values increasing to the south
(Fig. 5), suggesting more recalcitrant organic matter in the
bay. HIX also showed a large increase after Hurricane
Harvey (Fig. 6A), indicating an increase of humification and

Date

relative molecular weight, consistent with the results of
humic-like PARAFAC components 1 and 2 (Fig. 7A and B).

PARAFAC components 1 and 2 show a significant in-
crease in after Hurricane Harvey (September 2017), indicating
a large input of terrestrial organic matter into the bay (Fig. 7A
and B). PARAFAC component 3 does not show an increase
after Hurricane Harvey but relatively low values for the first
sampling months, and then a slow increase later on (Fig. 7C).
PARAFAC components 1 and 2 had different spatial distribu-
tions, with maximum and minimum values in different places
and input from the Trinity and San Jacinto Rivers and evi-
dence of production mid-bay. Component 3 had a different
spatial pattern than both components 1 and 2, with clearer
input from the two rivers draining into the bay (Fig. 8).

The biological or freshness index had a decrease during
September 2017 when Hurricane Harvey hit (Fig. 6B). The
spectral slope had a slight decrease in September 2017 to
0.013 nm ', but for all the other months, the values were in
the range from 0.014 to 0.016 nm™' (Fig. 6C). The spectral
slope ratio had a temporal behavior similar to that of the
protein-like PARAFAC component 3, with values increasing
from June 2017 to maximum values in June and September
2018 and decreasing slightly in November 2018 and
March 2019 (Fig. 6D). The fluorescence index did not show
any temporal trends, with monthly means between 1.2 and
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Fig. 8 Spatial distribution of the three PARAFAC components in Galveston Bay during September 2017, June 2018, and March 2019

1.3, suggesting that the dissolved organic matter in the bay is
mostly of terrestrial origin (Fig. 2, Supplementary Material).
The absorption coefficient at 350 nm (ass0), which is cor-
related with total CDOM concentration, showed an increase in
September 2017, after Hurricane Harvey, from 3.05 m ! in
June 2017 to 13.8 m ™" in September 2017, the highest median
value for all the samplings (Fig. 3, Supplementary Material).
PARAFAC components 1 and 2 show a negative relation-
ship with salinity, indicating conservative mixing, with the
main input from the Trinity River except after Hurricane
Harvey when our results suggest a higher input from the San
Jacinto River. PARAFAC component 3 did not show a con-
servative mixing behavior, with possible sources in the bay
(Fig. 4, Supplementary Information. The relationship of
component 2 with salinity is identical to that of Component
1, and it is not shown). Galveston Bay is increasingly eutro-
phic (Bugica et al. 2020), and increased primary productivity
could explain the non-conservative behavior of component 3.
The humification index shows an interesting behavior with
respect to salinity (Fig. 5, Supplementary Material), with
September 2017 (shown in the box in Fig. 5 in the
Supplementary Information) sampling clearly separated from
all the other months. If the September 2017 data associated
with Hurricane Harvey were omitted from the analysis, then
there was a tendency for the humidification index to decrease
towards higher salinities, consistent with lower humification
and lower molecular weight CDOM in seawater. Similar
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behavior was reported for the Evros river in the Balkans
(Tzortziou et al. 2015).

The spectral slope had a slight decrease in September 2017
t0 0.013 nmﬁl, but for all the other months, the values were in
the range 0f 0.010 to 0.017 nm ' (Fig. 6C). The fluorescence
index did not show any temporal trends, with monthly means
between 1.2 and 1.3, suggesting DOM in the bay is mostly of
terrestrial origin (Fig. 1, Supplementary Material).

The results for the September 2017 samples, taken a few
days after Hurricane Harvey, were statistically different from
the other months. Taking all results, a permutation nested
(sampling stations nested in month) MANOVA was highly
significant (Table 1):

Over the course of this study, there was high environmental
variability, with a very wet September 2017 (lowest median
salinities, Fig. 3) due to Hurricane Harvey and a dry June 2018
month (highest median salinity, Fig. 3). Using principal com-
ponent analysis with normalized values for all sampling trips

Table 1 Permutation-based nested MANOVA using 9,999
permutations

df Sum of Squares F Pr(>F)
Date 7 0.049151 8.9389 0.0001
Station 36 0.028278 3.8775 0.0001
Residual 70 0.014181
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(Fig. 9), the first axis explains 41.3% of total variance, and the
second axis explains 27% of total variance, for a total ex-
plained variance for the first two axes of 68.3%.

The highest loadings (in absolute value) for the PCA first
axis are PARAFAC components 1 and 2, spectral slope, bio-
logical index, and salinity. For the second axis, the highest
absolute loadings are PARAFAC component 3, spectral slope
ratio, and the humification index. Lower salinities, associated
with more rainfall, increase variability due to increased fresh-
water inputs to the bay with increased sources of CDOM. The
increase in CDOM can be explained by high discharge from
the Trinity and San Jacinto Rivers in the wet months.
Additionally, the surrounding land area around the bay con-
tains highly urbanized (City of Houston, Texas) and agricul-
tural areas. Surface runoff into the bay during wet periods
could also increase the variability of CDOM present.

A redundancy analysis using salinity, nutrients, chloro-
phyll @ and month as independent variables, and dry and wet
seasons as supplementary analysis, explained 45.1% of total
variance (Smilauer and Leps 2014) as shown in Fig. 10.

The first axis that accounts for 31.3% of the total variance is
negatively related to salinity and the fluorescence and biological
indices; it is positively related to PARAFAC components 1 and
2, silicates and NO3;™ + NO,". The second axis that accounts for
7.75% of total variance is negatively related to PARAFAC com-
ponent 3, dissolved oxygen, and chlorophyll a. Axis 1 separates
the wet months, March, September, and November 2018 and
March 2019, from the dry months. Axis 2 divides September
2017 (Hurricane Harvey) from the other months.

<
-~
Component 3 Sr
X
(=} A350
~
)
o~
K% June 18 ]
é FIX
- Nov18[]
c A Dry
Qe T e
g Component 2 S
Q.
£
s Component 1 Nov 17
(&)
'g June 17
()
C
=
a
HIX
3 [Jsept 17
1 .
-1.0 1.0

Principal Component Axis 1 (41.3%)

Fig. 9 Principal component analysis of CDOM results for Galveston
Bay. Total variance explained by the first two axes is 68.6%. S =
spectral slope, FIX = fluorescence index, BIX = biological index, A350
= absorption coefficient at 350 nm, SR = spectral slope ratio, HIX =
humification index

CDOM results are different for the Trinity and San Jacinto
Rivers as they enter Galveston Bay (Fig. 10), with humic-like
and protein-like components and @350 higher in the San
Jacinto than in the Trinity River. The spectral slope ratio is
higher in the Trinity than in the San Jacinto. These spectro-
scopic characteristics agree with the signature of urbanized
estuaries (Gold et al. 2020). Changing rainfall patterns may
influence the relative proportions of San Jacinto and Trinity
River water entering the bay and thus changing the spectral
signature of CDOM in the bay.

A permutation multivariate nested ANOVA test showed a
highly significant effect by month (Table 1). A redundancy
analysis (RDA), the constrained form of principal component
analysis, clearly shows the September 2017 sampling
completely separated from the other months (Fig. 10). After
Hurricane Harvey, there was a significant input of terrestrial
organic matter (a 4.5-fold increase from June to September
2017, as indicated by ass0), with a terrestrial signature as de-
termined by an increase in PARAFAC components 1 and 2,
and the humification index. A decreased biological (or fresh-
ness) index indicates older, more degraded CDOM. The only
significant positive correlation with salinity was the fluores-
cence index in November, with a significantly higher slope at
the bottom. It went from values around 1.2 in the upper bay
with salinities of 9 PSU, indicating a terrestrial origin, to
values around 1.8 in the lower bay with salinities of 25 PSU,
indicating a microbial origin (Gabor et al. 2014). These results
suggest that as the water flows down the bay, processes other
than conservative mixing are contributing to these patterns,
such as microbial degradation or CDOM input from marshes
and other vegetation around the bay (Catala et al. 2013). A
small but significant decrease in spectral slope indicates the
new organic matter has a higher average molecular weight
than before or after the storm.

After the September 2017 sampling when Hurricane
Harvey hit, PARAFAC components 1 and 2, @350, and HIX
values went back to their previous values by the November
2017 sampling, with a clear difference between the September
versus the June and November results (Figs. 6 and 7). Water
properties measured in June and November 2017 were not
significantly different, indicating rapid recovery from the ele-
vated flux of freshwater into Galveston Bay caused by
Hurricane Harvey in August 2017. This is consistent with a
two-month recovery period for Galveston Bay after Hurricane
Harvey reported by D’Sa et al. (2018), Liu et al. (2019), and
Du et al. (2019), indicating a high resiliency for this
ecosystem.

The variability of CDOM components increases with de-
creasing salinity, associated with increased rainfall (Fig. 10).
More rainfall can produce flooding of areas adjacent to the
riverbanks or areas usually not flooded, and this can contribute
other sources of CDOM, such as riparian vegetation as report-
ed for Mediterranean rivers (Catala et al. 2013). PARAFAC
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components 1 and 2 and the humification index have high pos-
itive loadings for the first PCA axis, while salinity has a high
negative loading (Table 1, Supplementary Material). This agrees
with the interpretation given to these components and HIX, as
representing humic terrestrial CDOM. Lu and Liu (2019) ob-
served an increase in lignin, tannin, and condensed aromatic

compounds during high flow conditions in south Texas rivers,
which agrees with our observations in Galveston Bay after
Harvey. PARAFAC component 3, which is a protein-like com-
ponent, and the spectral slope ratio have high loadings for axis 2
(Table 1, Supplementary Material). PARAFAC component 3
and the spectral slope ratio do not have conservative mixing,
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shown as a not significant relation with salinity (Fig. 4,
Supplementary Material), and both show an increase at medium
salinities (15-20 PSU), suggesting increased biological activity in
the estuary. Yan et al. (2020) reported a similar effect when
analyzing the distribution of DOC. PARAFAC components 1
and 2 had a significant relationship with silicates, as shown by
the small angle between the arrows of both PARAFAC compo-
nents and that of silicates (Fig. 10) and linear relationships be-
tween both components and silicates (Fig. 6, Supplementary
Material), suggesting a relationship with phytoplankton activity.
At low NO3;™ + NO,™ concentrations, component 2 increases and
then remains constant (Fig. 6). The relationship of PARAFAC
components 1 and 2 with silicates and NO;™ + NO,™ could also
indicate a relationship with primary productivity in the bay (Fig.
10), but the relationship with chlorophyll is not strog.

Based on samples collected in the mouth of the Trinity
River in March 2019 (Fig. 11), the source of increased humi-
fication was likely the San Jacinto River, rather than the
Trinity River. This could be due to differences in their catch-
ment areas. The San Jacinto River flows into Galveston Bay
through a highly urbanized and industrialized area in the
Houston metropolitan area, whereas the Trinity River is much
longer and goes mainly through agricultural and forest areas
before draining into Galveston Bay. Higher values of protein-
like peaks (particularly peak T) in the San Jacinto River agree
with the spectroscopic signal of urbanized rivers, mostly from
sewage discharges (Carstea et al. 2009; Hudson et al. 2007,
Tzortziou et al. 2015). The CDOM pattern observed after
hurricane Harvey in the September 2017 sampling (i.e., in-
creased humic-like and protein-like components) and absorp-
tion coefficient at 350 nm (a350) and decreased spectral slope
(Figs. 6 and 7) resembles the differences between the Trinity
and San Jacinto Rivers (Fig. 11). This suggests changes ob-
served in the September 2017 sampling (right after Harvey)
were due mostly from discharges from the San Jacinto River
rather than from the Trinity River, agreeing with results from
D’Sa et al. (2018), Yan et al. (2020), Steichen et al. (2020),
and Valle-Levison et al. (2020). This is supported by the fact
that during the first few weeks after Harvey, the main flow of
freshwater into the bay was the San Jacinto River (approxi-
mately 3300 m?/s) and not the Trinity River (approximately
2500 m*/s) (D’Sa et al. 2018; Liu et al. 2019; Yan et al. 2020).
Warnken and Santschi (2004) observed a linear increase of
DOC into the bay with an increasing flow from the Trinity
River, but during tropical storm Allison the Trinity River had
reduced DOC concentrations.

Conclusions

High environmental variability driven by salinity changes
reflected in CDOM components was observed over a 2-year
period in Galveston Bay. Higher CDOM variability was

associated with lower salinities during high precipitation sea-
sons. Both silicates and NO;™ + NO,™ had a negative relation-
ship with salinity and a positive relationship with PARAFAC
components 1 and 2, while PARAFAC component 3 had a
positive relationship with dissolved oxygen and chlorophyll a.
These results suggest a relationship of CDOM fluorescent
components and phytoplankton activity in the bay. Three dis-
tinct groups of results are observed: the wet and dry seasons
and Hurricane Harvey. In particular, June 2018 stood out with
the highest median salinity, temperature, and chlorophyll a
values. Important differences were observed between the
CDOM signatures of the San Jacinto and Trinity Rivers, with
amore urbanized signal from the San Jacinto River. There was
a significant impact by Hurricane Harvey on CDOM compo-
nents in Galveston Bay, particularly an increase in the humi-
fication index, mostly due to the discharge of the San Jacinto
River and not to the Trinity River, which is usually the main
source of freshwater into the bay.
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