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0. Introduction 

 

Every theory of L-functions must satisfy the axiom of multiplicativity/inductivity, 

which simply requires that γ-factors for induced representations are equal to those of 

the inducing representations. This axiom is a theorem for Artin L-functions and the L-

functions obtained from the Langlands-Shahidi method [Sha10], and is a main tool 
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in computing γ-factors, root numbers, and L-functions. On the other hand, its proof in 

the cases obtained from Rankin-Selberg methods is quite involved and complicated. It 

is also central in proving equality of these factors when they are defined by diffierent 

methods and in establishing the local Langlands correspondence (LLC) [Sha12,Sha17, 

HT01,Hen00,GT11,CST17]. Its importance as a technical tool in proving certain cases 

of functoriality [CKPSS04,Kim03,KS02] is now well established. 

In this paper we will provide a proof of multiplicativity for γ-factors defined by 

the method of Braverman-Kazhdan/Ngo [BK02,BK10,BNS16,Ngô20+ and L. Laffiorgue 

[Laf14] in general under the assumption that the ρ-Fourier transforms on the group G 

and the inducing Levi subgroup L commute with the ρ-Harish-Chandra transform, a 

generalized  Satake  transform  sending  Cc
∞(G(k))       Cc

∞(L(k)),  defined  in  Section  5.2, 

where ρ is a finite dimensional representation of the L-group of G by means of which 

the γ-factors are defined. 

Within our proof, we define a space Sρ(G) of ρ-Schwartz functions for every ρ as 

Sρ(G) := Cc
∞(G(k)) + Jρ(Cc

∞(G(k))) ⊂ C∞(G(k)). (0.1) 

This definition is crucial since the ρ-Schwartz functions defined in this way will be uni- 

formly bi-K-finite (see equation (5.16) and Lemma 5.5), making the descent to the 

inducing level possible, an important step in the proof of multiplicativity. While the γ-

factor can be defined as the kernel of the Fourier transform, it is the full functional 

equation that allows our descent to the inducing level in a transparent fashion, using our 

subspace of ρ-Schwartz functions. 

In [BK10], Braverman and Kazhdan defined their Schwartz space as a “saturation” of 

ours. But our Schwartz space, which is denoted by Vρ in [BK10], covers a significant part 

of theirs and in particular, contains the ρ-basic function as we prove in Proposition 5.3. 

This is done using the extended Satake transform to almost compact functions [Li17] 

and the fact that it commutes with the Fourier transform induced from tori which is 

now defined in general (Section 6 and in particular diagram (6.8)). 

The commutativity assumption allows us to extend the ρ-Harish-Chandra transform 

to    ρ(G), commuting with Jρ and JρL , respectively, where ρL is the restriction of ρ to 

the L-group of L. This construction of    ρ(G) agrees with that of Braverman-Kazhdan 

in the case of doubling method [BK02,GPSR87,Li18,LR05,PSR86,Sha18,JLZ20,GL20], 

since G being the interior of the defining monoid embeds as a unique open orbit into 

the Braverman-Kazhdan space (cf. [Li18]). Our proof is a generalization of Godement- 

Jacquet for GLn, Theorem 3.4 of [GJ72]. 

Our commutativity axiom, which implies multiplicativity and multiplicativity itself 

give rise to an inductive scheme that allows for a definition of Fourier transform Jρ by 

building from the case of conjugacy classes of Levi subgroups L of G. In fact, Theorem 5.4 

gives the γ factors γ(s, π, ρ, ψ), π an irreducible constituent of Ind(σ), equal to the 

inducing γ-factor γ(s, σ, ρL, ψ), which in turn is defined through convolution by JρL . 

For example, for GL2, the Levi subgroups consist of split tori for which a canonical 
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Fourier transform exists (cf. [Ngô20]; see (6.2) here) and GL2 itself, which is equivalent 

to understanding supercuspidal γ-factors. We refer to section 5.4 for a more detailed 

discussion of this inductive construction. 

In the case of GL2, Laurent Laffiorgue *Laf14+ has defined a candidate distribution 

which is shown formally to commute with the Harish-Chandra transform and evidence 

exists that it may give the correct supercuspidal factors as observed by Jacquet, but it is 

still unknown if this is the right distribution. Work in this direction for tamely ramified 

representations is being pursued by the second author. 

Although our definition of the space Sρ(G) depends on the knowledge of how Jρ acts 

on Cc
∞(G(k)), this seems to be the most efflcient way of defining Sρ(G) at present and 

sufflcient for our purposes as a working definition, allowing us to begin making some 

initial steps toward understanding the general theory. As observed earlier after equation 

(0.1), this is essential in proving the uniform K-finiteness of ρ-Schwartz functions. 

One hopes that the geometry of Mρ will provide some insight into what this Fourier 

transform ought to be. In fact, the geometric techniques used to study the basic functions 

on reductive monoids via arc spaces in the function field setting [BNS16] tell us that 

the nature of the singularities of the monoid very much controls the asymptotics of 

the basic function. Taking cue from this, it is natural to consider the geometry of the 

singularities in the p-adic case as well. As a first step, we may classify the singularities 

of our monoids via the theory of spherical varieties and we find that there is a good and 

explicit choice of G-equivariant resolution of singularities [Bri89,Per14]. The resolution is 

moreover rational and so we may pass without trouble between diffierential forms on the 

monoid and its resolution. The geometric aspects of this theory are discussed in part in 

Section 3 of the present paper. Since our Schwartz spaces are, at least tentatively, linked 

by  the  definition of  the  Fourier  transform Jρ  via  Sρ(G) = Cc
∞(G(k)) + Jρ(Cc

∞(G(k)), 

we are able, at least speculatively, to unite the themes of this paper. Here is the outline 

of the paper. 

Section 1 is a quick review of the method for GL(n) as developed in [GJ72+. Renner’s 

construction of reductive monoids is briefly discussed in Section 2 which concludes with a 

treatment of the cases of symmetric powers for GL(2), describing all the objects involved 

in those cases. Section 3 covers the geometric aspects studied in the paper. This includes 

the resolution of the singularities of reductive monoids, leading to a proof of rationality of 

these singularities. This allows a transfer of measures from the monoid to its resolution 

as discussed in Section 4 and can be applied to the integration of basic functions on 

corresponding toric varieties in Example 4.1. Multiplicativity is stated and proved in 

Section 5, concluding with the example of GL(n) in 5.3 and a discussion of the inductive 

nature of Fourier transforms in 5.4. In proving multiplicativity, we have found it easier to 

work with the full functional equation rather than the definition given by convolutions. 

The cases of a tori and unramified data are addressed in Section 6. The paper is concluded 

with a brief discussion of the doubling construction of Piatetski-Shapiro and Rallis with 

relevant references cited. 
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1. The case of standard representation for GLn 

 
We recall that the Godement–Jacquet [GJ72] theory for standard L-functions of GLn, 

which this method aims to generalize, can be presented briefly through the definition of 

the corresponding γ-factors. 

Let F be a p-adic field and G = GLn. Let π be an irreducible admissible representation 

of  GLn(F ).  Given  a  Schwartz  function  φ  on  Mn(F ),  i.e.,  φ      Cc
∞(Mn(F )),  a  smooth 

function of compact support on Mn(F ), one can define a zeta-function 
 

Z(φ, f, s) =  

GLn(F ) 

φ(x)f (x)| det x|sdx, 

where f (x) = (π(x)v, v), v ∈ H(π) and v ∈ H(π), is a matrix coefflcient and s ∈ C. 

Here  π  is  the  contragredient  of  π,  and  H(π)  and  H(π-)  denote  the  spaces  of  π  and  π-, 

 

φ̂(x) := 

Mn(F ) 

φ(y)ψ(tr(xy))dy 

be the Fourier transform of φ with respect to the (additive) character ψ = 1 of F . 

If  f̌ (g)  =  f (g−1),  g       GLn(F ),  then  we  can  consider  Z(φ̂, f̌ , s).  The  Godement– 
Jacquet theory defines a γ-factor γstd(π, s) which depends only on π and s and is a 

rational function of q−s, satisfying 

Z(φ̂, f̌ , (1 − s) + 
n −

2  

1 
) = γstd(π, s)Z(φ, f, s + 

n −

2  

1 
) (1.1) 

for all φ and f . 

It is not hard to see that if we introduce the Int(G)-invariant kernel 

Φψ(g) = ψ(tr(g))| det g|ndg 
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of the Fourier transform, then 

Φ   * (f | det |s+ n−
2 

1 

) = γstd(π, s)f | det |s+ n−
2 

1

 

by virtue of irreducibility of π and the Schur’s lemma. 

 

 
(1.2) 

This formulation for the γ-factor is a quick and convenient way of introducing them 

which is amenable to generalization. We can therefore write 
 

γstd(π, s) = Φψ(π) =  

GLn(F ) 

Φψ(g)π(g)dg, 

pointing to the significance of the kernel Φψ in defining the γ-factors. 

 

2. The general case; monoids and Renner’s construction 

 

To treat the general case we need to generalize Mn(F ). Let k be an algebraically 

closed field of characteristic zero. A monoid M is an afflne algebraic variety over k 

with an associative multiplication and an identity 1. For our purposes, we also need 

M to be normal, i.e., k[M ] is integrally closed in k(M ). We can always find a normal- 

ization in case M is not normal, i.e., an epimorphism (in the category of monoids) 

M�  →  M   such  that  integral  closure  of  k[M ]  in  k(M )  equals  k[M�]  as  we  realize 

k[M ] ' k[M ]. 

We thus let M be a normal monoid and let G = G(M ) = M ∗, be the units of M . 
We say M is reductive if G is. We now like to attach a monoid to a finite dimensional 

representation ρ of Ĝ = LG, L-group of G, ρ : Ĝ → GL(Vρ), where G is a split reductive 

group. Let T ⊂ G be a maximal torus and write 

ρ | Tˆ = λ, 
λ∈W (ρ) 

where W (ρ) is the set of weights of ρ. Let Λ = Hom(Gm, T ) be the set of cocharac- 

ters  of  T  or  characters  of  T̂   and  set  ΛR  =  Λ ⊗ ZR.  Next,  denote  by  Ω(ρ)  the  convex 
span  in  ΛR  of  weights  of  ρ  and  let  ξ(ρ)  be  the  cone  in  ΛR  generated  by  rays  through 
Ω(ρ). 

Let σ∨ = ξ(ρ)∨ X∗(T ), be the “rational” dual cone to ξ(ρ)   X∗(T ) and k[σ∨] the 

group algebra of σ∨. One can then identify σ∨ as a subset of k[σ∨] by μ     σ∨ going to 
χμ, defined by 

 

χμ(η) = 0 unless η = μ, η ∈ σ∨, 

χμ(μ) = 1, and χμ1      χμ2 = χμ1+μ2 , where the sum is the one on the semigroup σ∨. We 

note that this is valid for any semigroup S and 



 

 

| 

⊂ T 

⊂ → 
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k[S] = (χs|s ∈ S). 
 

Now, assume G has a character 

 

 
such that 

 
ν : G −→ Gm 

 

C∗  ν∨  ˆ  ρ 

−→ G −→ GL(Vρ) 

sends z ∈ C∗ to z · Id. This means that (ν, ω) =  1 for any weight ω of ρ. In fact, for 

z ∈ C∗, 
 

z(ν,ω) = ω(ν∨(z)) = ρ(ν∨(z)) = z 

 

and thus ν, ω = 1. Then ν σ∨ and its existence implies that ξ(ρ) is strictly convex, 

i.e., has no lines in it. In fact, the cone ξ(ρ) is contained in the open half–space of vectors 
x      ΛR,  ΛR  = Λ    Z R,  Λ = Hom(Gm, T ),  satisfying   ν, x   > 0.  It  is  therefore  strictly 

convex (cf. [Ngô20], Proposition 5.1). 

By the theory of toric varieties [CLS11], the strictly convex cone ξ(ρ) determines 
(uniquely) a normal toric variety, i.e., a normal afflne torus embedding j : T      M . 

Here  MT  is  the  monoid  for  T  attached  to  ρ T̂ .  More  precisely,  MT  =  Spec(k[σ∨])  by 
Theorem 1.3.5 and Proposition 1.3.8, pg. 39 of [CLS11+. By definition 3.19 of *Ren05], 

k[σ∨] is generated by X(MT ), the characters of MT and thus X(MT ) = σ∨, the semi- 

group defining MT . The embedding j : T MT , defines j∗ : X(MT ) ' X(T ), a 
semigroup morphism, into the character group of T . 

The dominant characters in X(T ) all lie in X(MT ) and are those that extend to 

semigroup morphisms MT → A1 = Ga (Proposition 3.20 of [Ren05]). 

Finally we observe that ν is integral and dominant and thus ν ∈ X(MT ). 

To proceed, we remark that the Weyl group W = W (G, T ) acts on T, MT , X(T ) and 

X(MT ) in the usual manner. Moreover, the dual rational cone σ∨ may be identified with 

X(MT ), both semigroups, since its group algebra generated by elements of X(MT ) or 

σ∨, is k[MT ] as we discussed earlier. 

Let λ ∈ X(T ) be a dominant (and integral) character. Then λ|Tder defines an irre- 
ducible finite dimensional (rational) representation μ◦

λ  of Gder, Tder = T ∩Gder, of highest 

weight λ|Tder. Since 
 

μ◦
λ|Z(G) ∩ Gder = λ|Z(G) ∩ Gder, 

we can extend μ◦
λ  to an irreducible rational representation μλ = μ◦

λ  ⊗ (λ|Z(G)) of 



 

 

∈ 

i=1 

be the representation attached to 

i=1 

λi. Set = 
 s 

μλi = 
 s 

Vλi 

i 

. The character 

i 

ν 
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G = (Gder × Z(G))/Gder ∩ Z(G). 

Definition 2.1. μλ is called the irreducible representation of G of highest weight λ, where λ 

is a dominant rational character of T , extending the notion from the standard semisimple 

setting to the reductive one. 

 

This in particular is valid for dominant elements in X(MT ). We note that ν X(MT ) 

is one such. 
 

Now choose {λi}s
 so that 

LJs
 W · λi ⊂ X(MT ) generates X(MT ). Let (μλ , Vλ ) 

 

i=1 i=1  

will be among these λi. We may assume λ1 = ν. Define M1 = μ(G) ⊂ End(V ). We let 

M be a normalization of M1. 

 
2.1. The case of symmetric powers of GL2 

 
As an example in this section we consider the symmetric power representations of 

GL2(C) and describe these objects in this case. 

Let G = GL2  and ρ = Symn  : GL2(C) → GLn+1(C), the n-th symmetric power 

of the standard representation of GL2(C). Write Cn+1 = (e1, . . . ,  en+1) with the basis 

e1, . . . ,  en+1. Let {μi} denote the weights of Symn. Then we can order them as 

μi(diag(x, y)) = xiyn−i ((x, y) ∈ (C∗)2), 
 

i = 0, . . . ,  n. We have 

 
ξ(Symn) ∩ X∗(T ) = Z≥0 − span {(n − k, k)|k = 0 , . . . ,  n} 

inside R2 which equals 

 

Z≥0 − span {(m, l)| m, l ≥ 0, m + l ∈ nZ}. 

The dual cone to {(m, l)| m, l ≥ 0, m + l ∈ nZ} is 
 

1 1 

{(a, b) ∈ 
n 

Z × 
n 

Z | a, b ≥ 0 a − b ∈ Z}. 

Thus the dual to ξ(Symn) ∩ X∗(T ) is the Z≥0 − span of {(1, 0), (0, 1), ( 1 , 1 )}. It is a 
n  n 

lattice in the shaded area, corresponding to σ∨, 

μ and V 



 

 

∈ { }n   

n 
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We use x, y, and z to denote (1, 0), (0, 1) and ( 1 , 1 ) in the semigroup algebra k[σ∨] as 
n  n 

before, i.e., x = χ(1,0) and so on, then 
 

k(x, y, z) = k[X, Y, Z]/(XY  − Zn). 

The corresponding toric variety is 

MT  = Spec k[X, Y, Z]/(XY  − Zn) ⊆ k3, 

the variety defined by the zeros of XY − Zn = 0, and 

T = MT ∩ (k∗)3
 

= {(t1, tnt−1, t2)|ti ∈ k∗,  i = 1, 2} 

The monoid M for Symn (Renner’s construction): The dual cone in 
 

X∗(T ) ⊗Z Q = X∗(T̂ ) ⊗Z Q 

is generated by (1, 0), ( 1 , 1 ) and (0, 1). The vectors (1, 0) and (0, 1) are W -conjugate 
n   n 

1  1
 

and therefore we have as our dominant weights λi (1, 0), ( , ) . They correspond, 

respectively, to std, the standard representation, and ν = det1/n (to be explained) and 

thus 
 

μ : G −→ End(Vstd ⊕ Vν) = M2 × A1 

g −→ (g, (det g)1/n). 



 

 

5 

SL   × GL  n = even2 

  1 

⏐
.J 

⏐
.J

 

1 

z 
ν∨ 
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Then 

 

 

 
M = μ(G) 

= {(g, a) | deg g = an} 

':: Spec k[X1, . .. ,  X5] / (X1X4 − X2X3 = Xn). 
 

The character ν for Symn: 
 

Recall that the fibered product of GL2 and Gm giving the units of the monoid for 

Symn is (cf. [Sha17]) 

 
G = GL2 ×Gm Gm = {(g, a) | det g = an} =

 
GL2 n = odd  

. 
 

We then have the commuting diagram 

 

G = GL2 ×Gm Gm 

 

 
Proj1 

−−−−→ 

 

 
GL2 

 

 

 

Thus 

Proj2 det 

Gm −−−−→ Gm 

x −→ xn. 

 
(g, a)     −→ g 

a −→   det g = an 

and the left vertical arrow, the Proj2, gives 
 

 

for which 

ν : (g, a) −→ (det g) n = a 

−→ diag (z 

 
1/n , . . . ,  z1/n 

 
Symn 

−→ z · In+1. 
 

3. Some geometry of reductive monoids as spherical varieties 

 

In this section, we give an exposition of some of the geometry of reductive monoids 

in terms of their idempotents and their relation to their structure as spherical varieties, 

and outline the construction of resolutions of their singularities. Renner’s classification 

of reductive monoids uses the “extension principle” *Ren05]. The extension principle 

follows in the spirit of many similar classification results for spherical varieties that rely 

 →
 

 →
 

) 



 

 

× 

  

→ 

→ 

| | 

→ 

× → 

× × 

→ ⊗ 
  

∈ 
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on the existence of an open B Bop-orbit where B is a Borel subgroup of G, that is in 

Renner’s case adapted to account for the monoid structure. By Renner’s classification, 

the category of Reductive monoids is equivalent to the category of tuples (G, T, T ), where 

T is any maximal torus in G and T is a Weyl-group stable toric variety. A morphism of 

data (G, T, T ) → (G1, T 1, T 1) is given by a pair (ϕ, τ ) where ϕ : G → G1 is a morphism of 

reductive groups and τ : T T 1 a morphism of toric varieties such that the restriction of 

each morphism to the maximal torus agrees ϕ T = τ T . In the following, we reframe these 

results in terms of the theory of spherical varieties, in order to state the existence of a 

G-equivariant resolution of singularities. A nice general treatment over any characteristic 

are in [BK07], [Rit03]. See also [Rit98]. 

Let G be a split reductive group defined over a characteristic zero field k. Let X be a 

variety defined over k with a regular action α : G X X. In this case we say X is a G-

variety. Let OX be the sheaf of regular functions on X. If X is afflne, we will identify 

OX  with the coordinate algebra k[X]. In this case α induces as usual a co-action map 

α∗  :  k[X ]       k[G]     k[X ]  by  (α∗f )(x, g)  =  f (g−1x)  =      i hi(g)fi(x)  with  hi       k[G], 

where the latter is a finite sum. Thus each f determines a finite dimensional G-module. 

Because G is reductive and we are in characteristic 0, each finite dimensional G-module 

decomposes as a finite sum of irreducible representations indexed by their highest weight 

vector with weight λ. As such we may decompose k[X] =     k[X]λ, indexed by the λ 

that appear in k[X]. 

 

Definition 3.1. A G-variety X is spherical if X has an open B-orbit for some (hence any) 

Borel B in G. 

 

Suppose X is spherical. Then as above, by highest weight theory, each dominant 

integral character λ of T (k) that appears in k[X] has a highest weight vector fλ. The 

line k · fλ is the unique line stabilized by B on which B acts through the character 

λ : fλ(bx) = λ(b)fλ. In other words fλ is a semi-invariant. Suppose f1 and f2 are semi- 

invariants that are λ-eigenfunctions appearing in k[X]. Then the rational function f1/f2 

is B-invariant. As the B-orbit in G is dense, this implies f1/f2 is constant. Hence for 

spherical varieties, each λ that appears can only appear with multiplicity one. 

 

Theorem 3.2. Let X be an affine G-variety for a reductive group G. Then the ring of 

G-invariants k[X ]G  is finitely generated, say k[X ]G  = k[f1, . . . , fn]. Then k[X ]G  '    k[X] 

defines a surjective quotient which is moreover a categorical quotient q : X    X//G. 

Each fiber of q contains a unique closed G-orbit in X, and X//G is normal if X is. 

 

Definition 3.3. A spherical variety X is simple if it has a unique closed G-orbit. 

 

We are interested in reductive monoids, which have open G-orbit and are spherical 

with respect to G G with an open dense Borel = B Bop orbit, where Bop is the Borel 

subgroup opposite to B. 



 

 

×   

λ 

× 

× \ → \ 

op 
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Proposition 3.4. Suppose X  is affine and has an open G-orbit. Then X  has a unique 

closed orbit. 

 

Proof. The reductive quotient q : X → X//G is constant on orbits, in particular on the 

open orbit. Hence X//G = {pt}. The fiber q−1(pt) contains a unique closed orbit by 
Theorem 3.2. □ 

Therefore such X are simple. Once again let us consider an afflne simple X as a G   G 

variety. Decomposing      λ k[X ]λ ∼= Vλ  where Vλ  is the highest weight module for λ. The 

(B, λ) eigenfunction fλ is U -invariant. Thus one may consider taking U × U op-invariants 
k[X]U ×U op 

are therefore generated as a vector space by the f . Using the following 
 

Theorem 3.5. Let G be reductive with maximal unipotent subgroup U, and let X be a 

G-variety. Then k[X]U is finitely generated. Moreover X/U = spec k[X]U  is normal if 

X is. 

 

Proof. One first establishes the theorem for G/U i.e. k[G]U is finitely generated and 

in fact G/U is a geometric quotient (a so called horospherical variety). One has a map 

Φ  :  X/U  ∼=  X     G G/U  where  the  quotient  is  by  the  diagonal  action.  On  coordinate 

rings:  a  U -invariant  f  defines  a  G-invariant  function  (Φ∗f )(x, gU )  =  f (gx).  Thus  by 

Theorem 3.2 k[X × G/U ]G  ∼= k[X ]U   is finitely generated.    □ 

We can conclude that the variety X/(U U op) is a T  ∼= U  BBop/U op ' U op  G/U 
variety, on which T acts on fλ through the character λ. In other words, we have a ring 
 

(Vλ ⊗ Vλ
∗)(U ×U     )  graded by ΛX  = {λ ∈ X∗(T ) :   k[X ]λ  /= 0}. By Theorem 3.5, this 

is a finitely generated monoid. Each summand has a diagonalizable action by the torus 

T . Moreover, if X is normal the associated toric variety is normal, hence the cone of 

weights of X defining the toric variety is saturated. 

Recall that a G-variety is simple if it contains a unique closed orbit. When X is afflne, 

it is enough that G embeds as an open subvariety to imply X is simple. We state without 

proof the following: 

To classify a general spherical variety one needs the following additional data. 

 

Definition 3.6. Let V (X) denote the G-stable discrete valuations on k[G]. 

 

Definition 3.7. Let DivB(X) denote the set of B-stable prime divisors of X. 

 

Definition 3.8. Let Z be a G-orbit in X. Then DivB(X : Z) is the set of B-stable prime 

divisors containing Z. 

 

Definition 3.9. Let B(X) denote the set of irreducible G-stable divisors. 



 

 

· 

⊂ 

R 

R 

· 

× 

C B 

B 
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II 
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II 
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Proposition 3.10. For a divisor D ∈ DivB(X), either 

(1) The B-orbit B D is open and dense in the open orbit of X. 

(2) D is G-stable. 

 
Briefly (although see *Kno91] for details) a simple spherical variety X is determined 

by its weight monoid, plus the data of which B-stable boundary divisors containing the 
unique closed orbit Z are G-stable and which are not. More precisely, each divisor D de- 

fines a valuation by first restricting D ∩ G which defines a valuation on the multiplicative 

group of rational functions k(G)× on G (the valuation vD ∩ G is the order of vanishing of 

a rational function f /g on D ∩ G). This defines a so-called colored cone, defined by the 

Q≥0 span of the finite number of valuations vD as above. The colors comprise the valu- 

ations that are B-stable but not G-stable (or equivalently, their corresponding divisors 
have a B-open-orbit). 

Thus the set D(X : Z) gives the set of colors  of the simple spherical variety X. 

The cone generated by (X) and the natural image of D(X : Z) in the set of K[G] 

valuations is the colored cone     determined by the data (V (X),    (X)) that determines 

up to isomorphism the spherical variety X. For reductive monoids, this cone is equivalent 

to the one constructed in the earlier section via highest weight theory. 

Example 3.11. For a reductive monoid M , there is a beautiful description of the boundary 

∂M = M G in terms of B Bop-stable boundary divisors in the form of an extended 

Bruhat decomposition: Let R = NG(T ) M be the Zariski closure of the normalizer of a 

maximal torus T in G. Let I(M ) be the set of idempotents in M , and note that reductive 

monoids are regular (in Renner’s sense), that is, we can decompose M = G I(M ). Then 

we can construct the Renner monoid (sometimes called the Rook monoid) := R/T . 

Because reductive monoids are regular, makes sense as a finite monoid whose unit 

group is the Weyl group W , and having the property that 

M = BxB. 

x∈R 

From this description, it may be deduced that the set D(M : Z), with Z = 0 the 

unique closed orbit in M , is given by the codimension one orbits BsαBop for sα   the 

simple reflection in the Weyl group determined by the simple root α. The G G orbit 

structure is given by the decomposition 

 

M = GeG, 

e∈J 

where J denotes the subset of I(M ) contained in T such that Be = eBe. More details on 

the semigroup structure in terms of the structure of its set of idempotents are given in 

sections 4 and 7 of [Ren05]. Let J1 denote the maximal idempotents and suppose e ∈ J1. 
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We can find a one parameter subgroup λ : Gm → G, unique up to G-conjugation, such 

that limt→0λ(t) = e. We may assume the image of λ is in the maximal torus T and as in 

Proposition 7 of [Rit03] λ defines a valuation vλ of k(G). Each singleton vλ   V (G) 

defines an elementary embedding Xλ ([Kno91]) of G such that BeBop is open in Xλ G. 

One checks as in [Rit03] that in fact vλ is an invariant valuation. The set of all vλ so 

constructed gives an explicit identification between J1 and B(M ). 

Thus, for a monoid with reductive group G embedded as its unit group, the colors of 

M are all B Bop stable irreducible divisors of G, and thus the monoid is determined 

purely by the data (M ) or equivalently (M ). We state for convenience this form of 

the classification. 

 
Theorem 3.12. Let G be a reductive group. The irreducible, normal algebraic monoids M 

with unit group G are the strictly convex polyhedral cones in X∗(T ) Q generated by 

D(M ) and a finite set of elements in V (G). 

 

Definition 3.13. A spherical variety X is toroidal if D(X) is empty. 

 

Every spherical variety has an open dense toroidal subvariety in codimension 2. 

 

Proposition 3.14. Suppose the spherical variety X is toroidal and let ∂X = X G. Let 

PX be the G G stabilizer of ∂X. Then P is a parabolic and moreover satisfies the local 

structure theorem, i.e. there is a Levi L    P, depending only on G and a closed L-variety 

Z such that 

 

Pu × Z → X \ ∂X 

is an isomorphism. Moreover, Z is a toric variety under L/[L, L]. 

 

As a consequence of the above isomorphism, the L orbits of Z correspond to G orbits 

in X. Note that when X = M is a reductive monoid, this is precisely Renner’s extension 

theorem [Ren05] with PM = B Bop and Z = T . The proposition implies that the 

singularities of X are those determined by the cone of the toric variety Z. 

Let us recall Renner’s extension theorem for normal reductive monoids. It states that 

a morphism of reductive monoids M  → M 1 is given by the data (G, T, T ) and (G1, T 1, T 1) 

and  a  morphism  ϕ  :  M        M 1 is  equivalent  to  ϕ G       G1 and  τ  T  :  T        T 1.  Briefly, 

in M one has an analogue of the open cell which is the image of an open embedding 

U op T U U opTU which has codimension 2 in M . Thus one gets an equivariant 

morphism  (u1, t, u)       ϕ(u1)τ (t)ϕ(u)      M 1.  By  normality  of  M ,  the  codimension      2 

condition extends the map uniquely to M    M 1, and one verifies this is in fact a 

morphism of monoids. 



 

 

C 

- 

C ∩ 

C → C 
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Remark 3.15. The above map in Renner uses an open Bruhat cell analogue in the context 
of monoids, which yields a structure theorem parallel to Proposition 3.14. More generally, 

G-equivariant dominant morphisms ϕ : Y → Y 1 of spherical varieties are in bijection with 

linear maps ϕ∗ : X∗(Y ) ⊗ Q → X∗(Y 1) ⊗ Q, where X∗(Y ) and X∗(Y 1) are the lattices 

of co-weights of the underlying group G, such that the image of the colored fan CY is 

contained within CY I . 

In view of the above structure theory, the singularities of a spherical G variety X are 

determined by those of its associated toric variety X//U ∼= T . Smooth toric varieties are 
classified as follows. 

Theorem 3.16. An affine toric variety T is smooth if and only if the extremal rays of the 

rational polyhedral cone generated by its weight lattice is a basis for the character lattice  

X∗(T ). 

As a general toric variety is glued from afflne toric varieties, it is given by a fan 

consisting of rational polyhedral cones. Thus a toric variety is smooth if and only if its 

fan consists of rational polyhedral cones whose extremal rays generate (as a Z-module) 

X∗(T ). Moreover any piecewise linear morphism of rational polyhedral cones 1
 

defines a T -equivariant morphism of toric varieties, thus, by Theorem 3.16, one obtains 

an algorithm giving a resolution of singularities of a toric variety T . 

Theorem 3.17. Let σ∨ =  (T )   X∗(T ) = the monoid of weights of T . Starting from 
an extremal ray (T ), successively subdividing the cone such that each resulting cone is 

smooth, defines a smooth fan consisting of smooth cones σ̃∨  such that the inclusion map 

σ̃∨ '→ σ∨ defines a canonical T -equivariant resolution of singularities T  → T . 

Finally, one may define a G-equivariant resolution from Remark 3.15 and Theo- 

rems 3.16 and 3.17: 

Theorem 3.18. Let M  be a reductive monoid. Then there exists a smooth spherical G- 

variety M̃  that is toroidal, and a proper G-equivariant morphism ϕ : M̃  → M. 

Proof. Take the colored cone CM determined by M . Deleting all colors, construct a fan 
C̃M   generated by a subdivision of CM  into smooth colorless cones (which always exists, 

see [CLS11]). Then T̃  → T  ⊂ M  is a resolution of toric varieties, and M̃  has an afflne 

chart given by the open cell U op×T̃ ×U by Proposition 3.14, and therefore is smooth. The 

natural inclusion of C̃M   into CM  defines a dominant G-equivariant morphism M̃ 

giving us our resolution. □ 

→ M , 

 

Example 3.19. The case of G = GL2 and ρ = Symn monoids are determined by their 

respective  toric  varieties    xy      zn  =  0    ∼=  A2/Cn,  which  are  realized  finite  quotients 
of A2 by cyclic group Cn of order n. These are the well known finite quotient surface 
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singularities of type An and their resolutions are given by [ n ] blow-ups at the origin. 

Likewise, the resolution of Mρ is given by [ n ]-blow-ups at 0 of Mρ. 

 

Next we discuss the rationality of singularities. Recall that X has rational singularities 

if a (and hence any) resolution r : X      X has vanishing higher cohomology: Rir∗     = 0 

if i > 0. Moreover, recall that for a resolution r : X  X the fiber over the singular 

locus Xsing = r−1(Xsing) = E is the exceptional divisor. It can be computed explicitly 

as in [Rit03] which follows from the following result, which is also deduced in [BK07], 

[Rit03]. 

 

Theorem 3.20. Let X be a normal variety with rational singularities. Let j : Xsm '→ X 

denote the embedding of the smooth locus of X into X. If we define ωX := j∗(ωXsm ), by 
extending (uniquely, by normality) algebraic top-dimensional differentials form to X. If 

r : X- → X  is any resolution of singularities, then r∗ωX  extends over E  to an algebraic 

4. Integration on singular varieties 

 

Let ω be a top-diffierential form on a reductive monoid M . Taking the resolution as 

above r : M → M we get a well defined diffierential form r∗ω on M . Restricting r to the 

open set on M� over which r is an isomorphism, we have upon passing to k-points 

r  

|r∗ω| = 

r

 |Jac(r)||ω| = 
(k) 

 

|ω|, 

X�(k) X�(k)  X 
 

where Jac(r) is the Jacobian of r and ω is the measure constructed by Weil from the 

top-diffierential form ω on X. 

 

Example 4.1. As a first basic example, we may consider the basic function on toric 

varieties. The basic function on a toric variety T (defined by cone σ) is supported on 

the dual cone σ∨. Suppose the generators of the weight monoid of T are e1, . . . ,  en. 

The ei are co-characters k× → T (k). For each co-character λ in the weight monoid, 
λ(w)T (Ok) is an open neighborhood on which the value of the basic function f ρ is 

#{(a ) ∈ Zn   |
   

a e  = λ}. It is known [Stu95,Cas17] that the function 
 

λ → #{(ai) ∈ Zn | aiei = λ} : σ ∩ X∗(T ) → Z≥0 
i 

as an integer valued function of the weight monoid is quasi-polynomial, i.e., it is in the 

sub-algebra of functions on X∗(T ) generated by polynomials and periodic functions. More 

precisely, for each x ∈ λ(w)T (Ok), fρ (x) is given by a root of unity times a polynomial 

in the valuation of det(x). 

T 
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It  is  also  classical  that  locally  in  some  coordinate  system  on  T-(k),  the  map  r  : 

T (k) → T (k) is given by a monomial transformation, i.e., has the form (t1, . . . ,  tn) → 

(td11 ··· tdn1 , . . . ,  tdn1 ··· tdnn ). For example, the Sym2 toric variety is the cone {xy − 

z2 = 0  and is resolved afflne-locally by the classical “cylinder” resolution (x, y, z) 

(xz, yz, z). Therefore the jacobian Jac(r) is in local coordinates a product of the form 

ti di . For the cylinder resolution it is z z 2. Thus as wN 0 the Jacobian grows as 

the inverse of an exponential while the basic function is dominated by polynomial growth. 

Hence  the  pullback  of  the  diffierential  form  r∗(fρω)  makes  sense  as  val det on 

T (k). 

 

5. Multiplicativity 

 

Every theory of L-functions is expected to satisfy “multiplicativity”, i.e., the equal- 

ity of γ-factors for parabolically inducing and induced data. Our goal in the rest of 

the paper is to establish, under natural assumptions on related Fourier transforms, the 

multiplicativity in the context of this theory in general. Our proof is a generalization 

of the standard case of Godement–Jacquet [GJ72+. We first need to connect Renner’s 

construction to parabolic induction. 

 

5.1. Renner’s construction and parabolic induction 

 

We start by observing that Renner’s construction *Ren05] respects parabolic induc- 

tion. More precisely, let P = LN be a parabolic subgroup of G, with unipotent radical 

N and a Levi subgroup L which we fix by assuming T    L. Now L is a reductive group 

with a maximal torus T  to which Renner’s construction applies. Let ρL = ρ L̂, where L̂ 
is the connected component of the L-group of L. 

Now ρL Tˆ gives the same weights as ρ Tˆ does and thus ρL shares the same toric 

variety MT coming from ρ. Let WL = W (L, T ). Then each orbit Wλi breaks up to a 

disjoint union of orbits WLλj and thus 
 

s s si 

 

 
where 

Vλi      L
 

i=1 

L 
λj 

i=1 j=1 

 

 

Vλi 

si 
L 
λj 

j=1 

 

(5.1) Conclusion: The monoid MρL   attached to ρL by Renner’s construction for L, L = 

G(MρL ),  is  the  same  as  the  closure  of  L  as  a  subgroup  of  G  upon  action  on  V   = 
s 
i=1 

 
 

Vλ , i.e., MρL = μ(L). 
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We also need to remark that the character ν : G Gm discussed earlier, when 

restricted to L maybe considered as the corresponding character ν   of L, i.e., ν   := ν L. 
In fact, ν∨ and ν∨ both take values in the centers of Ĝ  and L̂, respectively. The natural 

embedding of ˆ ˆ by means of the root data of ˆ and ˆ which are dual to root data 
L ⊂ G L G 

of L and G who share the maximal torus T , identifies Z(Ĝ) as a subgroup of Z(L̂). We 

therefore have the commutative diagram 

C∗ 
ν∨ 

Ĝ 

L̂ 

GLN (V ρ) 
 

 

and consequently ρL · νL
∨(z) = z · Id as needed. 

The shift in general. To get the precise γ-factor in general one needs to shift s by ηG, λ 

or π ν s should change to π ν s+(ηG,λ), with notation as in [Ngô20], where ηG is half 
the sum of positive roots in a Borel subgroup of G and λ the highest weight of ρ. 

In our setting,  we need to deal with the representation ρ    of L̂  as well which is not 

necessarily irreducible. Let λ1, . . . ,  λr be the highest weights of ρ . We may assume 

λ1 = λ. The shift will then be (ηL, λ1 + · ··  + λr). 

Let us define δG,ρ = |ν|(2ηG,λ), δL,ρ    = |ν  |(2ηL,λ1+···+λr )  and set 

νG/L = νG/L,ρ := δG,ρ/δL,ρ  . 

Finally, let δP be the modulus character of P = N L. 

 

5.2. The ρ–Harish–Chandra transform 

 

We now recall the ρ-Harish–Chandra transform, a generalization of the Satake trans- 

form. Given Φ ∈ Cc
∞(G(k)), define its Harish–Chandra transform ΦP  ∈ Cc

∞(L(k)) by 

Φ  (l) = δ
− 1 

(l)  

r   

Φ(nl)dn. (5.1) 
P P 

N (k) 

Next define the ρ-Harish–Chandra transform, ρ–HC in short, by 

Φρ (l) = ν 
1 

(l) Φ  (l). (5.2) 

 
Fourier transforms 

P G/L,ρ P 

The conjectural Fourier transform (kernel) Jρ is supposed to give the γ-factor γ(s, π, ρ) 

for every irreducible admissible representation π of G(k) through the convolution 

ρL 

 
νL

∨ 

ρ 



 

 

( -) 

L 

P 

P P 

S S S S 

c −−−−→ c 

c −−−−→ L 
c 
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Jρ ∗ (f |ν|s+(ηG,λ)) = γ(s, π, ρ)f |ν|s+(ηG,λ), (5.3) 

where π is  an  irreducible admissible representation of  G(k) and f (g) = π(g)v, v is a 

matrix coefflcient of π. In the context of parabolic induction from P = NL we will also 

have γ(s, σ, ρ ) defined by JρL . 
 

Fourier transforms and Schwartz spaces 
 

We will now assume we are given Fourier transforms Jρ and JρL 

Jρ : Cc
∞(G(k)) −→ C∞(G(k)) 

and  
JρL    : Cc

∞(L(k)) −→ C∞(L(k)), 

commuting with the ρ–Harish–Chandra transform Φρ , i.e., 
 

(JρΦ)ρ = JρL Φρ , (5.4) 
 

or equivalently we have the commuting diagram 
 

C∞(G(k)) J
ρ 

Jρ(C∞(G(k)) ⊂ C∞(G(k)) 

ρ−HC
⏐
.J 

⏐
.Jρ−HC (5.5) 

C∞(L(k)) J
ρL 

Jρ  (C∞(L(k)) ⊂ C∞(L(k)). 

We will label this as “Assumption (∗)”. 

We now define the Schwartz spaces ρ(G) = ρ(G(k)) and ρ
L (L) = ρ

L (L(k)) as 

follows: 
 

 

and 

Sρ(G) := Cc
∞(G(k)) + Jρ(Cc

∞(G(k)) ⊂ C∞(G(k)) (5.6) 

 
SρL (L) := Cc

∞(L(k)) + JρL (Cc
∞(L(k)) ⊂ C∞(L(k)). (5.7) 

As we pointed out in the introduction, these are subspaces of the conjectural ρ- 

Schwartz spaces and suitable to our purposes. Moreover, as we prove in Proposition 5.3, 

they contain the ρ and ρL-basic functions. We recall that the ρ-basic function φρ is the 

unique one for which 
 

Z(φρ, fs) = L(s, π, ρ), 



 

 

⊗ | | 

P 

∈ 

S S 

S S 

r 
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where fs is the normalized spherical matrix coefflcient of π ν s with Z defined as in 

(5.11) below. 
Note that Φ Φρ sends C∞(G(k)) into C∞(L(k)) and thus (5.5) implies that it also 

P c c 

sends 

We thus have: 

Jρ(Cc
∞(G(k))) −→ JρL (Cc

∞(L(k))). 

Proposition 5.1. Under Assumption (∗), the ρ–Harish–Chandra transform Φρ sends 
ρ(G) into ρ(L). In particular, equation (5.4) is valid for our spaces of ρ-Schwartz 

functions on G(k) and L(k). 

We remark that our definition of Schwartz spaces ρ(G) and ρ
L (L), as well as 

Proposition 5.1, will be needed in our proof of multiplicativity in Theorem 5.4, e.g., 

we use uniform smoothness which follows from our definition, see the discussion after 

equation (5.16) 

Remark 5.2. This definition of Schwartz spaces agrees with ideas of Braverman–Kazhdan 

[BK02,GL20] and with the case of standard representation of GLn(C). To wit consider 

G = GL1, i.e., the Tate’s setting, and check it for the Φ0 = char(Ok), i.e., the corre- 

sponding  “basic  function”.  Let  Φ  =  char(Ok
∗)      Cc

∞(k∗).  Now  Jρ  is  just  the  standard 

Fourier transform 

JρΦ(y) = Φ̂(y) =  

k 

Φ(x)ψ(tr(xy))dx. (5.8) 

It can be easily checked that 

Φ0 =  
   1    

char(P −1 \ O  ) + 
   q     

Φ̂ 

 
 

(5.9) 

q − 1 k k 
q − 1 

∈ Cc
∞(k∗) + Jρ(Cc

∞(k∗)), (5.10) 

where Pk is the maximal ideal of Ok. Here the additive character ψ is unramified, the 

measure dx satisfies dx(Ok) = 1, and q is the cardinality of Ok/Pk. 

This simple calculation allows us to prove the following general result: 

Proposition 5.3. The space Sρ(G) contains the ρ-basic function. 

We give the proof in Section 6 after introducing diagrams (6.7) and (6.8). 

Multiplicativity. As we discussed earlier every theory of L-functions must satisfy multi- 

plicativity, an axiom that is a theorem for all the Artin L-functions and is the main tool 
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in computing γ-factors and L-functions. To explain, let P = NL be a parabolic subgroup 

of G with a Levi subgroup L, uniquely fixed such that L T , the maximal torus of G 

fixed in our construction throughout. Let σ be an irreducible admissible representation 

of  L(k)  and  let  ρ  be  a  finite  dimensional  complex  representation  of  Ĝ  and  ρ    =  ρ L̂ 
as before. For each irreducible admissible representation σ of L(k), we can define the 

γ-factors γ(s, σ, ρ ) and γ(s, IndG(k)σ, ρ). Multiplicativity states that: 
 

γ(s, IndG(k)σ, ρ) = γ(s, σ, ρ ). (5.11) 

Here we suppress the dependence of the factors on the non-trivial additive character of k. 

We note that, since the induced representation IndG(k)σ may not be irreducible, the γ- 

factor γ(s, IndG(k)σ, ρ) is defined to be γ(s, π, ρ), where π is any irreducible constituent of 

IndG(k)σ. The γ-factor will not depend on the choice of π as the proof below establishes. 

A proof of (5.9) is usually fairly hard for γ-factors defined by Rankin–Selberg method 

[JPSS83,Sou93]. On the contrary, (5.9) is a general result within the Langlands–Shahidi 

[Sha10] method with a very natural proof. 

Our aim here is to give a general proof of (5.9) within the Braverman–Kazhdan/Ngo 

and Laffiorgue programs using (5.4) and Int(K)-invariance of Jρ. It follows the arguments 

given in [GJ72]. To proceed, we emphasize that we are assuming the existence of the 

Fourier transforms Jρ for functions in Cc
∞(G(k)), commuting with the ρ    HC transform, 

such that the functional equation 

Z(JρΦ, fˇ) = γ(π, ρ)Z(Φ,f) 

for every irreducible admissible representation π of G(k) and every matrix coefflcient f 

of π, is satisfied for every Φ    ρ(G). In particular, we assume Z(Φ, f ) is not identically 

zero for all Φ and f . Here 
 

 

 
and 

Z(Φ,f) =  

G(k) 

Φ(g)f (g)δ1/2(g)dg 

Z(JρΦ, fˇ) =  

G(k) 

JρΦ(g)f  (g−1)δ1/2(g)|ν(g)|dg. 

See also the papers [Get18] and [Luo19] that address some of the analytic difflculties 

in the archimedean setting. We now proceed to give a proof of (5.9) which we formally 

state as: 

Theorem 5.4. Let σ  be an irreducible admissible representation of L(k) and let Π  = 

Ind G(k)σ. Let ρ be an irreducible finite dimensional complex representation of Ĝ  and let 

ρL   = ρ|L̂. Assume the validity of (5.4) (Assumption (∗)) for Schwartz functions. Then 

L 



 

 

L 

- - - 

- - 

= 

r  

(v(kg), v-(k))  dk, (5.12)0 

⊗ | | 

G,ρ 

G,ρ 

∈ ∈ ∈ S 

· · ( ) 

- -  -∈
 - ∈ 

r 

r 

G,ρ 

G,ρ 

P 
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G(k) 

γ(s, Π, ρ) = γ(s, σ, ρ  ). 

Proof. Let Π = IndP (k)σ be the contragredient of Π. Choose v   Π and v   Π. Then a 

matrix coefflcient for Π can be written as 

 

f (g) = (Π(g)v, v-) 

K 
 

where v( ) and v( ) are values of the functions in Π and Π, respectively, and σ(l)w, w 0 

is a matrix coefflcient for σ, w    σ and w    σ. Let Φ    ρ(G) be a ρ-Schwartz function 

in C∞(G(k)). We absorb the complex number s in f by replacing π by π ν s and then 

ignoring it throughout the proof. 

Now we have the zeta function 

Z(Φ,f) = 

r  

Φ(g)f (g)δ1/2(g)dg. (5.13) 

As explained earlier, the shift δ1/2 allows us to get the precise L-function at s, rather 

than a shift of s, when Φ is the basic function of σ for a spherical representation σ. Using 

(5.12), (5.13) equals 
 

Z(Φ,f) =  

K×G(k) 

= 

K×G(k) 

Φ(g)(v(kg), v-(k))0  δ1/2(g)dk dg 

Φ(k−1g)(v(g), v-(k))0  δ1/2(g)dk dg. (5.14) 

 

Write g = nlh, n ∈ N (k), l ∈ L(k), h ∈ K. Then 

dg = δ
−1

(l)dn dl dh. 
 

With notation as in [GJ72], define: 

 

(h · Φ · k−1)(x) := Φ(k−1xh). (5.15) 
 

Thus 

Z(Φ, f) = 

r 

(h·Φ·k−1)(nl) δ1/2(l)(σ(l)v(h), v-(k))0 δ1/2(l)δ
−1

(l)dn dl dh dk. 
P 

N (k)×L(k)×K×K 

G,ρ P 

 
(5.16) 



 

 

P 

r 

L,ρL 

i 

- 

i 

  

∈ 

  

  

j,P 

r 

P L,ρL 
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Recall the HC–transform (h · Φ · k−1)P : 

(h · Φ · k−1)P (l) = δ−1/2(l)  

r   

(h · Φ · k−1)(nl)dn. 

 
Then (5.16) equals 

 
 

L(k)×K×K 

 
 
 

 
1/2 
G/L,ρ 

N (k) 

 

 
 

(l)(h · Φ · k−1)P (l)(σ(l)v(h), v-(k))0  δ1/2 

 

 
 

(l)dl dh dk 

= 

r 

(h · Φ · k−1)ρ (l)(σ(l)v(h), v-(k))0  δ1/2  (l)dl dh dk. (5.17) 

 

Since K is compact and v and v are smooth functions, there exist matrix coefflcients 

f L(l) of σ and continuous functions λi on K × K such that 

(σ(l)v(h), v-(k))0 = 
  

f L(l)λi(h, k). 
i 

 

Similarly, there are Schwartz functions Φj in Sρ(G) and continuous symmetric functions 

μj on K × K such that 

h · Φ · k−1 = Φjμj(h, k). (5.18) 
j 

 

This is clearly true if Φ Cc
∞(G(k)), since it will then be uniformly smooth. Otherwise, 

using (5.18) we have 

(h · Φ · k−1)∧ = Φ̂j μj(h, k), 
j 

 

where Φ̂  := J 
ρ
Φ for simplicity. But Lemma 5.5, proved later, implies 

k · Φ̂ · h−1 = Φ̂j μj(k, h) 
j 

 

for all h and k in K and thus (5.16) holds for all Φ ∈ S 
ρ 

(G). Consequently 

(h · Φ · k−1)ρ (l) =  
    

Φρ   (l)μj(h, k) 

 
with Φρ 

P 

j 

 

∈ Sρ
L (L) by Proposition 5.1. Let 

j,P 

 

cij = 

K×K 

λiμj(h, k)dhdk. 

L(k)×K×K 

ν 



 

 

j,P i 

G,ρ 

- 

G,std 

r 

G,ρ 

G,ρ 

r 

G,ρ 

r 

G,ρ 

r 

P 

G,ρ P 
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Then we have 

Z(Φ,f) = 
    

cijZ(Φρ ,fL) (5.19) 
i,j 

For simplicity of notation, let for each Φ ∈ Sρ(G), Φ̂  := J
ρ 

Φ. We now calculate 

Z(Φ̂, f̌) = 

r

 Φ̂(g)f̌(g)δ1/2(g) |ν(g)| dg. 

One needs to be careful since the involution g → g−1 will now play an important role. We 

should also point out that |ν(g)| needs to be inserted to take into account the appearance 

of 1 − s in the left hand side of the functional equation as it is the case in equation (1.1) 

for GLn. We note that |ν(g)| = |ν(l)| = |νL(l)| and that −s will appear as π ⊗ |ν()|−s, 

and thus included in π as s did in π as π ⊗ |ν()|s. Note that in the case of GLn and 

ρ = std, ν = det, and 

-

δ1/2 = | det | 
n−

2 
1    

as reflected in (1.1). 
We have 

 
Z(Φ̂, f̌) =  

G(k) 

= 

r 

Φ̂(g)f (g−1)δ1/2(g) |ν(g)| dg 

Φ̂(g)(v(kg−1), v-(k))0  δ1/2(g) |ν(g)| dg dk. 

 

 
(5.20) 

G(k)×K 

Changing g to gk, (5.20) equals 
 

= 

G(k)×K 

Φ̂(gk)(v(g−1), v-(k))0  δ1/2(g) |ν(g)| dg dk. (5.21) 

Write g = h−1ln, n ∈ N (k), l ∈ L(k), h ∈ K. Then 

dg = d(g−1) = δP (l) dh dl dn (5.22) 

and (5.21) equals 

 
= 

K×L(k)×N (k)×K 

Φ̂(h−1lnk)(v(l−1h), v-(k))0  δ1/2(l)δP (l) |ν(l)| dh dl dn dk. (5.23) 

= (δ1/2(l) 

K×L(k)×K 

×  

r   

(k · Φ̂ · h−1)(ln)dn)(v(l−1h), v-(k))0  δ1/2(l)δ1/2(l) |νL(l)| dh dl dk 
 N (k) 



 

 

r 

P 

r 

L,ρL P 

r 

G/L,ρ P L,ρL 
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= (δ−1/2(l) 

K×L(k)×K 

×  

r   

(k · Φ̂ · h−1)(nl)dn)(v(l−1h), v-(k))0  ν1/2 
 

 

(l) δ1/2(l) δ1/2 (l) |νL(l)| dh dl dk 

= 

K×L(k)×K 

1/2 
G/L,ρ (l)(k · Φ̂ · h−1)P (l)(v(l−1h), v-(k))0  δ1/2 (l) |νL(l)| δ1/2(l) dh dl dk, 

which finally equals 
r 

(k · Φ̂ · h−1)ρ (l) δ−1/2(l)(σ(l−1)v(h), v-(k))0  δ1/2 (l) |νL(l)| δ1/2(l) dh dl dk. 
P P 

K×L(k)×K 

L,ρL P 
 

(5.24) 

Again, for simplicity for each Φ ∈ Sρ(G), let Φ̂  denote its ρ-Fourier transform 

Φ̂(x) = (Jρ ∗ Φ̌)(x). (5.25) 

Here Φ̌(x) = Φ(x−1). To proceed, we need: 

Lemma 5.5. Let k and h be in K. Then 

(k · Φ · h−1)∧ = h · Φ̂ · k−1. 
 

Proof. We have  
(k · Φ · h−1)∧(x) =  

Mρ(k) 

 
(k · Φ · h−1)(y)Jρ(xy)dy 

= 

r 

Φ(h−1yk)Jρ(xy)dy 

= 

r 

Φ(y)Jρ(xhyk−1)dy, 

(5.26) 

 

since h and k are in K whose modulus character is 1. Now using Int(G)-invariance of 

J
ρ 

, (5.26) equals 

 

 
completing the proof.   □ 

= 

r  

Φ(y)Jρ(k−1xhy)dy 

= Φ̂(k−1xh) 

= (h · Φ̂ · k−1)(x), 

 

 

N (k) 

ν 



which equals 

 

 

  

i 

i 

P i L,ρL 

j,P i L,ρL 

i,j 

i,j 
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Remark 5.6. In terms of Jρ we have proved: 

Jρ ∗ (k · Φ · h−1)∨ = h · (Jρ ∗ Φ̌) · k−1 (5.27) 

We now apply Lemma 5.5 to equation (5.24) to get: 

Z(Φ̂, f̌) = 

r

 ((h · Φ · k−1)∧)ρ (l)(σ(l−1)v(h), v-(k))0  δ1/2 (l) |ν (l)| dl dh dk. 

L(k)×K×K 

But, using (5.18), 

 

 
and 

P 
 
 
 
 
 

 

(h · Φ · k−1)∧ = Φ̂j  · μj(h, k) 
j 

L,ρL 
L 

 
(5.28) 

(σ(l−1)v(h), v-(k))0 = 
  

f L(l−1) · λi(h, k) 
i 

= 
  

f̌L(l) · λi(h, k) 

 
and therefore (5.28) equals 

  
cij 

r

 
 

i 
 
 
 
 

(JρΦj)ρ (l)f̌L(l)δ1/2  (l) |νL(l)| dl. (5.29) 

 

We can now apply the commutativity of ρ–Harish–Chandra transform and Fourier 

transforms Jρ and JρL , i.e., equation (5.4) to conclude that (5.27) equals 

  
c 

r  
J

ρ 

(Φρ )(l)f̌L(l)δ1/2 (l) |ν (l)| dl. (5.30) 

 
 

But 

 
i,j 

ij L 

L(k) 

j,P i L,ρL 
L 

Z(Φ̂, f̌) = γ(Π, ρ)Z(Φ, f ) 

by the functional equation for G. On the other hand the functional equation for L gives 

(5.30) as 

 
γ(σ, ρ ) 

   
cij 

r

 
 

 
Φρ   (l)f L(l)δ1/2 

 
(l)dl 

L(k) 

L 

L(k) 



and thus 

 

 

 
) c   Z(Φij i 

L 

P (k) 

S 

∈ 

G/L 

2 | 2 

L 

G/L 

· δG  (g ,g ) = | det g | | det g| 2 

L 
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= γ(σ, ρ ρ 
j,P 

i,j 

,fL) 

= γ(σ, ρ )Z(Φ,f) 

by (5.19). The equality 

γ(IndG(k)σ, ρ) = γ(σ, ρ  ) 

is now immediate. □ 
 

Remark 5.7. The commutativity relation (5.4), although originally stated for Φ ∈ 

Cc
∞(G(k)), extends to all of    ρ(G), as stated in Proposition 5.1. In our proof of Theo- 

rem 5.4, we used the functional equation 

Z(JρΦ, fˇ) = γ(π, ρ)Z(Φ,f) 

with arbitrary Φ ∈ Sρ(G) for which we proved uniform smoothness, needed to reduce 

Z(JρΦ, f ∨) to a sum of Zeta functions for L and SρL (L). Although we could have 
started  with  Φ      Cc

∞(G(k)),  we  would  eventually  need  to  use  uniform  smoothness  for 

Z(JρΦ, f ∨) in which JρΦ is no longer of compact support. 

5.3. The case of GLn 
 

We now determine ν in the case G = GLn and ρ = std, i.e., that of Godement– 

Jacquet [GJ72] and show that it agrees with calculations in Lemma 3.4.0 of [GJ72], after 
a suitable normalization. We thus assume P = NL is the standard maximal parabolic 

subgroup of GLn, containing the subgroup of upper triangular elements B, N ⊂ B, with 

L = GLnI ×GLnII , n = n1 +n11. Recall that we need to determine ν
G/L,std  = δG,std / δL,std. 

But for g = diag(g1, g11) ∈ L 

det g1|−nII

 
1/2      1 11 1 −nII 1 (nI+nII−1) 

= | det g1| 
1 (nI−1)

 | det g 11 1 (nII−1) · | det g1|−nII /2
 | det g 11|n

I/2 

 
Thus 

 

 
Moreover 

= δ1/2(g1, g11) · | det g1|−nII /2  | det g11|n
I/2. 

 
ν1/2 (g1, g11) = | det g1|n

II/2  | det g11|n
I/2. (5.31) 

 
δP (g1, g11) = | det g1|n

II  

· | det g11|−nI 

(5.32) 

| 

L 



by (5.33), where 

 

 

r 

0 y 

∈ ∈ 

r 

  

∈ 

ϕ Φ L 
0 y 

r 

G/L 

P 

G/L P 

Φ( 
0 I 0 y 
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ν1/2  δ−1/2(g1, g11) = | det g11|n
I 

. (5.33) 

We now verify that Lemma 3.4.0 of [GJ72] is equivalent to our commutative diagram 

(5.5). 

Let J = J std be the standard Fourier transform for Cc
∞(Mn(k)) and JL its restriction 

to Cc
∞(MnI (k) × MnII (k)). With notation as in pages 37–38 of [GJ72], 

ϕΦ(x, y) =  

knI nII 

Φ(

   
x   u 

  

) du, (5.34) 

where  u MnI×nII (k)  and  Φ Cc
∞(Mn(k)),  is  the  analogue  of  our  HC–transform.  In 

fact, (5.34) can be written as 

r 
I uy−1 

     
x 0 

 
 

= | det y|n
I

 

N (k) 

Φ(nl)dn, (5.35) 

= ν1/2 (l) δ−1/2(l) 

r

 Φ(nl) dn 
G/L P 

N (k) 

by (5.33), where N = MnI×nII and l = diag(x, y). 

In the notation of [GJ72], Lemma 3.4.0 of [GJ72] states that 

ϕΦ̂ (x, y) = ϕΦ (x, y), (5.36) 

for Φ Cc
∞(Mn(F )) with Φ̂  its standard Fourier transform. 

Then by (5.35) the right hand side of (5.36) equals 

(x, y) = J (

r 

Φ(

   
x   u 

  

) du) 

= JL(| det y|n
I

 

N (k) 

Φ(nl) dn) (5.37) 

= JL(ν1/2 (l)ΦP (l)) 

= JL(Φstd(l)) 

ϕΦ(x, y) =  ) du 



 

 

P 

0 y 
r 

P 

⊂ 

 → 

G/L 
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ΦP (l) = δ−1/2(l) 

r

 

 
Φ(nl) dn 

 
as defined by (5.1). 

N (k) 

Similarly from the left hand side of (5.36), using a change of variables as in (5.35), we 

have 

ϕΦ̂ (x, y) = 

r  

Φ̂(

  
x    u 

 

) du 
 

= | det y|n
I

 

N (k) 

Φ̂(nl) dn (5.38) 

= ν1/2 (l) (Φ̂)P (l) 

= (JΦ)std(l). 

Thus (5.36) is equivalent to (5.4) for GLn and ρ = std. 

 

5.4. Inductive definition of Jρ 

 
In the introduction we mentioned that multiplicativity plus a definition of Fourier 

transform that acts through the correct scalar factors equal to the gamma factors 

on supercuspidal representations/characters, is enough to characterize the full Fourier 

transform. Indeed, if we assume that Jρ is a good distribution in the sense of 

Braverman-Kazhdan [BK10], then we can identify Jρ with a rational, scalar valued 

function π γ(ρ, π), where γ(ρ, π) is defined by Jρ *π  = γ(ρ, π)π. 

Our results on multiplicativity allow in principle for us to construct in an inductive 

fashion a distribution Jρ on G by formally inducing from JρL for each conjugacy class of 

Levi subgroup L G. In fact, our setup and definitions, culminating in Theorem 5.4, are 

normalized so as to make induction of representations adjoint to our ρ-Harish-Chandra 

transform, that is, we have an equality 

 

(Jρ, IndL(θ)) = (JρL , θ). 

Here θ is a supercuspidal character of a representation on L. The adjunction allows us 

to identify the Jρ and JρL actions on the Bernstein components of IndL(σ) = π on G(k) 

and the Bernstein component of σ on L(k), respectively. In 5.3, we started with an as- 

sumption of knowledge of Jρ and JρL and we showed that this is equivalent to an equality 

of gamma factors. However, the gamma factors determine the distribution uniquely, and 

so one can in principle characterize completely a distribution Jρ by specifying its action 

on supercuspidal representations on G(k), and postulating multiplicativity as an axiom. 

More concretely, if we inductively know JρL for conjugacy classes of parabolic subgroups 



 

 

 
−

(x)| |D 2 

m 

1 

L 
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L, we may formally induce to provide a definition of Jρ with a correct action, at least 

on functions whose spectral decomposition consists solely of induced data from L: 

 

(IndL(JρL ),f) = (Jρ,HC(f )). 

The distribution IndL(JρL ) can be a priori defined by the above in order to meet this 

adjunction, and in fact JρL will then be represented by the conjugation-invariant function 
 

IndL (JρL ) : x → |DG 2 (y)| 
1 

JρL (y) 
y 

 

where the y are chosen representatives of L(k)-conjugacy classes of elements that are 

G(k)-conjugate to x, and DG and DL are the respective discriminant functions on G 

and L. (Here we are identifying JρL with the invariant function representing it.) 

That IndL(JρL ) satisfies the first adjunction, and therefore multiplicativity, follows 

from the formula for the trace, and the expression of the distribution character Θπ = 

IndL(Θσ) in terms of Θσ, adapted to the ρ-setting. 

 

6. Example: the case of Tori and unramified data 

 
We now consider the case of tori, which for present purposes we assume are split. 

Let T be a split torus over k. When T is a maximal split torus in a reductive group G, 
the upcoming discussion gives the first term of the inductive construction defining the 
Fourier transform for L = T , with minimal parabolic P0 = P = LN = TN which is a 

Borel subgroup. Let ρ = ρT  be a finite dimensional representation of T̂ . Our notation is 

justified if we assume ρT  = ρ|T̂ , where ρ is a representation of Ĝ. Let n = dim ρT . Then 

ρT : Tˆ → GLn(C). 
 

Write  
ρT = μ1 ⊕ · ··  μn, (6.1) 

 

where the μi, 1 ≤ i ≤ n, are the weights of ρT . We note that they are not necessarily 

distinct. If we realize these weights of Tˆ as co-characters of T , we get a map ρ˜T : Gn → T 

(defined over k, as T is split), which being dual to ρT , is given by (cf. [Ngô20]) 

 

ρ˜T (x1 ,. . .,  xn) = μ1(x1) ··· μn(xn). 

We can extend this to a monoid homomorphism 

 

ρ˜T : An → MρT , 



 

 

  

∈ 

m 

r 

−−−−→  S   

−−−−→  S   
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where MρT    is the corresponding toric variety. As in [Ngô20], define the trace function 

h : An → A by 
 

 

 
and set 

h((xi)) = xi 
i 

 
 
 

 

hψ : kn → C∗ 

by x → ψ(h(x)), where ψ is our fixed non-trivial character of k. 

Denote by Jstd the kernel 
 

Jstd(g) = ψ(tr(g))|detg|ndg 

for g GLn(k) as defined in Section 1, i.e., the standard Fourier transform on Mn(k). 

We use again Jstd for its restriction to An, the monoid for Tn = Gn . 

In [Ngô20] Ngo defines the kernel JρT for the Fourier transform on T by 

JρT (t) = 

r

 

 
hψ(x)dx, (6.2) 

 
which equals to 

−1(t) 
ρ�T 

 

JρT (t) =  

x∈U (k) 

hψ(xt)dx (6.3) 

where U is the kernel of ρ˜T . In Proposition 6 of [Ngô20], Ngo regularizes this integration 

into a principal value integral. 

The space of Schwartz functions on kn are compactly supported functions in kn that 

are restrictions of standard Schwartz functions on Mn(k) to kn. Their further restriction 

to Tn(k) is Sstd(Tn) in our notation. 

Let ρ∗ be the push-forward of ρ˜T . We will verify that the diagram 
 

Sstd(T ) 
ρ∗ ρT (T ) 

Jstd
⏐
.J 

⏐
.JJρT (6.4) 

Sstd(T ) 
ρ∗ ρT (T ) 

commutes, where SρT (T ) is the image of Sstd(Tn) under ρ∗. 

n 

n 



 

 

r 

r 

r r 

r 

n k −−−−→ H k 

n −−−−→  H   k 
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Let φ ∈ Sstd(Tn) and define 

φ̃(t̃) =  

U (k) 

φ(ut˜)du (6.5) 

where t̃ ∈ T (k). The commutativity of (6.4) is equivalent to 

Lemma 6.1. For φ ∈ Sstd(Tn), define φ̃ by (6.5). Then 

ρ∗(J std * φ∨) = JρT   * φ̃∨
 

Proof. By definition, for t ∈ T , 

ρ∗(J std * φ∨)(t) =  

U (k) 

 
 
(Jstd * φ∨)(ut)du 

= 

r 

( 

r 
hψ(utt̃)φ(t̃)dt̃)du 

U (k)  Tn(k) 

= 

Tn(k) 

hψ(tt̃)( 

U (k) 

φ(u−1t˜)du)dt˜ 

= hψ(tt̃)φ̃(t̃)dt̃  

Tn(k) 

(6.6) 

= 

r 

( 

r 
hψ(utt̃)du)φ̃(ut̃)dt̃  

T (k)  U (k) 

= 

r 

( 

r 
hψ(ut̃)du)φ̃(t−1 t̃)dt̃  

T (k)  U (k) 

= (JρT   * φ̃∨)(t), 

using T = Tn/U in (6.6), then the lemma follows.  □ 

The push-forward ρ∗ can be restricted to 

C[T̂n]Wn   ∼= H(Tn(k), Tn(Ok))Wn
 

leading to  
H(T 

 
(k),T  (O ))Wn 

ρ∗ (T (k),T (O  ))W
 

Jstd
⏐
.J 

⏐
.JJρT (6.7) 

H(T (k),T  (O))Wn 
ρ∗ (T (k),T (O  ))W , 

 

 

n 

n 



 

 

H 

H H 

H O H O 

T 

m 

Tn ∈ 

S 

O 

n n n k −−−−−→   H   k −−−−−→ H k 
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where Wn is the Weyl group Wn = W (Gln, Tn), W := W (G, T ) and H denotes the 

corresponding Hecke algebra. We recall that     (G) = Cc
∞(G) and set     G, K  to be the 

subset of (G) consisting of K bi-invariant functions, for K an open compact subgroup 
of G. Identifying, via the corresponding Satake isomorphisms 

H◦(GLn(k)) := H(GLn(k), GLn(Ok)) =∼ H(Tn(k), Tn(Ok))Wn
 

and  
H(G(k), G(Ok)) ∼= H(T (k), T (Ok))W

 

H◦(GL  (k))  −−−S−at−→  H(T  (k), T  (O  ))Wn 
ρ∗

 (T (k),T (O  ))W Sat−1

 (G(k), G(O  )) 

Jstd 
⏐
.J 

⏐
.JJstd 

⏐
.JJρT Jρ 

⏐
.J 

 
1 H◦(GL  (k))  −−−S−at−→  H(T  (k), T  (O  ))Wn 

ρ∗ (T (k), T (O  ))W Sat− 

(G(k), G(O  )), 
n n n k −−−−−→   H   k −−−−−→   H   k 

(6.8) 

in which JρT defines the Fourier transform 

Jρ : S(G) → S(G) 

restricted to (G(k), G( k)). Consequently, at least on (G(k), G( k)), the Fourier 

transform Jρ and JρT commute with the Harish-Chandra transform. 

We now complete the proof of Proposition 5.3. 

Proof. Note that when L = T is a maximal torus, the ρ-Harish-Chandra transform 

becomes (a twist of) the Satake transform, and in this case diagram (5.5) can be extended 

to the class of almost compact (ac) spherical functions as defined by Wen-Wei Li in 

[Li17], and we note that the ρ-basic function is amongst this class (see [Sak18]). The 

computation in section 5 (see (5.9) and (5.10)) giving 

Φ0 =  
   1    

char(P −1 \ O  ) + 
   q     

Φ̂ 

q − 1 k k 
q − 1 

can be extended to show that the function f std = char(An(Ok) ∩ Tn(k)) is also a sum 

in Cc
∞(Tn(k)) + Jstd(Cc

∞(Tn(k)), where Tn(k) '→ An(k) is the standard embedding of a 

maximal torus Tn ∼= Gn  of GLn  into afflne space. 

Let Sat := std − HC be this extended Satake transform. Given a decomposition 
φstd = f1+Jstd(f2), with f1, f2     Cc

∞(Tn(k)), the commutativity of (5.5) implies that the 

standard basic function on GLn(k), φstd = Sat−1(f1) + Sat−1(JstdT (f2)) = Sat−1(f1) + 

Jstd(Sat−1(f2)), lies in std(GLn(k)) as defined in (5.6). 
Note that here Sat is an isomorphism of K-spherical compactly supported functions 

on G(k) and the Weyl-invariant compactly supported functions on T (k)/T ( k). The 

basic function on Tn(k), and the functions in its decomposition as f1 + Jstd(f2) are 



 

 

→ → 

T Tn 

T 

T 

T c c 
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invariant under permutations of the coordinates, and so the above maps are well-defined 

in the remarks above. 

We deduce the case for general ρ from the standard case above as follows: Let T be a 

maximal torus in G with representation ρ of the dual group of G. One obtains a canonical 

map ρ˜T : Tn(k)      T (k) that extends to a map An(k)      MT (k), with the target of this 

map being the toric variety constructed in section 2. The ρ-Schwartz space on T (k) can 

be defined (see [Ngô20]) as the image of 

Cc
∞(An(k)) ∩ C∞(Tn(k)) → ρ∗(Cc

∞(An(k)) ∩ C∞(Tn(k))), 

the pushforward by ρ˜T . Then the torus basic function φρ can be expressed as ρ∗(φstd). 

Moreover, this pushforward is compatible with the ρT -Fourier transform on tori, as in 

diagram (6.4). That is, 

φρ  = ρ∗(φstd) = ρ∗(f1 + J std(f2)) 
T Tn T 

= ρ∗(f1) + ρ∗(J std(f2)) 

= ρ∗(f1) + JρT  (ρ∗(f2)), 

which shows that φρ ∈ C∞(T (k)) + JρT (C∞(T (k)). Finally, the commutativity of dia- 

gram (6.8) allows us to lift this decomposition to a decomposition of the basic function 

as 

φρ = Sat−1(φρ ) 

= Sat−1(ρ∗(f1)) + Sat−1(JρT  (ρ∗(f2))) 

= Sat−1(ρ∗(f1)) + Jρ(Sat−1(ρ∗(f2)). □ 

7. The case of standard L-functions for classical groups; the doubling method 

 

We conclude by addressing multiplicativity in the case of standard L-functions, twisted 

by a character, for classical groups as developed by Piatetski-Shapiro and Rallis, which 

has been addressed further by a number of other authors [BK02,JLZ20,Li18,Sha18] 

within our present context. We refer to the local theory developed by Lapid and Rallis. 

We will be brief and only mention the relevant statements. 

The ρ-Harish-Chandra transform is the one given in Proposition 1 of [LR05+ as Ψ(ω, s) 

with notation as in [LR05]. Our commutativity equation (5.4) in this case is equation (17) 

in  Lemma  9 of  [LR05]  in which  Jρ  = Mν
∗(ω, A, s), a normalized intertwining operator, 

while JρL acts as the operator induced from M ∗ (ω, B, s) with notation as in [LR05] in 
the context of doubling construction, or simply

W

put JρL   = M ∗ (ω, B, s). 
W 
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