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0. Introduction

Every theory of L-functions must satisfy the axiom of multiplicativity/inductivity,
which simply requires that y-factors for induced representations are equal to those of

the inducing representations. This axiom is a theorem for Artin L-functions and the L-
functions obtained from the Langlands-Shahidi method [Shal0], and is a main tool
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in computing y-factors, root numbers, and L-functions. On the other hand, its proof in
the cases obtained from Rankin-Selberg methods is quite involved and complicated. It
is also central in proving equality of these factors when they are defined by different
methods and in establishing the local Langlands correspondence (LLC) [Shal2,Shal?,
HTO01,Hen00,GT11,CST17]. Its importance as a technical tool in proving certain cases
of functoriality [CKPS504,Kim03,KS02] is now well established.

In this paper we will provide a proof of multiplicativity for y-factors defined by
the method of Braverman-Kazhdan/Ngo [BK02,BK10,BNS16,Ng0620] and L. Lafforgue
[Laf14] in general under the assumption that the p-Fourier transforms on the group G
and the inducing Levi subgroup L commute with the p-Harish-Chandra transform, a
generalized Satake transform sending Cg°(G(k)) — Cg°(L(k)), defined in Section 5.2,
where p is a finite dimensional representation of the L-group of G by means of which
the y-factors are defined.

Within our proof, we define a space S°(G) of p-Schwartz functions for every p as
SP(G) = C°(G(k)) + P (Ce” (G(k))) € C=(G(k)). (0.1)

This definition is crucial since the p-Schwartz functions defined in this way will be uni-
formly bi-K-finite (see equation (5.16) and Lemma 5.5), making the descent to the
inducing level possible, an important step in the proof of multiplicativity. While the y-
factor can be defined as the kernel of the Fourier transform, it is the full functional
equation that allows our descent to the inducing level in a transparent fashion, using our
subspace of p-Schwartz functions.

In [BK10], Braverman and Kazhdan defined their Schwartz space as a “saturation” of
ours. But our Schwartz space, which is denoted by V), in [BK10], covers a significant part
of theirs and in particular, contains the p-basic function as we prove in Proposition 5.3.
This is done using the extended Satake transform to almost compact functions [Lil7]
and the fact that it commutes with the Fourier transform induced from tori which is
now defined in general (Section 6 and in particular diagram (6.8)).

The commutativity assumption allows us to extend the p-Harish-Chandra transform
to § ?(G), commuting with ¢ and Jrt, respectively, where pr. is the restriction of p to
the L-group of L. This construction of §*(G) agrees with that of Braverman-Kazhdan
in the case of doubling method [BK02,GPSR87,Li18,LR05,PSR86,Shal8,]LZ20,GL20],
since G being the interior of the defining monoid embeds as a unique open orbit into
the Braverman-Kazhdan space (cf. [Li18]). Our proof is a generalization of Godement-
Jacquet for GL,, Theorem 3.4 of [G]72].

Our commutativity axiom, which implies multiplicativity and multiplicativity itself
give rise to an inductive scheme that allows for a definition of Fourier transform J» by
building from the case of conjugacy classes of Levi subgroups L of G. In fact, Theorem 5.4
gives the y factors y(s, m, p, ¥), m an irreducible constituent of Ind(c), equal to the
inducing y-factor y(s, o, pr, 1), which in turn is defined through convolution by jr-.
For example, for GL2, the Levi subgroups consist of split tori for which a canonical
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Fourier transform exists (cf. [Ng0620]; see (6.2) here) and GL: itself, which is equivalent
to understanding supercuspidal y-factors. We refer to section 5.4 for a more detailed
discussion of this inductive construction.

In the case of GL2, Laurent Lafforgue [Lafl4] has defined a candidate distribution
which is shown formally to commute with the Harish-Chandra transform and evidence
exists that it may give the correct supercuspidal factors as observed by Jacquet, but it is
still unknown if this is the right distribution. Work in this direction for tamely ramified
representations is being pursued by the second author.

Although our definition of the space S°(G) depends on the knowledge of how Jr acts
on C°(G(k)), this seems to be the most efficient way of defining SP(G) at present and
sufficient for our purposes as a working definition, allowing us to begin making some
initial steps toward understanding the general theory. As observed earlier after equation
(0.1), this is essential in proving the uniform K-finiteness of p-Schwartz functions.

One hopes that the geometry of Mr will provide some insight into what this Fourier
transform ought to be. In fact, the geometric techniques used to study the basic functions
on reductive monoids via arc spaces in the function field setting [BNS16] tell us that
the nature of the singularities of the monoid very much controls the asymptotics of
the basic function. Taking cue from this, it is natural to consider the geometry of the
singularities in the p-adic case as well. As a first step, we may classify the singularities
of our monoids via the theory of spherical varieties and we find that there is a good and
explicit choice of G-equivariant resolution of singularities [Bri89,Per14]. The resolution is
moreover rational and so we may pass without trouble between differential forms on the
monoid and its resolution. The geometric aspects of this theory are discussed in part in
Section 3 of the present paper. Since our Schwartz spaces are, at least tentatively, linked
by the definition of the Fourier transform J# via SP(G) = C:°(G(k)) + JP(Cg° (G(k)),
we are able, at least speculatively, to unite the themes of this paper. Here is the outline
of the paper.

Section 1 is a quick review of the method for GL(n) as developed in [G]72]. Renner’s
construction of reductive monoids is briefly discussed in Section 2 which concludes with a
treatment of the cases of symmetric powers for GL(2), describing all the objects involved
in those cases. Section 3 covers the geometric aspects studied in the paper. This includes
the resolution of the singularities of reductive monoids, leading to a proof of rationality of
these singularities. This allows a transfer of measures from the monoid to its resolution
as discussed in Section 4 and can be applied to the integration of basic functions on
corresponding toric varieties in Example 4.1. Multiplicativity is stated and proved in
Section 5, concluding with the example of GL(n) in 5.3 and a discussion of the inductive
nature of Fourier transforms in 5.4. In proving multiplicativity, we have found it easier to
work with the full functional equation rather than the definition given by convolutions.
The cases of a tori and unramified data are addressed in Section 6. The paper is concluded
with a brief discussion of the doubling construction of Piatetski-Shapiro and Rallis with
relevant references cited.
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1. The case of standard representation for GL,

We recall that the Godement-Jacquet [G]72] theory for standard L-functions of GL,,
which this method aims to generalize, can be presented briefly through the definition of
the corresponding y-factors.

Let F be a p-adic field and G = GLxn. Let 7t be an irreducible admissible representation
of GLn(F). Given a Schwartz function ¢ on Mn(F), ie, ¢ CZ(Mn(F)), a smooth
function of compact support on Mn(F), one can define a zeta-function

r

Z(P, f,5) = O(x)fF(x)| det x[dx,

GLn(F)

where f(x) = (n(x)v, v); v € H(n) and v € H(mt); is a matrix coefficient and s € C.

Here m is the contragredient of n, and H(n) and H(®) denote the spaces of 7 and =,
respectively. Let

o(x) == ()Y (tr(xy))dy

Mn(F)

be the Fourier transform of ¢ with respect to the (additive) character ¢ =1 of F.

If fv'(g) = f(g71), § € GLn(F), then we can consider Z((E,fv‘, s). The Godement-
Jacquet theory defines a y-factor yt(rm, s) which depends only on 7 and s and is a
rational function of 47, satisfying

N -1
Z@Gf (1 =)+ S5 ) =y S)Z(6.f5+ ) (1.1)

for all ¢ and f.
It is not hard to see that if we introduce the Int(G)-invariant kernel

Dy(g) = Y(tr(g))| det gl"dg
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of the Fourier transform, then

Dy * (F det [S*72 ) = ystd(m, 5)F] det [S+ 2 (1.2)

by virtue of irreducibility of m and the Schur’s lemma.
This formulation for the y-factor is a quick and convenient way of introducing them
which is amenable to generalization. We can therefore write

r
y(m, s) = Dy(m) = Dy (g)T(8)dg,
GLn(F)

pointing to the significance of the kernel ®,, in defining the y-factors.
2. The general case; monoids and Renner’s construction

To treat the general case we need to generalize My(F ). Let k be an algebraically
closed field of characteristic zero. A monoid M is an affine algebraic variety over k
with an associative multiplication and an identity 1. For our purposes, we also need
M to be normal, i.e., k[M ] is integrally closed in k(M ). We can always find a normal-
ization in case M is not normal, i.e., an epimorphism (in the category of monoids)
M&®. M such that integral closure of k[M] in k(M) equals k[ms we realize
KM EM].

We thus let M be a normal monoid and let G = G(M ) = M *, be the units of M.
We say M is reductive if G is. We now like to attach a monoid to a finite dimensional
representation p of G=1=gG, L-group of G, p : G — GL(V,), where G is a split reductive
group. Let T C G be a maximal torus and write

ol T = A,
AW (p)

where W (p) is the set of weights of p. Let A = Hom(Gwm, T ) be the set of cocharac-

ters of T or characters of T and set Ax = A ® zR. Next, denote by ((p) the convex
span in Ar of weights of p and let {(p) be the cone in Ar generated by rays through
Q(p).

Let 0V = &(p)Y X*(T ), be the “rational” dual cone to &(p) NX«(T ) and k[oV] the
group algebra of ¢V. One can then identify ¢V as a subset of k[ocV] by u € ¢V going to
Xu defined by

Xu(n) =0 unless n=yu, n€a,

Xu(p) =1, and Xy - Xuz= Xu+wo, Where the sum is the one on the semigroup ov. We
note that this is valid for any semigroup S and
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k[S] = (xsls € S).

Now, assume G has a character

Vo G —_ Gm
such that
C* wooop
—— G —— GL(V))

sends z € C* to z - Id. This means that (v, w) = 1 for any weight w of p. In fact, for
z € C*,

200 = (V¥ (2)) = p(v¥(2)) = 2

and thus (v, @ = 1. Then v &V and its existence implies that &(p) is strictly convex,
i.e., has no lines in it. In fact, the cone &(p) is contained in the open half-space of vectors
x e Ar, Ax = Ag =R, A =Hom(Gm, T), satistying( v,x > 0. It is therefore strictly
convex (cf. [Ngo620], Proposition 5.1).

By the theory of toric varieties [CLS11], the strictly convex cone £(p) determines
(uniquely) a normal toric variety, i.e., a normal affine torus embedding j : T ~ M,..
Here Mr is the monoid for T attached to ;MA" More precisely, M1 = Spec(k[cV]) by
Theorem 1.3.5 and Proposition 1.3.8, pg. 39 of [CLS11]. By definition 3.19 of [Ren05],
k[oV] is generated by X(Mr ), the characters of Mr and thus X(Mr ) = ¢V, the semi-
group defining Mr . The embedding j : TCMr , defines j* : X(Mr )= X(T ), a
semigroup morphism, into the character group of T.

The dominant characters in X(T ) all lie in X(Mr ) and are those that extend to
semigroup morphisms Mr — A' = Gq (Proposition 3.20 of [Ren05]).

Finally we observe that v is integral and dominant and thus v € X(Mr).

To proceed, we remark that the Weyl group W= W (G, T) acts on T, Mr, X(T ) and

X(Mr ) in the usual manner. Moreover, the dual rational cone ¢¥ may be identified with
X(Mr ), both semigroups, since its group algebra generated by elements of X(Mr ) or

0V, is k[Mr] as we discussed earlier.
Let A € X(T ) be a dominant (and integral) character. Then A|Ter defines an irre-

ducible finite dimensional (rational) representation (3 of Gder, Tder = T N Gder, of highest
weight A|Tder. Since
U31Z(G) N Gder = A|Z(G) N Gder,

we can extend p3 to an irreducible rational representation px = ug ® (AZ(G)) of
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G = (Gder X Z(G))/Gder N Z(G)

Definition 2.1. yj is called the irreducible representation of G of highest weight A, where A
is a dominant rational character of T, extending the notion from the standard semisimple
setting to the reductive one.

This in particular is valid for dominant elements in X(Mr). We note that v ¢ X(Mr)
is one such.

L
Now choose {A}—1 so that ;_; W . A; ¢ X(Mr) generates X(Mr). Let (uas, Vas)
S S
be the representation attached to Ai. Set y = wy and V.=V, . The character v
i=1

=1
will be among these A;. We may assume A1 = v. Define M1 = u(G) C End(V'). We let
M be a normalization of M.

2.1. The case of symmetric powers of GL2

As an example in this section we consider the symmetric power representations of
GL2(C) and describe these objects in this case.

Let G= GL2 and p= Sym" : GL2(C) — GLn+1(C), the n-th symmetric power
of the standard representation of GL2(C). Write C™! = (ey, ..., exr1) with the basis
ey, ..., ens1. Let {u;} denote the weights of Sym™. Then we can order them as

pi(diag(x, y)) = xiy"t ((x,y) € (C*)),
i=0,..., n. We have
ESym™) N X4(T) = Z=0 — span {(n — k, k)|[k =0,..., n}

inside R? which equals

Z=0 — span {(m, )| m,1 =0, m+1 € nZ}.

The dual cone to {(m, )| m,1 = 0,m+1 € nZ}is
1 1
{(a,b) e =ZX —Z | a,b=0a—beZ}L
n n
Thus the dual to &Symn) N X«(T) is the Z=0 — span of {(1,0), (0, 1), (%, 1)}. It is a
nn

lattice in the shaded area, corresponding to ¢V,
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(0,1)

(1,0) .

We use x,y, and zto denote (1,0),(0,1) and (1, 1) in the semigroup algebra k[o"] as

n
before, i.e., x = xa,0 and so on, then

k(x,y,2) =k[X, Y, Z)/(XY — Zn).
The corresponding toric variety is
Mr = Speck[X, Y, Z|/(XY — Zn) < k8,
the variety defined by the zeros of XY — Zn =0, and

T = Mz N (k*)3
={(t, t4, t2)|t: € k*, i=1,2}

The monoid M for Sym" (Renner’s construction): The dual cone in

XH(T) ®2 Q= X«(T)®~Q

is generated by (1, O),(i, 1) and (0,1). The vectors (1,0) and (0,1) are W-conjugate
and therefore we have as our dominant weights & (1, 0), (1‘ ,l);. They correspond,
respectively, to std, the standard representation, and v = det"/" (to be explained) and
thus

1:G —— End(Vea @ V3) = M2 X Al
g —— (g (detg)/™).
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Then

M = u(G)
={(g a) | degg=a"}
":: Speck[X1,..., X5] / (X1Xs — X2X5 = X¥).

The character v for Sym™
Recall that the fibered product of GL2 and G, giving the units of the monoid for
Sym~ is (cf. [Shal7])

GL»> n =odd

G=GL2 Xg m = y =any = :
2 X6,, Gm ={(g, a) | detg=an} SL XGL 1n=even

We then have the commuting diagram

Proj:
GL2

G=GL2 X, Gm

Projz !j |J det

Thus

l !
a —— detg=an

and the left vertical arrow, the Projz, gives

v:i(ga) —— (detg)ln =a

for which

% Symn
. 1/n
Z—— dlag(Z//"'lzl/n) - Z 'In+1.

3. Some geometry of reductive monoids as spherical varieties

In this section, we give an exposition of some of the geometry of reductive monoids
in terms of their idempotents and their relation to their structure as spherical varieties,
and outline the construction of resolutions of their singularities. Renner’s classification
of reductive monoids uses the “extension principle” [Ren05]. The extension principle
follows in the spirit of many similar classification results for spherical varieties that rely
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on the existence of an open BxBer-orbit where B is a Borel subgroup of G, that is in
Renner’s case adapted to account for the monoid structure. By Renner’s classification,
the category of Reductive monoids is equivalent to the category of tuples (G, T, T), where
T is any maximal torus in G and T'is a Weyl-group stable toric variety. A morphism of
data (G, T, T) - (G, T‘,F) is given by a pair (¢, 1) where ¢ : G — G' is a morphism of
reductive groups and 7 : T—T T a morphism of toric varieties such that the restriction of
each morphism to the maximal torus agrees ¢ T =1 T . In the following, we reframe these
results in terms of the theory of spherical varieties, in order to state the existence of a
G-equivariant resolution of singularities. A nice general treatment over any characteristic
are in [BKO07], [Rit03]. See also [Rit98].

Let G be a split reductive group defined over a characteristic zero field k. Let X be a
variety defined over k with a regular action « : & X X. In this case we say X is a G-
variety. Let Ox be the sheaf of regular functions on X. If X is affine, we will identify
Ox with the coordinate algebra k[X]. In this case a induces as usual a co-action map
a* : k[X] ~ k[G] ® k[X] by (@*/)(x,g) = F(g'x) = hi(g)fi(x) with hi € k[G],
where the latter is a finite sum. Thus each f determines a finite dimensional G-module.
Because G is reductive and we are in characteristic 0, each finite dimensional G-module
decomposes as a finite sum of irreducible representations indexed by their highest weight
vector with weight A. As such we may decompose k[X] = k[X]», indexed by the A
that appear in k[X].

Definition 3.1. A G-variety X is spherical if X has an open B-orbit for some (hence any)
Borel B in G.

Suppose X is spherical. Then as above, by highest weight theory, each dominant
integral character A of T (k) that appears in k[X] has a highest weight vector fi. The
line k - f is the unique line stabilized by B on which B acts through the character
A fa(bx) = A(b)A. In other words fa is a semi-invariant. Suppose f1 and f> are semi-
invariants that are A-eigenfunctions appearing in k[X]. Then the rational function fi/f>
is B-invariant. As the B-orbit in G is dense, this implies fi/f2 is constant. Hence for
spherical varieties, each A that appears can only appear with multiplicity one.

Theorem 3.2. Let X be an affine G-variety for a reductive group G. Then the ring of
G-invariants k[X]€ is finitely generated, say k[X]|® = k[fi, ..., ful. Then k[X]° '~ k[X]
defines a surjective quotient which is moreover a categorical quotient q : Xo. X//G.
Each fiber of q contains a unique closed G-orbit in X, and X//G is normal if X is.

Definition 3.3. A spherical variety X is simple if it has a unique closed G-orbit.
We are interested in reductive monoids, which have open G-orbit and are spherical

with respect to GxG with an open dense Borel = K Ber orbit, where Ber is the Borel
subgroup opposite to B.
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Proposition 3.4. Suppose X is affine and has an open G-orbit. Then X has a unique
closed orbit.

Proof. The reductive quotient 4 : X — X//G is constant on orbits, in particular on the

open orbit. Hence X//G = {pt}. The fiber g4-1(pt) contains a unique closed orbit by
Theorem 3.2. O

Therefore such X are simple. Once again let us consider an affine simple X asa Gy G
variety. Decomposing  ; k[X]x = Vi where V, is the highest weight module for A. The

(B, A) eigenfunction f; is U-invariant. Thus one may consider taking U X U°r-invariants
KX]V*U™ are therefore generated as a vector space by the f .\Using the following

Theorem 3.5. Let G be reductive with maximal unipotent subgroup U, and let X be a
G-variety. Then k[X]Y is finitely generated. Moreover X/U = spec k[X]V is normal if
X is.

Proof. One first establishes the theorem for G/U i.e. k[G]Vis finitely generated and
in fact G/U is a geometric quotient (a so called horospherical variety). One has a map
® : X/U = X %G G/U where the quotient is by the diagonal action. On coordinate
rings: a U-invariant f defines a G-invariant function (®*f)(x, gU) = f(gx). Thus by
Theorem 3.2 k[X X G/U|¢ = k[X]Y is finitely generated. O

We can conclude that the variety X/(U x U°p)is a T = U\BBep/U°p '_, U°P\G/U
variety, on which T acts on fa through the character A. In other words, we have a ring

(Va ® V)UXU) oraded by Ax = {A € X*(T) : k[X]a /= 0}. By Theorem 3.5, this
is a finitely generated monoid. Each summand has a diagonalizable action by the torus
T . Moreover, if X is normal the associated toric variety is normal, hence the cone of
weights of X defining the toric variety is saturated.

Recall that a G-variety is simple if it contains a unique closed orbit. When X is affine,
it is enough that G embeds as an open subvariety to imply X is simple. We state without
proof the following;:

To classify a general spherical variety one needs the following additional data.

Definition 3.6. Let V (X) denote the G-stable discrete valuations on k[G].
Definition 3.7. Let Divp(X) denote the set of B-stable prime divisors of X.

Definition 3.8. Let Z be a G-orbit in X. Then Divp(X : Z) is the set of B-stable prime
divisors containing Z.

Definition 3.9. Let B(X) denote the set of irreducible G-stable divisors.
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Proposition 3.10. For a divisor D € Divg(X), either

(1) The B-orbit B D is open and dense in the open orbit of X.
(2) D is G-stable.

Briefly (although see [Kno91] for details) a simple spherical variety X is determined
by its weight monoid, plus the data of which B-stable boundary divisors containing the
unique closed orbit Z are G-stable and which are not. More precisely, each divisor D de-
fines a valuation by first restricting D N G which defines a valuation on the multiplicative
group of rational functions k(G)* on G (the valuation vp N G is the order of vanishing of
a rational function f/g on D N G). This defines a so-called colored cone, defined by the
Q=0 span of the finite number of valuations vp as above. The colors comprise the valu-
ations that are B-stable but not G-stable (or equivalently, their corresponding divisors
have a B-open-orbit).

Thus the set D(X : Z) gives the set of colors of the simple spherical variety X.
The cone generated byR(X) and the natural image of D(X : Z) in the set of K[G]
valuations is the colored cone C determined by the data (V (X),B (X)) that determines
up to isomorphism the spherical variety X. For reductive monoids, this cone is equivalent
to the one constructed in the earlier section via highest weight theory.

Example 3.11. For a reductive monoid M, there is a beautiful description of the boundary
OM = M G in terms of B Repr-stable boundary divisors in the form of an extended
Bruhat decomposition: Let R = Ng(T ) M be the Zariski closure of the normalizer of a
maximal torus T in G. Let I(M ) be the set of idempotents in M, and note that reductive
monoids are regular (in Renner’s sense), that is, we can decompose M = G I(M ). Then
we can construct the Renner monoid (sometimes called the Rook monoidQ := R/T .
Because reductive monoids are regular,Rmakes sense as a finite monoid whose unit
group is the Weyl group W, and having the property that
II
M = BxB.

xeR

From this description, it may be deduced that the set D(M : Z), with Z 0 the
unique closed orbit in M, is given by the codimension one orbits Bs,B° for s R the
simple reflection in the Weyl group determined by the simple root a. The & G orbit
structure is given by the decomposition

II
M = GeG,

ecJ

where ] denotes the subset of I(M ) contained in T such that Be = eBe. More details on
the semigroup structure in terms of the structure of its set of idempotents are given in

sections 4 and 7 of [Ren05]. Let J' denote the maximal idempotents and suppose e € J'.
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We can find a one parameter subgroup A : Gm — G, unique up to G-conjugation, such
that lim;—oA(f) = e. We may assume the image of A is in the maximal torus T and as in
Proposition 7 of [Rit03] A defines a valuation vy of k(G). Each singleton hC V (G)
defines an elementary embedding X* ([Kno91]) of G such that BeBer is open in X2 G.
One checks as in [Rit03] that in fact v, is an invariant valuation. The set of all v, so
constructed gives an explicit identification between J' and B(M).

Thus, for a monoid with reductive group G embedded as its unit group, the colors of
M are all B Ber stable irreducible divisors of G, and thus the monoid is determined
purely by the data gM ) or equivalently (M ). We state for convenience this form of
the classification.

Theorem 3.12. Let G be a reductive group. The irreducible, normal algebraic monoids M

with unit group G are the strictly convex polyhedral cones in X«(T @ Q generated by
D(M) and a finite set of elements in V (G).

Definition 3.13. A spherical variety X is foroidal if D(X) is empty.
Every spherical variety has an open dense toroidal subvariety in codimension 2.

Proposition 3.14. Suppose the spherical variety X is toroidal and let 0X = X G. Let
Px be the GG stabilizer of 0X. Then P is a parabolic and moreover satisfies the local
structure theorem, i.e. there is a Levi L ¢ P, depending only on G and a closed L-variety
Z such that

Py xZ — X \0X
is an isomorphism. Moreover, Z is a toric variety under L/[L, L].

As a consequence of the above isomorphism, the L orbits of Z correspond to G orbits
in X. Note that when X = M is a reductive monoid, this is precisely Renner’s extension
theorem [Ren05] with Py = ByB» and Z = T . The proposition implies that the
singularities of X are those determined by the cone of the toric variety Z.

Let us recall Renner’s extension theorem for normal reductive monoids. It states that
a morphism of reductive monoids M — M is given by the data (G, T,T) and (G', T‘,?)
and a morphism ¢ : M— M! is equivalent to ¢ G~ G' and T :T— T Briefly,
in M one has an analogue of the open cell which is the image of an open embedding
U opxT W ULopTU which has codimension 2sin M . Thus one gets an equivariant
morphism (u',t, u) — @u")t(H)p(u) € M'. By normality of M, the codimension >2
condition extends the map uniquely to M — M, and one verifies this is in fact a
morphism of monoids.
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Remark 3.15. The above map in Renner uses an open Bruhat cell analogue in the context
of monoids, which yields a structure theorem parallel to Proposition 3.14. More generally,

G-equivariant dominant morphisms ¢ : Y — Y ! of spherical varieties are in bijection with
linear maps ¢x : Xx(Y) ® Q — Xx«(Y'") ® Q, where Xx(Y) and X« (Y'") are the lattices
of co-weights of the underlying group G, such that the image of the colored fan Cy is
contained within Cy:.

In view of the above structure theory, the singularities of a spherical G variety X are

determined by those of its associated toric variety X//U = T. Smooth toric varieties are
classified as follows.

Theorem 3.16. An affine toric variety T is smooth if and only if the extremal rays of the
rational polyhedral cone generated by its weight lattice is a basis for the character lattice

X*(T).

As a general toric variety is glued from affine toric varieties, it is given by a fan
consisting of rational polyhedral cones. Thus a toric variety is smooth if and only if its
fan consists of rational polyhedral cones whose extremal rays generate (as a Z-module)
X*(T). Moreover any piecewise linear morphism of rational polyhedral cones C — C!
defines a T-equivariant morphism of toric varieties, thus, by Theorem 3.16, one obtains
an algorithm giving a resolution of singularities of a toric variety T.

Theorem 3.17. Let 0¥ = QT ) n X*(T) = the monoid of weights of T. Starting from
an extremal ray (T ), successively subdividing the cone such that each resulting cone is
smooth, defines a smooth fan consisting of smooth cones & such that the inclusion map

\

GV '— oV defines a canonical T-equivariant resolution of singularities T — T.

Finally, one may define a G-equivariant resolution from Remark 3.15 and Theo-
rems 3.16 and 3.17:

Theorem 3.18. Let M be a reductive monoid. Then there exists a smooth spherical G-

variety M that is toroidal, and a proper G-equivariant morphism ¢ : M — M.

Proof. Take the colored cone Cy determined by M. Deleting all colors, construct a fan
Cur generated by a subdivision of Cas into smooth colorless cones (which always exists,

see [CLS11]). Then T — T C M is a resolution of toric varieties, and M has an affine
chart given by the open cell U°p X T X U by Proposition 3.14, and therefore is smooth. The

natural inclusion of Cps into Cas defines a dominant G-equivariant morphism M — M,
giving us our resolution. o

Example 3.19. The case of G = GL2 and p = Sym" monoids are determined by their

respective toric varieties {xy —z" = 0} = A2/C,, which are realized finite quotients
of A2 by cyclic group C, of order n. These are the well known finite quotient surface
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singularities of type A, and their resolutions are given by [ 5 ] blow-ups at the origin.
Likewise, the resolution of M? is given by }["]-blow-ups at 0 of M?.

Next we discuss the rationality of singularities. Recall that X has rational singularities
if a (and hence any) resolution r : X— X has vanishing higher cohomology: R'Q# =0
if i > 0. Moreover, recall that for a resolution r 7 X> X the fiber over the singular
locus Xsing = r—1(Xsing) = E is the exceptional divisor. It can be computed explicitly
as in [Rit03] which follows from the following result, which is also deduced in [BK07],
[Rit03].

Theorem 3.20. Let X be a normal variety with rational singularities. Let j : Xom '— X
denote the embedding of the smooth locus of X into X. If we define wx = jx(wx), by
extending (uniquely, by normality) algebraic top-dimensional differentials form to X. If
r: X — X is any resolution of singularities, then r*wx extends over E to an algebraic
differential form on ~

X.

4. Integration on singular varieties

Let @ be a top-differential form on a reductive monoid M . Taking the resolution as
above 1 : ME»M we get a well defined differential form r*w on# . Restricting r to the
open set on 1&Rer which 7 is an isomorphism, we have upon passing to k-points

r r r
lr*w| = [Jac(n)|lw| = lwl,
)

- - X

where Jac(r) is the Jacobian of r and ¢ js the measure constructed by Weil from the
top-differential form w on X.

Example 4.1. As a first basic example, we may consider the basic function on toric
varieties. The basic function on a toric variety T (defined by cone o) is supported on
the dual cone ¢v. Suppose the generators of the weight monoid of T are ey, ..., en

The e; are co-characters kX — T (k). For each co-character A in the weight monoid,
AMw)T(Ox) is an open neighborhood on which the value of the basic function f2 is
T

#{(a) € Z-ol @ei= A} It is known [Stu95,Cas17] that the function

A = #{(ai) € Z2o | aiei=A}:0 N Xu(T) = Zso
1
as an integer valued function of the weight monoid is quasi-polynomial, i.e., it is in the
sub-algebra of functions on X«(T') generated by polynomials and periodic functions. More
precisely, for each x € A(w)T (Ox), fP4x) is given by a root of unity times a polynomial
in the valuation of det(x).
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It is also classical that locally in some coordinate system on T(k), the map r :
T(k) — T(k) is given by a monomial transformation, i.e., has the form (ti, ..., t,) —
(14" - - gdm, ., tdit .. pdm) For example, the Sym? toric variety is the cone {xy —
z2 = 0 }and is resolved affine-locally by the classical “cylinder” resolution (x,y, z) —
(¥z, yz, z). Therefore the jacobian Jac(r) ig in local coordinates a product of the form
fi 4. For the cylinder resolution itis z _, g 7. Thus as w¥ _ 0 the Jacobian grows as
the inverse of an exponential while the basic function is dominated by polynomial growth.

Hence the pullback of the differential form 7*(fPw) makes sense as val o det — o« on
F (k).

5. Multiplicativity

Every theory of L-functions is expected to satisfy “multiplicativity”, i.e., the equal-
ity of y-factors for parabolically inducing and induced data. Our goal in the rest of
the paper is to establish, under natural assumptions on related Fourier transforms, the
multiplicativity in the context of this theory in general. Our proof is a generalization
of the standard case of Godement-Jacquet [G]72]. We first need to connect Renner’s
construction to parabolic induction.

5.1. Renner’s construction and parabolic induction

We start by observing that Renner’s construction [Ren05] respects parabolic induc-
tion. More precisely, let P = LN be a parabolic subgroup of G, with unipotent radical
N and a Levi subgroup L which we fix by assuming T ¢ L. Now L is a reductive group
with a maximal torus T to which Renner’s construction applies. Let pr. = p ﬁ, where L.
is the connected component of the L-group of L.

Now py| T gives the same weights as a T does and thus p;, shares the same toric
variety Mr coming from p. Let W, = W (L, T ). Then each orbit WA; breaks up to a
disjoint union of orbits WrA; and thus

s s  s;

Vo 1L = V)%j'

where

Si

Vi lL= vy

(5.1) Conclusion: The monoid Mrt attached to pr by Renner’s construction for L, L =
G(Mprr), is the same as the closure of L as a subgroup of G upon action on V =

1 Vi, ice., Met=u(L).
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We also need to remark that the character v : G —. Gn discussed earlier, when

restricted to L maybe considered as the corresponding character hy of L ie,y =vL.

In fact, v¥ andv¥ both take valyes in the centers of G tively. The natural
embedding'of L “by means BrRaTant s © anofm FRECHEH 1o Toar A

of L and G who share the maximal torus T, identifies Z(G) as a subgroup of Z(L). We

therefore have the commutative diagram

Cr Y & 2 GLa(V p)
vy, T %
L

and consequently pr. - v{(z) =z - Id as needed.

The shift in general. To get the precise y-factor in general one needs to shift s by 6, A )

or 1@ |v|s should change to @ | v|s*¢Y, with notation as in [Ng620], where 1 is half
the sum of positive roots in a Borel subgroup of G and A the highest weight of p.

In our setting, we need to deal with the representation p , of L. as well which is not
necessarily irreducible. Let Ai,..., A, be the highest weights of p , We may assume

A1 = A. The shift will then be (nz, A1+ -+ - + A).
Let us define g, = [v|®16D, 61 ,, = |v |12+ +A) and set
VG/L = VG/L/p = 6G,p/6L,pL-

Finally, let 6p be the modulus character of P = NL.
5.2. The p—Harish—Chandra transform
We now recall the p-Harish-Chandra transform, a generalization of the Satake trans-
form. Given @ € C°(G(k)), define its Harish—rChandra transform ®p € C°(L(k)) by
O (=6 (1) Dnl)dn. (5.1)
P I
N(k)
Next define the p-Harish—Chandra transform, p—HC in short, by
o ()=v, D () (5.2)
P G/L.p P

Fourier transforms

The conjectural Fourier transform (kernel) J¢ is supposed to give the y-factor y(s, 7, p)
for every irreducible admissible representation 7 of G(k) through the convolution
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Jr % (ﬂv|s+(7lG;)l)) =y(s, 7, pmv|s+(nc,)\)l (5.3)

where 7 is an irreducible admissible representation of G(k) and f(g) = m(g)v, vis-y
matrix coefficient of 7. In the context of parabolic induction from P = NL we will also
have y(s, 0, p,) defined by Jr:.

Fourier transforms and Schwartz spaces

We will now assume we are given Fourier transforms J¢ and Jr.
JP: C2(G(k)) — C=(G(k))
and
Jer s CP(L(k)) — C=(L(k)),
commuting with the p-Harish-Chandra transform @, i.e.,
(JpD)p = Jrr s, 5.4)
or equivalently we have the commuting diagram
P
C2(G(R) —L— J(C2(G(k)) € C=(G(k))
prC.lJ .|prHC (5.5)
P
G (L(K)) —L=— Jor (Geo(L(k)) © C=(L(K)).
We will label this as “Assumption (*)”.

We now define the Schwartz spaces S?(G) = SP(G(k)) and SPr(L) = SPr(L(k)) as
follows:

SP(G) == C°(G(k)) + JP(CE(G(k)) € C=(G(k)) (5.6)
and
SPL(L) = C°(L(k)) + JP(C (L(k)) € C=(L(k)). (5.7)

As we pointed out in the introduction, these are subspaces of the conjectural p-
Schwartz spaces and suitable to our purposes. Moreover, as we prove in Proposition 5.3,
they contain the p and pz-basic functions. We recall that the p-basic function ¢r is the
unique one for which

Z(¢pP, fs) = L(s, 71, p),
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where fs is the normalized spherical matrix coefficient of 7t g |v|* with Z defined as in
(5.11) below.
Note that ® CI);’) sends C®(G(k)) into C*(L(k)) and thus (5.5) implies that it also
c c

sends

JP(CE(G(k))) — JPr(Ceo(L(k)))-
We thus have:

Proposition 5.1. Under Assumption (%), the p—Harish—-Chandra transform ®f sends
SP(G) into &L). In particular, equation (5.4) is wvalid for our spaces of p-Schwartz
functions on G(k) and L(k).

We remark that our definition of Schwartz spacgs ?(G) ands”: (L), as well as
Proposition 5.1, will be needed in our proof of multiplicativity in Theorem 54, e.g.,
we use uniform smoothness which follows from our definition, see the discussion after
equation (5.16)

Remark 5.2. This definition of Schwartz spaces agrees with ideas of Braverman-Kazhdan
[BK02,GL20] and with the case of standard representation of GLn(C). To wit consider
G = GLy, i.e., the Tate’s setting, and check it for the ®o = char(Ox), i.e., the corre-
sponding “basic function”. Let ® = char(Oj) ¢ Cg°(k*). Now Jr is just the standard
Fourier transform

r
JeoW) =) = DEY(tr(xy))dx. (5-8)
k
It can be easily checked that
®o = ——char(P-11 0 )+~ (5.9)
qg-1 k k qg-1
€ Co7(k*) + JP(C™ (k*)), (5.10)

where Py is the maximal ideal of Ox. Here the additive character i is unramified, the
measure dx satisfies dx(Ox) =1, and q is the cardinality of Ox/Pk.

This simple calculation allows us to prove the following general result:
Proposition 5.3. The space SP(G) contains the p-basic function.
We give the proof in Section 6 after introducing diagrams (6.7) and (6.8).

Multiplicativity. As we discussed earlier every theory of L-functions must satisfy multi-
plicativity, an axiom that is a theorem for all the Artin L-functions and is the main tool
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in computing y-factors and L-functions. To explain, let P = NL be a parabolic subgroup
of G with a Levi subgroup L, uniquely fixed such that [5T, the maximal torus of G
fixed in our construction throughout. Let ¢ be an irreducible admissible representation
of L(k) and let p be a finite dimensional complex representation of G and pL= p|i
as before. For each irreducible admissible representation ¢ of L(k), we can define the

y-factors y(s, o, p,) and y(s, Indg(f)(g, p). Multiplicativity states that:

¥(s, Indglo, p) = (5,0, p..). (5.11)

Here we suppress the dependence of the factors on the non-trivial additive character of k.
We note that, since the induced representation Inqu(g’ga may not be irreducible, the y-

factor (s, Ind%’é}g, p) is defined to be y(s, 7, p), where 7t is any irreducible constituent of

IndgRg. The y-factor will not depend on the choice of 7 as the proof below establishes.

A proof of (5.9) is usually fairly hard for y-factors defined by Rankin-Selberg method
[JPSS83,50u93]. On the contrary, (5.9) is a general result within the Langlands—Shahidi
[Shal0] method with a very natural proof.

Our aim here is to give a general proof of (5.9) within the Braverman-Kazhdan/Ngo
and Lafforgue programs using (5.4) and Int(K)-invariance of J¢. It follows the arguments
given in [G]72]. To proceed, we emphasize that we are assuming the existence of the
Fourier transforms J# for functions in C.°(G(k)), commuting with the p_ HC transform,
such that the functional equation

Z(Jp®, f) = y(m, p)Z(D.f)

for every irreducible admissible representation m of G(k) and every matrix coefficient f
of 7, is satisfied for every ®e § #(G). In particular, we assume Z(®, f) is not identically
zero for all ® and f. Here

-
Z(D,)=  DE)f (KA)dg
G(k)
and
. r
Z(JerD,f)= JeDQ)f (8 )oWKL)v(Q)ldg.
G(k)

See also the papers [Get18] and [Luo19] that address some of the analytic difficulties
in the archimedean setting. We now proceed to give a proof of (5.9) which we formally
state as:

Theorem 5.4. Let 0 be an irreducible admissible representation of L(k) and let I1 =
Ind §§f)o. Let p be an irreducible finite dimensional complex representation ofé and let
p,. = pl|L. Assume the validity of (5.4) (Assumption (x)) for Schwartz functions. Then
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(s 1L p) = y(s,0,p.).
G(k)
Proof. Let I = Indp 0 be the contragredient of I. Choose v IT and v  H. Then a
matrix coefficient for I'l_can be written as

S(g) = T1(g)v, )
r

= (v(kg), v(k)) dk, (5.12)
K

where v(.) and #(.) are values of the functions in IT andII, respectively, and o(l)w, &) o
is a matrix coefficient for o, wz 0 and wwe . Let @ ¢ §(G) be a p-Schwartz function
in C*(G(k)). We absorb the complex number s in f by replacing 7 by @|v|s and then
ignoring it throughout the proof.
Now we have the zeta function
r

Z(D,f) = D(f(9)0¢A”)dg. (5.13)

As explained earlier, the shift ¢/2 allows us to get the precise L-function at s, rather
than a shift of s, when @ is the basic function of ¢ for a spherical representation 0. Using
(5.12), (5.13) equals

Z(@NH=  dkg) e(k)o K3(g)dkdg

KxG(k)
r

= D(k~18)((g), v(k))o 6¥3(8)dk dg. (5.14)
KxG(k)

Write g =nlh, n € N(k), | € L(k), h € K. Then
-1
dg =06, ()dndldh.

With notation as in [G]72], define:

(h - @ - k-1)(x) == Dk—1xh). (5.15)
Thus
r -1
Z(®, f) = (h- @ k=1Y(nl) 57210 (Yo (h), 8(k))o 51/2(1)s  (1)dn dl dh dk.
P G,p P
N (k)< L(k)yxKxK
(5.16)
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Recall the HC-transform (h - ®@ - k=1)p:

(- @ kVOp(l)=820)  (h-D - k1) (nl)dn.
N (k)

Then (5.16) equals

.
v p (O - © - k=1)p () (o (Dyo(), e(k)o 6%, (Ddl dhdk
L(k)xKxK
r
- (h- @ k=) ()o(h), 8(k)o 5%2, ()dl dh dk. (5.17)
L(k)<XKxK

Since K is compact and v and v are smooth functions, there exist matrix coefficients
f%(I) of 0 and continuous functions A; on K X K such that

@yotn), (Do = FEDAi(h k).

Similarly, there are Schwartz functions ®; in S?(G) and continuous symmetric functions
i on K X K such that

he® k= Dl k). (5.18)
J

This is clearly true if ® ¢ C°(G(k)), since it will then be uniformly smooth. Otherwise,
using (5.18) we have

(h @ k' = Dk k),
J

where ® := @ for simplicity. But Lemma 5.5, proved later, implies

k-® h1=  Djuk, h)
J
for all & and k in K and thus (5.16) holds for all ® € S”(G). Consequently
. 1 = .
(@ k@)= @0 (il k)

J
with @, e SPi(L) by Proposition 5.1. Let
r
cy=  Aw(h kdhdk.
KxK
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Then we have

Z(@NH = c5Z(D p,fh) (5.19)
ij

For simplicity of notation, let for each ® € SP(G), ® := J®. We now calculate
r

Z@H= dFok3@) (@) dg.

One needs to be careful since the involution ¢ — ¢~! will now play an important role. We
should also point out that [v(g)| needs to be inserted to take into account the appearance
of 1 — s in the left hand side of the functional equation as it is the case in equation (1.1)
for GLn.. We note that |[v(g)| = |v(l)] = |vi(l)| and that —s will appear as & ® [v()|~5,
and thus included in 7t as s did in @ as @ ® |v()|°. Note that in the case of GL, and

p =std, v =det, and 6&%iq = | det| "2 as reflected in (1.1).

We have
r
Z@ )= DU MHHQ) Iv()l dg
G(k)
r (5.20)
= O(g)(w(kg=1), v(k))o 0E2(g) Iv(g)l dg dk.
G(k)xK
Changing ¢ to gk, (5.20) equals
r
= D(gk)(v(g 1), 8(k)o EA(3) Iv(g)l dg dk. (5.21)
G(k)<K
Write g =h='In, n € N(k), | € L(k), h € K. Then
dg=d(g")=06p(l) dh dl dn (5.22)

and (5.21) equals

r
= (h-1Ink)(I-1h), »(k)o 5K231op (1) ()| dh di dn dk.  (5.23)
KXL(k)x<N (k)y<K
r
- (&0
KXxL(k)yxK
r
X (k- ® k1) (Inydn)(o(-1h), v(k))o ¥21)0%2(l) lvr(l)| dh dl dk
N (k)
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.
- @& 120y
KX<L(k)yxK
r
X (k& n)mhdn)(I-1h), v(k)o vigr,, D 0D 02 (1) lvi(D)l dh dl dk
N (k)
r
= Ve ok - - 1) (@I 1), kYo 52, (1) lvil)| 6¥2(1) dh di dk,
KX<L(k)yxK

which finally equals
r

(k- @ Bty (1) 51/2()(a (1= Yo (h), e(k)o 642 1y vy (1) 6Y/2(1) dh dl dk.
SPL P

P P L
KXxL(k)<K
(5.24)
Again, for simplicity for each ® € SP(G), let ® denote its p-Fourier transform
D(x) = (Jr * D)(x). (5.25)
Here O(x) = ®(x~1). To proceed, we need:
Lemma 5.5. Let k and h be in K. Then
(k- @ B ) =h & k1.
Proof. We have
r
(k- @ h71)"(x) = (k - @ - h=H(E)JP(xy)dy
Mr(k)
r (5.26)
= @ yk)Je(xy)dy
r

=  D(y)Jr(xhyk—1)dy,

since h and k are in K whose modulus character is 1. Now using Int(G)-invariance of
J’, (5.26) equals
r
=  Dy)Jr(kxhy)dy
= O(k—1xh)
= (& k1)),

completing the proof. O
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Remark 5.6. In terms of J» we have proved:
Jek(k - © h-1) =h-(Jexd) k-1 (5.27)

We now apply Lemma 5.5 to equation (5.24) to get:
r

2, )= ((h @ k-1 () (-Yolh), w(k))o 62 () |v ()| dl dhdk.
P L,p; L
L(k)<KxK
(5.28)
But, using (5.18),
(h® k' '= & whk
J
and
(e Mo(h),e(k)o = fEU") Ai(h k)
i AORRE (N
and therefore (5.28) equals
-
ci  (Jro)p ()FFD)6Y2, () ve () dl. (5.29)
i,i L(k)

We can now apply the commutativity of p-Harish-Chandra transform and Fourier
transforms J¢ and Jer, i.e., equation (5.4) to conclude that (5.27) equals

Gj
iJj L(k)

' J (@ )(l)fv.i(l)év2 O lv @ dL. (5.30)
A i L

L,py,

But

Z(@,f) =y, p)Z(®, )

by the functional equation for G. On the other hand the functional equation for L gives
(5.30) as

Yo, p) ey DPep (DFHDOY (Dl
U 50

which equals
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=Y p) ¢ Z@pfh)

ij
= (0, p) Z(D,f)

by (5.19). The equality

y(IndgRe, p) = y(o, p )

is now immediate. O

Remark 5.7. The commutativity relation (5.4), although originally stated for ® €
C(G(k)), extends to all of §P(G), as stated in Proposition 5.1. In our proof of Theo-
rem 5.4, we used the functional equation

Z(Je®, f) = y(m, p)Z(D,f)

with arbitrary ® € SP(G) for which we proved uniform smoothness, needed to reduce
Z(Jrd, f V) to a sum of Zeta functions for L and SP-(L). Although we could have
started with @ ¢ C°(G(k)), we would eventually need to use uniform smoothness for

Z(Jr®, fV) in which JP® is no longer of compact support.
5.3. The case of GLn

We now determine v, 1 in the case G = GL, and p = std, i.e., that of Godement-

Jacquet [G]72] and show that it agrees with calculations in Lemma 3.4.0 of [G]72], after
a suitable normalization. We thus assume P = NL is the standard maximal parabolic

subgroup of GL», containing the subgroup of upper triangular elements B, N C B, with
L = GLnt XGLnn, n = n'+n'". Recall that we need to determine v, , ,std = 0G,std / Or,std.
But for g = diag(g', g") € L
\detg'I_““ - 32 (¢',¢") = detg1-n" |detg|zl (n+nl—1)
= | detg P -1 ‘detgﬂﬁl(n“fl) ,‘detglrn”ﬂ | detg|"/2
= 53/2(g', ¢") - | detg!|"™"/2 | det g"|"'/2.

Thus
vz (g, g") = | detg!|""/? | detg["'/2, (5.31)
Moreover
o (g, g") = | detg!|™" - | detg| ™ (5.32)
and thus
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Vi 0p1/2(g', ") = | detg! ", (5.33)

We now verify that Lemma 3.4.0 of [G]72] is equivalent to our commutative diagram
(5.5).

Let J = Jstd be the standard Fourier transform for CS°(Mn(k)) and Jr its restriction
to C° (M (k) X Mnu (k)). With notation as in pages 37-38 of [G]72],

r
po(x, y) = o( ) ) du, (5.34)
kn'n”

where u € Mpixnn(k) and © ¢ C°(Mn(k)), is the analogue of our HC-transform. In
fact, (5.34) can be written as

r
_ I uy 1! x 0
Ppo(x, y) Oy 0y ) du
r
—|dety/™  D(nl)dn, (5.35)

Nk

=vi2 (D) 6~Vx(l)  d(ul) dn
G/L P

N (k)

by (5.33), where N = Muxm and [ = diag(x, v).
In the notation of [G]72], Lemma 3.4.0 of [G]72] states that

P (%, Y) = po(x, ), (5.36)
for ® ¢ C°(Mn(F)) with @ its standard Fourier transform.
Then by (5.35) the right hand side of (5.36) equals

.
poCoy) =Je( @C ) du)
r
= Jr(ldetyl™  P(nl) dn) (5.37)
N(k)

= LW ADPr (1)

= JL(@(1))

by (5.33), where

Please cite this article in press as: F'. Shahidi, W. Sokurski, On the resolution of reductive monoids and
multiplicativity of y-factors, J. Number Theory (2022), https://doi.org/10.1016/j.jnt.2022.02.002




28 F. Shahidi, W. Sokurski / Journal of Number Theory sss (ssss) see—ses

r
Dp () = 6p1/2(]) DO(nl) dn
N (k)

as defined by (5.1).
Similarly from the left hand side of (5.36), using a change of variables as in (5.35), we
have

r

o y) = B ) du

X U
0y
-
—|dety/”  D(nl) dn (5.38)

N (k)
=vi5 () D)r )
= (JO)FO).

Thus (5.36) is equivalent to (5.4) for GL, and p = std.
5.4. Inductive definition of Jr

In the introduction we mentioned that multiplicativity plus a definition of Fourier
transform that acts through the correct scalar factors equal to the gamma factors
on supercuspidal representations/characters, is enough to characterize the full Fourier
transform. Indeed, if we assume that /P is a good distribution in the sense of
Braverman-Kazhdan [BK10], then we can identify J° with a rational, scalar valued
function 7t y4p, m), where y(p, n) is defined by Jr *1 = y(p, m)m.

Our results on multiplicativity allow in principle for us to construct in an inductive
fashion a distribution /¢ on G by formally inducing from Jr: for each conjugacy class of
Levi subgroup L&. In fact, our setup and definitions, culminating in Theorem 5.4, are
normalized so as to make induction of representations adjoint to our p-Harish-Chandra
transform, that is, we have an equality

(Jp, Ind(0)) = (J°-, 0).

Here 6 is a supercuspidal character of a representation on L. The adjunction allows us
to identify the JP and /P~ actions on the Bernstein components of Indz(c) = 7 on G(k)
and the Bernstein component of ¢ on L(k), respectively. In 5.3, we started with an as-
sumption of knowledge of J» and Jrt and we showed that this is equivalent to an equality
of gamma factors. However, the gamma factors determine the distribution uniquely, and
so one can in principle characterize completely a distribution J° by specifying its action
on supercuspidal representations on G(k), and postulating multiplicativity as an axiom.
More concretely, if we inductively know Je- for conjugacy classes of parabolic subgroups
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L, we may formally induce to provide a definition of J¢ with a correct action, at least
on functions whose spectral decomposition consists solely of induced data from L:

(Ind.(JP*),.f) = (J°, HC(f)).

The distribution Indz(JP*) can be a priori defined by the above in order to meet this
adjunction, and in fact Jr-will then be represented by the conjugation-invariant function

Ind ety : x — |[De®) = IDi(y)P Jer(y)
y

where the y are chosen representatives of L(k)-conjugacy classes of elements that are
G(k)-conjugate to x, and D¢ and Dy, are the respective discriminant functions on G
and L. (Here we are identifying J°- with the invariant function representing it.)

That Ind.(Je-) satisfies the first adjunction, and therefore multiplicativity, follows
from the formula for the trace, and the expression of the distribution character ®, =
Indr(®y) in terms of Oy, adapted to the p-setting.

6. Example: the case of Tori and unramified data

We now consider the case of tori, which for present purposes we assume are split.
Let T be a split torus over k. When T is a maximal split torus in a reductive group G,
the upcoming discussion gives the first term of the inductive construction defining the
Fourier transform for L = T, with minimal parabolic Po = P = LN = TN which is a

Borel subgroup. Let p = pr be a finite dimensional representation of T. Our notation is

justified if we assume pr = p|T, where p is a representation of G. Let n = dim pr. Then
pr:T — GLn(C).
Write

PT = ® -« Un, 6.1)

where the p; 1 < i < n, are the weights of pr. We note that they are not necessarily
distinct. If we realize these weights of T as co-characters of T, we getamap pr: G — T
(defined over k, as T is split), which being dual to pr, is given by (cf. [Ng620])

P r(x1,..., xn) = pi(x1) + + + un(xn).

We can extend this to a monoid homomorphism

pNT : An — MpT,
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where MPT is the corresponding toric variety. As in [Ng620], define the trace function
h: A" — A by

h((x)) = xi

and set
hy : kn — C*
by x — ¢(h(x)), where 1 is our fixed non-trivial character of k.
Denote by Jstd the kernel

J#d(g) = P(tr(g))detg|™dg

for g € GLn(k) as defined in Section 1, i.e., the standard Fourier transform on My(k).
We use again Jstd for its restriction to A", the monoid for T, = G.

In [Ng620] Ngo defines the kernel Je”for the Fourier transform on T by

r
Jer(t) = hy(x)dx, (6.2)
S (D)
P>
which equals to
r
JPT(t) = hy(xt)dx (6.3)
xeU(k)

where U is the kernel of p”r . In Proposition 6 of [Ng620], Ngo regularizes this integration
into a principal value integral.

The space of Schwartz functions on k" are compactly supported functions in k» that
are restrictions of standard Schwartz functions on My(k) to k. Their further restriction

to Tn(k) is S**9(Ty) in our notation.
Let p« be the push-forward of p"r. We will verify that the diagram

Sstd(Ty) 2. sPT(T)
o b sor (6.4)

Sstd(Ty) — 2. sPT(T)

commutes, where SP7(T) is the image of S*'%(T,) under ps.
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Let ¢ € S*9(T,) and define
r
oM = pt)du (6.5)

Uk
where f € T (k). The commutativity of (6.4) is equivalent to

Lemma 6.1. For ¢ € SS'(Ty,), define ¢ by (6.5). Then
ps(Jstd * V) = Jor *(T)v

Proof. By definition, for t € T,

p«(Jd*oV)(t) = (4 * @Y)(ut)du
U (k)

r r
Y oy (utBYO(HdF)du

UK) Tu(k)
r r

= (D G )du)dt
Tn(k) U(k)
r
= hy (DO (DdE (6.6)

Tn(k)

- ' (r P (utFydu)p(ut)dt
T(k) U(k)
r r ~ _ o
= ( hypuDdu)pt—1)dr
T(k) U(k)

= (J V),

using T = T»/U in (6.6), then the lemma follows. o

The push-forward p« can be restricted to
C[Ta]"" = H(Tn(k), Tn(Or))""
leading to
H(Tn(k), T n(Ok)"r —L5— H(T (k), T (O k)W
el bor (67)
H(Tn(k), Tn(O)""  —— H(T k), T(Ox))",
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where W, is the Weyl group Wyn = W (Gln, Tn), W:= W (G, T ) and H denotes the
corresponding Hecke algebra. We recall that H(G) = C;°(G) and set HG, K to be the
subset of HG) consisting of K bi-invariant functions, for K an open compact subgroup
of G. Identifying, via the corresponding Satake isomorphisms

H°(GLn(k)) :== H(GLn(k), GLn(Ok)) = H(Tn(k), Tn(Ox))""

and

H(G(k), G(Ok)) = H(T (k), T(Ox))"
H*(GLa(k)) —Sstms H(Tu(k), Tu(0 )" —L— HT (0, T(0)" —“——H(G(K), G(Ox))
|

JS‘d,lJ .!JJ“‘I .lJJ"T JeJ
H*(GL (k)) —Sat— H(T (k),T (O )" (T(k), T(O HW 5 (G(k), G(O )),
n k — H k — H k

(6.8)
in which JeT defines the Fourier transform

Jp:S(G) = S(G)

restricted to HG(k), G( @). Consequently, at least on HG(k), G( @)), the Fourier
transform J° and [P commute with the Harish-Chandra transform.

We now complete the proof of Proposition 5.3.

Proof. Note that when L = T is a maximal torus, the p-Harish-Chandra transform
becomes (a twist of) the Satake transform, and in this case diagram (5.5) can be extended
to the class of almost compact (ac) spherical functions as defined by Wen-Wei Li in
[Lil7], and we note that the p-basic function is amongst this class (see [Sak18]). The
computation in section 5 (see (5.9) and (5.10)) giving

<D0=Lchar(P*1 VO )+ &
g-1 N

can be extended to show that the function ;fstd = char(A"(Ox) N Ta(k)) is also a sum
in CZ°(Tn(k)) + Jstd(C° (Tn(k)), where Tn(k) — An(k) is the standard embedding of a
maximal torus T, = G7, of GL, into affine space.

Let Sat := std — HC be this extended Satake transform. Given a decomposition
O3 = fi+]std(f2), with f1, f2 € C°(Tn(k)), the commutativity of (5.5) implies that the
standard basic function on GLn(k), ¢pstd = Sat=1(f1) + Sat=1(Jstd7 (f2)) = Sat—(f1) +
Jsd(Sat=1(f2)), lies in $Y(GLn(k)) as defined in (5.6).

Note that here Sat is an isomorphism of K-spherical compactly supported functions
on G(k) and the Weyl-invariant compactly supported functions on T(k)/T(@). The
basic function on Ty(k), and the functions in its decomposition as fi + Jstd(f2) are
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invariant under permutations of the coordinates, and so the above maps are well-defined
in the remarks above.

We deduce the case for general p from the standard case above as follows: Let T be a
maximal torus in G with representation p of the dual group of G. One obtains a canonical
map pr : Tn(k) - T (k) that extends to a map A*(k) _. Mr (k), with the target of this
map being the toric variety constructed in section 2. The p-Schwartz space on T (k) can
be defined (see [Ng620]) as the image of

Ce* (An(k)) N C=(Tn(k)) — p+(Ce™(A™(K)) N C=(Tn(k))),

the pushforward by p“r. Then the torus basic function ¢} can be expressed as ps(¢59).
Moreover, this pushforward is compatible with the pr-Fourier transform on tori, as in
diagram (6.4). That is,

00 = pe(O1) = pelfi + T 2(f2))

= p«(f1) + p:J19(f2))
= p«(f1) + JPT (p«(f2)),
which shows that ¢ € C>(T (k)) + Je7 (C(T (k)). Finally, the commutativity of dia-

gram (6.8) allows us to lift this decomposition to a decomposition of the basic function
as

¢r = Sat=1(Pp7)
= Sat=1(p«(f1)) + Sat=1(JP" (p«(f2)))
= Sat=1(p«(f1)) + JP(Sat=1(p«(f2)). O

7. The case of standard L-functions for classical groups; the doubling method

We conclude by addressing multiplicativity in the case of standard L-functions, twisted
by a character, for classical groups as developed by Piatetski-Shapiro and Rallis, which
has been addressed further by a number of other authors [BK02,JLZ20,Li18,5hal8]
within our present context. We refer to the local theory developed by Lapid and Rallis.
We will be brief and only mention the relevant statements.

The p-Harish-Chandra transform is the one given in Proposition 1 of [LR05] as W(w, s)
with notation as in [LR05]. Our commutativity equation (5.4) in this case is equation (17)
in Lemma 9 of [LRO5] in which J» = M;(w, A, s), a normalized intertwining operator,

el reaso AR erai ness oo it o) i, Retagiony a5 in [LROS] in
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