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Abstract
We analyze a general theory for coexistence and extinction of ecological communi-
ties that are influenced by stochastic temporal environmental fluctuations. The results
apply to discrete time (stochastic difference equations), continuous time (stochastic
differential equations), compact and non-compact state spaces and degenerate or non-
degenerate noise. In addition, we can also include in the dynamics auxiliary variables
that model environmental fluctuations, population structure, eco-environmental feed-
backs or other internal or external factors. We are able to significantly generalize the
recent discrete time results byBenaimandSchreiber (JMathBiol 79:393–431, 2019) to
non-compact state spaces, and we provide stronger persistence and extinction results.
The continuous time results by Hening and Nguyen (Ann Appl Probab 28(3):1893–
1942, 2018a) are strengthened to include degenerate noise and auxiliary variables.
Using the general theory, we work out several examples. In discrete time, we clas-
sify the dynamics when there are one or two species, and look at the Ricker model,
Log-normally distributed offspring models, lottery models, discrete Lotka–Volterra
models as well as models of perennial and annual organisms. For the continuous time
setting we explore models with a resource variable, stochastic replicator models, and
three dimensional Lotka–Volterra models.
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Notation
E1 The set of subsets of {1, . . . , n} such that ifI ∈ E1 then the invariant

measures living on S I+ are attractors. See Definition 2.1
E2 The set E2 := P(n) \ E1
Fi The fitness functions of species i
G Function describing the dynamics of the auxiliary variable
Pt The t-transition operator or semigroup operator that acts on func-

tions H ∈ Bb as Pt (H)(z) = Ez(H(Z(t))
P The transition operator of the discrete-time process Z(t)
V Lyapunov function coming up in Assumption 2.1 and in Assump-

tion 3.1
Xi (t) The density of species i at time t

E,W,B Brownian motions on R
n,Rκ0 ,Rn+κ0

Z(t) The process (X(t),Y(t)) at time t
Conv(M) The set of invariant probability measures supported on S0

� The set � := {x ∈ R
n+ | ∑i xi = 1}

Ez The expectation under the probability measure Pz
E The expectation under the probability measure P

�,�, (σi j ) � is a (n + κ0) × (n + κ0) matrix such that ��� = � =
(σi j )(n+κ0)×(n+κ0). The matrix � encodes the covariance structure
of the Brownian motions from the continuous time setting (3.1)

�z The set �z := {z̃ ∈ S | z̃ is accessible from z} of points z̃ such that
for every neighborhoodU of z̃ there is t ≥ 0 for which Pt (z,U ) > 0

M1 The set of ergodic invariant probability measures supported on ∂Rn+
andwhich are attractors:M1 := {μ ∈ M : μ satisfies Assumption3.4}.
This is in the continuous time setting without an auxiliary variable

M2 The set of ergodic invariant probability measures supported on ∂Rn+
and which are not attractors: M2 := M \ M1. This is in the con-
tinuous time setting without an auxiliary variable

MI MI := {μ ∈ M | μ(S I ) = 1} is the set of ergodic measures
supported on the subspace S I

MI ,+ MI ,+ := {μ ∈ M | μ(S I+) = 1} be the set of ergodic measures
supported on the subspace S I+

MI ,∂ MI ,∂ := {μ ∈ M | μ(S I
0 ) = 1} is the set of ergodic probability

measures supported on S I
0

M The set of ergodic invariant probability measures supported on S0
Pz Pz(·) = P(· | Z(0) = z)
P The probability measure

�t,z(B) The occupation measure �t,z(B) := Ez�̃t (B)
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R
μ
+ The set Rμ

+ := {(x1, . . . , xn) ∈ R
n+ : xi = 0 if i ∈ S(μ)c}. This is

in the continuous time setting without an auxiliary variable
R

μ,◦
+ The set R

μ,◦
+ := {(x1, . . . , xn) ∈ R

n+ : xi = 0 if i ∈
S(μ)c and xi > 0 if xi ∈ S(μ)}. This is in the continuous time
setting without an auxiliary variable

S(μ) The species supported by the ergodic measure μ, i.e. S(μ) = {1 ≤
i ≤ n : μ(S i ) = 1}

S I For a nonempty subset I ⊂ {1, . . . , n} we define S I := {(x, y) ∈
S | xi = 0, i /∈ I }. S I is the subspace in which all species not in
I are absent, and some or all species from I are present. The set
S I represents a subcommunity where we can define persistence and
extinction sets relative to that subcommunity

S∅ Let S∅ = {(0, y) ∈ S} be the set where all species are extinct
S i The set S i := {z = (x, y) ∈ S : xi > 0} is the subset of the state

space where species i persists
S I+ If we restrict the process to S I then the persistence set, where all

species from I persist, is given by S I+ := S I \ S I
0

S+ The persistence set S+ := S \ S0
S I
0 If we restrict the process to S I then the extinction set, where at least

one species from I is extinct, is givenbyS I
0 := {z ∈ S I | ∏ j∈I x j =

0}
S0 The extinction set S0 := {(x, y) ∈ S : mini xi = 0}, where at

leaste one of the n species is extinct
Sη Sη := {(x, y) ∈ S : mini xi ≤ η}
S The state space Rn+ × R

κ0 of the process Z
U = U(ω) The (random) set of weak∗-limit points of (�̃t )t∈N

c�x The scalar product c�x = ∑
i ci xi

δz The Dirac mass at z
γ1, γ3,C, ρ Strictly positive constants coming up in Assumption 2.1

γ4, γ5,C4 Strictly positive constants coming up in Assumption 3.1
R
n+ The positive orthant [0,∞)n

Z+ The set of positive integers
X(t) The species densities (X1(t), . . . , Xn(t)) at time t
Y(t) The value of the auxiliary variable at time t
Bb The set Bb := {H : S → R | H Borel, bounded} of bounded Borel

functions
Cb The set Cb := {H : S → R | H continuous, bounded} of bounded

continuous functions
L The infinitesimal generator of the process Z(t) in the continuous

time setting
P(n) The set of all subsets of {1, . . . , n}
∂R

μ
+ The set ∂R

μ
+ := R

μ
+ \ R

μ,◦
+ . This is in the continuous time setting

without an auxiliary variable
φ A function that comes up in Assumption 2.2 which is needed for

our extinction results
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�̃t (B) The random occupation measure of a Borel set B: in discrete time
�̃t (B) := 1

t

∑t
s=1 δZ(s)(B) and in continuous time �̃t (B) =

1
t

∫ t
0 1{Z(s)∈B} ds

ξ(t) Random variable describing the environment at time t (continuous
time case) or on the interval [t, t + 1) (discrete time case)

a ◦ b a ◦ b := (a1b1, a2b2, . . . , anbn)
fi The drift of the dynamics of species i is Xi fi (X) dt in the continuous

time setting
gi The diffusion term of the dynamics of species i is Xi gi (X) dEi in

the continuous time setting

h The function h(z, ξ) =
(
maxni=1

{
max

{
Fi (z, ξ), 1

Fi (z,ξ)

}})γ3

coming up in Assumption 2.1
ri (μ) The expected per-capita growth rate of species i when introduced

in the community described by μ. In the discrete-time case ri (μ) =∫
S E[log Fi (z, ξ(1))] μ(dz), while in the continuous case ri (μ) =
∫
S

(

fi (z) − σi i g2i (z)
2

)

μ(dz)
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1 Introduction

Stochastic variation over time in the physical environment is an ever-present fea-
ture of natural ecosystems that has major effects on the lives of organisms (Chesson
et al. 2013). This fact means that the dynamics of natural populations of plants and
animals are not modeled well deterministically. Moreover, the usual deterministic
attractors cannot reasonably characterize the asymptotic dynamics of natural commu-
nities. Although deterministic attractors, such as point equilibria, are often regarded
as central tendencies about which populations fluctuate (May 1974), a stochastic envi-
ronment can introduce qualitative changes in the nature of long-term dynamics that
depart dramatically from the predictions of a deterministic attractor. For instance, in
some cases, the deterministic attractor may predict species extinctions while the sys-
tem in a stochastic environment predicts that all species persist (Chesson and Warner
1981; Li and Chesson 2016).

Prominent ecologists have long argued for stochastic models of the physical envi-
ronment in ecological theory (Andrewartha andBirch 1954;Hutchinson 1961;Connell
1978; Strong 1986), but models of ecological dynamics in stochastic environments
have posed serious challenges.Nevertheless, over the years, understanding has steadily
improved. Of much significance is the recent development of general theory and tech-
niques for establishing population persistence. Following early beginnings (Chesson
1982; Chesson and Ellner 1989; Ellner 1989), recent work (Schreiber 2011, 2012;
Benaïm and Schreiber 2019; Hening and Nguyen 2018a) has provided key results
for analyzing both discrete- and continuous-time variable environment models with
multiple species. At first, these developments were restricted to the case of white
noise environments (Schreiber 2011), which means that the vector of population sizes
is a Markovian state variable. However, Benaïm and Schreiber (2019) goes beyond
this case to allow auxiliary state variables permitting Markovian environmental vari-
ation, structured populations and feedbacks from population densities through other
species. As remarkable as these developments are, they nevertheless have the serious
limitation that the state space is required to be compact. Many ecological models nat-
urally have non compact state spaces. Although it has been argued that finiteness of
the universe, and finite capabilities of organisms, justify restriction to compact state
spaces, modifying existing ecological models to compact state spaces requires unnat-
ural assumptions, and restricts consideration to only a subset of ecological models that
are useful in practice.

A key innovation of this work is removal of this compactness restriction. With
this generalization, a number of ecological models that have led to new theoretical
understanding can be fully rigorously analyzed. Moreover, boundedness restrictions
on environmental variables in discrete-time models are removed, allowing a broader
array of valuable ecological models to be analyzed. As a further generalization, in
case not all species persist, we identify conditions for convergence to an invariant
measure supported on the persistence set or the extinction set. Our results make use of
the significant recent advances by Benaïm and Schreiber (2019), Benaim (2018) and
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Hening and Nguyen (2018a). In particular, we explicitly use some of the examples
and computations by Schreiber (2011) and Benaïm and Schreiber (2019) in order to
highlight how our analysis can strengthen earlier results as well as settle some previous
conjectures. This work also highlights how the results apply to key ecological models
that have been instrumental in showing strong effects of stochastic environmental
variation on species coexistence. In this way, it strives to connect key ecological
findings with the mathematics of stochastic persistence.

The paper is structured as follows. In Sect. 2 we present the framework and results
in discrete time. The continuous time results appear in Sect. 3. Section 4 showcases
how our results can be used to better understand specific discrete time ecological
examples. Similarly, Sect. 5 applies the developed theory to continuous time examples.
We discuss the relevance of our work in Sect. 6.

2 Discrete time results

We study a system of n species that interact nonlinearly and are influenced by temporal
environmental variation. The species densities at time t ∈ Z+ := {k ∈ Z | k ≥ 0} are
denoted by the vector X(t) = (X1(t), . . . , Xn(t)) from R

n+ := [0,∞)n . The species
dynamics are influenced by and influence the auxiliary variable Y(t), which takes
values in Rκ0 . This variable can correspond to eco-environmental feedbacks, forcing,
the structure of each species or other factors. The dynamics of the species and of the
feedback variable are changed by stochastic temporal variations. These environmental
variations are described by the sequence of independent identically distributed random
variables ξ(0), ξ(1), . . . which take values in a Polish space �, that is, a separable
completely metrizable topological space of which multidimensional Euclidean space
is a key example. The state of the environment on the interval [t, t + 1) is described
by ξ(t), which then affects what the species densities will be at time t + 1. This is a
deviation from a convention in some papers on this topic where the environment on
(t, t + 1] is given as ξ(t + 1), i.e. just a difference in the time index, which has no
effect on the results. However, in our view this leads to more consistent terminology,
and matches the ecological literature given that the species i has a fitness function
Fi that at time t depends on the densities X(t) of the various species, the auxiliary
variable Y(t), and the environmental variable ξ(t). Similarly, the auxiliary variable at
time t + 1 will be a function of X(t),Y(t) and ξ(t). The process Z(t) = (X(t),Y(t))
tracks jointly the species densities and the auxiliary variable and lives on the state
space S := R

n+ × R
κ0 . As a result the dynamics will be

Xi (t + 1) = Xi (t)Fi (X(t),Y(t), ξ(t)), i = 1, . . . , n

Y(t + 1) = G(X(t),Y(t), ξ(t)).
(2.1)

We define F(·) = (F1(·), . . . , Fn(·)).

Assumption 2.1 The following assumptions are made throughout the paper:
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A1) For each i = 1, . . . , n, the fitness function Fi (z, ξ) is continuous in z = (x, y)
for every ξ , where x = (x1, . . . xn) and y = (y1, . . . yκ0), measurable in (z, ξ),
and strictly positive.

A2) The function G : R
n+ × R

κ0 × � → R
κ0 is continuous in z = (x, y) and

measurable in (z, ξ).
A3) There exists a function V : S → R+ and constants γ1, γ3,C > 0 and ρ ∈ (0, 1)

such that for all z ∈ S
i) |V (x, y)| ≥ |x|γ1 + 1,
ii) lim|z|→∞ V (z) = ∞, and
iii) E [V (x ◦ F(z, ξ(1)),G(z, ξ(1)))h(z, ξ(1))] ≤ ρV (z) + C where

a ◦ b = (a1b1, a2b2, . . . , anbn) is the Hadamard product,

h(z, ξ) =
(

n
max
i=1

{

max

{

Fi (z, ξ),
1

Fi (z, ξ)

}})γ3

. (2.2)

Assumptions A1) and A2) make sure that Z(t) is a well-behaved Markov process.
Measurability of Fi (z, ξ) in (z, ξ) is with respect to the natural Borel σ -algebra of the
Polish space �. Assumption A3) is also required in order to ensure that Z(t) returns
to compact subsets of S exponentially fast and that the growth rates do not change
too abruptly near infinity. A standard condition to ensure that Z(t) returns to compact
subsets ofS exponentially fast, which is critical to obtain exponential fast convergence
to an invariantmeasure of aMarkov chain, is A3)-ii) and a ‘weaker’ version of A3)-iii),
namely:

E [V (x ◦ F(z, ξ(1)),G(z, ξ(1)))] ≤ ρV (z) + C .

This means that Ez(erτ ) < ∞ for some r > 0 where τ is the first time the process
enters a compact set. This finiteness is important in the study of Markov chains. Note
that after visiting a compact set the process can leave this compact set for some time,
before it returns again.

We next explain why condition A3)-iii) is needed. In order to better estimate the
sample paths of the process, wewant the growth rates to not change too abruptly. Since
Xi (t+1) = Xi (t)Fi (X(t),Y(t), ξ(t)), tomake sure that the growth rates donot change
too much in one time step we want to be able to control Xi (t)Fi (X(t),Y(t), ξ(t)). We
can do this if we know that

[Fi (X(t),Y(t), ξ(t))]1−γ3 ≤ Fi (X(t),Y(t), ξ(t)) ≤ [Fi (X(t),Y(t), ξ(t))]1+γ3

for some γ3 > 0. This is why h(z, ξ) has the form (2.2) in A3)-iii). Finally, A3)-i) is
needed because we need some boundedness of the moments of X.

In general, if Fi is smaller than 1 when x is large but bounded below in a certain

sense, i.e., E
(

1
Fi (x,ξ)

)
is bounded, then A3) will be satisfied.

Remark 2.1 Note that in general it is not always easy to construct the Lyapunov func-
tion V . There is no definite answer for whether such a V exists. However, in many
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applications, one can construct such a function. The examples presented throughout
the paper show how one can do this. Furthermore, under stronger assumptions, for
example, when the process enters and then stays forever in a compact set, the Lyapunov
function is not required—see Remark 2.3.

Remark 2.2 When we say that Fi (z, ξ) is measurable in (z, ξ) we note that the Polish
space � has a natural Borel σ -algebra.

Remark 2.3 If it is known that the dynamics remain in a compact subset K ⊂ R
n+×R

κ0 ,
instead of A3), the following assumption is sufficient.

A3C) There exists a constant γ3 > 0 such that for all z ∈ S we have

E [h(z, ξ(1))] < ∞

where

h(z, ξ) =
(

n
max
i=1

{

max

{

Fi (z, ξ),
1

Fi (z, ξ)

}})γ3

.

Remark 2.4 Assumption A3) (respectively A3C)) is strictly weaker than the assump-
tions made by Benaïm and Schreiber (2019). In particular Benaïm and Schreiber
(2019) assume

A3’) There is a compact subset K ⊂ R
n+ × R

κ0 such that all solutions Z(t) satisfy
Z(t) ∈ K for t ∈ Z+ sufficiently large.

A4’) For all i = 1, 2, . . . , n, supz,ξ | ln Fi (z, ξ)| < ∞.

Note that assumptionA3) neednot imply thatZ(t) remain in a compact set, as examples
from Sect. 4 attest. Note also that A3’) and A4’) imply A3C).

There are various ways in which one can define the persistence of the species from
the studied ecosystem. We define the extinction set, where at least one species is
extinct, by

S0 := {(x, y) ∈ S : min
i

xi = 0}

and the persistence set by

S+ := S\S0.

For any η > 0 let

Sη := {(x, y) ∈ S : min
i

xi ≤ η}

be the subset of S where at least one species is within η of extinction. We say (2.1)
is stochastically persistent in probability (Chesson 1982) if for all ε > 0 there exists
η(ε) = η > 0 such that for all z ∈ S\S0

lim inf
t→∞ Pz{Z(t) /∈ Sη} > 1 − ε.
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In essence, this means that if no species are extinct initially, with high probability
their densities will not be found close to any of the axes at any given time in the future.
We can also examine the realized frequencies with which the species have specific
ranges of values for the period of time 1 to t with the “random occupation measure.”
For any t ∈ N define the random occupation measure

�̃t (B) := 1

t

t∑

s=1

δZ(s)(B)

where δZ(s) is the Dirac measure at Z(s) and B is any Borel subset of S. We note
that �t is a random probability measure and �t (B) tells us the proportion of time the
system spends in B up to time t . We also define the occupation measure

�t,z(B) := Ez�̃t (B)

We say (2.1) is almost surely stochastically persistent (Schreiber 2012; Benaïm and
Schreiber 2019) if for all ε > 0 there exists η(ε) = η > 0 such that for all z ∈ S\S0

Pz

(
lim inf
t→∞ �̃t (S\Sη) > 1 − ε

)
= 1.

2.1 Invariant measures and criteria for persistence

Following the seminal deterministic work by Hofbauer (1981) and the stochastic work
by Chesson and Ellner (1989), Schreiber (2011), Benaim (2018) and Hening and
Nguyen (2018a) one needs to look at the Lyapunov exponents (expected per-capita
growth rate) of certain invariant probability measures in order to give conditions for
persistence. Intuitively, these invasion rates tell us if a species tends to increase or
decrease when it is introduced into a subcommunity of species that is fluctuating
according to a stationary probability distribution that it achieves asymptotically. We
start by defining some of the required mathematical concepts.

The transition operator P : Bb → Bb of the process Z is an operator which acts on
bounded Borel functions Bb := {H : S → R | H Borel and bounded} as

PH(z) = Ez[H(Z(1))] := E[H(Z(1)) | Z(0) = z], z ∈ S.

Thus, this operator gives conditional expectations of functions for changes of one
time step. For multiple time steps, we can define for any t ∈ Z+ the t-time transition
operator Pt : Bb → Bb via

Pt H(z) = Ez[H(Z(t))], z ∈ S.

For any Borel set B ⊂ S the function 1B is the indicator function, which is 1 on B
and 0 on the complement, Bc, of B. Sometimes we will write

Pt (z, B) := Pt1B(z)
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if B is a Borel set and z ∈ S any initial condition, thus defining t-step transition prob-
abilities. We note that our assumptions imply that the process Z(t) is Feller (Benaim
2018; Benaïm and Schreiber 2019): if Cb(S) is the set of continuous real valued
functions defined on S, then the mapping

(t, z) → Pt f (z)

is continuous. On the other hand, the operator Pt can also be used to obtain the prob-
ability distribution for Z(t) starting with initial probability distribution (probability
measure) μ for Z(0). By duality, the operator Pt acts on Borel probability measures
μ by μ → μPt where μPt is the probability measure given by

∫

S
H(z)(μPt )(dz) :=

∫

S
Pt H(z)μ(dz)

for all H ∈ Cb(S), and is thus the probability distribution of Z(t).
A Borel probability measure μ on S is called an invariant probability measure if

μPt = μ, t ≥ 0.

The above equation tells us that if the system starts with a certain distribution μ then
it will have this distribution at any future time t ≥ 0. Intuitively, this is the random
analogue of a fixed point from dynamical systems.

The building blocks of the invariant probability measures are the ergodic invariant
probability measures. These can be characterized as the extreme points of the set
of all invariant probability measures. Equivalently, an invariant probability measure
is ergodic if it cannot be written as a nontrivial convex combination of invariant
probability measures. The set of ergodic invariant probability measures analogous to
the set of stable points of a dynamical system. The invariant probabilities measures are
then analogous to randomly starting the dynamical system at different stable points
with given probabilities.

The invariant and ergodic probability measures are related to the long term behavior
of the system. Suppose Z(0) has distribution μ and μ is an invariant probability
measure. One can then use Birkhoff’s ergodic theorem to note that if H : S → R is a
measurable function that is integrable with respect to μ, that is

∫

S
|H(z)| μ(dz) < ∞

then there exists a measurable integrable function H such that, with probability one

lim
t→∞

1

t

t∑

s=0

H(Z(s)) = H(Z(0))
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The measure μ is a ergodic probability measure if H is a constant function for all
bounded measurable functions h and one has, with probability one,

lim
t→∞

1

t

t∑

s=0

H(Z(s)) =
∫

S
H(z)μ(dz).

Thus in the case of an ergodic initial distribution, the empirical observed averages
are equal to the expectation, whereas with a nonergodic invariant initial measure,
the empirical process follows one of the ergodic measures from which the initial
distribution is constructed, but which of these is uncertain.

Note that these results only tell us about the long term behavior if Z(0)’s initial
distribution is an invariant probabilitymeasure. Themethods developedbelowdescribe
the long term behavior of the system for a wide class of ecological models, when Z(0)
is any positive initial condition.

For any species i let S i := {z = (x, y) ∈ S : xi > 0} be the subset of the state
space for which this species has strictly positive density. If μ is an ergodic measure
and because S i is an invariant set, i.e. if Z(0) ∈ S i then with probability 1 one has
Z(t) ∈ S i , t ≥ 0, we note that μ(S i ) ∈ {0, 1}. This allows us to define the species
support of μ by S(μ) = {1 ≤ i ≤ n : μ(S i ) = 1}.

Suppose that we have a strict subcommunity of species at stationarity characterized
by the ergodic measure μ. Assume that at least one species will be extinct, so that
S(μ) �= {1, . . . , n}. Let i /∈ S(μ) and introduce species i into the system at an
infinitesimally low density. It turns out (Hofbauer 1981; Chesson and Ellner 1989;
Chesson 1994; Benaïm and Schreiber 2019) that a key quantity is the expected per-
capita growth rate of species i when introduced in the community described by μ

ri (μ) =
∫

S
E[log Fi (z, ξ(1))] μ(dz). (2.3)

This quantity is the invasion rate in the parlance of invasibility analysis and tells
us whether a species i /∈ S(μ) tends to increase or decrease if introduced at a low
density. In addition, if i ∈ S(μ) then we can show that ri (μ) = 0, since the species
supported by μ already are at stationarity so they do not tend to grow or decrease
exponentially fast. Denote byM the set of all ergodic invariant probability measures
supported on S0. For a subset M̃ ⊂ M, denote by Conv(M̃) the convex hull of M̃,
that is the set of probability measures π of the form π(·) = ∑

μ∈M̃ pμμ(·) with
pμ ≥ 0,

∑
μ∈M̃ pμ = 1. Using this notation Conv(M) is the set of all invariant

probability measures supported on S0.

Remark 2.5 Note that one can show (see Benaim 2018) that under some natural
assumptions the set Conv(M) is convex and compact and μ is ergodic if and only
if it cannot be written as a nontrivial convex combinations of invariant probability
measures. The ergodic decomposition theorem tells us that any invariant probability
measure is a convex combination of ergodic measures. Furthermore, it can be shown
that any two ergodic probability measures are either identical or mutually singular and
that the topological supports of any mutually singular invariant measures are disjoint.
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Remark 2.6 In order to make the paper accessible to a wide variety of readers we will
present our results without proofs in this section. The interested reader is asked to see
Appendices A and B for the complete proofs of the various propositions and theorems.

The first result tells us that expected growth rates are well-defined and always zero
for “resident species” in the parlance of invasibility analysis.

Proposition 2.1 Suppose μ is an ergodic invariant measure. Then ri (μ) exists and is
finite. Moreover,

ri (μ) = 0, i ∈ S(μ).

Using this Proposition we can prove the following persistence result.

Theorem 2.1 Suppose that for all μ ∈ Conv(M) we have

max
i

ri (μ) > 0. (2.4)

Then (2.1) is almost surely stochastically persistent and stochastically persistent in
probability.

This result is a generalization to non compact state spaces of Theorem 1 by Benaïm
and Schreiber (2019).

Although criterion (2.4) implies intuitively that species tend to increase when rare,
and so are pushed away from the extinction set S0, some extra condition, which is
supplied here by A3), is required, as the following example from Chesson (1982)
shows. Stochastic persistence depends not only on the recovery of species from low
densities but also on how violently a population can crash to low densities. Suppose
N (t) is the population density of a small mammal population that has the dynamics
of geometric growth up to a threshold K > 0, followed by random crashes from high
density

N (t + 1) =
{
2N (t) N (t) < K
ξ(t)N (t) N (t) ≥ K .

The environmental variable ξ(t) is assumed to take values in (0, 1)while ξ(1), ξ(2), . . .
is an i.i.d. sequence. Let δ0 be the Dirac mass at zero. This is the invariant measure
that describes the ‘empty subcommunity’ where all species are extinct. Clearly

r(δ0) = ln 2 > 0

and N (t) increases at low values no matter what the distribution of ξ(t) is. Moreover,
P(limt→∞ N (t) = 0) = 0 because N (t) cannot only remain below K for finite periods
of time. Nevertheless, there are situations in which N (t) converges to 0 in probability.
For simplicity assume that log2 N (0), log2 ξ(t) ∈ Z. This implies that log2 N (t) is
a homogenous Markov chain on Z. If ξ(t) is such that E log2 ξ(t) = −∞, then the
process log2 N (t) is null recurrent and the expected return times to a given state are
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infinite. Given that log2 N (t) is supported on (−∞, 1+ log2 K ], it follows that for all
x ∈ Z

lim
t→∞P(log2 N (t) > x) = 0

and therefore that N (t) → 0 in probability. As a result N (t) is not persistent in
probability even though r(δ0) > 0.

The above example shows that one needs to ensure that the population will not
violently crash to low densities. In the generality of our setting, this is accomplished
by part A3) of Assumption 2.1.

Remark 2.7 Wenote that the condition above is equivalent (Hening andNguyen 2018a)
to being able to find positive numbers p1, . . . , pn such that

n∑

i=1

piri (μ) > 0

for all μ ∈ M. This says that there exist weights of the species such that the weighted
average of the expected per-capita growth rates is positive for all ergodic measures
supporting a strict subset of the community. This criterion has first been introduced
by Hofbauer (1981).

In order to prove stronger persistence results, we need some assumptions about the
points of the state space the process can visit. We will follow the notation, methods
and results developed byMeyn and Tweedie (1992) and Benaim (2018). A point z̃ ∈ S
is said to be accessible from z ∈ S if for every neighborhoodU of z̃ there exists t ≥ 0
such that Pt (z,U ) = Pt1U (z) > 0. Define

�z := {z̃ ∈ S | z̃ is accessible from z}
and for A ⊂ S

�A =
⋂

z∈A

�z.

Note that �A is the set of points which are accessible from every point of A. We say
a set A is accessible if for all z ∈ S+

�z ∩ A �= ∅.

Theorem 2.2 In addition to the assumptions of Theorem 2.1 suppose there exist z∗ ∈
�S+ , a neighborhood U of z∗, a non-zero measure ι on S+, and a probability measure
γ on Z+ such that for all z ∈ U

∞∑

i=1

γ (i)Pi (z, ·) ≥ ι(·). (2.5)
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Then there exists a unique invariant probability measureπ onS+ and, with probability
one, as t → ∞ the occupation measures (�t,z)t∈N converge weakly to π for any
z ∈ S+.

This result can be strengthened if the distribution of times, γ , can be replaced by a
single time m∗, as follows.

Theorem 2.3 Suppose that the assumptions of Theorem 2.2 hold, and there is a positive
integer, m∗, for which

Pm∗(z, ·) ≥ ι(·)

for all z ∈ U. Then there exists a unique invariant probability measure π on S+ for
which the distribution of Z(t) converges in total variation to π as t → ∞ whenever
Z(0) = z ∈ S+.

These results provide significant generalizations to Theorems 2 and 3 by Schreiber
(2011) where only compact state spaces were considered.

Remark 2.8 For a deeper understanding of the concepts of accessibility and irreducibil-
ity we refer the reader to the work by Meyn and Tweedie (1992) and Sections 4.2 and
4.3 by Benaim (2018). Having proven Theorem 2.1, the proofs of Theorems 2.2 and
2.3 follow from the well known convergence results of Meyn and Tweedie (1992) and
Benaim (2018).

2.2 Extinction

A complete understanding of community dynamics requires not only understand-
ing when species persist, but also when species go extinct. Mathematically, we are
interested in conditions under which the process modelled by (2.1) converges to the
boundary S0.

We need one extra condition, that ensures that the process can get close to the
boundary, in order to get our extinction results.

Assumption 2.2 There exists a function φ : S → (0,∞) and constants C, δφ > 0
such that for all z ∈ S

EzV (Z(1)) ≤ V (z) − φ(z) + C (2.6)

and

Ez (V (Z(1)) − PV (z))2+E |log F(z, ξ(1)) − E log F(z, ξ(1))|2≤δφφ(z). (2.7)

where V is the function satisfying Assumption 2.1.

Remark 2.9 To obtain the extinction results, we need to manage the fluctuation of
the process Z(t). This assumption bounds the variation of the process Z(t). We
need that the next step position Z(n + 1) (resp. logZ(n + 1)) does not fluctu-
ate too widely from the current position Z(n) (resp. logZ(n)). Mathematically,
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we need certain boundedness of the quadratic terms Ez (V (Z(1)) − PV (z))2 and
E |log F(z, ξ(1)) − E log F(z, ξ(1))|2. Using well-known Lyapunov arguments, the
boundedness can be obtained if the quadratic terms above are bounded by the dissi-
pative part V (z) − EzV (Z(1)) (which is assumed to be bounded below, so it can be
of the form φ(z) − C for some nonnegative function φ(z)).

In many cases, the function φ(z) in (2.6) can be chosen to be V (z) or V 2(z).
In general the function φ can be found by looking at V (z) − EzV (Z(1)). Having
Assumption 2.2, we can show the family of random occupation measures (�̃t )t∈N
is tight. It is the discrete time analogue of Assumption 1.4 by Hening and Nguyen
(2018a).

The first result tells us that under a certain condition there is asymptotic extinction
with probability 1 no matter what the initial densities are.

Theorem 2.4 If there exist positive numbers p1, . . . , pn such that

n∑

i=1

piri (μ) < 0

for all ergodic probability measures supported by S0 and S0 is accessible then there
exists α > 0 such that for any z ∈ S

Pz

(

lim sup
t→∞

ln d(Z(t),S0)

t
= −α

)

= 1,

where d(z,S0) = mini xi .

The above theorem tells us when there is extinction but does not tell us exactly which
species go extinct. In order to gain this extra information we need a few more defini-
tions.

For a nonempty subset I ⊂ {1, . . . , n} define S I := {(x, y) ∈ S | xi = 0, i /∈ I }.
Note that S I is the subspace in which all species not in I are absent, and some or
all species from I are present. The set S I represents a subcommunity where we can
define persistence and extinction sets relative to that subcommunity.

Let S∅ = {(0, y) ∈ S} be the set where all species are extinct. If we restrict the
process to S I then the extinction set, where at least one species from I is extinct, is
given by S I

0 := {z ∈ S I | ∏ j∈I x j = 0} and the persistence set, where all species

from I persist, by S I+ := S I \S I
0 .

Let MI := {μ ∈ M | μ(S I ) = 1} be the set of ergodic measures supported on
the subspace S I . A measure from MI will therefore support all, or a subset of, the
species from I . Let MI ,+ := {μ ∈ M | μ(S I+) = 1} be the set of ergodic measures
supported on the subspace S I+. A measure from MI ,+ does not put any mass on the
extinction set S I

0 , i.e. all the species from I are present and no species is extinct.
Finally, we defineMI ,∂ := {μ ∈ M | μ(S I

0 ) = 1} to be the set of ergodic probability
measures supported onS I

0 respectively. If ameasure is inMI ,∂ thismeasure represents
a subcommunity from I where at least one species is extinct.

Denote the (random) set of weak∗-limit points of (�̃t )t∈N by U = U(ω).
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Definition 2.1 Let E1 be the family of subsets I of {1, . . . , n} such that the following
properties hold:

(1) For all I ∈ E1 we have that MI ,+ �= ∅ and

max
i /∈I ri (μ) < 0, μ ∈ Conv

(
MI ,+) . (2.8)

(2) If I �= ∅, suppose further that for any ν ∈ Conv(MI ,∂ ), we have

max
i∈I ri (ν) > 0. (2.9)

Let P(n) be the set of all subsets of {1, . . . , n} and define E2 := P(n)\E1.

Remark 2.10 The subset E1 tells us which subspaces SI+ are attractors. If I ∈ E1 then
invariant probability measures living on SI+ are attractors while invariant measures
living on the boundary S I

0 are repellers. This way, if Z(t) gets close to S I+ using
(2.8) one can see the process gets attracted towards S I+. The second condition (2.9)
ensures that the process gets repelled from the boundary S I

0 where the behaviour can
be different. For some intuition regarding the various definitions see the example from
Fig. 1.

Fig. 1 Example of ergodic invariant measures. Green indicates attractors while red indicates repellers.
In this example we picked: ri (δ0) > 0, i = 1, 2, 3, r2(μ1) > 0, r1(μ2) > 0, r1(μ3) < 0, r2(μ3) <

0, r3(μ
1
12) < 0 and r3(μ

2
12) < 0. This yields E1 = {{1, 2}, {3}}, S(μ1) = {1},S(μ2) = {2},S(μ3) =

{3},S(μ1
12) = {1, 2},S(μ2

12) = {1, 2}, the attractors living on the open x1 − x2 positive quadrant are

M{1,2},+ = {μ1
12, μ

2
12} and the attractor living on the open x3 positive axis is M{3},+ = {μ3}
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Theorem 2.5 For any I ∈ E1 not equal to {1, . . . , n}, there exists αI > 0 such that,
for any compact set KI ⊂ S I+,

lim
dist(z,KI )→0,z∈S+

Pz

{

lim
t→∞

ln Xi (t)

t
≤ −αI , i /∈ I

}

= 1.

Biological Interpretation: Suppose there exists at least one subspace S I+ for some
I ⊂ {1, . . . , n} that is attracting. An attracting subspace is loosely speaking a subspace
where every supported community at stationarity cannot be invaded by any outsider
species. Then, if we start the system with densities z ∈ S+ which are close to S I+, the
species which are not supported by I go extinct exponentially fast with a probability
that can be made arbitrarily close to 1.

Theorem 2.6 Assume either that E2 = ∅ or that for all J ∈ E2

max
i

ri (ν) > 0, ν ∈ MJ ,+.

If
⋃

I∈E1
S I+ is accessible then

∑

I∈E1

pz,I = 1

where

pz,I := Pz

{

∅ �= U(ω) ⊂ Conv
(
MI ,+) and lim

t→∞
ln X j (t)

t
∈
{
r j (μ) : μ ∈ Conv

(
MI ,+)} , j /∈ I

}

.

If we assume that there exists a unique attracting ergodic measure in each attracting
subspace we get a stronger result, which is an immediate corollary of the above.

Theorem 2.7 Assume that every ergodic measure constructed as in Definition 2.1 is
a unique attractor in its subspace, i.e. for any I ∈ E1 there exists a unique μI

satisfying (2.8) and (2.9). Furthermore, assume that E2 = ∅ or that for all J ∈ E2
and ν ∈ MJ ,+, maxi ri (ν) > 0. Let z ∈ S+. If

⋃
I∈E1

S I+ is accessible then

∑

I∈E1

pz,I = 1

where

pz,I := Pz

{

U(ω) = {μI } and lim
t→∞

ln X j (t)

t
= r j (μI ), j /∈ I

}

.

Furthermore, if for some I ∈ E1 the subspace S I+ is accessible one has pz,I > 0.
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Biological Interpretation: Our result says the following. Suppose that the subspaces
S I+ for I ⊂ {1, . . . , n} are either of attracting or repelling type. An attracting subspace
is loosely speaking a subspacewhere every supported community at stationarity cannot
be invaded by any outsider species. A repelling subspace is a subspace where every
supported community at stationarity can be invaded by at least one outsider species.
If the attracting subspaces S I+, I ∈ E1 are accessible, i.e. if starting at any population
density one can get arbitrarily close to S I+, then with strictly positive probability the
system converges to μI . This means that the species given by I persist and converge
to μI while the species from I c go extinct.

We note that the problem becomes much more complicated if there are subspaces
that are neither attracting nor repelling. See Hening et al. (2021) for an example which
involves rock-paper-scissors dynamics.

2.3 Robust persistence and extinction

Since all mathematical models are merely approximations of real ecological systems,
it is important to study how the extinction and persistence results change under small
perturbations of the analytical models. Ideally, small perturbations of themodel should
lead to similar long-term behavior. We next show that this true in our setting as long
as we add one natural assumption. Assume we perturb the dynamics of the system
(2.1). We call Z̃ a δ-perturbation of Z if the dynamics is given by

X̃i (t + 1) = X̃i (t)F̃i (X̃(t), Ỹ(t), ξ(t)), i = 1, . . . , n

Ỹ(t + 1) = G̃(X̃(t), Ỹ(t), ξ(t))
(2.10)

and

sup
z∈S

∑

i

E

[
‖ log F̃i (x, y, ξ) − log Fi (x, y, ξ)‖ + ‖G̃i (x, y, ξ) − Gi (x, y, ξ)‖

]
≤ δ. (2.11)

Let ◦ denote the element-wise product and 1n be the vector in Rn whose components
are all 1. Assume that the function V from Assumption (2.1) satisfies the robust
estimate

E

[
V (x�(F(z, ξ) ◦ (1n + ε̃1)),G(z, ξ) + ε̃2))h(z, ξ)

]
≤ ρV (z) + C, z ∈ S

(2.12)

for all vectors ε̃1, ε̃2 ∈ R
n such that |̃ε1| ∨ |̃ε2| < δ. We note that this estimate is

trivially satisfied if the state space is compact.

Theorem 2.8 Assume the robust estimate (2.12) holds and the dynamics (2.1) satisfy
the hypotheses of one of the persistence Theorems 2.1–2.3 or one of the extinction
Theorems 2.4, 2.6 or 2.7. Then there exists δ > 0 such that every δ-perturbation of
(2.1) satisfies the same hypotheses and therefore has the same long term behavior
(persistence or extinction).
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This generalizes the results from Proposition 2 by Schreiber (2011) to the setting when
Z is not restricted to a compact state space and the dynamics is influenced both by the
species densities X and by the auxiliary variables Y.

3 Continuous time results

We continue to use the notation from Sect. 2, if not mentioned otherwise.
We work on a complete probability space (�,F , {Ft }t≥0,P) with a filtration

(Ft )t≥0 satisfying the usual conditions. Consider the system

dXi (t) = Xi (t) fi (X(t),Y(t)) dt + Xi (t)gi (X(t),Y(t)) dEi (t), i = 1, . . . , n

dYi (t) = ui (X(t),Y(t)) dt + hi (X(t),Y(t)) dWi (t), i = 1, . . . , k

(3.1)

taking values in S = R
n+ × R

κ0 where R
n+ := [0,∞)n and R

n,◦
+ := (0,∞)n . We

assume (E(t),W(t)) = (E1(t), . . . , En(t),W1(t), . . . ,Wκ0(t))
T = ��B(t)where�

is a (n + κ0) × (n + κ0) matrix such that ��� = � = (σi j )(n+κ0)×(n+κ0) and B(t) =
(B1(t), . . . , Bn+κ0(t)) is a standard Brownian motion on R

n+κ0 which is adapted
to the filtration (Ft )t≥0. The SDE (3.1) is describing the dynamics of n interacting
populations X(t) = (X1(t), . . . , Xn(t))t≥0.

Remark 3.1 We note that we can also treat compact state spaces for the species dynam-
ics. Thatmeanswe can study (3.1) whenX takes values in a compact state space, which
for our ecological applications will usually be � := {x ∈ R

n+ | ∑i xi = 1}. In this
setting we assume the drift and the diffusion terms of X are such that the dynamics
remains on �, or, in other words, that � is an invariant set for the dynamics. See
Schreiber (2011) for more examples of what the theory looks like in a compact state
space.

Let L be the infinitesimal generator of the process Z. For smooth enough functions
F : Rn+ × R

κ0 → R the generator L acts as

LF(z) =
∑

i

xi fi (z)
∂F

∂xi
(z) +

∑

i

ui (z)
∂F

∂xi
(z) + 1

2

∑

i, j

σi j xi x j gi (z)g j (z)
∂2F

∂xi ∂x j
(z)

+ 1

2

∑

i, j

σn+i,n+κ0hi (z)h j (z)
∂2F

∂ yi ∂ y j
(z) + 1

2

∑

i, j

σi,n+ j xi gi (z)h j (z)
∂2F

∂xi ∂ y j
(z).

The following assumptions will be made in the continuous time setting.

Assumption 3.1 The coefficients of (3.1) satisfy the following conditions:

(1) fi , gi , ui , hi : Rn+ × R
κ0 → R are locally Lipschitz for any i = 1, . . . , n.

(2) There exist numbers C4, γ4, γ5 > 0 and a function V ∈ C2 satisfying:

• V (z) ≥ 1, z ∈ S
• lim|z|→∞ V (z) = ∞
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• V (z) ≥ |x|γ5 , z = (x, y) ∈ S
•

LV (z) ≤
(

C4 − γ4

n∑

i=1

(1 + | fi (z)| + |gi (z)|2
)

V (z), z ∈ S.

Remark 3.2 Assumption 3.1 generalizes Assumption 1.1 in Hening and Nguyen
(2018a). Here we assume the existence of a Lyapunov function to obtain a certain
boundedness of the solution (in a moment sense). In many cases, the function V (z)
will be of the form

V (z) = 1 +
n∑

i=1

ci xi +
κ0∑

j=1

y2i .

When the diffusion is not too large and the drift points towards the origin as |z| is large
then the assumption is often satisfied. We note that in ecological terms this boils down
to requiring that when species densities are large, there is a strong negative drift due
to competition.

Under Assumption 3.1 one can show like in Lemma 3.1 from Hening and Nguyen
(2018a) that Z(t) is a Feller process that has pathwise unique solutions. Furthermore,
if the process starts with Z(0) ∈ S+ then with probability 1 the process stays forever
in S+.

One can associate to theMarkovprocessZ(t) = (X(t),Y(t)) the semigroup (Pt )t≥0
defined by its action on bounded Borel measurable functions h : S → R via

Pth(z) = Ez[h(Z(t))], t ≥ 0, z ∈ S.

The operator Pt can be seen to act by duality on Borel probability measures μ by
μ → μPt where μPt is the probability measure for which

∫

S
h(x)(μPt )(dx) :=

∫

S
Pth(x)μ(dx)

for all h ∈ Cb(S). A probability measure μ on S is called invariant if μPt = μ for
all t ≥ 0. The invariant probability measure μ is called ergodic if it cannot be written
as a nontrivial convex combination of invariant probability measures. For any species
i let S i := {z = (x, y) ∈ S : xi > 0} be the subset of the state space for which
this species has strictly positive density. If μ is an ergodic measure μ(S i ) ∈ {0, 1} we
have defined the species support of μ by S(μ) = {1 ≤ i ≤ n : μ(S i ) = 1}.

We can define in this setting for any t > 0 the normalized random occupation
measures

�̃t (·) = 1

t

∫ t

0
1{Z(s)∈·} ds,

the occupation measures

�t,z(·) = Ez�̃t (·),

and the expected per-capita growth rates
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ri (μ) =
∫

S

(

fi (z) − σi i g2i (z)

2

)

μ(dz), i = 1, . . . , n.

Many of the discrete time results from Sect. 2 will hold in the continuous time setting.
They represent generalizations of the work by Hening and Nguyen (2018a).

Proposition 3.1 Suppose μ is an ergodic invariant measure. Then for any i ∈ I the
quantity ri (μ) is well defined and finite. Moreover

ri (μ) =
∫

S

(

fi (z) − σi i g2i (z)

2

)

μ(dz) = 0, i ∈ S(μ).

Remark 3.3 The above proposition provides a very powerful tool for computing
r�(μ), � /∈ S(μ) when fi (z) = ∑

j ai j x j and gi (z) = 1. In this setting we get
the linear system

0 = ri (μ) =
∑

j

ai j x̂ j − σi i

2
, i ∈ S(μ)

where

x̂ j =
∫

S
x jμ(dz).

If this system has unique solutions we can then compute

r�(μ) =
∑

j

a� j x̂ j − σi i

2
, � /∈ S(μ).

A point z̃ ∈ S is said to be accessible from z ∈ S if for every neighborhood U of
z̃ there exists t ≥ 0 such that Pt (z,U ) = Pt1U (z) > 0. Define

�z := {z̃ ∈ S | z̃ is accessible from z}

and for A ⊂ S

�A =
⋂

z∈A

�z.

Note that �A is the set of points which are accessible from every point of A. We say
a set A is accessible if for all z ∈ S+

�z ∩ A �= ∅.

We have the following sequence of results. These can be seen as the continuous
time equivalents of the results from Sect. 2.

123



56 Page 22 of 76 A. Hening et al.

Theorem 3.1 Suppose Assumption 3.1 holds and for all μ ∈ Conv(M) we have

max
i

ri (μ) > 0.

Then (3.1) is almost surely stochastically persistent and stochastically persistent in
probability.

Exactly like in Sect. 2 we define what it means for a set to be accessible or for the
state space to be irreducible—see Meyn and Tweedie (1992) and Sections 4.2 and 4.3
by Benaim (2018) for more details.

Theorem 3.2 Suppose Assumption 3.1 holds and for all μ ∈ Conv(M) we have

max
i

ri (μ) > 0.

In addition, assume there exist z∗ ∈ �S+ , a neighborhoodU of z∗, a non-zero measure
ι on S+, and a probability measure γ on R+ such that for all z ∈ U

∫ ∞

0
Pt (z, ·)γ (dt) ≥ ι(·). (3.2)

Then, with probability one, the occupation measures (�t,z) converge weakly to a
unique invariant probability measure π supported on S+ for any z ∈ S+.

Theorem 3.3 Suppose that the assumptions of Theorem 3.2 hold, and there is a positive
number, m∗ > 0, for which

Pm∗(z, ·) ≥ ι(·)

for all z ∈ U. Then there exists a unique invariant probability measure π on S+ and
the distribution of Z(t) converges in total variation to π exponentially fast whenever
Z(0) = z ∈ S+.

In order to prove extinction results we need tomake the following extra assumption,
which is the analogue of Assumption 2.2 from the discrete time setting.

Assumption 3.2 There is C > 0 such that

∣
∣
∣
∣
∣

n∑

i=1

Vxi (z)xi gi (z) +
κ0∑

i=1

Vyi (z)hi (z)

∣
∣
∣
∣
∣
≤ CV (z)

n∑

i=1

(1 + | fi (z)| + |gi (z)|2), z ∈ S.

Suppose the notation is the same as the one from Sect. 2.

Theorem 3.4 If E1 is nonempty, then for any I ∈ E1, there exists αI > 0 such that,
for any compact extinction set KI ⊂ S I+, we have

lim
dist(z,KI )→0,z∈S◦

Pz

{

lim
t→∞

ln Xi (t)

t
≤ −αI , i /∈ I

}

= 1.
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Let P(n) be the set of all subsets of {1, . . . , n} and define E2 := P(n)\E1.

Theorem 3.5 Assume either that E2 = ∅ or that maxi ri (ν) > 0 for any ν with
ν ∈ MJ ,+ for some J ∈ E2. If

⋃
I∈E1

S I+ is accessible then

∑

I∈E1

pz,I = 1

where

pz,I := Pz

{

U(ω) ⊂ Conv
(
MI ,+) and lim

t→∞
ln X j (t)

t
∈
{
r j (μ) : μ ∈ Conv

(
MI ,+)} , j /∈ I

}

.

Remark 3.4 We note that if (E1, . . . , En) is non-degenerate, i.e. the matrix� is invert-
ible, then each subspace S I+ is accessible.

If we assume that there exists a unique attracting ergodic measure in each attracting
subspace we get a stronger result, which is an immediate corollary of the above.

Theorem 3.6 Assume that each I ∈ E1 is such thatMI ,+ = {μI }, i.e. for any I ∈ E1
there exists a unique μI satisfying (2.8) and (2.9). Furthermore, assume that that
E2 = ∅ or that maxi ri (ν) > 0 for any ν ∈ MJ ,+ for some J ∈ E2. If

⋃
I∈E1

S I+ is
accessible then

∑

I∈E1

pz,I = 1

where

pz,I := Pz

{

U(ω) = {μI } and lim
t→∞

ln X j (t)

t
= r j (μI ), j /∈ I

}

.

Furthermore, if for some I ∈ E1 the subspace S I+ is accessible, then pz,I > 0.

The above theorems generalize the earlier persistence results by Schreiber (2011) and
the persistence and extinction results by Hening and Nguyen (2018a).

3.1 Nondegenerate stochastic differential equations

We present the simplest setting, with no auxiliary variables, where all the accessibility
and irreducibility conditions are satisfied. The dynamics of the n species is given by

dXi (t) = Xi (t) fi (X(t)) dt + Xi (t)gi (X(t)) dEi (t), i = 1, . . . , n (3.3)

taking values in [0,∞)n . Assume the following.
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Assumption 3.3 The coefficients of (3.1) satisfy the following conditions:

(1) diag(g1(x), . . . , gn(x))���diag(g1(x), . . . , gn(x)) = (gi (x)g j (x)σi j )n×n is a
positive definite matrix for any x ∈ R

n+.
(2) fi (·), gi (·) : Rn+ → R are locally Lipschitz functions for any i = 1, . . . , n.

(3) There exist c = (c1, . . . , cn) ∈ R
n,◦
+ and γb > 0 such that

lim sup
‖x‖→∞
⎡

⎣

∑
i ci xi fi (x)

1 + c�x
− 1

2

∑
i, j σi j ci c j xi x j gi (x)g j (x)

(1 + c�x)2
+ γb

⎛

⎝1 +
∑

i

(| fi (x)| + g2i (x))

⎞

⎠

⎤

⎦ < 0. (3.4)

Note that part (1) of Assumption 3.3 means that the diffusion is nondegenerate. Mean-
while, (3.4) is the special case of Assumption 3.1, part (2) when there are no auxiliary
variables and when the function V is chosen to be 1 + c�x. As shown in Example
1.1 from Hening and Nguyen (2018a) condition (3.4) is satisfied for most ecological
models (Schreiber 2011; Evans et al. 2015; Hening et al. 2018; Hening and Nguyen
2018a; Benaim 2018). One can show (Hening andNguyen 2018a) that Assumption 3.3
implies that all the irreducibility and accessibility conditions from Theorems 3.1–3.6
hold.

Consider μ ∈ M. Assume μ �= δ∗ where δ∗ is the Dirac mass at the origin, that
is, at (0, . . . , 0).. Since the diffusion X is non degenerate in each subspace, there exist
0 < n1 < · · · < nk ≤ n such that supp(μ) = R

μ
+ where

R
μ
+ := {(x1, . . . , xn) ∈ R

n+ : xi = 0 if i ∈ S(μ)c}

for S(μ) := {n1, . . . , nk} and S(μ)c := {1, . . . , n}\{n1, . . . , nk}. If μ = δ∗ then we
note that Rδ∗

+ = {0}. Let

R
μ,◦
+ := {(x1, . . . , xn) ∈ R

n+ : xi = 0 if i ∈ S(μ)c and xi > 0 if xi ∈ S(μ)}

and ∂R
μ
+ := R

μ
+\Rμ,◦

+ . In this setting all the irreducibility and accessibility conditions
hold and we have the following results.

Theorem 3.7 Suppose that for all μ ∈ Conv(M)

max
i

λi (μ) > 0.

Then there exists a unique invariant probability measureπ onRn,◦
+ and the distribution

ofX(t) converges in total variation toπ exponentially fast wheneverX(0) = x ∈ R
n,◦
+ .

The following condition will imply extinction.

Assumption 3.4 There exists a μ ∈ M such that

max
i∈S(μ)c

{λi (μ)} < 0. (3.5)
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If Rμ
+ �= {0}, suppose further that for any ν ∈ Conv(Mμ), we have

max
i∈S(μ)

{λi (ν)} > 0 (3.6)

where Mμ := {ν′ ∈ M : supp(ν′) ⊂ ∂R
μ
+}.

Define

M1 := {μ ∈ M : μ satisfies Assumption 3.4} , (3.7)

and

M2 := M\M1. (3.8)

To characterize the extinction of specific populations, we need some additional con-
ditions.

Assumption 3.5 Suppose that there is a δ1 > 0 such that

lim‖x‖→∞
‖x‖δ1

∑
i g

2
i (x)

1 +∑
i (| fi (x)| + |gi (x)|2) = 0.

Remark 3.5 This is a technical assumption which says that the noise terms do not grow
too fast. We offer here some intuition. An application of Itô’s Lemma yields that

ln Xi (t)

t
= ln Xi (0)

t
+ 1

t

∫ t

0

[

fi (X(s)) − g2i (X(s))σi i
2

]

ds + 1

t

∫ t

0
gi (X(s))dEi (s).

If X is close to the support of an ergodic invariant measure μ for a long time, then

1

t

∫ t

0

[

fi (X(s)) − g2i (X(s))σi i
2

]

ds

can be approximated by the average with respect to μ

ri (μ) =
∫

∂Rn+

(

fi (x) − g2i (x)σi i
2

)

μ(dx).

while the term

ln Xi (0)

t
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is negligible as t → ∞. We need Assumption (3.5) in order to guarantee that as
t → ∞ we have with probability 1 that

1

t

∫ t

0
gi (X(s))dEi (s) → 0.

To describe exactly which populations go extinct, we need an additional assumption
which ensures that apart from those in Conv(M1), invariant probability measures are
“repellers”.

Assumption 3.6 Suppose that one of the following is true

• M2 = ∅
• For any ν ∈ Conv(M2), maxi λi (ν) > 0.

Theorem 3.8 Suppose that Assumptions 3.3, 3.5 and 3.6 are satisfied and M1 �= ∅.
Then for any x ∈ R

n,◦
+

∑

μ∈M1

px(μ) = 1 (3.9)

where

px(μ) := Px

{

U(ω) = {μ} and lim
t→∞

ln Xi (t)

t
= λi (μ) < 0, i ∈ S(μ)c

}

> 0, x ∈ R
n,◦
+ , μ ∈ M1.

Remark 3.6 The proofs of the continuous time SDE results from this section are very
similar to the ones for the discrete time results from Sect. 2. They have therefore been
omitted.

An example showcasing the various definitions is presented in Fig. 2.

4 Applications in discrete time

4.1 Dynamics in Markovian environments

As formulated in terms of equations (2.1), the discrete time system represents popu-
lation dynamics subject to i.i.d environmental variation defined by the variable ξ(t).
However, the auxiliary variableY(t)might also be an environmental variable. Physical
environmental variables in ecological models commonly reflect no feedback from the
population variables, although in nature such feedback occurs but is not necessarily
strong or easy to characterize. If Y(t) has feedback only from itself, and not popu-
lation densities, it becomes a Markov process and allows the Eq. (2.1) to represent
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Fig. 2 Example with attractors and repellers when the noise is nondegenerate. In this example we picked:
ri (δ0) > 0, i = 1, 2, 3, r2(μ1) > 0, r1(μ2) > 0, r1(μ3) < 0, r2(μ3) < 0, and r3(μ12) < 0. This yields
E1 = {{1, 2}, {3}}, S(μ1) = {1},S(μ2) = {2},S(μ3) = {3},S(μ12) = {1, 2}. Each subspace can have
at most one ergodic measure. We have M{1,2},+ = {μ12} and M{3},+ = {μ3}. Note that the support of
every ergodic measure is the whole subspace it lives in, for example: μ1 lives on R

μ1,◦+ := {(x1, 0, 0) ∈
R
3+ : x1 > 0} and μ12 lives on Rμ12,◦+ := {(x1, x2, 0) ∈ R

3+ : x1, x2 > 0}

population dynamics in a Markovian environment as first suggested by Benaïm and
Schreiber (2019). In this case the system (2.1) simplifies to

Xi (t + 1) = Xi (t)Fi (X(t),Y(t), ξ(t)),

Y(t + 1) = G(Y(t), ξ(t)).
(4.1)

As formulated here, both Y(t) and ξ(t) function as environmental variables, spec-
ifying the environment during the period [t, t + 1), which then influence the value of
X(t + 1). As a special case of (2.1), the general extinction and persistence theorems
above continue to apply, although Assumptions 2.1 and 2.2 might be easier to check.
We illustrate the issues that apply toMarkovian environments with examples for single
species, and pairs of interacting species. We begin with the assumption that Y(t) has
finitely many ergodic measures μ1

Y, . . . , μ�
Y.

For an individual species i we have

ri (δ0 × μ
j
Y) =

∫

Rκ0
E
[
ln Fi (0, y, ξ(1))

]
μ

j
Y(dy).
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4.1.1 One species

Species i will persist on its own if

ri (δ0 × μ
j
Y) > 0

for j = 1, . . . , �. This implies that at each ergodic probability measure of the envi-
ronment, the log growth rate of species i at zero has to be positive. Once one checks
which species will persist on their own, the next step is to look at two species systems
and see which two species systems persist in isolation. We do this in the next section.

We note that if the Markovian environment Y has only one ergodic measure μY
then computations are significantly simplified.

Remark 4.1 Diaconis and Freedman (1999) give abstract conditions for when the envi-
ronment

Y(t + 1) = G(Y(t), ξ(t))

has a unique invariant measure. Suppose for each ξ the function G(·, ξ) is Lipschitz
with constant Kξ and

• E[Kξ(1)] < ∞
• E|G(y0, ξ(1)) − y0| < ∞ for some y0 ∈ R

κ0

• E[ln Kξ(1)] < ∞
By Theorem 1.1 from Diaconis and Freedman (1999) the process Y(t) has a unique
invariant probability measure μY. One example would be to assume that Y(t + 1) =
AY(t)+ ξ(t). Then, if A has spectral radius less than one, the process Y(t) converges
(Diaconis and Freedman 1999) to a unique invariant probability measure μY.

Suppose from now on that Y has a unique ergodic measure μY. In this case the
dynamics is determined by

ri (δ0 × μY) =
∫

Rκ0
E
[
ln Fi (0, y, ξ(1))

]
μY(dy).

If ri (δ0 × μY) > 0 we have persistence. If ri (δ0 × μY) < 0 the species goes extinct
almost surely exponentially fast

lim
t→∞

ln X(t)

t
= rX (δ0 × μY).

Remark 4.2 One other way of modeling the environment would be to assume there
are finitely many environmental states {1, . . . , �} and Y(t) is an irreducible Markov
chain with transition probabilities pi j := P[Y(t + 1) = j | Y(t) = i]. The Markov
chain will have a unique stationary distribution ν := (ν1, . . . , ν�). In this setting the
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only ergodic measure on S0 is δ0 × ν and the persistence/extinction depends on the
sign of

rX (δ0 × ν) =
�∑

i=1

νiE [ln F(0, i, ξ(1))] .

If rX (δ0 × ν) > 0 we have persistence. If rX (δ0 × ν) < 0 the species goes extinct
almost surely exponentially fast

lim
t→∞

ln X(t)

t
= rX (δ0 × ν).

4.1.2 Two species

Consider two interacting species that experience the effects of a Markovian environ-
ment

X1(t + 1) = X1(t) f1(X1(t), X2(t),Y(t), ξ(t)),

X2(t + 1) = X2(t) f2(X1(t), X2(t),Y(t), ξ(t))

Y(t + 1) = G(Y(t), ξ(t)).

(4.2)

We assume thatY(t) has only one ergodic probability measure μY. Our results can be
applied as follows. The first step is to check that Assumptions 2.1 and 2.2 hold—this
is done once one knows more detailed properties of the system (noise and interaction
terms).We exhibit how to check assumptions in specific examples in the next sections.
Once the assumptions are checked, we look at the measure δ0 × μY

ri (δ0 × μY) =
∫

Rκ0
E
[
ln fi (0, y, ξ(1))

]
μY(dy).i = 1, 2.

If ri (δ0 × μY) > 0 then species i survives on its own and the system converges
to a unique invariant probability measure μi supported on S i+ := {x ∈ S | xi �=
0, x j = 0, i �= j}. Remember that the (random) set of weak∗-limit points of the
family of occupation measures (�̃t )t∈N is denoted by U = U(ω). Thus, if we say that
U(ω) = {μ1}, this means that for the realization ω we have �̃t → μ1 weakly.

(i) Suppose r1(δ0 × μY), r2(δ0 × μY) > 0. The expected per-capita growth rates
can be computed via

ri (μ j ) =
∫

(0,∞)×Rκ0
E[ln fi (x, y, ξ(1))]μ j (dxdy).

• If r1(μ2) > 0 and r2(μ1) > 0 we have coexistence and convergence of the
distribution of X(t) to the unique invariant probability measure π on S+.
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• If r1(μ2) > 0 and r2(μ1) < 0 we have the persistence of X1 and extinction
of X2. In other words, for any x ∈ S+

Px

{

U(ω) = {μ1} and lim
t→∞

ln X2(t)

t
= r2(μ1) < 0,

}

= 1.

• If r1(μ2) < 0 and r2(μ1) > 0 we have the persistence of X2 and extinction
of X1. In other words, for any x ∈ S+

Px

{

U(ω) = {μ2} and lim
t→∞

ln X1(t)

t
= r1(μ2) < 0,

}

= 1.

• If r1(μ2) < 0 and r2(μ1) < 0 we have that for any x ∈ S+

px, j := Px

{

U(ω) = {μ j } and lim
t→∞

ln Xi (t)

t
= ri (μ j ) < 0, i �= j

}

and

px,1 + px,2 = 1.

(ii) Suppose r1(δ0 ×μY) > 0, r2(δ0 ×μY) < 0. Then species 1 survives on its own
and the system converges to the unique invariant probability measure μ1 on S1+.

• If r2(μ1) > 0 we have the persistence of both species and convergence of
the distribution ofX(t) to the unique invariant probability measure π on S+.

• If r2(μ1) < 0 we have the persistence of X1 and the extinction of X2. In
other words, for any x ∈ S+

Px

{

U(ω) = {μ1} and lim
t→∞

ln X2(t)

t
= r2(μ1) < 0,

}

= 1.

(iii) Suppose r1(δ0×μY) < 0, r2(δ0×μY) < 0. Then both species go extinct almost
surely, i.e., for any x ∈ S+

Px

{

lim
t→∞

ln Xi (t)

t
= ri (δ0 × μY) < 0

}

, i = 1, 2.

These results are generalizations of those by Ellner (1989), Benaïm and Schreiber
(2019) and Schreiber (2011). More specifically, we do not require any monotonocity
or compactness, we show which species persist and which go extinct, and we also
prove that there is always convergence to an ergodic probability measure supported
by the persistence or extinction sets. Higher dimensional systems can be treated on a
case by case basis. Usually, it is not possible to find the expected per-capita growth
rates if the system is not of Lotka–Volterra type and the dimension is higher than 3.
For a full classification in continuous time of three dimensional systems see Hening
et al. (2021).
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4.2 Structured populations

Populations of plants and animals generally have important internal structure. The
most obvious structure is that the organisms consist of different ages. Importantly,
different aged organisms can have different mortality rates, and different contributions
to reproduction. Another way of structuring populations, which can be more helpful
than age in some cases, is simply by life stage, for example as, egg, larva, and adult.
In addition, populations do not live at points in space, but are spread over an area or
region, with migration across the region. Invariably, the environments occupied by
the population in different places differ somewhat in environmental characteristics,
which can also be important to account for in the total growth of the population.
When the region inhabited can be treated as discrete habitat patches, each with its own
subpopulation of the species in question, the population structure is again discrete,
just as stage, and age as an integer would be. There have been multiple studies of the
interplay between dispersal and environmental heterogeneity (Hastings 1983; Chesson
1985, 2000a; Gonzalez and Holt 2002; Schmidt 2004; Roy et al. 2005; Schreiber
2010; Cantrell et al. 2012; Durrett and Remenik 2012). We are interested in models
of m interacting populations that live in stochastic environments. The population is
structured because each individual from population i can be in one of ni individual
states (these could be age, size or location). Then Xi (t) = (Xi1(t), . . . , Xini (t)) will
be the rowvector of population densities of individuals in different states for population
i at time t ∈ N and Xi (t) will live on R

ni+ . The population state will be given by the
row vector X(t) = (X1(t), . . . , Xm(t)) that will live on Rn+ for n := ∑m

i=1 ni . Just as
before, the environment will be represented by the sequence of i.i.d random variables
ξ(1), ξ(2), . . . , ξ(t), . . . where ξ(t) is the environment at the time step t . Assume that
the environmental random variables are independent of the initial condition X(0) and
take values in a probability space E that is equipped with a σ -field and a probability
measure m. For all i , let Ai (ξ,X) = (a j,k

i (ξ,X)) be a non-negative ni × ni matrix
whose j − kth entry corresponds to the individuals moving from state j to state k.
One can then write the population dynamics as

Xi (t + 1) = Xi (t)Ai (ξ(t),X(t)). (4.3)

These models have been studied in Roth and Schreiber (2014) and in a particular
example in Benaïm and Schreiber (2019) under the restrictive assumption that the
dynamics is constrained to a compact subset K ⊂ R

n+. Moreover, there are no general
extinction results in Roth and Schreiber (2014) and Benaïm and Schreiber (2019).

We can transform (4.3) to our framework as follows. Define

Xi (t) :=
ni∑

j=1

Xi j (t)

to be the population size of species i , X(t) = (X1(t), . . . , Xm(t)),
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Yi j (t) = Xi j (t)

Xi (t)

the fraction of population i in state j and Yi (t) = (Yi1(t), . . . ,Yini (t)),Y(t) =
(Y1(t), . . . ,Ym(t)). Then, simple calculations show that

Xi (t + 1) = Xi (t)
∑

l, j

Yila
j,l
i (ξ(t),X(t),Y(t)), i = 1, . . . ,m

Yi j (t + 1) =
∑

l Yila
j,l
i (ξ(t),X(t),Y(t))

∑
l, j Yila

j,l
i (ξ(t),X(t),Y(t))

, i = 1, . . . ,m j = 1, . . . , ni .

(4.4)

Note that this system is in the correct form (4.3) and the state space is given by
S := R

m+ × �1 × · · · × �m where �i := {x ∈ R
ni+ : ∑ni

j=1 x j = 1} is the simplex
in Rni .

The dynamics is well-defined on the extinction set S0 = ∂Rm+ × �1 × · · · × �m .
For example, if X1 = 0 then the dynamics is

X1(t + 1) = 0

Xi (t + 1) = Xi (t)
∑

l, j

Yila
j,l
i (ξ(t), 0, X2(t), . . . , Xm(t),Y(t)), i = 2, . . . ,m

Yi j (t + 1) =
∑

l Yila
j,l
i (ξ(t), 0, X2(t), . . . , Xm(t),Y(t))

∑
l, j Yila

j,l
i (ξ(t), 0, X2(t), . . . , Xm(t),Y(t))

, i = 1, . . . ,m j = 1, . . . , ni .

We will show how our theory can be used to generalize results by Roth and Schreiber
(2014) and Benaïm and Schreiber (2019). Suppose there is only one species. We abuse
notation and denote by (X1(t), . . . , Xn(t)) the densities of n patches and let X(t) =∑n

i=1 Xi (t),Yi (t) = Xi (t)
X(t) be the total population size and population fractions. We

get the dynamics given by

X(t + 1) = X(t)
∑

l, j

Yla
j,l
i (ξ(t), X(t),Y(t)), i = 1, . . . ,m

Yj (t + 1) =
∑

l Yla
j,l(ξ(t), X(t),Y(t))

∑
l, j Yila

j,l(ξ(t),X(t),Y(t))
, j = 1, . . . , n

(4.5)

with state space S := R+ × �n and extinction set S0 = {0} × �n . One can show
under certain assumptions that Y(t) has a unique invariant measure μ̂ on S0. We can
use this to compute a growth rate r(μ) such that the following theorem holds.

Theorem 4.1 Suppose that Assumption 2.1 holds. If r(μ) > 0 then X(t) is stochas-
tically persistent. In addition, under certain irreducibility conditions, there exist a
unique invariant probability measure π and the law of X(t) converges to π in total
variation exponentially fast.
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If r(μ) < 0 and Assumption (2.2) holds, then for all x ∈ R+

Px

(
lim
t→∞ X(t) = 0

)
= 1.

4.3 Environment-density interactionmodels in ecology

A key question in community ecology, which the results here are ideally placed to
address, is the role of temporal environmental fluctuations in species coexistence,
i.e. the mutual persistence of interacting species. Models in community ecology have
identified situations in which environmental fluctuations are essential for coexistence,
or at least promote it, undermine coexistence, or have no effect on it (Chesson 1994).
To systematize understanding, models of ecological community dynamics have been
expressed in the following form,

N j (t + 1) = G j (E j (t), Dj (t))N j (t), (4.6)

with N j (t) being the population density of species j at time t . The quantity
G j (E j (t), Dj (t)) is the multiplication rate, sometimes called the “finite rate of
increase,” and corresponds to Fi (X(t),Y(t), ξ(t)), in the developments above. The
two arguments, E j (t) and Dj (t), have special roles. The first of these, E j (t), is a
component of the environmental variable ξ(t), and is referred to as the environmental
response of species j . The second variable, Dj (t), is the species response to density-
dependent processes. Thus, Dj (t) will reflect the densities of the interacting species
even if it is not directly a function of them. For example, Dj (t) might be a func-
tion of resource shortage, or predator abundance, which could be auxiliary variables
Y(t) affected dynamically by the focal species densities, the N j (t). Originally, Dj (t)
was conceived as reflecting competition, and designated C j (t), but the new notation,
Dj (t), is intended to indicate a broader class of species interactions including “apparent
competition,” which is generated by density-dependent predation (Kuang andChesson
2010; Chesson andKuang 2010). Byway of contrast, the environmental response does
not reflect species densities, although it affects them. It is important to note, however,
that Dj (t)will generally depend on the E j (t), but the slope of the relationship between
Dj (t) and E j (t) decreases to 0 as the density, N j (t), of species j approaches 0, a fact
that has critical effects on species coexistence (Chesson 1994, 2019). The relation-
ship between Dj (t) and E j (t) is quantified by a statistical covariance between E j (t)
and Dj (t), denoted covED j . Positive covED j means that favorable environmental
conditions for species j are offset by unfavorable density effects limiting the gains
in population that the species can have during favorable environmental conditions.
However, when covED j is evaluated using an invariant measure for which species j
has zero density, Dj (t)will not be a function of E j (t) and covED j can be low or even
negative depending on how much Dj (t) depends on the environmental responses of
other species and how the environmental responses of the different species are corre-
lated. These changes in covED j for different invariantmeasures have critical effects on
species coexistence provided one other condition applies, which is generally referred
to as “buffered population growth” (Chesson 2019).
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Buffered population growth is defined in terms of the quantity

γ j = ∂2g j (E, D)

∂E∂D
, (4.7)

where g j (E j (t), Dj (t)) = lnG j (E j (t), Dj (t)) = ln N j (t + 1) − ln N j (t), defining
population growth on the log scale. When γ j is negative, population growth is said to
be buffered because it means that high values of Dj (t) (unfavorable density effects)
cause lower declines in g j (E j (t), Dj (t)) when the environment is unfavorable too
(low E j (t)). In effect, a double dose of unfavorable conditions is less than doubly
unfavorable. As a consequence, r j (μ), which is the same as the expected value of
lnG j (E j (t), Dj (t)), depends negatively on covED j . The lower values of covED j

encountered for invariantmeasures,μ, forwhich species j is extinct, thus favor positive
r j (μ) values and hence persistence of species j . This is the “storage effect” species
coexistence mechanism. It is quantified for the whole community (the “community
average approach” (Chesson 2008; Yuan and Chesson 2015)) in terms of γ j multiplied
by differences between covED values for invariant measures μ for which a species
is extinct compared with those for which it is persistent. Importantly, the quantity γ j

is a reflection of the life-history properties of the organisms encoded in the model
equations, and covED j reflects how the direct (E j (t)) and indirect responses (Dj (t))
of a species j to the environment are related to each other (Chesson and Huntly 1988).
Below we study several different versions of this general model indicating how these
key contributors to species coexistence emerge.

4.3.1 Perennial organisms: lottery models

The lottery model of Chesson and Warner (1981) was the first model of competi-
tion between species in which stochastic temporal environmental variation emerged
as a mechanism of species coexistence. It provides an example of the storage effect
coexistence mechanism in operation (Chesson 1983, 1994). In this model, the indi-
vidual organisms have exclusive sites or territories that provide the resources needed
for the life of that individual. It is assumed that the space available for territories is
strictly limiting. An individual organism must secure its own territory if it is to mature
(“recruit to adulthood”) and reproduce, but once it has secured a site, it retains it for
the rest of its life. We use a form of the model due to Chesson (1983). In this form, the
variables Ni (t) are the adult densities of the species, and the environmental responses
Ei (t) are per capita juvenile production rates, or in simple terms, “birth rates.” Thus,
Ji (t) = Ei (t)Ni (t) is the number of juveniles of species i in year t seeking a site to
mature as an adult. The relative ability of a juvenile to secure a site is given is a func-
tion, ci (J(t)), of the juvenile densities of all species, and so the fraction of available
sites secured during year t by species i is

ci (J(t))Ji (t)
∑n

j=1 c j (J(t))J j (t))
.
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The organisms compete for space given up by adult death, which in year t is

n∑

j=1

δ j (t)N j (t).

where δ j (t) is the fraction of the adult population of species j that dies during (t, t +
1) and is assumed to be function of ξ(t). As a consequence, the dynamics of the
community are given by the following equations

Ni (t + 1) = (1 − δi (t))Ni (t) +
⎛

⎝
n∑

j=1

δ j (t)N j (t)

⎞

⎠

(
ci (J(t))Ji (t)∑n
j=1 c j (J(t))J j (t)

)

, i = 1, . . . , n. (4.8)

To put this equation in the G(E, D) form (4.6), we can first define

Di (t) =
∑n

j=1 c j (J(t))J j (t)

ci (J(t))
∑n

j=1 δ j (t)N j (t)
.

The numerator here is the total demand for space taking account of competitive ability,
and the denominator is the competitive ability of species i times the supply of space,
i.e. Dj (t) is“demand over supply” adjusted for relative competitive ability between
species. The dynamical equation (4.8) now can be put in the form (4.6):

Ni (t + 1) =
(

1 − δi (t) + Ei (t)

Di (t)

)

Ni (t). (4.9)

In this version of the lotterymodel, the functionGi will also varywith the environment
if δi (t) is temporally variable. Note that

∑n
j=1 N j (t) remains constant for all t ∈ Z+

and is equal to the total area available for individual sites. We set this total space equal
to 1 by choice of units. Therefore the dynamics take place on the compact state space
� := {x ∈ R

n+ | ∑i xi = 1}. Note that on a compact state space Assumptions 2.1
and 2.2 are automatically satisfied.

If there are only two species, variations on this model have been analyzed in detail
by Chesson (1982), Chesson (1983) and Schreiber (2011). Note that the extinction set
is �0 = {(1, 0), (0, 1)}. As such, we only have to compute the per capita growth rates
of the Dirac masses δ(1,0), δ(0,1). This is trivial and yields

λ1 := r1(δ(0,1)) = E

[

ln

(

1 − δ1(1) + δ1(1)
c1(0, E2(0))E1(0))

c2(0, E2(0))E2(0)

)]

and

λ2 := r2(δ(1,0)) = E

[

ln

(

1 − δ2(1) + δ2(1)
c2(E1(0), 0)E2(0)

c1(E1(0), 0)E1(0))

)]
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It is not hard to see that the irreducibility and accessibility assumptions are satisfied for
many choices of ci , δi and Ei . For example, it is sufficient for δi (0) > 0, a.s., and the
ratio c1(J(0))E1(0)/c2(J(0))E2(t)) to have a positive continuous probability density
function over the domain (0,∞), conditional on the δi (0) and N(0). Then next result
presents generalizations of Chesson (1982, Theorems 3.5, 5.1 and 5.2).

Theorem 4.2 The following hold:

• If λi > 0, i = 1, 2 then the system is stochastically persistent and furthermore the
distribution of (N1(t), N2(t)) converges to a unique invariant probability measure
π on �\�0 = {(x1, x2) ∈ R

2+, x1, x2 > 0, x1 + x2 = 1}.
• If λi > 0 and λ j < 0 then P(Ni (t) → 1, N j (t) → 0) = 1.
• If λ1 < 0 and λ2 < 0 then P(N1(t) → 1 or N2(t) → 0) = 1 and P(Ni (t) →
1) > 0, i = 1, 2.

Approximations to these low-density growth rates, λi , have been developed in number
of publications for both the two-species and multispecies cases (Chesson 1989, 1994,
2003).Most important, the approximations reveal the biological circumstances leading
to the three different possibilities in Theorem 4.2. In the case where the functions c j
are simply constants, there is no possibility of coexistence unless the environment
varies. Most important, sufficient variation in the ratio E1/E2 about the value 1, while
the E[ln(1 − δi (0))] are bounded from −∞, guarantees coexistence, i.e. stochastic
persistence of both species (Chesson and Warner 1981). This example is important
as the first demonstration of how a stochastically varying environment could promote
species coexistence. This ability was subsequently traced to a negative value for γi and
covED (Chesson and Huntly 1988; Chesson 1994). This negative value of γi means
that the growth of the population is less sensitive to the density-dependent variable
Di (t), in this case competition, when environmental conditions for recruitment, as
given by Ei (t), are poor. The outcome is that the population can increase strongly
during environmentally favorable times without suffering catastrophic losses from
competition under environmentally poor conditions. This property defines the storage
component of the storage effect coexistence mechanism. This feature arises quite
generally from common life-history properties of natural populations, in particular,
consistently high adult survival while recruitment to the adult population is highly
variable (Chesson and Huntly 1988).

The full storage effect mechanism combines this property with covED, which
explains why a species at a lower density gains boosts to population growth by hav-
ing a higher frequency of times when Ei is high while Di is low. For example, for
constant δ′s, and species 1 present alone (1 ∈ S(μ), 2 /∈ S(μ) in a two-species
setting), covED1 is positive because then D1 = E1/δ1. However, in this setting
D2 = (c1(E1, 0)/c2(E1, 0))E1δ1), which need not be strongly correlated with E2
leading to a low covED2 for species 2. As a result of this low covED, species 2 can
have times when it is strongly favored by the environment while experiencing low
competition. The fact that it also has times when it is disfavored by the environment
and experiences high competition is not so important due to the negative value of
γ1. Species 1, however, has no such advantages due to its high covED, and so there
is an overall net gain to species 2 in this setting, and generally to a species at low
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density invading the population of another species. This is the storage effect mecha-
nism, and explains how the variable environment boosts the λ′s and thereby promotes
coexistence in the lottery and other models, as discussed further below.

These coexistence results depended on highly variable juvenile production rates
as the choice for Ei (t). In contrast, if adult survival is made highly variable and
1 − δi (t) is chosen as Ei (t), γi is positive, making the population growth rate of a
species more sensitive to competition under unfavorable environmental conditions.
As a consequence, increasing variation in (1− δ1(t))/(1− δ2(t)) about 1 leads to the
third possibility in Theorem 4.2, where λ1 and λ2 are both negative, and one of the
speciesmust go extinct, without the identity of that species being predictable (“random
exclusion”) due to a negative storage effect from positive γi (Chesson and Warner
1981). Finally, the second case, where λi > 0 and λ j < 0, giving certain persistence
of one species, and certain extinction of the other, occurs when δ1 = δ2 = 1, regardless
of the magnitude of environmental variation. In this case γi = 0, and there is no storage
effect, either positive or negative. Each of the three outcomes in Theorem 4.2 is also
possible without environmental variation but due to dependence of the ci (J(t)) on
the juvenile densities J(t). For example, if this dependence specifies that intraspecific
effects are stronger than interspecific effects, then coexistence occurs, as is well-
understood in deterministic models (Chesson 2018). However, the key interest here is
how the stochastic environment can create these outcomes.

4.3.2 Perennial organisms: Ricker recruitment variation

Like the lottery model, this model has long-lived adults, and juveniles that compete
for the opportunity to recruit into the adult population, but in this case competition is
not for space, but instead for a specific resource of richness S(t) that fluctuates over
time with the environment. Competition takes the Ricker form (Chesson 1994), and
the equations can be written

Ni (t + 1) = Ni (t)
(
1 − δi + S(t)eEi (t)−D(t)

)
(4.10)

with

D(t) =
n∑

j=1

α j e
E j (t)N j (t). (4.11)

Here E j (t) can be interpreted as the logarithm of the per capita number of births in
the interval (t, t + 1). The density response variable, D(t), is the same for all species
in this case, and so is not subscripted. This model also takes the G(E, D) form (4.6)
if S(t) is a constant. More generally, this form can be retained if E j (t) is replaced by
E j (t) + ln S(t), but in the definition of D this extra component, ln S(t), would need
to be subtracted from E j (t) to preserve the model. Most important, like the lottery
model with variable juvenile production, in this model the interaction coefficient γi is
negative, and covED is present due to the dependence of Dj (t) on the E j (t). These
features allow environmental variation to enable coexistence by the storage effect
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(Chesson 1994, 2003). In the absence of environmental variation, coexistence at a
stable equilibrium is not possible due to the fact that all species share the same density
response variable D(t) (Chesson and Huntly 1997). However, sustained deterministic
fluctuations are a possibility in this model, and can support coexistence under some
circumstances by a mechanism termed “relative nonlinearity” (Kuang and Chesson
2008). The theory presented here, however, enables rigorous demonstration of when
coexistence can occur in a stochastic environment.

The next lemma gives conditions under which the general assumptions hold for this
class of models.

Lemma 4.1 Suppose {(Ei (t), S(t))i=1,...,n}, t ∈ N is a sequence of n+1-dimensional

random variables, i.i.d. over t such that E
[
S(t)eE j (t)

]2
< ∞. Then the model given

by (2.4) and (4.11) satisfies Assumption 2.1 by taking a small enough γ3 > 0, and

V (z) =
∑

j

z j + 1.

Assumption 2.2 holds with

φ(z) = δV (z)

for some δ > 0. Moreover, if the support of ln S(t) + max j (E j (t) ln δ j ) contains
values less than 0 then the boundary is accessible.

Remark 4.3 We have chosen to work with E j (t) as well as S(t) as part of the environ-
ment ξ . So in this case there is noY auxiliary variable, z = x,X = (N1(t), . . . , Nn(t))
and ξ(t) := (E1(t), . . . , En(t), S(t)). We could instead treat S(t) as an auxiliary
variable—the results would be unchanged.

Proof See Appendix 1. ��

4.3.3 Perennial organisms: Ricker recruitment without covED

Models with Ricker recruitment have sometimes been proposed without covED, for
example by Ellner (1989). The equation for the dynamics of Ni (t) remain as defined
for the previous example (4.10), but D now gains a subscript, because it differs by
species:

Di (t) =
n∑

j=1

αi j N j (t). (4.12)

Here the αi j are positive constants with αi i = 1 and the others less than 1. Thus, the α

coefficients differ by the species i experiencing the competition, not just by the species
j causing it. However, the most important difference with the previous model is the
assumption that Di (t) involves the adult densities N j (t) not the juvenile densities
exp(E j (t))N j (t). It is thus assumed that juveniles suffer from competition with the
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adult organisms, which restricts their ability to recruit into the adult population, while
in the previous model instead, the juveniles are competing with each other for specific
resources that juveniles need to make this transition. The outcome mathematically
is that covED is not present, although γi remains negative. Thus, the storage effect
coexistence mechanism cannot function. However, coexistence can occur by other
means. As S(t) no longer plays any additional role, we shall assume S(t) ≡ 1 and that
((Ei (t))i=1,...,n,)t∈Z+ is a sequence of i.i.d random variables. The next lemma gives
conditions under which we can apply our general results.

Lemma 4.2 Suppose E[(Ei (t))2] < ∞. Then the model given by (4.12) satisfies
Assumption 2.1 by taking a small enough γ3 > 0, and

V (x) =
∑

j

x j + 1.

Assumption 2.2 holds with

φ(x) = δV (x)

for some δ > 0. Moreover, if the support of max j (E j (t) + ln δ j ) contains values less
than 0 then the boundary is accessible.

Proof The proof is very similar to the one of Lemma 4.1 and is therefore ommitted.
��

Suppose we have only two species in (4.12). Then, using Lemma 4.2 and following
the general approach from Sect. 4.1.2 we need to first look at

ri (δ0) = E[ln fi (0, Ei (1))] = E[ln(exp(Ei (1)) + 1 − δi )].

Suppose that ri (δ0) > 0, i = 1, 2. Then X1, X2 survive on their own and have invariant
probability measures μ1, μ2 on (0,∞). By Sect. 4.1.2 we need to look at

ri (μ j ) =
∫

(0,∞)

E ln[1 − δi + exp(Ei (1) − αi j x)]μ j (dx).

Even though it is hard to compute ri (μ j ) explicitly, one can see (Ellner 1989) that if
|δ1−δ2| is sufficiently small then r1(μ2) > 0 and r2(μ1) > 0 and one gets coexistence
by the results from Sect. 4.1.2. If however, ri (μ j ) < 0 we get the extinction of species
i . Coexistence here depends directly on the fact that αi j was assumed less than 1,
while α j j = 1. This is coexistence that would occur in the absence of environmental
fluctuations, and is just the classical outcome that coexistence occurs if intraspecific
competition, α j j , exceeds interspecific competition αi j . The presence of δi in this
model means that these α coefficients are not exactly the classical ones of Chesson
(2000b), but when the δi are equal they become equivalent to them. As mentioned
above, coexistence by the storage effect cannot occur in this model because covED
is zero even though γi < 0. Environmental fluctuations may still have a significant
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role in coexistence, however, in cases in which the δi values differ greatly between
species. Then, the coexistence mechanism relatively nonlinearity can occur (Kuang
and Chesson 2008).

4.3.4 Annual plants with seed banks and predation

Here instead of perennial organisms, we consider annual plant species. This case has
been very important in empirical studies of coexistence in a variable environment. For
these species, the growing plant survives for less than a year. It flowers and produces
seed once, at the end of its life. The seeds can be eaten by animals, for example rodents
and ants (“seed predators”), and any seeds that escape become mixed in the soil as
the “seed bank.” Seeds in the seed bank generally have environmentally-dependent
germination. This means that in any year, only a fraction of the seeds in the seed bank
germinate, and that fraction depends on the specific environmental conditions of that
year. A fraction of the seeds that do not germinate generally survive to the next year.
The state variable in annual plant models, Ni (t) for species i , is generally the number
of seeds in the seed bank at the end of the year after all the adults have died, and seed
predation has already occurred. The density P(t) of seed predators is an auxiliary
variable. The dynamical equations can now be given as

N j (t + 1) = N j (t)
(
s j (1 − E j (t)) + E j (t)Y j (t)e

−A j (t)−C(t)
)

P(t + 1) =
n∑

j=1

E j (t)Y j (t)N j (t)e
−C(t)(1 − e−A j (t)) + sp P(t)

= P(t)

⎛

⎝sp +
n∑

j=1

E j (t)Y j (t)N j (t)e
−C(t) 1 − e−A j (t)

P(t)

⎞

⎠

with

C(t) =
n∑

k=1

G j (t)N j (t).

and

A j (t) = a j (N(t),E(t))P(t).

Here E j (t) ∈ (0, 1) is the germination fraction, A j (t) is mortality due to predation and
Y j (t), which is maximum seed yield, is expected to vary from year to year depending
on how much rain and nutrients there are. Note that here Y j (t) is not an auxiliary
variable, but an environmental variable. Instead, the predator, P(t), is an auxiliary
variable. More details about these models can be found in the work by Kuang and
Chesson (2009), Kuang and Chesson (2010) and Chesson and Kuang (2010). Most
important, by defining Dj (t) = C(t) + A j (t), this model fits the standard G(E, D)

form (4.6). The critical quantity γ j is negative, and covED is present. This means that
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coexistence by the storage effect can occur in this model. Here, there is a potential
for two forms of it, a storage effect due to competition and a storage effect due to
predation.

We assume that (E j (t),Y j (t)) j=1,...,n;t∈N is a sequence of i.i.d random variables
andE[(Y1(1))2] < ∞ anda j is boundedbelowbyapositive nonrandomconstant.Note

that 1−e−A j (t)

P(t) is continuous even at P(t) = 0. Due to the fact that E j (t)N j (t)e−C(t)

and 1−e−A j (t)

P(t) are bounded above by a constant as long as a j is bounded below, we can
follow arguments in Lemma 4.1 to show that our assumptions hold.

4.3.5 Additive models: Unbounded offspring distribution

Theoretical ecologists often use models of the form

Ni (t + 1) = Ni (t)e
Ei (t)− fi (N(t)) (4.13)

where fi is a positive function representing the survivorship and E1(t), . . . ,En(t) are
continuous random variables, and generally unbounded. For example, they could be
normally distributed with the nonzero variance representing the ln of mean number
of offspring produced by the individuals of each species at time t . We can identify
fi (N(t)) as Di (t) and we see that this model takes the G(E, D) form of the previous
models, but because lnGi (t) = Ei (t) − Di (t), γi = 0, and the storage effect cannot
occur.

For specific forms of fi wecan showexplicitly that our assumptions hold.Moreover,
if (E1(t), . . . , En(t))t∈N is i.i.d one can also show for specific fi ’s that the process is
irreducible (see Ellner (1989) in the case when fi defines a Ricker model). Note that
when the support of Ei is R the dynamics from (4.13) will not live in a compact state
space so one cannot use the results from Benaïm and Schreiber (2019).

4.3.6 Additive models: discrete Lotka–Volterra

Consider n species interacting according to

Xi (t + 1) = Xi (t) exp

⎛

⎝bi (t) +
∑

j

ai j (t)X j (t)

⎞

⎠ , i = 1, 2, . . . , n. (4.14)

These equations have been introduced by Hofbauer et al. (1987) as discrete time ana-
logues of Lotka–Volterra differential equations.This form of discrete Lotka–Volterra
is what we have called Ricker above. To draw the relationships with these models,
we can equate Ei (t) with bi (t) and Di (t) with −∑ j ai j (t)X j (t). Then it is seen that
γi = 0 and the storage effect cannot occur. Moreover, as Di (t) is linear, relative non-
linearity (Chesson 1994) cannot occur either. In fact, the only role that the variable
environment has is to allow the model to explore all of the state space, although this
is an important role that leads to more complete results than in the deterministic case.
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These equations have further been analyzed by Schreiber (2011) and Benaïm and
Schreiber (2019) in a stochastic setting. Suppose the system is hierarchically ordered,
that is, there exists a permutation of the indices such that aiit < 0 for all i, t ∈ Z+
and ai j (t) ≤ 0 for all i ≤ j and t ∈ Z+. By Hofbauer et al. (1987) and Benaïm
and Schreiber (2019), if the system is hierarchically ordered, the coefficients aii (t)
are bounded above by some negative number, and the coefficients ai j (t), bi (t) are
bounded, one can show using a comparison argument that there exists K > 0 such
that X(t) enters [0, K ]n and never leaves it. We can then work under the assumption
of a compact state space.

Remark 4.4 If the state space ofX(t) is not compact, the system (4.14) can experience
abrupt fluctuations from high densities to very small densities. These sudden crashes
make it impossible to use the persistence and extinction criteria we have developed—
see Section 5 in the work by Chesson (1982) for a simple example of why violent
population declines cannot be allowed.

We can make use of the linearity of the system (4.14) and Proposition 2.1 to compute
ri (μ) for any ergodic measure μ. In order to showcase the results, assume there are
only two species, so that

X1(t + 1) = X1(t)e
b1(t+1)+a11(t+1)X1(t)+a12(t+1)X2(t),

X2(t + 1) = X2(t)e
b2(t+1)+a22(t+1)X2(t)+a21(t+1)X1(t).

(4.15)

We first look at the Dirac delta measure δ0 at the origin (0, 0)

ri (δ0) = E ln bi (1), i = 1, 2.

If ri (δ0) > 0 then species i survives on its own and converges to a unique invariant
probability measure μi supported on S i+ := {x ∈ S | xi �= 0, x j = 0, i �= j}.
Moreover,

ri (μi ) = E[bi (1)] + E[aii (1)]
∫

xi μi (dxi ) = 0

which implies

∫

xi μi (dxi ) = E[bi (1)]
E[−aii (1)] .

One can use this to compute the per-capita growth rates

ri (μ j ) = E[bi (1)] + E[ai j (1)]
∫

x j μ j (dx j ) = E[bi (1)] + E[ai j (1)]
E[b j (1)]

E[−a j j (1)] . (4.16)

To ensure that the boundary of the state space is accessible, one can assume for
example that the ai j s and the bi ’s are absolutely continuous with respect to Lebesgue
measure and if bi > 0 then an interval of the form (0, L) lies in its support. Having
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the expressions (4.16) for r1(μ2) and r2(μ1) we can make use of the discussion from
Sect. 4.1.2 to classify the dynamics. SeeHening (2021) for amore complete discussion
of 2d Ricker models.

We note that these results are in a sense more complete than what is known in the
deterministic setting for discrete Lotka–Volterra systems where the classification of
the long term behavior is not fully known (Ryals and Sacker 2015, 2016; Gyllenberg
et al. 2019).

5 Applications in continuous time

5.1 Structured populations

The survival of an organism is influenced by both biotic (competition for resources,
predator–prey interactions) and abiotic (light, precipitation, availability of resources)
factors. Since these factors are space-time dependent, all types of organisms have
to choose their dispersal strategies: If they disperse they can arrive in locations with
different environmental conditions while if they do not disperse they face the temporal
fluctuations of the local environmental conditions. The dispersion strategy impacts key
attributes of a population including its spatial distribution and temporal fluctuations
in its abundance. Continuous-space discrete-time population models that disperse and
experience uncorrelated, environmental stochasticity have been studied by Hardin
et al. (1988a), Hardin et al. (1988b) and Hardin et al. (1988c). They show that the
leading Lyapunov exponent r of the linearization of the system around the extinction
state usually determines the persistence and extinction of the population. Evans et al.
(2013) studied a linear stochastic model that describes the dynamics of populations
that continuously experience uncertainty in time and space. In Hening et al. (2018)
the authors generalized Evans et al. (2013) to a density-dependent model of stochastic
population growth that captures the interactions between dispersal and environmental
heterogeneity. We will showcase how one can recover and extend the results from
Hening et al. (2018).

Suppose we have a population with overlapping generations, which live in a spatio-
temporally heterogeneous environment consisting of n distinct patches. The growth
rate of each patch is determined by both deterministic and stochastic environmental
inputs. We denote by Xi (t) the population abundance at time t ≥ 0 of the i th patch
and write X(t) = (X1(t), . . . , Xn(t)) for the vector of population abundances.

Consider the system

dXi (t) =
⎛

⎝Xi (t) (ai − bi (Xi (t))) +
n∑

j=1

Dji X j (t)

⎞

⎠ dt + Xi (t)dEi (t), i = 1, . . . , n, (5.1)

where Di j ≥ 0 for j �= i is the per-capita rate at which the population in patch i
disperses to patch j , Dii = −∑ j �=i Di j is the total per-capita immigration rate out

of patch i , E(t) = (E1(t), . . . , En(t))T = ��B(t), � is a n × n matrix such that
��� = � = (σi j )n×n and B(t) = (B1(t), . . . , Bn(t)) is a vector of independent
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standard Brownian motions adapted to the filtration {Ft }t≥0. We make the following
assumptions.

Assumption 5.1 For each i = 1, . . . , n the function bi : R+ �→ R is locally Lipschitz
and vanishing at 0. Furthermore, there are Mb > 0, γb > 0 such that

∑n
i=1 xi (bi (xi ) − ai )

∑n
i=1 xi

> γb for any xi ≥ 0, i = 1, . . . , n satisfying
n∑

i=1

xi ≥ Mb (5.2)

Assumption 5.2 The dispersal matrix D is irreducible.

Assumption 5.3 The covariance matrix � is non-singular.

Remark 5.1 Condition (5.2) is biologically reasonable because it holds if the bi ’s are
sufficiently large for large xi ’s. Below, we give some simple scenarios under which
Assumption 5.1 is satisfied.

a) Suppose bi : [0,∞) → [0,∞), i = 1, . . . , n are locally Lipschitz and vanishing
at 0. Assume that there exist γb > 0, M̃b > 0 such that

inf
x∈[M̃b,∞)

bi (x) − ai − γb > 0, i = 1, . . . , n

Then Assumption 5.1 holds (see Hening et al. 2018).
b) We note that (a) is satisfied if for i = 1, . . . , n the function bi : R+ �→ R is locally

Lipschitz, vanishing at 0 and satisfies limx→∞ bi (x) = ∞.
c) One natural choice for the competition functions, which is widely used throughout

the literature, is bi (x) = κi x, x ∈ (0,∞) for some κi > 0. In this case the
competition terms become−xi b(xi ) = −κi x2i . It is easy to see that these functions
satisfy (b) above.

Assumption 5.2 is equivalent to forcing the entries of the matrix Pt = exp(t D) to
be strictly positive for all t > 0. This means that it is possible for the population
to disperse between any two patches. Assumption 5.3 says that our randomness is
non-degenerate, and thus truly n-dimensional.

We define the total abundance of our population at time t ≥ 0 via X(t) :=∑n
i=1 Xi (t) and let Yi (t) := Xi (t)

X(t) be the proportion of the total population that is
in patch i at time t ≥ 0. Set Y(t) = (Y1(t), . . . ,Yn(t)). An application of Itô’s lemma
to (5.1) yields

dYi (t) = Yi (t)

⎛

⎝ai −
n∑

j=1

a j Y j (t) − bi (X(t)Yi (t)) +
n∑

j=1

Y j (t)b j (X(t)Y j (t))

⎞

⎠ dt +
n∑

j=1

D ji Y j (t)dt

+ Yi (t)

⎛

⎝
n∑

j,k=1

σk j Yk (t)Y j (t)) −
n∑

j=1

σi j Y j (t)

⎞

⎠ dt + Yi (t)

⎡

⎣dEi (t) −
n∑

j=1

Y j (t)dE j (t)

⎤

⎦

dX(t) = X(t)

⎛

⎝
n∑

i=1

(ai Yi (t) − Yi (t)bi (X(t)Yi (t)))

⎞

⎠ dt + X(t)
n∑

i=1

Yi (t)dEi (t)

(5.3)
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We can rewrite (5.3) in the following compact equation for (Y(t), X(t))where b(x) =
(b1(x1), . . . , bn(xn)).

dY(t) =
(
diag(Y(t)) − Y(t)Y�(t)

)
��dB(t)

+ D�Y(t)dt +
(
diag(Y(t)) − Y(t)Y�(t)

)
(a − �Y(t) − b(X(t)Y(t)))dt

dX(t) =X(t) [a − b(X(t)Y(t))]� Y(t)dt + X(t)Y(t)���dB(t),

(5.4)

where Y(t) lies in the simplex � := {(y1, . . . , yn) ∈ R
n+ : y1 + · · · + yn = 1}. Let

�◦ = {(y1, . . . , yn) ∈ R
n,◦
+ : y1 + · · · + yn = 1} be the interior of �.

Consider Eq. (5.4) on the boundary ((y, x) : y ∈ �, x = 0) (that is, we set X(t) ≡ 0
in the equation for Y(t)). We have the following system

dỸ(t) =
(
diag(Ỹ(t)) − Ỹ(t)Ỹ�(t)

)
��dB(t)

+ D�Ỹ(t)dt +
(
diag(Ỹ(t)) − Ỹ(t)Ỹ�(t)

)
(a − �Ỹ(t))dt

(5.5)

on the simplex �.
Evans et al. (2013) proved that the process (Ỹ(t))t≥0 is an irreducible Markov

process, which has the strong Feller property and admits a unique invariant probability
measure ν∗ on �. Let

rX (ν∗) =
∫

�

(

a�y − 1

2
y��y

)

ν∗(dy). (5.6)

Theorem 5.1 The following hold:

• Suppose that rX (ν∗) > 0. The processX(t) = (X1(t), . . . , Xn(t))t≥0 has a unique
invariant probability measure π onRn,◦

+ that is absolutely continuous with respect
to the Lebesgue measure and

lim
t→∞ At‖PX(t, x, ·) − π(·)‖TV = 0, x ∈ R

n,◦
+ , (5.7)

for some constant A > 0. Here PX(t, x, ·) is the transition probability of (X(t))t≥0.
• Suppose that rX (ν∗) < 0. For any i = 1, . . . , n and any x = (x1, . . . , xn) ∈ R

n+,

Px

{

lim
t→∞

ln Xi (t)

t
= rX (ν∗)

}

= 1. (5.8)

5.2 Continuous-timemodels with a resource variable

Suppose we have a guild of n species X1, . . . , Xn whose dynamics is given by

dXi (t) = Xi (t)(ci (t)R(X(t)) − mi ) + Xi (t)σi d Bi (t) (5.9)
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Here R(X1(t), . . . , Xn(t)) is the resource abundance and ci (t) is the resource uptake
rate. The resource abundance is assumed to be given by the algebraic equation

R(x) = Rmax −
n∑

j=1

c j (t)x j (t), x ∈ R
n+. (5.10)

This model is a special case of the resource competition model with fast resource
dynamics of Li and Chesson (2016). The c j (t) are environmentally varying resource
uptake rates and hence positively affect the growth rates of the species while negatively
affecting resource growth and abundance. Because resource uptake is assumed fast,
(5.10) represents the equilibrium of the resource with the consumer densities at time
t .

One way of modelling the c j (t) is by using an Ornstein–Uhlenbeck process

dU(t) = −γ (U(t) − α)dt + AdW(t) (5.11)

where α is the mean of U(t) and A is a constant matrix. It is well-known that the
process U(t) converges as t → ∞ to a stationary distribution μX that is normal and
has mean α and covariance matrix M := AAT /(2γ ). Define

ci (t) = φi (Ui (t)) := AieUi (t)

1 + BieUi (t)
+ Ci , t ≥ 0 (5.12)

where Ai ,Ci , Bi > 0 then we have 0 < Ci ≤ ci (t) ≤ Ai
Bi

+ Ci .

Proposition 5.1 Suppose (X(t),U(t)) is given by (5.9), (5.10), (5.11) and (5.12). Then,
setting V (x,u) := 1+ |x| + |u|2, Assumptions 3.1 and 3.2 will hold for (X(t),U(t)).

Proof We can check that there exist constants a1, a2 > 0 such that

L|u|2 ≤ a1 − a2‖u‖2 for any u ∈ R
n . (5.13)

Since Ci ≤ ci (t) ≤ Ai
Bi

+ Ci , we can see that

L
∑

i

xi ≤ Rmax max
i

{
Ai

Bi
+ Ci

}∑

i

xi − min
i

{C2
i }
∑

i

x2i (5.14)

In view of (5.13) and (5.14) and using the Lyapunov function V (x,u) := 1+|x|+|u|2
we can see that Assumptions 3.1 and 3.2 hold for the joint process (X(t),U(t)). ��
Related ecological systems have been studied by Armstrong and McGehee (1980)
and Li and Chesson (2016). Most important, this model provides a continuous-time
analogue of themodels inG(E,D) form in discrete-time examples. In fact, the equations
can be rewritten as

dXi (t) = Xi (t)(c j (t)(Rmax − mi ) − ci (t)Di (t))dt + Xi (t)σi d Bi (t)
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or

dXi (t) = Xi (t)gi (Ei (t), Di (t))dt + Xi (t)σi d Bi (t)

where, Di (t) = ∑n
j=1 c j (t)x j (t), we identify ci (t) as Ei (t), and gi (Ei (t), Di (t))with

lnGi (Ei (t), Di (t)). We see immediately that γi is negative, and covED is present. Of
most interest in this case, as shown by Li and Chesson (2016), the ri (μ) can be devel-
oped explicitly in terms of γi and covED giving a very clear example mathematically
of how the storage effect operates. It is the sole mechanism of coexistence in this
model.

5.3 One species and one auxiliary variable

dX(t) = X(t) f (X(t),Y (t)) dt + X(t)g(X(t),Y (t)) dB(t),

dY (t) = u(Y (t)) dt + h(Y (t)) dW (t).
(5.15)

Suppose we know that Y (t) has a unique invariant probability measure μY on R and
Assumption 3.1 is satisfied (see Remark 3.2 and Assumption 3.3). Then the long term
behaviour is determined by the expected per capita growth rate

rX (δ0 × μY ) =
∫

R

(

f (0, y) − g2(0, y)

2

)

μY (dy).

If rX (δ0 ×μY ) > 0 we have persistence while if rX (δ0 ×μY ) < 0 then X goes extinct
almost surely and

lim
t→∞

ln X(t)

t
= rX (δ0 × μY ).

5.4 Stochastic replicator dynamics

An important class of continuous time dynamics is the one called by Fudenberg and
Harris (1992) stochastic replicator dynamics. We set � := {x ∈ R

n+ | ∑i xi = 1}
and let �0 = {x ∈ � : x j = 0 for some j} be the extinction set, The fitness of
population i is described by a function fi : � → R and the number of individuals in
population i is given by

dUi (t) = Ui (t)( fi (Xt ) + σi d Bi (t)), (5.16)

where

Xi (t) = Ui (t)
∑

j U j (t)
.
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The stochastic replicator dynamics has been studied recently by various authors (Imhof
2005; Benaïm et al. 2008; Hofbauer and Imhof 2009; Schreiber 2011). Garay and Hof-
bauer (2003) studied the permanence and impermanence of deterministic replicator
dynamics. Benaïm et al. (2008) looked at these conditions for stochastic replicator
dynamics. When the deterministic replicator dynamics is permanent and the noise
level small, they showed that the stochastic dynamics admits a unique invariant prob-
ability measure whose mass is concentrated near the maximal interior attractor of the
unperturbed system. When the deterministic dynamics is impermanent and the noise
level small or large, Benaïm et al. (2008) showed that the stochastic dynamics con-
verges to the boundary of the state space at an exponential rate. In Schreiber (2011) the
authors were able to give conditions for persistence and convergence to a stationary
distribution. Herewe recover and strengthen the results of Schreiber (2011) by proving
stronger persistence as well as extinction results.

Applying Ito’s formula to (5.16) one can see (Schreiber 2011) that

dXi (t) = Xi (t)Fi (X(t)) dt + Xi (t)
∑

j

gi j (X(t)) dBi (t), i = 1, . . . , n

where

Fi (x) = fi (x) − σ 2
i i xi −

∑

j

x j ( f j (x) − σ 2
j j x j )

and

gi j (x) = (δi j − x j )σ j .

It is immediate that for two types the only possible ergodic measures on �0 are the
Dirac masses at (1, 0) and (0, 1). This then yields

r1(δ(0,1)) = f1(0, 1) − f2(0, 1) − 1

2
(σ 2

1 − σ 2
2 )

and

r2(δ(1,0)) = f2(1, 0) − f1(1, 0) − 1

2
(σ 2

1 − σ 2
2 ).

We next follow the example studied by Schreiber (2011) and show how we can now
give a complete descriptionof the dynamics. Suppose there are three interacting species
and f1(x) = μ1+bx3, f2(x) = μ2 and f3(x) = μ3−cx1. Interactions between types
1 and 3 provide a benefit b > 0 to type 1 and a cost c > 0 to type 3. Assume the
following inequality holds

μ3 − σ 2
3

2
> μ2 − σ 2

2

2
> μ1 − σ 2

1

2
> 0. (5.17)
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By Schreiber (2011) it is easy to see that if Y1(0) = 0,Y3(0) > 0 then X(t) con-

verges almost surely to (0, 0, 1) since Yi (t) = Yi (0) exp

((

μi − σ 2
i
2

)

t + σi Bi (t)

)

and (5.17) holds. Similarly, if Y3(0) = 0,Y1(0) > 0 thenX(t) converges almost surely
to (0, 1, 0).

One can compute the expected per capita growth rates when μ is the Dirac mass
function at (0, 1, 0), (1, 0, 0), and (0, 0, 1):

r2(1, 0, 0) = μ2 − σ 2
2

2
− μ1 + σ 2

1

2
> 0

r3(1, 0, 0) = μ3 − c − σ 2
3

2
− μ2 + σ 2

2

2

r1(0, 1, 0) = μ1 − σ 2
1

2
− μ2 + σ 2

2

2
< 0

r3(0, 1, 0) = μ3 − σ 2
3

2
− μ2 + σ 2

2

2
> 0

r1(0, 0, 1) = μ1 + b − σ 2
1

2
− μ3 + σ 2

3

2

r2(0, 0, 1) = μ2 − σ 2
2

2
− μ3 + σ 2

3

2
< 0.

(5.18)

Note the above imply by Theorem 3.6 or Theorem 3.8 that it is not possible to have
ergodic probability measures on �12 := {x ∈ � | x1 > 0, x2 > 0, x3 = 0} or on
�23 := {x ∈ � | x1 = 0, x2 > 0, x3 > 0}. We have the following possibilities.

1) Assume

b > μ3 − σ 2
3

2
− μ1 + σ 2

1

2
> c. (5.19)

Then r1(0, 0, 1) > 0 and r3(1, 0, 0) > 0. This implies that there exists a unique
invariant probability measure μ13 on �13 := {x ∈ � | x1 > 0, x2 = 0, x3 > 0} and
by Schreiber (2011) that

r2(μ13) = bσ 2
3 − (b − c)σ 2

2 − 2br3 + 2(b − c)r2 + 2cr1 + 2bc

2(b − c)
.

If r2(μ13) > 0 the populations coexist and X(t) converges to its unique stationary
distribution π on �+ := �\�0. See Fig. 3 for some intuition of where the different
ergodic measures live on the simplex �.

If r2(μ13) < 0 we have

Px

{

U(ω) = {μ13} and lim
t→∞

ln X2(t)

t
= r2(μ13)

}

= 1

for all X(0) = x ∈ �+.
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Fig. 3 Coexistence for a three species stochastic replicator system. The red measures signify repellers and
π is the invariant probability measure the system converges to

2) Assume (5.19) does not hold and

b < μ3 − σ 2
3

2
− μ2 + σ 2

2

2
.

Then r1(0, 0, 1) < 0 and r2(0, 0, 1) < 0 and δ(0,0,1) is a transversal attractor. As a
result

Px

{

U(ω) = {δ(0,0,1)} and lim
t→∞

ln X j (t)

t
= r j ((0, 0, 1)), j = 1, 2

}

= 1

for all X(0) = x ∈ �+.
3) Assume (5.19) does not hold and

b, c > μ3 − σ 2
3

2
− μ2 + σ 2

2

2
.

The only ergodic invariant measures are the Dirac measures at the vertices.
If b > c we can show that (Schreiber 2011)

max
i

ri (μ) > 0, μ ∈ Conv{δ(1,0,0), δ(0,1,0), δ(0,0,1)}

we have coexistence and X(t) converges to a unique invariant probability measure π

on �+.
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If b < c persistence is not possible. However, we are not in the setting of any of our
extinction theorems because none of the ergodic measures is an attractor. Different
methods have to be used—we show in Hening et al. (2021) that the process converges
to the extinction set �0 exponentially fast.

5.5 Lotka Volterra: Two prey and one predator

Assume we have two prey and one predator interacting according to the following
Lotka–Volterra system

⎧
⎪⎨

⎪⎩

dX1(t) = X1(t)[a1 − a11X1(t) − a13X3(t)]dt + X1(t)dE1(t)

dX2(t) = X2(t)[a2 − a22X2(t) − a23X3]dt + X2(t)dE2(t)

dX3(t) = X3(t)[−a3 − a33X3(t) + a13X1(t) + a23X2(t)]dt + X3(t)dE3(t).

(5.20)

Assume that ai , bi , cii > 0, i = 1, 2, 3, c23, c31, c12, c21, c31, c32 ≥ 0. Assume that
r1(δ0) = a1 − σ11

2 > 0 and r2(δ0) = a2 − σ22
2 > 0 so that species 1 and 2 can survive

on their own. This implies by Theorem 3.2 that there exist unique ergodic probability
measures μ1 and μ2 on R1+ := (0,∞) × {0} × {0} and R2+ := {0} × (0,∞) × {0}.

Note that r1(δ0) = −a3 − σ33
2 < 0 which implies that, as expected, the predator

cannot survive without any of the prey species.
Next, we can also see that for i = 1, 2

0 = ri (μi ) = ai − σi i

2
− bi

∫

Ri+
xiμ(dxi )

which implies

∫

Ri+
xiμ(dxi ) = ai − σi i

2

aii

Using this we can compute for j = 1, 2

λ j (μi ) =
∫

∂R3+

⎛

⎝a j +
3∑

�=1

a j�x� − σ j j

2

⎞

⎠μi (dx) = a j + a ji

∫

∂R◦
i+

xiμi (dx) − σ j j

2
= a j − σ j j

2
> 0.

This implies by Theorem 3.2 that there exists a unique invariant probability measure
μ12 on R12+ = (0,∞) × (0,∞) × {0}.

The predator’s expected per capita growth rates are

r3(μi ) = −a3 − σ33

2
+ ai3

(
ai − σi i

2

aii

)

, i = 1, 2.
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Suppose that r3(μi ) < 0, i = 1, 2. Then the faces R13+,R23+ do not support any
invariant probability measures. Lastly, in order to compute r3(μ12) we note that

r1(μ12) = r2(μ12) = 0

which yields

r3(μ12) = −a3 − σ33

2
+ a13

(
a1 − σ11

2

a11

)

+ a23

(
a2 − σ22

2

a22

)

.

If r3(μ12) > 0 we have the existence of a unique invariant probability measure
μ123 on (0,∞)3 and the coexistence of all three species. If r3(μ12) < 0 we have the
extinction of the predator and the coexistence of the two prey species

Px

{

U(ω) = {μ12} and lim
t→∞

ln X3(t)

t
= r3(μ12)

}

= 1, x ∈ (0,∞)3.

Wenote that Lotka–Volterra SDEmodels have been studied extensively recently (Hen-
ing and Nguyen 2018c, b). A full classification of three-dimensional competitive and
predator–prey stochastic Lotka—Volterra systems can be found in recentwork byHen-
ing et al. (2021). In the model here, each of the prey species experiences intraspecific
competition from the negative term aii Xi (t) in its growth rate. They also experience
predation through the term ai3X3(t), but as the predator depends on these prey species,
increasing in density when the prey are abundant, it is a mediator of apparent com-
petition, i.e. the prey species interact with each other negatively through their effects
on the predator. In relation to the previous models, Di (t) = aii Xi (t) + ai3X3(t) for
prey species i . As the model is additive (γi = 0), the storage effect cannot occur and
therefore cannot affect the coexistence of the prey species. Moreover, as the per capita
growth rates are linear in the species densities, coexistence by relative nonlinearity
(Chesson 1994; Kuang and Chesson 2008) cannot occur either. Although the invasion
rates, ri (μ), do depend on variances, implying an effect of stochastic variation on per-
sistence, these effects are more akin to a parameter change than to a strong effect of
stochastic variation because substituting ai for ai −σi i/2 in these formulae reproduces
the deterministic invasion rates.

6 Discussion

Theoretical models in ecology have long been dominated by deterministic models,
not because such models were seen as superior or adequate, but because the theory for
stochastic models seemed insuperably difficult. Early stochastic models in ecology
focused on Markov jump processes (Kendall 1948; Bartlett 1960), which provided
some solutions and useful approximations, but such processes are only stochastic
because they have discrete population sizes, and their stochastic elements correspond
to independent uncertain events in the lives of individuals, such as mortality and birth.
Laws of large numbers in such processes mean that for reasonably large population
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sizes a deterministic model will be adequate (Kurtz 1970). Stochastic environmental
variation, on the other hand, which is pervasive in nature and has strong effects on
population dynamics, remains important no matter how large the population might be
(Chesson 1978). However, the dynamical equations in such situations are generally
nonlinear and only in limited circumstances yield to analytical solution. Some early
approaches used linear approximation (May 1974), and such linear approaches are
still being used to approximate population fluctuations in some circumstances (Ripa
and Ives 2003). It was not until Turelli (1978, 1981) and Turelli and Gillespie (1980)
that the essential nonlinearity of models for multiple interacting species was taken
into account. However, these models were Lotka–Volterra models in discrete and
continuous time, and were linear additive models, i.e. their per capita growth rates had
environmental and density effects combining additively, precluding the storage effect
as discussed above, and the density effects were linear precluding coexistence due to
relative nonlinearity, as discussed above. In this sense theywere disappointing because
the stochastic environment added very little to the understanding already available
from deterministic models. Soon after, however, stochastic environment models in
which the environmental fluctuations have strong effects on species coexistence were
developed (Chesson andWarner 1981; Chesson 1982; Abrams 1984).Most important,
the strong effects of the stochastic environments in these models resulted directly from
nonlinearities introduced by adding realistic biology to simpler models in which a
stochastic environment had no such strong effects (Chesson 1994).

These findings that stochastic environmental variation may allow robust species
coexistence in situations in which coexistence is precluded in a deterministic environ-
ment might have been a great stimulus to the development of stochastic environment
models in ecology. However, the difficulty of their analysis meant that few theoretical
ecologists followed this path. An important development was quadratic approxima-
tions to the invasion growth rates, r(μ), in these models (Chesson 1994, 2019), which
led to an understanding of the storage effect coexistence mechanism and relative non-
linearity (Armstrong andMcGehee 1980;Abrams andHolt 2002).However, a rigorous
understanding of how these invasion rates are able to demonstrate stochastic persis-
tence and coexistence beyond two-species settings was lacking until the developments
of Schreiber (2011). Since that time, this understanding has been extended, culminat-
ing most recently in Benaïm and Schreiber (2019) in which auxiliary variables were
introduced. As discussed here, auxiliary variables Y allow a substantial increase in the
richness of themodels that can be analyzed by an understanding of the invasion growth
rates of the focal interacting species, the X and N variables in our development here.
As we have discussed above, they allow populations to have a great deal of structure,
they allow the environmental fluctuations to beMarkovian rather thanmerely i.i.d, and
they allow dynamic mediators of the interactions between species to be considered.
For example, here we consider predators to be an auxiliary variable when studying
the coexistence of annual plants subject to seed predation, and in other models, e.g.
(Li and Chesson 2016; Chesson 2020) resources that the organisms compete for are
auxiliary variables. Remarkably, despite addition of the auxiliary variables, stochas-
tic persistence of the focal species is nevertheless still determined by their invasion
growth rates alone.
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The major contributions of this work are key extensions of the recent results
of Benaïm and Schreiber (2019), and thorough connection of these mathematical
developments with the ecological literature. Here we have removed the compactness
requirement on the state space. Although it has been argued that population densities
are necessarily bounded in nature, it is difficult to identify exactly what those bounds
are, and many very useful population models do not put strict bounds on how large a
population can be. For example, the simple logistic model in a variable environment
leads to a gamma distribution for population size (May 1974). Probability distributions
in which unrealistically high populations have extremely low probability make much
more sense, and the results here accommodate this situation. Similarly past work in
discrete time has placed strict limits on themagnitude of environmental variables, with
the justification often being the finite capabilities of organisms. However, the central
limit theorem, which leads to many valuable models in science, yields the unbounded
normal distribution. Many variables in biology are found to be well approximated by
the normal distribution on the log scale. Thus, a variable such as reproductive rate
might be well approximated by a lognormal distribution, yet with its infinite tail vio-
lates the conditions for establishing persistence in the otherwise extremely valuable
work of Benaïm and Schreiber (2019). We have found here, that rather than impose
strict bounds on random variables, bounds on an expected value involving the mul-
tiplication rates and a Lyapunov-like function are sufficient. In addition, we extend
previous work by characterizing the situations where some of the species become
extinct, and the remainder converge to invariant measures on the boundary of the
full state space. As a consequence we are able to gain a full picture of the long-term
outcomes for these stochastic population models.

The second major contribution of this work is to explain how these mathematical
developments connect with ecological theory showing where it validates some past
work, and sets the stage for exciting new developments in the future. Although we
do not have space to give the full details of how species coexistence results from
environmental fluctuations in these models, we have sketched the major issues, and
shown how the various ecological models fit within a family ofmodels whose structure
determines when the the storage effect coexistence mechanism will be active, promot-
ing coexistence in a variable environment. We have also touched on the coexistence
mechanism relative nonlinearity. Both of these mechanisms naturally arise from the
mathematical structure of the model, which is a function of the biological details
(Chesson 1994). A concise development of formulae for the invasion rates, r(μ), is
given in Chesson (2019) exhibiting explicitly the involvement of the storage effect
and relative nonlinearity in these rates. Thus, although in general we have not been
able to give explicit formulae for the invasion rates in this article, that information is
to be found in the ecological literature in general terms in Chesson (1994) and Ches-
son (2019), and in more specific terms for the individual models from the citations
above where the models are discussed. It needs to be emphasized that it can often be
difficult to understand how environmental variation will affect outcomes in ecological
models, but an understanding of the structure of the model in the terms discussed
here goes a long way to determining when strong effects of environmental variation
on species coexistence will occur. A great many models in ecology simply take on
linear additive forms, which miss key features of nature of special relevance to how
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environmental variation can promote species coexistence. Environmental variation
can still have effects in such models by permitting the state variables to explore all of
the state space, simplifying the results and thereby allowing a simpler and more com-
plete description of the possible long-term outcomes of the dynamics as arise here for
the Ricker and Lotka–Volterra models. Of most importance, however, the stage is set
for a great deal of synergy between the ecological applications and the mathematical
theory of stochastic persistence. Where the mathematical theory can develop rigorous
stochastic persistence and extinction conditions, the ecological theory, exemplified by
the discussion of the G(E, D) form for the discrete time multiplication rates, leads
to an understanding of where major effects of environmental variation on stochastic
extinction and coexistence are to be expected.

Acknowledgements The authors acknowledge generous support from the NSF through the Grants DMS-
1853463 for Alexandru Hening, DMS-1853467 for Dang Nguyen, and DEB-1353715 for Peter Chesson.

Appendix A. Persistence proofs

Lemma A.1 For any z ∈ S, t ∈ N we have the bounds

Ez(V (Z(t)) ≤ ρt V (z) + C
t∑

s=0

ρs ≤ ρt V (z) + C

1 − ρ
,

and

Ezh(Z(t), ξ(t)) ≤Ez [V (Z(t))h(Z(t), ξ(t))] ≤ ρEzV (Z(t)) + C

≤ ρt+1V (z) + C

1 − ρ
.

If a function ψ satisfies

lim
z→∞

ψ(z)
EV (z, ξ(t))h(z, ξ(t))

= 0

thenψ isμ-integrable for any invariant probability measureμ. Moreover, ifμ(S+) =
1 then ri (μ) = 0 for any i ∈ I .

Proof By Assumption A3) we have PV (z) ≤ ρV (z) +C . Using this and the Markov
property yields Ez(V (Z(t + 1)) ≤ ρEzV (Z(t)) + C . As a result

Ez(V (Z(t)) ≤ ρt V (z) + C
t∑

s=0

ρs ≤ ρt V (z) + C

1 − ρ
.
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On the other hand Assumption A3) and the above imply that

Ez [V (Z(t + 1))h(Z(t), ξ(t))] ≤ ρEzV (Z(t)) + C

≤ ρt V (z) + C

1 − ρ
.

(A.1)

Since by A3) part i) V (z) ≥ 1 we also get that

Ezh(Z(t), ξ(t)) ≤ρt+1V (z) + C

1 − ρ
.

This implies that if μ is an ergodic invariant probability measure then

Eμh(Z(t), ξ(t)) =
∫

Eh(z, ξ(1))μ(dz) ≤ C

1 − ρ
.

Since

| log Fi (z, ξ)|k ≤ ck max

{

Fi (z, ξ),
1

Fi (z, ξ)

}γ3

≤ ckh(z, ξ)

for some ck > 0, we see that for any k ∈ N there exists Ck > 0 such that
∫

E| log Fi (z, ξ(1))|kμ(dz) ≤ Ck .

The strong law of large numbers for martingales implies that for μ almost every z we
have

lim
T→∞

1

T

T∑

0

(log Fi (Z(t + 1)) − P log Fi (Z(t))) = 0, when Z(0) = z. (A.2)

Having (A.2), we can follow the arguments by Benaïm and Schreiber (2019, Lemma
3 and Proposition 1) to obtain that if μ(S I+) = 1 then ri (μ) = 0 for any i ∈ I .

Finally, because of the boundedness (A.1), it is standard to show that if a function
ψ satisfies

lim
z→∞

ψ(z)
EV (z, ξ(t))h(z, ξ(t))

= 0

then ψ is μ-integrable for any invariant probability measure μ. See Lemma 3.3 in
Hening and Nguyen (2018a) for a similar proof. ��
Lemma A.2 There exist M,C2, γ4 > 0, ρ2 ∈ (0, 1) such that

Ez

[

V (Z(1))
n∏

i=1

X pi
i (1)

]

≤ (
1{|z|<M}(C2 − ρ2) + ρ2

)
V (z)

n∏

i=1

x pi
i , z ∈ S

for any p = (p1, . . . , pn) ∈ R
n satisfying
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|p|1 :=
∑

|pi | ≤ γ4. (A.3)

Proof We note that for w1, . . . , wn > 0

n∏

i=1

w
pi
i ≤

n∏

i=1

(
w−1
i ∨ wi

)|pi |

≤
(

max
i=1,...,n

{
w−1
i ∨ wi

})
∑

i |pi |

≤ 1 +
∑

i |pi |
γ3

(

max
i=1,...,n

{
w−1
i ∨ wi

})γ3

if
∑

i |pi | < γ3. The last inequality follows from the inequality x p ≤ 1 + px for
x ≥ 0, p ∈ (0, 1). Thus,

n∏

i=1

F pi
i (z, ξ) ≤ 1 + |p|1

γ3
h(z, ξ).

Since limz→∞ V (z) = ∞, we can select ρ1 ∈ (ρ, 1), M > 0 and C1 > 0 such that

ρV (z) + C ≤ (C11{|z|<M} + ρ1)V (z).

Let γ4 ∈ (0, γ3) be such that
(
1 + γ4

γ3

)
ρ1 =: ρ2 < 1. There exists C2 > 0 satisfying

(C11{|z|<M} + ρ1)

(

1 + γ4

γ3

)

≤ (C2 − ρ2)1{|z|<M} + ρ2.

The above estimates together with (2.1), Lemma A.1, and (A.3) yield

Ez

[

V (Z(1))
n∏

i=1

X pi
i (1)

]

=
n∏

i=1

x pi
i E

[

V (x ◦ F(z, ξ),G(z, ξ))

n∏

i=1

F pi
i (z, ξ)

]

≤
n∏

i=1

x pi
i E

[

V (x ◦ F(z, ξ),G(z, ξ))

(

1 + |p|1
γ3

h(z, ξ)

)]

≤
n∏

i=1

x pi
i (ρV (z) + C)

(

1 + |p|1
γ3

)

≤
n∏

i=1

x pi
i (C11{|z|<M} + ρ1)V (z)

(

1 + |p|1
γ3

)

≤ ((C2 − ρ)1{|z|<M} + ρ2)

n∏

i=1

x pi
i V (z).

��
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Wewill denote by BM := {u ∈ S : ‖u‖ ≤ M} the closed ball of radius M > 0 around
the origin. LetM be the set of ergodic invariant probability measures of X supported
on the boundary S0 := ∂Rn+ × R

κ0 . Remember that for a subset M̃ ⊂ M we denote
by Conv(M̃) the convex hull of M̃, that is the set of probability measures π of the
form π(·) = ∑

μ∈M̃ pμμ(·) with pμ ≥ 0,
∑

μ∈M̃ pμ = 1.
Consider μ ∈ M. Assume μ({0} × R

κ0) = 0. Since μ is ergodic there exist
0 < n1 < · · · < nk ≤ n such that supp(μ) ⊂ Sμ := R

μ
+ × R

κ0 where

R
μ
+ := {(x1, . . . , xn) ∈ R

n+ : xi = 0 if i ∈ I cμ}

for Iμ := S(μ) = {n1, . . . , nk} and I cμ := {1, . . . , n}\{n1, . . . , nk}.

R
μ,◦
+ := {(x1, . . . , xn) ∈ R

n+ : xi = 0 if i ∈ I cμ and xi > 0 if xi ∈ Iμ}

and ∂R
μ
+ := R

μ
+\Rμ,◦

+ .

The following condition ensures persistence.

Assumption A.1 For any μ ∈ Conv(M) one has

max
i

ri (μ) > 0,

where

ri (μ) :=
∫

S0

[E ln Fi (z, ξ)]μ(dz).

Remember that the occupation measures are defined as

�t,z(·) = 1

t

t∑

s=0

Pz(Z(s) ∈ ·) ds, z ∈ S, t ∈ Z+

Lemma A.3 Suppose the following

• The sequences (zk)k∈N ⊂ R
n+ × R

κ0 , (Tk)k∈N ⊂ N are such that ‖zk‖ ≤ M,
Tk > 1 for all k ∈ N and limk→∞ Tk = ∞.

• The sequence (�Tk ,zk )k∈N converges weakly to an invariant probability measure
π .

• The function h : Rn+ × R
κ0 → R is any continuous function satisfying

lim
z→∞

|h(z)|
V (z)maxni=1{(xγ3

i ∧ x−γ3
i )} = 0

Then one has
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lim
k→∞

∫

R
n+
h(x)�Tk ,zk (dx) =

∫

R
n+
h(x)π(dx).

Proof The proof is almost identical to that of Lemma 3.4 by Hening and Nguyen
(2018a) and is therefore omitted. ��
It is shown in Schreiber (2011, Lemma 4) by the min–max principle that Assump-
tion A.1 is equivalent to the existence of p > 0 such that

min
μ∈M

{
∑

i

pi ri (μ)

}

:= 2r∗ > 0. (A.4)

By rescaling if necessary, we can assume that |p|1 = γ4.

Lemma A.4 Suppose that Assumption A.1 holds. Let p and r∗ be as in (A.4). There
exists an integer T ∗ > 0 such that, for any T > T ∗, x ∈ ∂Rn+, z = (x, y) ∈ BM one
has

T∑

t=0

Ez

(
ln V (Z(t + 1)) − ln V (Z(t)) −

∑
pi ln Fi (Z(t), ξ(t))

)
≤ −r∗(T + 1). (A.5)

Proof In view of Lemma A.1,

sup
t∈N,‖z‖≤M

EzV (Z(t)) < ∞

which implies, since

Ez ln V (Z(T ))

T + 1
≤ EzV (Z(T ))

T + 1

that

lim
T→∞ sup

‖z‖≤M

1

T + 1

T∑

t=0

Ez (ln V (Z(t + 1)) − ln V (Z(t))) = 0.

With (A.4) and Lemma A.2 and Lemma A.3, we can argue by contradiction in the
same manner as in Lemma 4.1 by Hening and Nguyen (2018a) to show that

lim sup
T→∞

1

T + 1
sup

‖z‖≤M

T∑

t=0

Ez

(
−
∑

pi ln Fi (Z(t), ξ(t))
)

≤ −2r∗.

Combining the two above limits finishes the proof. ��
Let n∗ ∈ N be such that

ρ1−n∗
2 > C2. (A.6)
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Proposition A.1 Define U : S+ → R+ by

U (z) = V (z)
n∏

i=1

x−pi
i

with p and r∗ satisfying (A.4) and T ∗ > 0 satisfying the assumptions of Lemma A.4.
There exist numbers θ ∈ (0, γ4

2

)
, Kθ > 0, such that for any T ∈ [T ∗, n∗T ∗] ∩ Z and

z ∈ S+, ‖z‖ ≤ M,

EzU
θ (Z(T )) ≤ U θ (x) exp

(

−1

2
θr∗T

)

+ Kθ .

Proof

lnU (Z(T )) = lnU (Z(0)) +
T−1∑

t=0

(lnU (Z(t + 1)) − lnU (Z(t)))

= lnU (Z(0)) + G(T )

(A.7)

where

G(T ) =
T−1∑

t=0

(
ln V (Z(t + 1)) − ln V (Z(t)) −

∑
pi ln Fi (Z(t), ξ(t))

)
. (A.8)

In view of (A.7) and Lemma A.2

Ez exp(G(T )) = EzU (Z(T ))

U (z)
≤ (C2)

T . (A.9)

Let Û (·) : Rn,◦
+ × R

κ0 �→ R+ be defined by Û (z) = V (z)
∏n

i=1 x
pi
i . We also have

EzÛ (Z(T ))

Û (z)
≤ (C2)

T . (A.10)

Note that

U−1(z) = Û (z)
1

V 2(z)
≤ Û (z). (A.11)
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Using (A.11) and (A.10) yields

Ez exp(−G(T )) = EzU−1(Z(T ))

U−1(z)

≤ EzÛ (Z(T ))

V 2(z)U−1(x)

≤ EzÛ (Z(T ))

Û (z)

≤ (C2)
T .

(A.12)

By (A.9) and (A.12) the assumptions of Hening and Nguyen (2018a, Lemma 3.5)
hold for the random variable G(T ). Therefore, there exists K̃2 ≥ 0 such that

0 ≤ d2φ̃z,T
dθ2

(θ) ≤ K̃2 for all θ ∈
[

0,
1

2

)

, z ∈ R
n,◦
+ × R

κ0 , ‖z‖ ≤ M, T ∈ [T ∗, n∗T ∗] ∩ Z

where

φ̃z,T (θ) = lnEz exp(θG(T )).

In view of Lemma A.4 and the Feller property of (Z(t)), there exists a δ̃ > 0 such that
if ‖z‖ ≤ M , dist(z, ∂Rn+) < δ̃ and T ∈ [T ∗, n∗T ∗] ∩ Z then

EzG(T ) ≤ −3

4
r∗T . (A.13)

Another application of Hening and Nguyen (2018a, Lemma 3.5) yields

dφ̃z,T

dθ
(0) = EzG(T ) ≤ −3

4
r∗T for z ∈ R

n,◦
+ × R

κ0 , ‖z‖ ≤ M, dist(z, ∂Rn+)

< δ̃, T ∈ [T ∗, n∗T ∗] ∩ Z.

By a Taylor expansion around θ = 0, for ‖z‖ ≤ M, dist(z, ∂Rn+) < δ̃, T ∈
[T ∗, n∗T ∗] ∩ Z and θ ∈ [0, 1

2

)
we have

φ̃x,T (θ) ≤ −3

4
r∗T θ + θ2 K̃2.

If we choose any θ ∈ (0, 1
2

)
satisfying θ < r∗T ∗

4K̃2
, we obtain that

φ̃z,T (θ) ≤ −1

2
r∗T θ for all z ∈ R

n,◦ × R
κ0 , ‖z‖ ≤ M, dist(z, ∂Rn+) < δ̃, T ∈ [T ∗, n∗T ∗] ∩ Z.

(A.14)
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In light of (A.14), we have for all θ < r∗T ∗
4K̃2

, ‖z‖ ≤ M, 0 < dist(z, ∂Rn+) < δ̃, T ∈
[T ∗, n∗T ∗] that

EzU θ (Z(T ))

U θ (z)
= exp φ̃z,T (θ) ≤ exp

(

−1

2
r∗T θ

)

. (A.15)

In view of Lemma A.2, we have for z satisfying ‖z‖ ≤ M, dist(z, ∂Rn+) ≥ δ̃ and
T ∈ [T ∗, n∗T ∗] that

EzU
θ (Z(T )) ≤ (C2)

θn∗T ∗
sup

‖z‖≤M,dist(z,∂Rn+)≥δ̃

{U θ (z)} =: Kθ < ∞. (A.16)

Combining (A.15) and (A.16) we are done. ��
Theorem A.1 Suppose that Assumption A.1 holds. Let θ be as in Proposition A.1, T ∗
as in Lemma A.4 and n∗ as in (A.6). There exist numbers κ = κ(θ, T ∗) ∈ (0, 1) and
K̃ = K̃ (θ, T ∗) > 0 such that

EzU
θ (Z(n∗T ∗)) ≤ κU θ (z) + K̃ for all z ∈ R

n,◦
+ × R

κ0 . (A.17)

We have

lim sup
t→∞

Pz{|Xi (t)| ∨ |X−1
i (t)| > m for some i = 1, . . . , n} ≤ c2m

−c3 (A.18)

for some positive c2, c3 > 0. Moreover, for any compact set K ⊂ R
n,◦ × R

κ0 ,

Pz(τK > k) ≤ cKU
θ (z)κk (A.19)

If the Markov chain Z(t) is irreducible and aperiodic on R
n,◦
+ × R

κ0 , and a compact
set is petite, then there is c4 > 1 such that

ct4‖Pt (z, . . .) − π‖T V → 0 as t → ∞.

Proof Define

τ = inf{t ≥ 0 : ‖Z(t)‖ ≤ M}. (A.20)

By Lemma A.2 for all z ∈ S

PU (z) ≤ ρ2U (z), ‖z‖ ≥ M .

This implies that the process ρ−t
2 U (Z(t)) is a supermartingale and therefore

Ez

[
ρ

−θ(τ∧n∗T ∗)
2 U θ (Z(τ ∧ n∗T ∗))

]
≤ U θ (z), z ∈ S.
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Thus,

U θ (z) ≥Ez

[
ρ

−θ(τ∧n∗T ∗)
2 U θ (Z(τ ∧ n∗T ∗))

]

=Ez

[
1{τ≤(n∗−1)T ∗}ρ−θ(τ∧n∗T ∗)

2 U θ (Z(τ ∧ n∗T ∗))
]

+ Ez

[
1{(n∗−1)T ∗<τ<n∗T ∗}ρ−θ(τ∧n∗T ∗)

2 U θ (Z(τ ∧ n∗T ∗))
]

+ Ez

[
1{τ≥n∗T ∗}ρ−θ(τ∧n∗T ∗)

2 U θ (Z(τ ∧ n∗T ∗))
]

≥Ez
[
1{τ≤(n∗−1)T ∗}U θ (Z(τ ))

]

+ ρ
−θ(n∗−1)T ∗
2 Ez

[
1{(n∗−1)T ∗<τ<n∗T ∗}U θ (Z(τ ))

]

+ ρ−θn∗T ∗
2 Ez

[
1{τ≥n∗T ∗}U θ (Z(n∗T ∗))

]
.

(A.21)

By the strong Markov property of Z(t) and Proposition A.1, we obtain

Ez
[
1{τ≤(n∗−1)T ∗}U θ (Z(n∗T ∗))

]

≤ Ez

[
1{τ≤(n∗−1)T ∗}

[
Kθ + e− 1

2 θr∗(n∗T ∗−τ)U θ (Z(τ ))
]]

≤ Kθ + exp

(

−1

2
θr∗T ∗

)

Ez
[
1{τ≤(n∗−1)T ∗}U θ (Z(τ ))

]
(A.22)

Similarly, the strong Markov property of Z(t), Jensen’s inequality and Lemma A.2
imply

Ez
[
1{(n∗−1)T ∗<τ<n∗T ∗}U θ (Z(n∗T ∗))

]

≤ Ez

[
1{(n∗−1)T ∗<τ<n∗T ∗}Cθ(n∗T ∗−τ)

2 U θ (Z(τ ))
]

≤ CθT ∗
2 Ez

[
1{(n∗−1)T ∗<τ<n∗T ∗}U θ (Z(τ ))

]
.

(A.23)

Applying (A.22) and (A.23) to (A.21) yields

U θ (x) ≥Ez

[
1{τ≤(n∗−1)T ∗}U θ (Z(τ ))

]

+ ρ
−θ(n∗−1)T ∗
2 Ez

[
1{(n∗−1)T ∗<τ<n∗T ∗}U θ (Z(τ ))

]

+ ρ−θn∗T ∗
2 Ez

[
1{τ≥n∗T ∗}U θ (Z(n∗T ∗))

]

≥ exp

(
1

2
θr∗T ∗

)

Ez

[
1{τ≤(n∗−1)T ∗}U θ (Z(n∗T ∗))

]
− exp

(
1

2
θr∗T ∗

)

Kθ

+ C−θT ∗
2 ρ

−θ(n∗−1)T ∗
2 Ez

[
1{(n∗−1)T ∗<τ<n∗T ∗}U θ (Z(n∗T ∗))

]

+ ρ−θn∗T ∗
2 Ez

[
1{τ≥n∗T ∗}U θ (Z(n∗T ∗))

]

≥κ−1
EzU

θ (Z(n∗T ∗)) − Kθ exp

(
1

2
θρ∗T ∗

)

(A.24)
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where κ = max
{
exp

(− 1
2θr

∗T ∗) ,CθT ∗
ρ

θ(n∗−1)T ∗
2 , ρθn∗T ∗

2

}
< 1 by (A.6). The proof

of (A.17) is complete by taking

K̃ = Kθ exp

(
1

2
θρ∗T ∗

)

κ.

Having (A.17), the claims (A.19) and (A.18) follow by Benaïm and Schreiber (2019,
Proposition 3.3 and Theorem 3.1). ��

Appendix B. Extinction Proofs

For I ⊂ {1, . . . , n}, denote by MI ,MI ,+,MI ,∂ the set of ergodic probability mea-
sures on S I ,S I+,S I

0 respectively.

Lemma B.1 Assume that there exists a function φ : S → R+ and constants C, δφ > 0
such that for all z ∈ S

PV (z) ≤ V (z) − φ(z) + C (B.1)

and

Ez (V (Z(1)) − PV (z))2 + E |log F(z, ξ(1)) − E log F(z, ξ(1))|2 ≤ δφφ(z).

(B.2)

Then, the family of random occupation measures (�̃t )t∈N is tight. and with probability
one

lim
T→∞

1

T

T∑

t=0

(
log F(Z(t), ξ(t)) − E

[
log F(Z(t), ξ(t))

∣
∣Ft
]) = 0. (B.3)

where (Ft )t∈N is the filtration generated by the process Z.

Proof Suppose Z(0) = z ∈ S. We have

V (Z(t + 1)) ≤V (Z(t)) − φ(Z(t)) + C + (V (Z(t + 1)) − PV (Z(t))

≤V (Z(t)) − 1

2
φ(Z(t)) + 2C −

(
1

2
φ(Z(t)) + C − (V (Z(t + 1)) − PV (Z(t)))

)

(B.4)

We see from (B.2) that the quadratic variation of the martingale V (Z(t + 1)) −
PV (Z(t)) is bounded by δφ(Z(t)). As a result we can use the strong law of large
numbers for martingales and the bound (B.2), to get

lim
T→∞

1
T
∑T

t=0(V (Z(t + 1)) − PV (Z(t)))
1
T
∑T

t=0 (φ(Z(t)) + C)
= lim

T→∞

∑T
t=0(V (Z(t + 1)) − PV (Z(t)))

∑T
t=0 (φ(Z(t)) + C)

= 0 a.s.
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which implies

lim sup
T→∞

1

T

T∑

t=0

(
1

2
φ(Z(t)) + C − (V (Z(t + 1)) − PV (Z(t)))

)

≤ 0 a.s. (B.5)

Taking sums in (B.4), noting that

lim inf
T→∞

1

T

T∑

0

(V (Z(t + 1)) − V (Z(t))) = lim inf
T→0

1

T
(V (Z(T + 1)) − V (z)) ≥ 0 a.s.

(because V is nonnegative) and using (B.5) yields that with probability one

lim inf
T→∞

1

T

T∑

0

(

−1

2
φ(Z(t)) + 2C

)

≥ 0.

As a result

lim sup
T→∞

1

T

T∑

0

φ(Z(t)) ≤ 4C, (B.6)

almost surely. Since lim|z|→∞ φ(z) = ∞, the boundedness of �̃Tφ in (B.6) implies
that the family of randomized occupation measures {�̃t , t ∈ N} is tight. Moreover,
the strong law of large numbers together with (B.6) and (B.2) implies (B.3). ��
Theorem B.1 If E1 is nonempty, then for any I ∈ E1, there exists αI > 0 such that,
for any a compact set KI ⊂ S I+, we have

lim
dist(z,KI )→0,z∈S◦

Pz

{

lim
t→∞

ln Xi (t)

t
≤ −αI , i ∈ I c

}

= 1.

Theorem B.2 If E2 is empty or maxi {ri (ν)} > 0 for any ν with μ(S J+) = 1 for some
J ∈ E2 and ∪I∈E1S I+ is accessible then

∑

I∈E1

pz,I = 1

where

pz,I = Pz

{
∅ �= U(ω) ⊂ Conv{MI ,+} and lim

t→∞
ln X j (t)

t
∈ {r j (μ) : μ ∈ Conv(MI ,+)},

j ∈ I c
}

.
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Proof Once Theorem B.1 is proved, Theorem B.2 can be obtained using the fact that
any weak limit of a family of random occupation measures is an invariant probability
measure supported on S0 (Benaim 2018; Hening and Nguyen 2018a) and by using
the arguments from Lemma 5.8, Lemma 5.9 and Theorem 5.2 by Hening and Nguyen
(2018a). ��
Fix I ∈ E1. Since by Lemma B.1 the family (�̃t )t∈N of random occupation measures
is tight, condition (2.9) is equivalent to the existence of 0 < p̂i < γ3/n, i ∈ I

inf
ν∈Conv(MI ,∂ )

∑

i∈I
p̂i ri (ν) > 0.

As a result, there exists a small p̌ ∈ (0, γ3/n) such that

∑

i∈I
p̂i ri (ν) − p̌max

i /∈I {ri (ν)} > 0 for any ν ∈ Conv(MI ,∂ ). (B.7)

Define p̃i by p̃i = p̂i if i ∈ Iμ and p̃i = − p̌ if i ∈ I cμ. In view of (B.7), (2.8) and
Lemma B.1, there is re > 0 such that for any ν ∈ Conv(MI ),

∑

i∈I
p̂i ri (ν) − p̌max

i∈I c {ri (ν)} > 3re. (B.8)

Lemma B.2 Let I ∈ E1 and suppose that Assumption 2.1 holds. Suppose p̂i , p̌, re are
the quantities from (B.8) and n∗ is defined by (A.6). There exist constants Te ≥ 0,
δe > 0 such that, for any T ∈ [Te, n∗Te] ∩ Z, ‖z‖ ≤ M, xi < δe, i ∈ I c, we have

T∑

t=0

Ez

⎛

⎝ln V (Z(t + 1)) − ln V (Z(t)) −
∑

i∈I
ln Fi (Z(t), ξ(t)) + p̌max

i∈I c ln Fi (Z(t), ξ(t))

⎞

⎠ dt

≤ −re(T + 1).

(B.9)

Proof This is very similar to the proof of Lemma A.4 and is therefore omitted. ��
Proposition B.1 Let I ∈ E1 and suppose that Assumption 2.1 holds. There exists
θ ∈ (0, 1) such that for any T ∈ [Te, n∗Te] ∩ Z and z ∈ S+ satisfying ‖z‖ ≤ M,

xi < δe, i ∈ I c one has

EzWθ (Z(T )) ≤ exp

(

−1

2
θreT

)

Wθ (z)

where M, Te, p̂i , p̌, δe, n∗ are as in Lemma B.2 and

Wθ (z) :=
∑

i∈I c

⎡

⎣V (z)
x p̌
i

∏
j∈I x

p̂ j
j

⎤

⎦

θ

, z ∈ S+.
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Proof For i ∈ I c, let W (z, i) := V (z)
x p̌
i

∏
j∈I x

p̂ j
j

. Similarly to Proposition A.1, by

making use of Lemma B.2, one can find a θ > 0 such that for T ∈ [Te, n∗Te] ∩ Z,
z ∈ R

n,◦
+ × R

κ0 with ‖z‖ ≤ M, and xi < δe we have

EW θ (Z(T ), i) ≤ exp

(

−1

2
θreT

)

W θ (z, i).

The proof is complete by noting that

Wθ (z) =
∑

i∈I c
W θ (z, i).

��
Proof of Theorem B.1 Let I ∈ E1. By Lemma A.2 for any i ∈ I c

PW (z, i) ≤ ρ2W (z, i), |z| ≥ M .

Then using Jensen’s inequality, we have

PWθ (z) ≤ ρθ
2Wθ (z) if |z| ≥ M . (B.10)

Define the constants

CU := sup

{∏
i∈I x

p̂i
i

V (z)
: z ∈ R

n,◦
+ × R

κ0

}

< ∞,

ς := δ
p̌θ
e

Cθ
U

and the stopping time

η := inf {t ≥ 0 : Wθ (Z(t)) ≥ ς} .

Clearly, if Wθ (z) < ς , then η > 0 and for any i ∈ I c, we get

Xi (t) ≤ δe , t ∈ [0, η). (B.11)

Let

W̃θ (z) := ς ∧ Wθ (z).
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We have from the concavity of x �→ x ∧ ς that

EzW̃θ (Z(T )) ≤ ς ∧ EzWθ (Z(T )).

Let τ be defined as in (A.20). By (B.10) we have that

Ez

[
ρ

−θ(τ∧η∧n∗Te)
2 Wθ (Z(θγb(τ ∧ ξ ∧ n∗Te))

]
≤ Wθ (z), z ∈ S+.

As a result for all z ∈ S+

Wθ (z) ≥Ez

[
ρ

−θ(τ∧η∧n∗Te)
2 Wθ (Z(τ ∧ η ∧ n∗Te))

]

≥Ez
[
1{τ∧η∧(n∗−1)Te=τ }Wθ (Z(τ ))

]

+ Ez
[
1{τ∧η∧(n∗−1)Te=η}Wθ (Z(η))

]

+ ρ
−θ(n∗−1)Te
2 Ez

[
1{(n∗−1)Te<τ∧η≤n∗Te}Wθ (Z(τ ∧ η))

]

+ ρ
−θn∗Te
2 Ez

[
1{τ∧η>n∗Te}Wθ (Z(n∗Te))

]
.

(B.12)

By the strong Markov property of (Z(t)) and Proposition B.1 (which we can use
because of (B.11)) we see that for all z ∈ S+

Ez
[
1{τ∧η∧(n∗−1)Te=τ }Wθ (Z(n∗Te))

]

≤ Ez

[

1{τ∧η∧(n∗−1)Te=τ } exp
(

−1

2
θre(n

∗Te − τ)

)

Wθ (Z(τ ))

]

≤ exp

(

−1

2
θreTe)

)

Ez
[
1{τ∧η∧(n∗−1)Te=τ }Wθ (Z(τ ))

]
.

(B.13)

Similarly, by the strongMarkov property of (Z(t)) and Lemma A.2, we obtain for any
z ∈ S+ that

Ez
[
1{(n∗−1)Te<τ∧η≤n∗Te}Wθ (Z(n∗Te))

]

≤ Ez

[
1{(n∗−1)Te<τ∧η≤n∗Te}C

θ(n∗Te−τ∧η)
2 Wθ (Z(τ ∧ η))

]

≤ CθTe
2 Ez

[
1{(n∗−1)Te<τ∧η≤n∗Te}Wθ (Z(τ ∧ η))

]
.

(B.14)
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If Wθ (z) < ς then applying (B.13), (B.14) and the inequality W̃θ (Z(n∗Te)) ≤
Wθ (Z(n∗Te ∧ η)) to (B.12) yields

W̃θ (z) = Wθ (z) ≥Ez
[
1{τ∧η∧(n∗−1)Te=τ }Wθ (Z(τ ))

]

+ Ez
[
1{τ∧η∧(n∗−1)Te=η}Wθ (Z(η))

]

+ ρ
−θ(n∗−1)Te
2 Ez

[
1{(n∗−1)Te<τ∧η≤n∗T }Wθ (Z(τ ∧ η))

]

+ ρ
−θn∗Te
2 Ez

[
1{τ∧η>n∗Te}Wθ (Z(n∗Te))

]

≥ exp

(
1

2
θreTe)

)

Ez
[
1{τ∧η∧(n∗−1)Te=τ }Wθ (Z(n∗Te))

]

+ Ez
[
1{τ∧η∧(n∗−1)Te=η}W̃θ (Z(n∗Te))

]

+ ρ
−θ(n∗−1)Te
2 C−θTe

2 Ez
[
1{(n∗−1)Te<τ∧η≤n∗Te}Wθ (Z(n∗Te))

]

+ ρ
−θn∗Te
2 Ez

[
1{τ∧η>n∗Te}Wθ (Z(n∗Te))

]

≥EzW̃θ (Z(n∗Te)) (since W̃θ (·) ≤ Wθ (·)).

(B.15)

Clearly, if Wθ (z) ≥ ς then

EzW̃θ (Z(n∗Te)) ≤ ς = W̃θ (z). (B.16)

As a result of (B.15), (B.16) and the Markov property of (Z(t)), the sequence {w2(k) :
k ≥ 0} where w2(k) := W̃θ (Z(kn∗Te)) is a supermartingale. Define the discrete
stopping time

η∗ := inf{k ∈ N : Wθ (Z(kn∗Te)) ≥ ς}.

Moreover, we also deduce from (B.15) that

Ez1{η∗>1}Wθ (Z(n∗Te)) ≤ κeWθ (z), z ∈ S+

where κ−1
e = min

{
ρ

−θ(n∗−1)Te
2 C−θTe

2 , exp
( 1
2θreTe)

)
, ρ

−θn∗Te
2

}
> 1. As a result,

{w3(k) : k ≥ 0} with

w3(k) := κ−k
e 1{η∗>k}Wθ (Z(kn∗Te))

is also a supermartingle. For any ε ∈ (0, 1), if Wθ (z) ≤ ςε we have

Ezw2(k ∧ η∗) ≤ Ezw2(0) = Wθ (z) ≤ ςε , k ≥ 0. (B.17)

Subsequently, (B.17) combined with the Markov inequality and the fact that w2(η) =
Wθ (Z(ηn∗Te)) ≥ ς yields

Pz{η∗ < k} ≤ ς−1
Ezw2(k ∧ η∗) ≤ ε, if k ∈ N,Wθ (z) ≤ ςε.
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Next, let k → ∞ to get

Pz{η∗ < ∞} ≤ ε if Wθ (z) ≤ ςε. (B.18)

Let κ3 ∈ (κe, 1). Since Pt W̃θ (z) ≤ Cθ t
2 W̃θ (z) for any t > 0, z ∈ S+, we have that

Pz
{
W̃θ (Z(t)) ≤ c, t = 1, . . . , n∗Te

} ≤ n∗TeCθn∗Te
2 W̃θ (z)
c

.

The last inequality, the Markov property of Z(t), and the fact that (w3(k))k≥0 is a
supermartingale imply that for any z ∈ S+

Pz

{

1{η∗>k}W̃θ (Z(t)) ≤
(

κe

κ3

)−k

, t ∈ [kn∗Te + 1, (k + 1)n∗Te]
}

≤ n∗TeCθn∗Te
2 Ezw3(k)

κ−k
e

κ−k
3

≤ n∗TeCθn∗Te
2

Ezw3(0)

κ−k
3

≤ n∗TeCθn∗Te
2

Wθ (z)

κ−k
3

Since
∑

k

(

n∗TeCθn∗Te
2

Wθ (z)

κ−k
3

)

< ∞, we deduce from the Borel–Cantelli lemma

that

Pz

{

lim sup
k→∞

sup
t∈[kn∗Te+1,(k+1)n∗Te]

1{η∗>k}W̃θ (Z(t))

(
κ3

κe

)k

< 1

}

= 1.

This and (B.18) imply that if Wθ (z) ≤ ςε then

Pz

{

lim sup
t→∞

((
κ3

κe

) t
n∗Te+1

Wθ (Z(t))

)

< 1

}

≥ 1 − ε.

Since supz∈Rn×Rκ0
xθ p̌
i

Wθ (z) < ∞, i ∈ I c, we can easily obtain the extinction result from
Theorem 2.5.

��

Appendix C. Robustness proofs

Let ◦ denote the element-wise product and 1n be the vector in Rn whose components
are all 1.Assume that the functionV fromAssumption A3) satisfies the robust estimate

E

[
V (x�(F(z, ξ) ◦ (1n + ε̃1)),G(z, ξ) + ε̃2))h(z, ξ)

]
≤ ρV (z) + C
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for any vectors ε̃1, ε̃2 ∈ R
n such that |̃ε1| ∨ |̃ε2| < δ. Note that

h̃(z, ξ) = n
max
i=1

{

F̃i (z, ξ),
1

F̃i (z, ξ)

}γ3

.

Consequently h̃(z, ξ) ≤ eδh(z, ξ) and

E

[
V (x�(F̃(z, ξ)), G̃(z, ξ))̃h(z, ξ)

]
≤ ρV (z) + C

if δ > 0 is sufficiently small. This shows that there exist C2 > 0, ρ2 ∈ (0, 1), γ4 ∈
(0, γ3) such that

EzV

(

Z̃(1)
n∏

i=1

X̃ pi
i (1)

)

≤ (
1{|z|<M}(C2 − ρ2) + ρ2

)
V

1
2 (z)

n∏

i=1

x pi
i

for any p = (p1, . . . , pn) ∈ R
n satisfying

|p|1 :=
∑

|pi | ≤ γ4.

Analogously to Lemma A.1 one can show the following uniform bound

sup
|z|≤M,t∈N

(
EzV (Z̃(t)) + Ezh̃(Z̃(t), ξ(t))

)
= KM < ∞ (C.1)

when δ is sufficiently small.
Slight changing in the factor on the right hand side of A.5, we have

Lemma C.1 Suppose that Assumption A.1 holds. Let p and r∗ be as in (A.4). There
exists a T̃ ∗ > 0 such that, for any T > T̃ ∗, z ∈ S0, ‖z‖ ≤ M one has

T∑

t=0

Ez

(
ln V (Z(t + 1)) − ln V (Z(t)) −

∑
pi ln Fi (Z(t), ξ(t))

)
≤ −1.5r∗(T + 1). (C.2)

On the other hand, it obviously follows from (2.11) that for any ε > 0, M > 0, T >

0, n0 > 0, we have

Ez

{
1{|Z̃(t))|∨|Z(t)|<n0}|Z̃(t)) − Z(t)|

}
≤ ε, z ≤ M, t ∈ {0, . . . , T }

when δ is sufficiently small. This and the uniform integrability (C.1) imply that, for
any ε, T > 0, there exists δ > 0 such that for any δ-pertubation of (3.1), we have

Ez| ln F̃i (Z̃(t)) − ln Fi (Z(t))| ≤ Ez| ln F̃i (Z̃(t)) − ln F̃i (Z(t))|
+ Ez| ln F̃i (Z(t)) − ln Fi (Z(t))|ε, z ∈ S0, |z| ≤ M, t ∈ {0, . . . , T }. (C.3)
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By virtue of (C.2) and (C.3), for sufficiently small δ,

T∑

t=0

Ez

(
ln V (Z̃(t + 1)) − ln V (Z̃(t)) −

∑
pi ln Fi (Z̃(t)), ξ(t))

)
≤ −r∗(T + 1) (C.4)

for any z ∈ S0, |z| ≤ M and T ≥ T̃ ∗. With this estimate, it follows from the
arguments in Appendix A that Theorem A.1 holds for Z̃(t). Similarly, Theorem 2.5
and Theorem 2.6 hold.

Appendix D. Proof of Lemma 4.1

Lemma D.1 Suppose {(Ei (t), S(t))i=1,...,n}, t ∈ N is a sequence of n+1-dimensional

random variables, i.i.d. over t such that E
[
S(t)eE j (t)

]2
< ∞. Then the model given

by (2.4) and (4.11) satisfies Assumption 2.1 by taking a small enough γ3 > 0, and

V (z) =
∑

j

z j + 1.

Assumption 2.2 holds with

φ(z) = δV (z)

for some δ > 0. Moreover, if the support of ln S(t) + max j (E j (t) ln δ j ) contains
values less than 0 then the boundary is accessible.

Proof We denote by K below a positive generic constant. Using (4.11)

∑

j

N j (t)e
E j (t)−Dj (t) ≤

∑

j

N j (t)e
E j (t) exp{−α j N j (t)e

E j (t)} < K < ∞.

(D.1)

On the other hand

(
1 − δ j + S(t)eE j (t)−D j (t)

)
∨
(
1 − δ j + S(t)eE j (t)−D j (t)

)−1 ≤ K +
∑

j

S(t)eE j (t)−D j (t))

Using this and the inequality

(a + b)γ ≤ 2γ (aγ + bγ )

we see that for any ε > 0 there is γ3 > 0 sufficiently small such that

h(t) :=max
j

((
1 − δ j ) + S(t)eE j (t)−Dj (t)

)γ3 ∨
(
1 − δ j + S(t)eE j (t)−Dj (t)

)−γ3
)

≤
(
1 + ε +

(
S(t)

∑
eE j (t)−Dj (t)

)γ3
)
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Using (D.1) and the fact that ES(t) < ∞ we get

E
t
∑

j

(
(1 − δ j )N j (t)(1 + ε +

(
S(t)eE j (t)−Dj (t)

)γ3
)
)

≤ (1 − 0.5ď)
∑

j

N j (t) + K

where Et [·] := E[· | N1(t), . . . , Nn(t)] and ď = min{δi }. Since N j (t)eE j (t) exp{−a j

(1 + γ3)N j (t)eE j (t) is bounded above by a nonrandom constant, then

N j (t)e
(1+γ3)(E j (t)−D j (t)) ≤ eγ3E j (t)N j (t)e

E j (t) exp{−a j (1 + γ3)N j (t)e
E j (t)} < Keγ3E j (t)

Therefore, since E
[
S2(t)eγ3E j (t)

]
< ∞ we have

E
t S1+γ3(t)N j (t)e

(1+γ3)(E j (t)−Dj (t)) ≤ KE
t
(
S1+γ3(t)eγ3E j (t)

)
≤ K2.

As a result,

E
t
∑

j

(
1 − δ j + S(t)eE j (t)−Dj (t)

)
N j (t)h(t) ≤

∑

j

(1 − 0.5δ j )N j (t)

+K2 ≤ (1 − 0.25ď)
∑

j

N j (t) + K2.

This implies that Assumption A3) is satisfied with V (z) = ∑
j N j + 1 = ∑

j z j + 1
and small γ3 > 0. Note that

∑

j

N j (t + 1) − P1
∑

j

N j (t) = S(t)
∑

j

eE j (t)−D j (t)N j (t) − E
t S(t)

∑

j

eE j (t)−D j (t)N j (t)

This shows that

E
t

⎛

⎝
∑

j

N j (t + 1) − P1
∑

j

N j (t)

⎞

⎠

2

≤E
t

⎛

⎝S(t)
∑

j

eE j (t)−Dj (t)N j (t)

⎞

⎠

2

≤ K 2
3E

t
[
S(t)eE j (t)

]2 = K 2
3E

t
[
S(t)eE j (t)

]2

since
∑

j e
−Dj (t)N j (t) is bounded by a constant K3. If E

[
S(t)eE j (t)

]2
< ∞ then

Assumption 2.2 is satisfied with φ(z) = δ(|z| + 1) for some δ > 0.
Moreover, if support of ln S(t)+max j {E j (t) ln δ j } contains values less than 0 then

it is clear that the boundary is accessible since when ln S(t) + max j {E j (t) ln δ j } is
less than a negative constant, N j (t + 1) ≤ ρN j (t) for ρ < 1. ��
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