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Abstract
Lock picking and key bumping are the most common at-

tacks on traditional pin tumbler door locks. However, these

approaches require physical access to the lock throughout

the attack, increasing suspicion and chances of the attacker

getting caught. To overcome this challenge, we propose Keyn-

ergy, a stealthy offline attack that infers key bittings (or secret)

by substantially extending and improving prior work that only

utilizes a still image of the key. Keynergy effectively utilizes

the inherent audible “clicks” due to a victim’s key insertion,

together with video footage of the victim holding the key, in

order to infer the victim’s key’s bittings. We evaluate Keyn-

ergy via a proof-of-concept implementation and real-world

experiments comprising of participants that perform multiple

key insertions across a total of 75 keys with the related audio

recorded using different microphone types placed at varying

distances. We demonstrate that Keynergy achieves an aver-

age reduction rate of around 75% with an acoustics-based

approach alone. When we combine both acoustics and video

together, Keynergy obtains a reduced keyspace below ten keys

for 8% of the keys (i.e., six keys out of 75 keys tested).

1 Introduction

Pin tumbler locks constitute a majority of the market share

in securing home and office doors, with a few manufactur-

ers dominating the global market [23, 31, 45, 64]. Conse-

quently, they have been a constant target of several known

hobbyist-style attacks and academic proposals that have at-

tempted to compromise their security. Lock picking and key

bumping are the most common existing attacks, which are

non-destructive techniques that manipulate a lock’s internal

components (known as pins) by inserting specialized instru-

ments in order to unlock it without the possession of a valid

key [17, 19, 70]. However, these techniques inherently have

significant limitations. First, they require physical access to

the lock throughout the attack, which raises suspicion and

increases the chances of the attacker getting caught, espe-

cially with the prevalence of motion sensor enabled home

(a) Proximity Attacker (b) Distant Attacker
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Figure 1: Figure depicts potential attack scenarios of Keyn-

ergy. (a) depicts a Proximity Attacker capturing via the at-

tacker’s smartphone microphone and camera to capture the

sound of key insertion and video of victim holding the key,

respectively. (b) depicts a Distant Attacker employing a direc-

tional parabolic microphone and a telephotography camera.

security cameras [6, 7]. Furthermore, recent locks now ship

with anti-picking and/or bumping features, rendering such

attacks difficult, especially for laypersons. Besides, these at-

tacks require sufficient amount of training while only granting

one-time entry despite a successful attack [48, 49, 63, 70].

To overcome these limitations, one research effort in the

literature proposed a stealthy offline attack that utilizes a

still image of the victim’s key (that the attacker captures via

telephotography) to infer its bittings (or secret) [35]. While a

novel attempt at a stealthy attack, it requires high-resolution

images of immobile keys at a particular angle (e.g., lying flat

on a surface), which is a significant restriction that renders it

less practical. This assumption is not surprising because any

movement while imaging would blur the bittings. In fact, the

authors of this work agree that a more practical attack scenario,

where an attacker captures video footage of a moving key

(e.g., when a victim is holding a key), would cause a serious

degradation to their attack accuracy [35].

The above phenomenon, also observed by us during our

experiments, leads us to the following question: Is it possible

to design a realistic and stealthy offline physical key inference

attack that overcomes these shortcomings and impractical as-

sumptions of prior work? In search for an answer to this ques-
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tion, we design Keynergy 1, a novel offline attack for inferring

the bittings of a key that employs a combined acoustics-video

side-channel. More specifically, Keynergy substantially ex-

tends and improves the prior image-only attack by utilizing

inherent sounds of key insertions as the victim inserts her/his

key into the lock and video footage capturing the victim hold-

ing the key. The attacker may obtain the sound and video

recording separately, each from a variety of sources and later

consolidate them together. Figure 1 depicts two exemplary

scenarios for obtaining the acoustic and video signals to carry

out the Keynergy attack, where the attacker: (a) records with

her/his smartphone microphone while walking by the door.

At a later time, the attacker records the video of the victim

holding the key (e.g., in an elevator or a hallway). (b) employs

a directional (parabolic) microphone and a telephotography

camera from several meters away.

We design Keynergy by first extending the prior work [35]

by leveraging blurred and distorted images (caused by signif-

icant key movements during recording) of the target key at

different angles to obtain a plausible yet relatively large set

of bitting values, thus reducing the overall key search space.

We then utilize the audio signal of key insertion to further

significantly reduce the keyspace to a small subset of keys.

However, such further reduction is extremely challenging due

to the following two reasons. First, the remaining keys in

the initially reduced subset from video footages are likely

to exhibit similar bitting patterns, making further reduction

immensely challenging. Second, to exacerbate the problem,

Keynergy needs to subsequently rely only on the sound signal

to infer exceedingly fine-grained bitting depths that differ by

sub-millimeters (i.e., 0.381 mm).

To solve the aforementioned challenges, Keynergy utilizes

the audible “clicks” that occur as the lock’s pins fall off the

key’s ridges (that exist due to cuts of the key’s bittings) during

insertion, to create a click pattern unique to the key. Keynergy

then compares the obtained click pattern against simulated

patterns (of resulting “clicks”) of all possible keys that have

been pre-computed (by the attacker) via simulation modeled

after a constant insertion speed by utilizing the techniques

from prior work [55]. However, the unknown and inconsis-

tent speed of key insertion renders this comparison signifi-

cantly difficult. We overcome this challenge by fusing across

recordings from multiple key insertions of the same victim.

Ultimately, Keynergy outputs a small subset of the most likely

keys that resemble the victim’s key.

Inferring the secret key bittings in this fashion would ul-

timately allow the attacker to replicate the corresponding

key(s), for example, using 3D printing, in order to unlock the

victim’s door. Keynergy, by design, yields many advantages

over the state-of-the-art attacks to compromise pin tumbler

locks. For instance, Keynergy minimizes the attacker’s physi-

cal access to the lock, thus reducing the risks of him/her being

1Key inference from the synergy between two sensing modalities
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Figure 2: (a) depicts a pin tumbler lock consisting of pins

(p1, . . . , p5). When the matching key is inserted, the pins ex-

actly separate at the shear line to unlock; (b) depicts key

specification parameters and bittings/ridges within a key. (c)

depicts the origin of sound from the interaction between bot-

tom pins and key ridges during key insertion. The time points

t1 − t4 indicate instances as the relative position of the pin

changes with respect to the ridge. “Click” occurs at time t3.

apprehended. It is also robust against locks with anti-picking

and/or bumping features as Keynergy attacks the key itself

and not the lock. Furthermore, Keynergy would enable those

inexperienced in lock picking to launch this attack, granting

them multiple unrestricted accesses to the victim’s property.

We evaluate Keynergy by means of a proof-of-concept im-

plementation and real-world experiments by recruiting par-

ticipants that insert 75 different keys for a total of more than

3,600 insertions. The resulting key insertion audio is recorded

with multiple microphone types placed at varying distances

from the lock. From our empirical analysis, Keynergy achieves

an average reduction of around 75% with the acoustics-based

approach alone. When we combine both acoustics and video

together, Keynergy obtains a reduced keyspace below ten keys

for 8% of the keys (i.e., six keys out of 75 keys tested).

By means of this work, we hint at a new avenue of sensor

side-channel attacks that combine information from differ-

ent sensing modalities – such as microphone and camera in

our case – abundantly available in today’s era of Internet-of-

Things and Cyber-Physical Systems. An individual modality

may not provide sufficient information, but they could con-

structively complement each other to enable new attacks that

easily surpass the well-studied risks from just the individual

modalities. We hope that this paper would encourage the se-

curity community to explore new defense policies to thwart

such potentially emerging attacks.

2 Primer on Pin Tumber Locks and Keys

Prior to presenting our attack design, we provide background

on the construction of pin tumbler locks and keys. We also

explain the cause of the sound produced during key insertion,

resulting in a click pattern, which forms the basis of our attack.
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Figure 3: (a) depicts the click pattern from multiple pins

during key insertion; (b) depicts the simulated click pattern

from a single pin, p1. Time-interval between adjacent clicks

equals inter-ridge distance for a constant speed of insertion.

Pin Tumbler Lock. Pin tumbler locks, such as Schlage SC1,

typically consist of five pin-pairs, shown as p1, . . . , p5 in Fig-

ure 2(a). Each pair comprises the top and bottom pins, where

adjacent pins are separated by an inter-pin distance. The top

(or driver) pins are spring-loaded, and in their resting position,

they block the rotation of the lock’s plug. Bottom (or key)

pins vary in length, corresponding to its key’s bittings, or cut

depths (i.e., secret). When a matching key is inserted, the

bottom pins correctly sit on each of the key bittings, causing

the pins to align on a shear line, thereby allowing the plug to

rotate and unlocking the lock.

Key. The key of a pin tumbler lock has a unique keycode,

denoted by a 5-digit number b5 . . .b1 (e.g., 39359). The key-

code specifies the bitting depths, which are cut by adhering

to the manufacturer’s specifications [63]. The specifications

mandate key parameters including, number of bittings, depth

values, increments, bitting width and cut angle. We further

explain their details in Appendix A. For Schlage SC1 keys,

there are a total of five bitting positions and ten depth values

(denoted by numbers 0-9), with each adjacent depth value

separated by an increment of 15 milli-inch (0.381 mm) (see

Figure 2(b)). Hence, the maximum number of keys possible is

105. However, in practice, the keyspace is close to 75% of the

maximum, due to constraints imposed by the manufacturer’s

specifications. Among the many constraints, Maximum Adja-

cent Cut Specification (MACS) is an important constraint that

bounds the difference between adjacent depths. For example,

with MACS = 7 (also the case for Schlage SC1 keys), the dif-

ference between two adjacent bittings can be at most 7. Hence,

a key with depths 08345 is not possible, as 0 and 8 yield a

difference greater than 7. On applying all the constraints, the

keyspace for Schlage SC1 keys reduces to 75,066, i.e., 75%

of the theoretically maximum possible number of keys. We

further enumerate all other constraints in Appendix B.

Key Insertion Sound and Click Pattern Formation. A

ridge on a key’s blade (e.g., r2,r3,r4) is the convergence of

inclines from two adjacent bitting positions, as illustrated in

Figure 2(b). Thus, for a 5-bittings key, there will be a total of

five ridges. Ridges are an important key feature relevant to

our Keynergy attack, as they are the primary source of sound

produced during key insertion. Specifically, as depicted in

Figure 2(c), during a key insertion, the bottom pins fall off

the ridges resulting in a sharp “click” sound. Moreover, mul-

tiple ridges and pins result in a series of “clicks” producing

a click pattern as illustrated in Figure 3(a). We post a spec-

trogram of exemplary key insertion sound in the following:

https://bit.ly/3pr5aFS. Keynergy exploits the unique na-

ture of the click pattern for each key to ultimately identify

the correct victim key from a keyspace of all candidate keys.

We perform a feasibility study (Appendix C) to verify the

occurrence of click patterns in human key insertion audio.

3 Threat Model

We now outline the attacker’s goals and capabilities, and fur-

ther enumerate Keynergy’s assumptions.

Goals and Capabilities. The goal of the attacker is to launch

a key inference attack by utilizing the sound as the victim is

inserting the key, and video recording of the victim holding

the key. The attacker launches a stealthy offline attack to

infer the victim’s key bittings, such that s/he can replicate the

physical key with that information. To achieve this goal, the

attacker may launch two different types of attacks, namely

proximity or distant attacks, as shown in Figure 1.

When launching the proximity attack (Figure 1(a)), we

assume that the attacker is able to secretly capture sound and

video recordings in close vicinity of the victim by means

of appropriate recording devices. For example, the attacker

may walk by the victim and record the sound of victim’s key

insertion with her/his smartphone microphone. Alternatively,

the attacker could record such sound by concealing small

“spy” microphones within objects that are typically placed

near the door, e.g., gardening pots or shoe racks. Similarly,

the attacker may also secretly record a video of the victim

holding the key by means of a smartphone camera when in

close proximity to the victim, for example, in an elevator.

When launching the distant attack (Figure 1(b)), the at-

tacker has the capability to gain access to the sound and video

recordings of the victim’s key insertions from a distance away

(e.g., by hiding in the bushes or inside a parked car by utilizing

a parabolic microphone, telephotography camera, and/or even

a drone flying nearby. These devices are capable of capturing

sound and video signals from a far away distance [35, 46, 56].

Assumptions. We assume that the attacker knows the location

of the victim’s door, as well as the make-and-model of the lock

(visually apparent from the lock). We also assume that the

attacker has the corresponding key specifications (publicly

available) [9, 47]. Moreover, upon successfully deriving a

small set of candidate keys, the attacker can replicate them by

leveraging key code cutting machine [22] or a 3D printer [20,

34, 52]. Then the attacker needs a short physical access to the

door to try the replicated keys to determine the actual key.
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Figure 4: Figure depicts the key at checkpoints (t1, . . . , t5),

i.e., timestamps at which pin p1 rests at bittings b1, . . . ,b5.

Clicks occurring between two checkpoints are clusters. It also

depicts two distinct keys with differing cluster distinctness.

4 Modeling Key Insertion Sound

When launching the Keynergy attack, the attacker compares

the obtained click pattern from the victim’s key insertion

sound with the simulated click patterns (also referred as simu-

lated patterns) that models key insertions based on key speci-

fications and by assuming a constant insertion speed. In order

to generate such simulated patterns, we utilize techniques

from the prior work, SpiKey [55]. When obtaining simulated

patterns, we observe the formation of click clusters from

intermittent pauses, which we later utilize to overcome the

challenges of variable insertion speeds in designing Keynergy.

4.1 Simulated Patterns

We model the simulated patterns by obtaining the click pat-

tern of the first pin (based on the insertion sound as presented

in Section 2) for a constant insertion speed of 1 inch/sec. Con-

sequently, the time interval between clicks produced from the

first pin case equals the inter-ridge distance (i.e., the horizon-

tal distance between adjacent ridges; see Figure 3(b)). Hence,

the problem of modeling the simulated pattern reduces to

computing the inter-ridge distance.

To compute the inter-ridge distance, we obtain the position

of every ridge on the key by taking advantage of the key’s

geometry and specifications (see Appendix A). Upon obtain-

ing the first pin click pattern, we create the entire simulated

pattern by repeating this click pattern with an offset of the

inter-pin distance as shown in Figure 3(a).

4.2 Formation of Click Clusters

The obtained simulated patterns exhibit a pattern we define

as clusters, which are click groups formed due to intermittent

pauses that occur during the key insertion. As depicted in

Figure 4(a), pin p1 transiently rests on bitting positions b1

through b4, and ultimately on b5 at the end of the insertion.

We refer to each of the times when p1 rests on the bitting po-

sitions b1, . . . ,b5 as checkpoints, which we notate as t1, . . . , t5,

as depicted in Figures 4(b) and (c) for Key 1 and Key 2, respec-

tively. Hence, all clicks that occur between two checkpoints

belong to a single cluster (e.g., in the case of a 5-pin lock, the

simulated patterns has exactly five clusters). Furthermore, the

number of clicks increases by one in each succeeding cluster,

i.e., the first cluster has one click, the second cluster has two

clicks, and so on, yielding a total of 15 clicks. However, the

number of distinct clicks within a cluster can be less than the

maximum in the presence of overlapping clicks, i.e., due to

simultaneous occurrence of multiple clicks. For example, a

key with keycode 33333 (i.e., all identical bittings) will have

only nine clicks in its simulated patterns (see Appendix D).

Cluster detection enables a more guided search for clicks

due to the presence of an upper bound on the number of clicks

per cluster (see Section 5). As clusters are a localized time

region in the key insertion, the speed variations within each

cluster tends to be lower in comparison to the entire insertion,

leading to more reliable click pattern matching.

Presence of distinct clusters is crucial for the success of our

attack. We observe that keys have varied cluster distinctness.

Hence, we can categorize keys with more distinct clusters to

be the key type that is more susceptible to Keynergy attack.

For example, Key 2 exhibits more distinct clusters than Key

1 in Figures 4(b) and (c). From our analysis, we observe

that 79% of all Schlage SC1 keys (i.e., 59,207 keys) have

distinct clusters, constituting the more vulnerable key types.

We provide more details of our analysis in Appendix F.

5 Attack Design and Implementation

We now first present an overview of Keynergy’s design, and

then delve into the details of its main modules.

5.1 Attack Design Overview

Keynergy utilizes the audio recordings of multiple key in-

sertions (e.g., n insertions over a period of time), computes

the time-interval between clicks in each recording, and ulti-

mately converts them into a single click pattern (i.e., a set of

time-intervals) to compare it against the modeled simulated

patterns of all keys in the keyspace. We present the individual

modules that constitute the design of Keynergy in Figure 5.

First, the Click and Cluster Detection module identifies

the presence of clusters and the corresponding clicks. Sub-

sequently, Synthesized Click Pattern Computation module

selects, for each cluster, the most representative insertion (out

of n insertions), and stitches the selections of each cluster

together to obtain a new synthesized pattern, which we com-

pare against the simulated patterns. Prior to this compari-

son, we design the Video Analysis module, that utilizes the

video recordings of the victim holding the key to reduce the

keyspace to a smaller subset. Finally, the Pattern Comparison

module takes as inputs the synthesized pattern as well as the

simulated patterns of the reduced keyspace, to perform the
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Figure 6: Figure depicts (a) detection of 15 clicks on the

weighted spectral flux representation. (b) depicts the detec-

tion of clusters. (c) depicts how Keynergy refines the click

detection results with the help of cluster boundaries.

comparison and output a rank-list of keys, where a higher-

ranked key corresponds to the victim key.

5.2 Click and Cluster Detection

Click and Cluster Detection module is comprised of the fol-

lowing three sub-modules. First, the recordings of each inser-

tion are input to the Click Detection sub-module to determine

all potential clicks. It takes as input the audio recordings (for

n insertions) to determine the timing information of all 15

clicks for each insertion, which is the maximum number of

clicks in a 5-pin lock. The detected click timestamps are then

input to the Cluster Detection sub-module to identify the five

clusters present in each insertion. Subsequently, we utilize

Refining Click Detection sub-module to fine-tune the click

detection within each cluster as there may be incorrect clicks

initially detected due to the low signal-to-noise ratio (SNR).

Click Detection. We identify timing information of clicks by
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Figure 7: (a) Figure depicts the simulated patterns along with

their clusters, {C1, . . . ,C5}. (b) and (c) depict two instances of

human key insertion of the same key, where TCi−C j represents

the time-interval between clusters, Ci and C j. Clicks within

a cluster occur more closely than clicks of different clusters.

Also, the time-interval between clusters is inconsistent across

different insertions. However, clicks within a cluster exhibit

less variance in click patterns even across different insertions.

detecting their onsets, or the instant that marks the beginning

of clicks’ energy increase [14]. However, as it is difficult to

extract the onsets directly from the audio signal, we transform

the audio signal to weighted spectral flux representation [14],

where click onsets appear as amplitude peaks, which can then

be identified using peak detection approaches. Weighted spec-

tral flux, WSF , captures the increase in energy by comparing

energies of adjacent time windows. More specifically, in order

to compute WSF from the audio, we partition it into T over-

lapping frames, {F1, . . . ,FT}, each with fixed time-interval (∼
0.7 ms), and obtain their magnitude spectrum {M1, . . . ,MT},

which represents the energies at different frequencies com-

puted as the absolute value of their discrete Fourier transform

(DFT). We compute WSF(t) as the increase in energy of

the current frame, Ft , in comparison to an average of previ-

ous k frames (denoted by AMt−1), weighted by their frequen-

cies as: WSF(t) =
f1

∑
f= f0

[

f ×H
(

Mt( f )−AMt−1( f )
)

]

where

H (x) = (x+ |x|)/2, returns non-zero values only for energy

increases as they contribute towards identification of click

onsets. Also, f0 and f1 indicate the frequency bins corre-

sponding to minimum and maximum frequencies of interest.

We consider frequencies above 15kHz, as higher frequencies

capture quick transitions in energy, which is important to

determine precise timing of clicks [59].

Subsequently, we set a minimum distance between clicks

in order to prevent choosing peaks in the noise floor and retain

peaks that are above a threshold (i.e., fraction of the maximum

amplitude). Finally, we select the largest 15 peaks to be the

resulting clicks of the key insertion as depicted in Figure 6(a).

We repeat this process across all n insertion recordings.

Cluster Detection. Taking as input all 15 click onsets, Cluster

Detection sub-module outputs five clusters for each insertion.
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ultimately obtain synthesized pattern.

To obtain the five clusters, we leverage the observation that

there is a relatively long pause between clusters, resulting

in longer time-intervals between adjacent clicks that belong

to neighboring clusters which are due to human insertion as

well as presence of distinct clusters in the key as shown in

Figure 7. Hence, we choose the four largest time-intervals as

shown in Figure 6(b). For further analysis, we only leverage

clicks from Cluster 3 onwards, as the first two clusters have

too few clicks for pattern comparison. As every cluster is a

localised time-region within the key insertion, we observe

lower speed variations in each cluster as opposed to the en-

tire insertion (Figures 7(b) and (c)), hence resembling the

simulated patterns (Figures 7(a)) which is modeled based on

constant insertion speed.

Refining Click Detection. Upon obtaining the clusters, we re-

fine the click detection within each cluster for all n insertions,

because the Click Detection sub-module may be inaccurate

due to the following reasons: (1) clicks may be closely spaced,

or even occur simultaneously (i.e., overlapped), hence produc-

ing peaks that are difficult to discern; (2) clicks may exhibit

low energy, thereby leading to reduced amplitude of peaks;

and (3) presence of noise, which may result in erroneous peaks

being detected as clicks. We overcome these challenges by

refining click detection with the help of clusters. Specifically,

we make use of the upper bound on the number of clicks for

each cluster, i.e., Cluster p has at most p clicks, hence pre-

venting more than p clicks to be chosen within that cluster,

while also aiding the selection of closely-spaced clicks when

less that p clicks are initially chosen, e.g., we observe that in

Figure 6(c), Refining Click Detection sub-module omits the

noisy peak in Cluster 3, while it identifies a low amplitude

click in Cluster 5, unlike the Click Detection sub-module that

marks noise as click and vice versa (Figure 6(a)).

5.3 Synthesized Click Pattern Extraction

Despite the refined clicks from the previous module, correctly

extracting all clicks within each insertion may still be error-

prone due to the aforementioned sources of noise. Synthesized

Click Pattern Extraction module solves this challenge by

!!

"!
,
!"

""
,
!#

"#

"!

!!
,
""

!"
,
"#

!#

!!!"!# MAX

Range-

ratio	error	

(erange)

"!"""#

$$/$%

$%

$$

IntervalTrial	1=

IntervalTrial 2=	

$%/$$
Range

Range

Figure 9: Figure depicts the pairwise error computation be-

tween two trials, ti and t j, with corresponding time-intervals,

{i1, i2, i3} and { j1, j2, j3}. We compute the range of the two

possible interval ratios (i.e., Range(i, j) and Range( j, i)), the

maximum of which constitutes the range-ratio error (erange).

fusing information across multiple insertions (or trials) as it

is unlikely for similar noise pattern to reoccur across different

insertions. This module takes as input n trials and chooses one

trial per cluster as a representative to ultimately synthesize a

new click pattern, which we refer to as synthesized pattern,

that most likely resembles an insertion with minimal noise.

Specifically, this module chooses one representative trial per

cluster (or trial – cluster pair), and merges across all three

clusters to output the synthesized pattern. Figure 8 illustrates

a set of trials, where we select the following trial – cluster

pairs to construct the final synthesized pattern: Trials 2, 1,

and n, for Clusters 3, 4, and 5, respectively.

To select the most representative trial – cluster pair across

all trials, we employ a two-stage approach. First, for each

cluster, we only retain trials that contain the mode (or the

most frequently occurring) of the number of clicks and

discard the rest (as they may be more prone to missing

clicks or having additional noisy clicks), e.g., in Cluster 4

of Figure 8, Trials 1, 2, and n contain the maximum of four

clicks. Second, we select a representative trial out of the re-

tained trials. For this, we compute a pairwise error between

all combinations of retained trials, to ultimately output the

trial with the least error as the representative trial – clus-

ter pair, (e.g., Trial 1 for Cluster 4). For each pair of trials,

we compare the corresponding time-intervals across each of

the adjacent clicks within a cluster, e.g., in Figure 9, when

comparing Trial 1 with Trial 2 for Cluster 4, we first com-

pute the intervals of the two trials such that IntervalTrial1 =
{i1, i2, i3} and IntervalTrial2 = { j1, j2, j3}. Subsequently, we

compute the ratio of corresponding time intervals, followed

by its range, or the difference between the maximum and

minimum ratios (i.e., Range(IntervalTrial1, IntervalTrial2) =
Range(i, j) = Max[ i1

j1
, i2

j2
, i3

j3
]− Min[ i1

j1
, i2

j2
, i3

j3
]). In order to

keep the error value consistent for different ordering of tri-

als, we compute the maximum of Range(i, j) and Range(i, j),
which we refer to as the range-ratio error (erange). We lever-

age this ratio to compare click interval patterns between any

two trials, without being affected by their different insertion

speeds. Finally, we choose a representative trial which has the

least sum of pairwise error with majority of the trials.
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5.4 Pattern Comparison

Pattern Comparison module takes as input - synthesized pat-

tern, simulated patterns of the reduced keyspace from Video

Analysis module (see Section 5.5) to output a rank-list of keys,

with a higher-ranked key being more likely to be the victim’s

key. This module compares the synthesized pattern against all

of the simulated patterns within the reduced keyspace, specif-

ically by comparing each of the clusters (i.e., 3, 4, and 5) sep-

arately, and then aggregating the comparison results across all

clusters. We choose such because the clicks within a cluster

exhibit low variations in speed as opposed to clicks across

the entire insertion, thereby exhibiting closer resemblance to

the simulated patterns, which is modeled based on constant

insertion speed (see Figure 7). However, this comparison still

poses some challenges due to remaining variability in speed

and occasional click misses within clusters. To overcome this

challenge, we compute two error functions to quantify their

dissimilarity, namely, pattern comparison and click detection

errors (or epattern and eclick, respectively). Utilizing the error

functions, this module ultimately outputs ranks of all keys.

Specifically, epattern error computes range-ratio error (sim-

ilar to Figure 9) to quantify the dissimilarity between simu-

lated patterns of all keys and the synthesized pattern. Hence,

keys with simulated patterns that exhibit similar patterns to

synthesized pattern would be assigned lower epattern values.

However, there may be cases where synthesized pattern has

missing clicks (e.g., when the clicks occur close together)

rendering epattern alone insufficient for ranking keys. Hence,

upon a likely detection of missing clicks from the epattern

computation, we assign eclick as the largest click-interval adja-

cent to the potentially missed click(s). After assigning epattern

and eclick for all clusters of keys in the reduced keyspace, we

sum up the two errors across the clusters and list the keys

from lowest to highest error to obtain an aggregated rank-list.

5.5 Video Analysis

We now combine information from video footages in order to

achieve additional keyspace reduction. We first re-implement

Sneakey [35] which performs image-based key-inference and

extend it further to work with video footages capturing blurry

key images due to the mobile key at unfixed angles. Sneakey’s

implementation normalizes the key image by manually anno-

tating eight keypoint locations (five and three from the key’s

head and blade, respectively) by the attacker, and transforms it

to the respective keypoints on a reference key (i.e., another key

of the same make-and-model that is known to the attacker).

We extend this design to utilize only four keypoints (three

and one on the key’s blade and tip, respectively), to account

for a more realistic attack scenario where the head of the

key may be occluded as the victim is holding the key. Subse-

quently, we identify the five bitting locations and depths on

the normalized image to yield the most likely bittings. Prior to
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Figure 10: Figure depicts (a) the experimental setup with a

custom-made door with Miccond , Micparab, and Micphone; (b)

set of all varying experimental conditions.

applying the image-based inference, we choose the top three

frames that exhibit least blurriness from the video recording

by applying a variance of Laplacian operator, which measures

the amount of edges present in images, to utilize it for a blur

detection [51, 53]. Ultimately, this module outputs a reduced

key search space to be input to Pattern Comparison module

for further reduction.

6 Evaluation

We present the evaluation of Keynergy through comprehensive

real-world experiments, demonstrating its feasibility.

6.1 Experimental Setup

Apparatus. Figure 10 illustrates our experiment setup, where

we use a custom door setup with Schlage SC1 5-pin lock. This

setup follows the standard door width of 45 mm with the lock

installed at the conventional height of 42 inches above the

ground [60]. There are a total of 59,207 vulnerable keys for

the Schlage SC1 lock (which constitutes 79% of the original

keyspace due to distinct cluster-based filtering as presented

in Section 4). We use the following three different types of

microphones with corresponding sampling rates (Fs):

• Miccond : AKG Lyra condenser mic (Fs = 192kHz) [1]

• Micparab: SoundShark Parabolic Collector with Coun-

tryman B3 Lavalier mic (Fs = 192kHz) interfaced with

Behringer UMC202HD audio interface [2, 4, 8]

• Micphone: Google Pixel (Fs = 44.1kHz) [5]

In addition, we use Adam Audio A3X studio monitor

speaker [11] with a flat frequency response from 60 Hz up to

50kHz for an accurate reproduction of different noise sources

in Section 6.4. To evaluate the different attack scenarios

motivated in Sections 1 and 3, we perform experiments by

varying the position of the Micparab and the Micphone from
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Figure 11: Figure depicts the overall performance comparing

Video-only pool-size vs. Keynergy (Video + Acoustics) rank.

5ft up to 25ft away from the door setup. We also perform

our experiments in different locations including university’s

lecture hall, multipurpose room and a dormitory room.

We conduct the experiments with a total of 78 keys (where

75 and three keys are each used for test and train, respectively),

with 10−12 trials of insertions for each instance of experi-

ments. We collect more than 3,600 insertions by recruiting

a total of 13 participants over a span of three months. We

conduct the experiments by adhering to our university’s In-

stitutional Review Board (IRB). We present the specific data

collection methods accordingly in the subsequent subsections.

Performance Metrics. We define and utilize three metrics in

order to measure Keynergy’s attack performance.

• Key Rank (Rankkey): Rank of each key in keyspace from

Keynergy’s attack; A higher ranked key (e.g., Rank 1) is

more likely to match the victim’s key.

• Keyspace Reduction Ratio (RatioReduction): Fraction of

keys in the keyspace that yield lower ranks than the

victim key’s rank (e.g., if victim’s key is predicted as

Rank 10, then RatioReduction =
59,207−10

59,207
≈ 0.999.

• Search Pool Size (Poolsearch): Reduced key search space

from video analysis (see Section 6.3.3). Keys within the

pool are equally likely to be the victim key.

6.2 Attack Performance

We present Keynergy’s overall attack accuracy, and acoustics-

only attack accuracy. We utilize 74 different Schlage SC1

keys, out of 75 randomly purchased keys, with one key filtered

out due to the lack of distinct clusters (see Section 4.2). We

collect key insertion audio when a single participant inserts

all 74 keys for ten trials per key in a dormitory room with the

representative Miccond located 1ft away from the door setup.

6.2.1 Overall Attack Accuracy

We present the overall results by combining audio and visual

information for reducing keyspace as depicted in Figure 11.

We plot in sorted order the keyspace reduction results of

Keynergy (i.e., Video + Acoustics approach) depicted with

‘∗’ (red curve) across all 74 keys averaged over ten trials per
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Figure 12: Performance of Acoustics-only approach.

key. We also plot the results of the baseline (i.e., Video-only

approach) in sorted order, depicted with ‘o’ (blue curve) by

utilizing the prediction error distribution again, on all 74 keys

averaged over ten trials per key (based on real-world video

analysis further explained and evaluated in Section 6.3.3). The

video-only approach yields an average keyspace reduction

(i.e., Poolsearch) of 166 keys (with a recall of 92% (σ = 62)

with a minimum of 15 and a maximum of 242 keys. Keynergy

further significantly improves the results by achieving an

average rank (i.e., Rankkey) of 63 with 92% recall (σ = 47).

The combined acoustics-video approach achieves the smallest

and largest average rank of 1 and 206, respectively, with six

keys achieving an average rank below 10 across ten different

iterations. The results demonstrate around 62% improvement

of Keynergy (i.e., Video + Acoustics approach) over the Video-

only approach on average. We note that many of the 166

keys (in the reduced keyspace from video-only approach)

contain similar bittings, rendering this further reduction to

60 keys significantly difficult. This fine-grained reduction

is possible because Keynergy makes use of resulting click

patterns that produce subtle differences, ultimately having

acoustics complement the Video-only approach.

6.2.2 Acoustics-only Attack Accuracy

To further study the effects of the acoustics-based reduction,

we evaluate the Acoustics-only approach by depicting the

sorted RatioReduction on all 74 keys in Figure 12. Overall, this

approach yields an average reduction rate of 75%, with 87%

of keys (i.e., 65 keys) achieving more than 50% reduction.

This result translates to an average Rankkey of around 14,835,

with highest rank of 119. This result demonstrates the util-

ity of acoustics for key inference, while also depicting its

insufficiency to realise a practical attack on its own. Keyn-

ergy overcomes this challenge by combining audio and video

modalities, and achieves high reduction ratios (> 99%).

6.3 Modules Evaluation

We evaluate the different modules of our Keynergy design and

use the results to justify our choice of model parameters.
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Figure 13: Performance of (a) different cluster detection ap-

proaches, (b) different click detection approaches.

6.3.1 Click and Cluster Detection Performance

To evaluate this module, we capture audio recordings from

the Miccond at the university’s lecture hall. We recruited three

participants to insert three keys (different from the aforemen-

tioned 75 keys) with twelve trials per key, ultimately totaling

108 key insertions. In order to identify the best approach for

cluster and click detection, we evaluate different onset detec-

tion techniques, namely – (a) Weighted Flux [14], that captures

differences in high-frequency energies (see Section 5.2), (b)

Superflux [18], that captures energy differences and is robust

to signal fluctuations in frequency and loudness, (c) High

Frequency Content [41], that captures high frequency ener-

gies, and (d) K-Means Clustering [37], which is a well-known

clustering approach that identifies unique spectral energy dis-

tribution around click onsets. We consider a frequency range

of 15−48kHz for the first three approaches as high frequen-

cies capture sudden variations in energy, while we consider

the entire frequency range for the clustering-based approach

to identify additional lower frequency features that contribute

to click detection. For all approaches, we fix the spectrogram

window size to a low value of 127 (about 0.66 ms) with a

75% overlap between windows for better time resolution of

clicks. Furthermore, we manually annotate the clicks and their

corresponding clusters to utilize it as the ground truth.

Cluster Detection. We evaluate the performance of the Clus-

ter Detection sub-module by plotting the cluster detection

accuracy when varying across the different techniques. Specif-

ically, we assign a score of one when the computed cluster

boundaries include all of the manually annotated clicks be-

longing to the cluster, and zero otherwise. As depicted in

Figure 13(a), Weighted Flux technique yields highest cluster

detection accuracy of 78.7% across all clusters, and 94.4%

across the last three clusters. From this sub-module, we empir-

ically choose the optimal values of design parameters includ-

ing an amplitude threshold of 0.15, and a minimum duration

between adjacent clicks of 4 time windows (i.e., 0.66 ms).
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Figure 14: Figure depicts contributing rank of cluster–error

pairs as well as each cluster, where a lower contributing rank

implies higher contribution towards final Rankkey.

Click Detection Refinement. We evaluate the click detec-

tion refinement accuracy within each cluster by comparing

detected clicks against the manually annotated clicks. We

assign scores based on the ratio of correctly detected clicks

but penalize any wrong clicks by assigning zero for the en-

tire cluster. Figure 13(b) shows that weighted-flux technique

yields highest refinement accuracy for all three clusters with

80.8%, 77.3% and 73.1%, respectively. We obtain prominence

threshold of 0.2, and a minimum duration between adjacent

clicks of 5 time windows (i.e., 0.83 ms). The increase in the

minimum duration between adjacent clicks (from 0.66 ms

to 0.83 ms) in the refinement stage is to thwart detection of

noisy peaks in the vicinity of real clicks.

6.3.2 Pattern Comparison Performance

Recall from Section 5.4 that Keynergy aggregates two error

functions – epattern and eclick – for each cluster (i.e., Clusters

3, 4 and 5), to perform pattern comparison to achieve Rankkey.

We evaluate individual contributions of the six cluster – error

pairs towards computing Rankkey. We utilize the data col-

lected for Section 6.3.1, and assign a contributing rank to

each of the six pairs (Contrpair, ranging from 1 to 6) by com-

paring their resulting individual Rankkey. For example, for a

given victim key, if {Cluster 4 – eclick} pair yields the highest

individual Rankkey, then it is most contributing towards the

final rank, hence assigned Contrpair = 1.

Figure 14 depicts the average Contrpair of each cluster –

error pair averaged over 74 input victim keys. {Cluster 5 –

eclick} pair yields the highest average Contrpair of 3.01, which

can be attributed to higher chances of missing clicks in Clus-

ter 5, thereby helping to filter out many candidate keys in the

keyspace to yield the highest Rankkey. Similarly, to identify

the contribution of different clusters, we compute per-cluster

contributing rank (Contrcluster) by taking an average across

the Contrpair for its epattern and eclick. We observe that Clus-

ter 4 yields the highest average Contrcluster of 3.26 mainly

because it achieves a good trade-off amongst the three clus-

ters, by having sufficiently unique click patterns for achieving

low epattern, as well as having a fair chance of missing clicks,

which can aid in filtering out keys based on eclick.
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Ideal

Condition

Realistic

Condition

Source

Target Image

Modified Target Image 

with Bitting Predictions

3.99 6.78 3.92 5.93 6.87

8.60 7.98 4.14 9.99 6.93

Figure 15: Source key image and its key-bit depth on trans-

formed image in ideal and realistic conditions.

Scenario
Prediction Error Average Key

Space

Reduction

(Poolsearch)

Mean

(µ)

Standard

Deviation

(σ)

Ideal 0.123 0.087 1

Realistic -0.64 1.28 166.16

Table 1: Comparison of ideal vs. realistic visual domain

6.3.3 Video Analysis Performance

Recall from Section 5.5 that we re-implement the prior work

on image-based key inference (Sneakey [35]), by extending

it as a video-based inference. We evaluate our implementa-

tion to demonstrate that our (1) image-based inference imple-

mentation is comparable to that of Sneakey for an idealistic

scenario; and (2) video-based inference implementation for a

realistic scenario yields significantly lower accuracy.

Specifically, we demonstrate that image-based inference

performs well with images capturing an immobile key at a

certain angle (e.g., lying flat on surface) which do not contain

any blurriness (ideal scenario). We capture ten birds-eye view

images (two images for five distinct Schlage SC1 keys) lying

flat on a table with a resolution of 1000× 500. Figure 15

depicts such an image as well as its perspective transforma-

tion via a reference image with predicted bitting values. The

prediction of bittings for all ten images correctly matches the

target key bittings (after rounding up/down). Table 1 depicts

the mean bitting prediction error, µ = 0.123 and σ = 0.087.

On the contrary, we demonstrate that the video-based in-

ference does not perform well with video frames capturing a

moving key with uncontrolled angle (e.g., a person holding

the key) inherently causing blurriness from motion (realistic

scenario). We use five YouTube videos [65–69] that depict

the key insertion of Schlage SC1 keys with varying camera

angles and backgrounds (we post the key insertion segments

used for our analysis here: https://bit.ly/3pr5aFS). We

utilize these videos because they contain the ground-truth

bitting information. We compute and choose the top three

frames with least blurriness across the five videos resulting

in 15 images with resolutions of 1080p for three videos and

720p for the rest. Hence, we obtain a mean bitting prediction

error of µ =−0.64 and σ = 1.28 (depicted in Table 1).

Moreover, we model Gaussian distributions based on the
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Figure 16: Attack success rates for Micphone and Micparab at

different distances from the door.

µ and σ values to simulate the average keyspace reduction

(Poolsearch) for ideal and realistic conditions, by sampling an

error value from the distribution and adding it to true bittings

across the 74 keys, across ten trials. While the idealistic condi-

tion results in a Poolsearch of just one on average (i.e., correctly

identifying the victim key), the realistic condition yields a

Poolsearch of around 166 keys, highlighting the impracticality

of the Video-only approach (also depicted in Table 1).

6.4 Differing Experimental Conditions

We now evaluate Keynergy over several factors including

attack distance, noise level, microphone type and varying par-

ticipants. In order to evaluate different conditions, we choose

keys with different key types, i.e., with different cluster dis-

tinctness, in order to understand their effect on the attack

accuracy. Recall from Section 4 that presence of distinct clus-

ters is integral to Keynergy’s attack. Hence, we select six keys

{key1, . . . ,key6}, sorted from low to high cluster distinctness

scores, where a high score indicates the presence of more

distinct clusters (defined in Appendix F). Although there are

several other factors including human insertion and errors in

click detection that may additionally affect the results, they

do not influence the vulnerabilities of key types.

6.4.1 Attack Scenario 1: Proximity Attack

We evaluate Micphone for varying distances from 0ft up to

10ft (or 3m) as depicted in Figure 16(a). We achieve an aver-

age RatioReduction of 90% (σ = 10%) across all distances and

keys (excluding key1), which demonstrates attack feasibility

up to 10ft. However, key1 achieves a low RatioReduction of

46% (σ = 18%) due to incorrect cluster detection, which can

be attributed to its low cluster distinctness. Furthermore, we

observe cluster misdetection for key3 at 0ft, and click misses

for key4 at 5ft, both of which are likely to be due to human

factors, and not the attack distance. However, for distances be-

yond 10ft, click amplitudes approach the noise floor resulting

in detection of fewer clicks, leading to less reliable results.
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(b) Parabolic Mic at 25ft (Human Conversation Noise)

(c) Parabolic Mic - Mean (Dog Bark Noise) (d) Parabolic Mic at 25ft (Dog Bark Noise)

(a) Parabolic Mic - Mean (Human Conversation Noise)
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Figure 17: Figure depicts the attack success rates for Micparab with two different noise sources, namely human conversation

(noisetalk) and dog barking (noisebark) at varying distances from the door and noise amplitudes.
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Figure 18: Attack success rates for Micparab with key bunch

(noisebunch) at different distances from the door.

6.4.2 Attack Scenario 2: Distant Attack

We utilize the Micparab to conduct the following three experi-

ments, namely differing (1) Door–Microphone Distance, (2)

Noise Types, and (3) Ambient Noise Levels.

Varying Door-Microphone Distances. We vary the dis-

tance from 5ft to 25ft, in increments of 5ft. As depicted

in Figure 16(b), we obtain an average RatioReduction of 93%

(σ < 5%) for keys (except key1) across all distances. Similar

to the evaluation on phone, we observe poor cluster detec-

tion performance for key1 due to its low cluster distinctness.

Furthermore, in keys, key2 to key5, we observe occasionally

low RatioReduction scattered across all distances, e.g., for key3

at 10ft and key2 at 25ft due to misses in click detection. In

general, with increasing distance, click sounds may become

fainter due to lower signal-to-noise ratio, hence increasing

click detection errors. However, as Micparab achieves a high

average reduction of 94% (σ = 7%) even at 25ft distance (for

all keys except key1), this conveys the feasibility of utilizing

such microphones for long-distance attacks.

Varying Noise Types and Ambient Noise Levels. We evalu-

ate our approach by introducing three common noise sources:

human conversation (noisetalk), barking dog (noisebark) and

sound due to a bunch of keys (noisebunch), that may interfere

with the key insertion sound.

• noisetalk and noisebark: To simulate the noise due to hu-

man and dog, we utilize 20 seconds of publicly available

high-quality recording (Fs = 96kHz) [25,26], and play them at

different noise levels (i.e., 55dB−75dB in increments of 5dB)

through an Adam Audio A3X studio monitor speaker [11] for

accurate sound reproduction. As human chatter and dog bark-

ing sounds are independent of key insertion, we record them

separately using the Micparab, and combine the key insertion

audio with randomly selected equal-duration noise. Hence,

across different noise levels, the key insertion recording re-

mains the same, while only the noise varies, hence removing

the variability due to key insertion for the analysis.

From Figures 17(a) and 17(c), we observe that noisetalk

and noisebark at all noise levels have little impact on the

RatioReduction. Although these noise sources have energies

up to 25kHz which can negatively affect our onset detection,

the influence is to a lower degree as their energies are mostly

concentrated below 5kHz for both noisetalk and noisebark. Fur-

thermore, from Figures 17(b) and 17(d), we observe that the

impact of noise sources, noisetalk and noisebark, respectively,

is minimal even at an attack distance of 25ft. We present

all the results across different distances and noise levels in

Appendix H (see Figure 25).

• noisebunch: Unlike the sounds due to human and dogs, the

sound of key bunch is dependent on the key insertion action,

and is difficult to be recorded separately. Consequently, we

capture audio recordings by inserting each of the six keys into

the lock, while having two additional keys in the key bunch.

noisebunch consists of significant energies up to 48kHz, which

is similar to that of the “click” sound. Hence as depicted in

Figure 18, presence of this noise degrades the RatioReduction

from 93% (in the noise-free scenario) to 68% (σ = 41%) on

average for all keys (except key1), demonstrating a significant

degradation in attack’s success. noisebunch increases the noise

level of the key insertion sound, resulting in many false posi-

tives in click detection, and even leading to incorrect cluster

detection among keys with relatively high cluster distinct-

ness (e.g., key5). Despite the above challenges, if the effect of

noisebunch is less intense in some key insertions, it may still

succeed as our attack combines information across multiple

key insertions (e.g., key3, across all distances).
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(a) Multiple Participants (Mean) (b) Multiple Participants (Heatmap)

(c) Over Time (Mean) (d) Over Time (Heatmap)
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Figure 19: Attack success rates with two different parameters, namely across multiple participants and over multiple days.

6.4.3 Variations Across Multiple Participants

To understand the dependency of Keynergy’s accuracy on hu-

man factors, due to attributes such as age, sex and key gripping

preferences, we recruit 10 participants, {P1, . . . ,P10} (demo-

graphics in Appendix E), where participant P1 corresponds to

the participant in Section 6.2.2, and capture audio recordings

from each of them, with the Miccond , for a total of six keys,

{key1, . . . ,key6}, in increasing order of cluster distinctness.

From Figure 19(a), we observe a high RatioReduction of 86%

(σ = 19%) across all participants and keys, while achieving

an even higher RatioReduction of 92% (σ = 10%) without key1.

Similar to previous results, from Figure 19(b), we observe

that key1 exhibits lower average RatioReduction of 57% due to

poor cluster detection for four (out of ten) participants. Partici-

pants, P6 and P10, encounter issues in cluster detection for keys

{key2,key3} respectively, although they individually achieve

more than 87% RatioReduction for the rest of the keys. While

some participants achieve low reduction for certain keys, the

RatioReduction across different participants tends to depend

more on specific instances of insertions than the demographic

characteristics and personal traits of the participants.

6.4.4 Variations Over Time

We capture audio recordings with the Miccond across ten days,

{day1, . . . ,day10}, where day1 corresponds to the subset of

data presented in Section 6.2.2. Figure 19(c) depicts the mean

RatioReduction across the ten days of 78% (σ = 25%). High

variability in the results can be attributed to two keys, key1 and

key5 as depicted in Figure 19(d). As expected, key1 achieves a

low RatioReduction of 56% (σ = 12%) across all days due to its

low cluster distinctness. On the other hand, key5 occasionally

detects additional clicks in the noise floor, which results in no

reduction, although it achieves correct cluster detection due

to its high cluster distinctness.

7 Discussion

We now discuss limitations of Keynergy, potential counter-

measures against it, and its generalizability to other locks.

Limitations. Despite Keynergy’s considerable keyspace re-

duction under several experimental conditions, it has the fol-

lowing limitations. Keynergy’s attack accuracy is affected by

high-frequency noise, although it remains robust to most com-

mon noises (such as human-chatter and dog-bark). In addition,

our approach requires microphones with frequency response

above 20kHz (present in most smartphones) in order to detect

clicks, rendering consumer IoT devices with low-end mics

such as smart doorbells unsuitable, despite their proximity to

the door lock (see Appendix G). In the same vein, prolonged

usage of keys can affect our inference by smoothing ridges

in keys, thereby degrading the sharpness of click sounds and

their detection accuracy. However, certain keys in our exper-

iments have been inserted well over 300 times, with little

impact on their click pattern, hence indicating the effective-

ness of our attack for long durations. Lastly, we believe that

despite our best attempts to design an inference framework

that handles varying insertion speeds and mic types, its accu-

racy can be improved, not with availability of better hardware,

but with modeling of human factors behind key insertions.

Countermeasures. We envision the following countermea-

sures. First, physical modifications that modify the target lock

design to make them attack-resistant could be implemented,

e.g., lock companies may produce keys with noise-dampening

material (similar to 3D printed keys [20]), to reduce key inser-

tion sound. However, such mitigation would require changes

in manufacturing, and would not protect vulnerable keys al-

ready in circulation. The lock industry could also transition

to more secure pin-tumbler lock designs, such as the Bow-

ley locks [3] which have no ridges that cause click sounds,

hence making them potentially immune to audio-based key

inference. Second, from our analysis, lock manufacturers can

identify vulnerable keys (i.e., keys with distinct clusters), and

avoid their production/sale. However, removing all such keys,

i.e., 79% of keys (see Appendix F) would likely introduce
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new attack avenues due to reduced keyspace. Hence, manufac-

turers need to strike a balance by discarding keys with higher

cluster distinctness as they may be more susceptible to Keyn-

ergy’s attack, while maintaining a sufficiently large keyspace.

Third, we envision injecting noise to corrupt key insertion

sounds. This can be achieved by first detecting the key inser-

tion event (from video footage of outdoor cameras or smart

doorbells), and playing inaudible sounds of frequency greater

than 15kHz, using devices such as smart doorbells. Further-

more, noise signals should exhibit temporal variations (in

frequency or amplitude), as Keynergy’s acoustic inference uti-

lizes energy differences over time for detecting clicks, hence

making constant noise an ineffective defense. Alternately, in-

stead of detecting key insertion, inaudible noise can be played

continuously, although this consumes more power.

Generalizability. Although empirical evaluations of Keyn-

ergy’s framework were conducted on Schlage 5-pin locks,

due to the similarity of the pin tumbler lock design across the

industry, Keynergy can be easily tailored to attack other com-

mon lock models, including those with more than five pins.

Our preliminary analyses on Kwikset and Yale 5-pin locks, as

well as Schlage 6-pin locks show promise. As part of future

work, we consider extending Keynergy’s design for tackling

high-security pin tumblers such as Mul-T-Lock cylinders that

have telescoping pins design (i.e., pin within pin), hence re-

quiring inferring ten bittings in place of five, and Medeco

Biaxial, that have keys with angled bitting cuts, thereby ne-

cessitating guessing angles together with bittings [54].

Keynergy’s approach of leveraging time-intervals between

audible clicks has broader applicability beyond lock security.

In the past, researchers have designed “acoustic barcodes” by

creating structured patterns on objects which when swiped

produce a series of click sounds, where the timing between

adjacent clicks encodes information [29]. On similar lines,

we believe click timing information can be exploited for com-

municating secret information via covert channels.

8 Related Work

We now present related work that investigates the security of

physical locks, and acoustic side-channels.

Physical Locks Security. There have been several attacks

compromising the security of lock mechanisms in a non-

destructive manner, which can be broadly divided into two cat-

egories. The first type of attacks requires physical access to the

lock during attack execution, such as bumping, lock picking

and rights amplification in pin tumbler locks [16, 48, 49, 70].

The second type, to which Keynergy belongs, is stealthy offline

attacks that involve passively capturing sensor information in

order to infer the keycode [32, 33, 35, 39, 55, 61]. One such

work Sneakey proposes to use a telephotography camera to

infer bittings based on still images [35]. Although a novel

approach, Sneakey makes several unrealistic assumptions, in-

cluding requiring a high-resolution image of a stationary key

placed at a certain angle, thus greatly reducing its practical

feasibility. Another related effort, SpiKey [55], proposes a key

inference framework that employs simulations of acoustic

emanation from key insertions. One of SpiKey’s main draw-

backs is that it assumes a constant insertion speed, and thus

would not work in practical settings where users insert keys

with varying speeds. Keynergy addresses these challenges that

arise due to unknown and inconsistent key insertion speeds,

and in addition, achieves reasonable key space reduction even

at distances up to 25 feet at varying noise levels.

Acoustic Side-Channels. Several sensor-based side-channel

attacks have been proposed to infer confidential information

such as cryptographic keys [28], ATM pins [43], keystrokes

[12, 38, 40, 42], taps on a touch screen [21, 50] and stylus

pen writing [36] among many others. Specifically, within the

audio domain, researchers have exploited acoustic leakage

from various physical components including laptop’s power

supply unit [28], computer screens [27], keyboards [10, 71],

3D printers [30, 62] and DNA synthesizers [24] to infer pri-

vate information. Different from the above works, Keynergy

utilizes the sound emanated from physical locks and keys

during the event of key insertion to infer the key’s secret code.

9 Conclusion

We propose Keynergy, a novel stealthy offline attack that infers

the victim’s key bittings by extending and improving the prior

image-only attack by utilizing the audible clicks captured

during victim’s key insertion. Keynergy combines insufficient

information from each of the sensing modalities, namely au-

dio and video, which complement each other to yield a novel

and practical side-channel attack. Keynergy overcomes the

shortcomings of traditional attacks on pin tumbler locks of

requiring physical access to the lock throughout the attack,

which increases the chances of the attacker getting caught. We

conduct proof-of-concept real-world experiments by recruit-

ing 13 participants and testing with 75 different keys, totaling

more than 3,600 insertions. We examine the impact of vary-

ing real-world conditions, including eavesdropping distance

and ambient noise levels across different microphone types.

With acoustics alone, Keynergy obtains an average keyspace

reduction of 75% and on combining acoustics and visual infor-

mation, Keynergy achieves a reduction in keyspace below ten

keys for 8% of the keys (i.e., six keys out of 75 keys tested).
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Appendix A Key Specifications

In Section 2, we explain the key specifications of pin-tumbler

locks, which are responsible for the discrete nature of bittings,

and hence its associated fixed keyspace. In this section, we

elaborate on the different specification parameters, and their

importance for our acoustic attack. The part of the key that

enters the lock is known as the key blade, depicted in Fig-

ure 20, with its two ends known as the shoulder and the tip,

respectively. Each key blade (for a particular lock system) has
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Figure 20: Figure depicts the key blade, bittings (b1, . . . ,b5),

key specification parameters, and also ridges (r1, . . . ,r5),

which are crucial for producing sound during key insertion.

a unique profile, which is dictated by the bitting specification

that is fixed by the manufacturer to ensure proper functioning

of the key [63]. These bitting specifications, listed in the spec-

ification sheet provided by the lock manufacturer, indicate the

number of bitting positions (generally 5-6), possible depth

values per bitting (generally 7-10), width of each bitting (i.e.,

cut root), as well as, the angle at the bitting position (i.e., cut

angle). In addition, each bitting depth is restricted to a set of

uniformly-spaced discrete-valued depths, which differ from

each other by an increment, which is also specified in the

bitting specification. Also, the distance between two adjacent

bittings should be equal to the distance between two adjacent

pins in the lock, i.e., its inter-pin distance (as shown in Fig-

ure 20), for its proper functioning. The consistency of key

specification parameters is crucial to our attack as the model-

ing for simulated patterns would not be possible otherwise.

Appendix B Constraints on Keyspace

In Section 2, we briefly explain the factors responsible for

constraining the keyspace of pin-tumbler locks. In this section,

we elaborate on the various constraints added both for security

as well as usability reasons, which ultimately result in consid-

erable reduction to the keyspace. For any given lock and key

model, due to the discrete nature of bitting depths, there is an

upper bound on the maximum number of possible keys. For

example, Schlage SC1 keys have 5 cut positions and 10 possi-

ble depths. Thus, the maximum number of Schlage SC1 keys

that are possible is 105. However, in practice, the keyspace is

close to 75% of the maximum, due to additional constraints

imposed by the manufacturers for guaranteeing correct func-

tioning of the keys, for example, MACS (explained in Sec-

tion 2). Apart from MACS, additional constraints, also known

as coding rules [54], are imposed for usability reasons and

for preventing trivial duplication by sight. We list these con-

straints: 1© only two adjacent bittings can be of same depth,

2© a total of three or fewer bittings can be of same depth,

3© three or more bittings must be of different depth, and 4©
sequence of bittings should not monotonically increase from
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(a) Simulation

(b) Linear actuator key insertion

(c) Human key insertion

Simulation

Linear Actuator

Human Insertion

Figure 21: (a) depicts the click pattern obtained by simulating

a constant insertion speed, (b) depicts audio time-series ob-

tained from a constant insertion speed with a linear actuator,

and (c) depicts an audio time-series of human key insertion.

the shoulder to the tip-end of the key.

Appendix C Feasibility of Click Pattern De-

tection

In order to confirm that the click pattern is observed upon

a key insertion, we perform a preliminary feasibility study

to compare the simulation based on constant insertion speed

against two experiments – a custom designed setup using a

linear actuator [13], such that it inserts a key into the lock at

a constant speed of about 0.24 inches/sec), as well as a hu-

man insertion with an average speed of 5.4 inches/sec (about

20 times faster). Figure 21(a) depicts part of the resulting

click pattern from the simulation, while Figures 21(b) and (c)

depict the corresponding audio time-series produced by the

linear actuator and human insertion, respectively. We observe

that time-series from the linear actuator closely resembles the

click pattern, although obtaining such a pattern from human

key insertion is challenging due to the much higher and incon-

sistent insertion speed. As we explain in Section 4, human key

insertion causes smaller group of clicks to aggregate together

into what we refer to as “clusters”, within which the average

speed is higher (10.8 inches/sec), but is also more consistent.

Furthermore, the time-interval between clicks is at least 0.66

ms (see Section 6.3.1), which causes the minimum detectable

click-distance to be 7.2 milli-inch, resulting in some distinct

clicks (separated by distances as small as 3 milli-inch) in

simulation to be missed during detection in human insertion.

Appendix D Simulated Patterns of Keys with

Identical Bittings

As shown in Figure 22, a key with keycode 33333 (i.e., identi-

cal bittings values) has nine clicks (max = 15) in its simulated

patterns, with two clicks in each cluster except the first. Such a

pattern occurs because clicks due to all ridges, except ridge r1,

overlap (i.e., occur simultaneously). Owing to the geometry

of the key, when the adjacent bittings are equal, the horizontal

position of the ridge in-between, is exactly at their midpoint

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Clicks due to ridge r
1

t

Figure 22: Figure depicts the simulated patterns of a key with

keycode 33333, having nine clicks. In each cluster, clicks due

to ridge r1 are distinct from clicks due to all other ridges

which occur simultaneously, owing to the key’s geometry.

(e.g., when bittings, b1 = b2, ridge r2 is formed at the center

of b1 and b2). More generally, the position of a ridge is de-

termined by the difference between adjacent bittings. In the

case of keys with all identical bittings, ridges {r2,r3,r4,r5}
are located at the same location (i.e., midpoint) w.r.t their adja-

cent bittings, hence causing the clicks due to them to overlap.

On the other hand, the position of ridge r1, due to its unique

placement at the tip of the key (see Figure 20), is determined

by the value of a single bitting (b1) alone. Hence, clicks due

to the first ridge do not overlap with clicks due to rest of the

ridges. We note that we discuss a key with equal bittings here

for exemplary purposes. In reality, such keys are not valid as

they do not satisfy the constraints listed in Appendix B.

Appendix E Participant Demographics

Table 2 provides the demographics of ten participants who

took part in the testing phase where we study the effects of

human attributes on keyspace reduction (see Section 6.4.3), as

well as three participants who took part in the training phase.

The participants consist of four females and nine males, with

their ages ranging from 24 to 37. Of the thirteen participants,

eight of them use physical keys on a daily basis. However,

from our results, there seems to be no correlation between the

regular usage of keys and the attack accuracy.

Participant Gender Age Height Weight Uses physical

(years) (cm) (kg) key regularly?

P1 F 24 165 58 Yes

P2 M 24 170 64 Yes

P3 F 24 167 63 No

P4 M 25 178 88 Yes

P5 M 26 176 70 No

P6 M 24 165 55 No

P7 M 23 171 63 Yes

P8 F 31 171 60 Yes

P9 M 27 173 65 No

P10 M 24 172 70 Yes

SA F 34 165 65 Yes

SB M 37 175 78 Yes

SC M 36 173 83 No

Table 2: Table presents the demographics of all participants.
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Figure 23: Figure depicts that 79% of keys which lie

above −0.011 cluster distinctness score form the attackable

keyspace for Keynergy. We obtain this threshold score by per-

forming empirical analysis on key insertion of keys k1 − k7.

Appendix F Attackable Keyspace Determina-

tion

Recall from Section 4 that the presence of distinct clusters

is necessary for our acoustic inference attack. In order to de-

termine the set of keys that satisfy this constraint, we plot

a cluster distinctness score that determines the distinctness

of clusters based on the simulated model, for all keys in the

keyspace as shown in Figure 23. We compute cluster distinct-

ness score as the difference between the shortest inter-cluster

duration (i.e., time-interval between clusters) and the longest

intra-cluster duration (time-interval between clicks within a

cluster), where a larger score indicates more distinct clusters.

We observe that about 70% of keys have distinct clusters (i.e.,

score > 0). However, in order to determine if this distinct-

ness holds true for real key insertions, we select seven keys

(k1−k7) that are outside of the 75 keys in our test set (see Sec-

tion 6.2). We obtain the recordings from three participants for

each key. Of the seven keys, three are above and four below

the zero mark. We observe that k1 − k4 have distinct clusters,

confirming the presence of larger durations between clusters

in real insertion as compared to simulation. Hence, we deter-

mine the keyspace by identifying the point of steepest descent

between keys, k4 and k5, which yields a score threshold of

−0.011 and a keyspace of 59,207 keys (79% of 75,066 keys).

Appendix G Smart Doorbell Analysis

To investigate the possibility of an attacker who can remotely

access a smart doorbell installed on the victim’s door, we test

the attack utility of key insertion audio recorded from multiple

smart doorbell models [15, 44, 57, 58]. Figure 24 depicts the

spectrogram of key insertion from two popular models – Ring

Video Doorbell 3 Plus and Google Nest Hello. From our

analysis, we infer that all the doorbells we investigate are

equipped with low-quality microphones designed for human

voice capture (i.e., having low-frequency response only up

to 8kHz), hence making them unsuitable for capturing fine-

grained click timing information. Furthermore, due to the lack
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Figure 24: Figure depicts spectrogram of key insertion

recorded using Ring 3 Plus and Nest Hello doorbells.
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Figure 25: Figure depicts the impact of noise on Micparab at

distances 5ft to 25ft on the RatioReduction, for two types of

noise – human conversation and dog barking sound.

of options to change the audio quality in these devices, the

doorbells save them in lossy Advanced Audio Coding (or

AAC) format, which further degrades signal quality.

Appendix H Noise Analysis of Parabolic Mic

In Section 6.4.2, we present the average reduction ratio

(RatioReduction) for Micparab across all keys for distances,

namely 5ft to 25ft. In Figure 25, we depict the RatioReduction

of individual keys at all distances, for two different noise

types – human conversation (noisetalk) and dog barking sound

(noisebark). Similar to the analysis in Section 6.4.2, we ob-

serve low variance in RatioReduction across different noise lev-

els, across all distances. These results illustrate that Keynergy

is robust to low-frequency noise sources.

3272    30th USENIX Security Symposium USENIX Association


	Introduction
	Primer on Pin Tumber Locks and Keys
	Threat Model
	Modeling Key Insertion Sound
	Simulated Patterns
	Formation of Click Clusters

	Attack Design and Implementation
	Attack Design Overview
	Click and Cluster Detection
	Synthesized Click Pattern Extraction
	Pattern Comparison
	Video Analysis

	Evaluation
	Experimental Setup
	Attack Performance
	Overall Attack Accuracy
	Acoustics-only Attack Accuracy

	Modules Evaluation
	Click and Cluster Detection Performance
	Pattern Comparison Performance
	Video Analysis Performance

	Differing Experimental Conditions
	Attack Scenario 1: Proximity Attack
	Attack Scenario 2: Distant Attack
	Variations Across Multiple Participants
	Variations Over Time


	Discussion
	Related Work
	Conclusion
	Acknowledgements
	Key Specifications
	Constraints on Keyspace
	Feasibility of Click Pattern Detection
	 blackSimulated Patterns of Keys with Identical Bittings
	Participant Demographics
	Attackable Keyspace Determination
	Smart Doorbell Analysis
	Noise Analysis of Parabolic Mic

