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Summary

Spatial navigation and memory rely on neural systems that encode places, distances, and
directions in relation to the external world or relative to the navigating organism. Place, grid,
and head-direction cells form key units of world-referenced, allocentric cognitive maps, but
the neural basis of self-centered, egocentric representations remains poorly understood. Here,
we used human single-neuron recordings during virtual spatial navigation tasks to identify
neurons providing a neural code for egocentric spatial maps in the human brain. Consistent
with previous observations in rodents, these neurons represented egocentric bearings towards
reference points positioned throughout the environment. Egocentric bearing cells were
abundant in the parahippocampal cortex and supported vectorial representations of egocentric
space by also encoding distances towards reference points. Beyond navigation, the observed
neurons showed activity increases during spatial and episodic memory recall, suggesting that
egocentric bearing cells are not only relevant for navigation but also play a role in human
memory.
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Introduction

Humans and animals navigate and orient themselves by representing information about
places, distances, and directions in allocentric reference frames, which are bound to the
external world, or in egocentric reference frames, which are centered on the navigating
subject (Figure S1) (Ekstrom et al., 2018). Behavioral studies have disentangled the
importance of both allocentric and egocentric spatial representations, which complement each
other to support efficient spatial behavior in everyday life (Burgess, 2006).

Over the past decades, the neuroscience of spatial navigation has led to a detailed
understanding of allocentric neural representations of space (Moser et al., 2017). For
example, a place or grid cell may indicate if a subject is in the “northeast” corner of an
environment (Hafting et al., 2005; O’Keefe and Dostrovsky, 1971), a head-direction cell may
activate whenever navigating “south” (Taube et al., 1990), and a boundary vector/border cell
may respond when a boundary is located to the “west” (Lever et al., 2009; Solstad et al.,
2008). These single-neuron codes provide the navigating organism with a “cognitive map”
that encodes the environment’s structure as well as the subject’s location and orientation in
allocentric coordinates (Tolman, 1948).

However, humans and animals experience environments primarily from a first-person
perspective, they often remember locations and directions from egocentric viewpoints, and
their planning and navigation along routes ultimately requires the paths to be represented in
egocentric coordinates. Studies in non-human animals have begun to unravel the neural
foundations of mental maps that could support such functions by identifying cells that
activate at egocentric directions and distances from spatial boundaries (Alexander et al.,
2020; Gofman et al., 2019; Hinman et al., 2019; Wang et al., 2018), the environmental center
(LaChance et al., 2019; Wang et al., 2018), objects and landmarks (Deshmukh and Knierim,
2013; Wang et al., 2018), spatial goals (Sarel et al., 2017; Wang et al., 2018), and reference
points scattered throughout the environment (Jercog et al., 2019; Wang et al., 2018).

In humans, the single-neuron basis of egocentric spatial representations has remained poorly
understood, however. We addressed this gap and hypothesized that neurons in the human
medial temporal lobe (MTL) track the instantaneous egocentric relationship between the
navigating subject and proximal areas of the environment. Specifically, we tested for human
neurons, “egocentric bearing cells” (EBCs), whose activity encodes the subject’s egocentric
direction (and distance) towards local reference points, building on prior animal studies
(Jercog et al., 2019; LaChance et al., 2019; Sarel et al., 2017; Wang et al., 2018). Such a
coding scheme is instrumental for egocentric navigation because it represents the proximal
spatial layout relative to a person’s viewpoint, which provides self-centered orientation and
allows route planning from a first-person perspective.

Beyond spatial navigation, identifying the neural basis for egocentric cognitive maps also
allows for a mechanistic understanding of different memory types that preserve a subject’s
original first-person perspective. We thus tested whether the activity of EBCs supported the
processing of spatial information during spatial and episodic memory recall. In this way, our
study links the phenomenological description of episodic memories as re-experiences of past
personal events from egocentric viewpoints (Conway, 2009; Gardiner, 2001; Tulving, 1972)
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with the hypothesis that egocentric neural representations of space contribute to the neural
substrate of episodic memories (Buzsaki and Moser, 2013; Wang et al., 2020). Overall, our
study thus contributes to understanding the neural circuits underlying the first-person
perspective in navigation and memory.

Results

Egocentric bearing cells encode egocentric directions towards local reference points

In Study 1, we recorded single-neuron activity from the MTL of 14 epilepsy patients (STAR
Methods; Table S1), while they navigated a virtual environment to perform a spatial
reference memory task (Kunz et al., 2015, 2019) (Figures 1A and 1B). In this task, patients
first learned the spatial locations of 8 different objects during an initial learning period.
Afterwards, in each of a series of test trials, patients were cued with one of the 8 objects, tried
to remember the object’s associated location, navigated to the remembered location, and
pressed a button to mark their response. The patients then received feedback and collected the
object from its correct location to re-encode the object—location association. Object locations
remained stable throughout each session, which contrasts with Study 2’s hybrid spatial
navigation—episodic memory task where the subjects learned unique object—location
associations on each trial.

Throughout the task, we logged the patients’ virtual heading directions and locations to
compare them with the simultaneously recorded neuronal activity. Patients contributed a total
of 18 sessions (34-167 trials/session; 22—74 min/session) and performed the task well, as
spatial memory performance was above chance on 83% of trials (Figure 1C) and increased
over the course of the session (z-test, #17) = 3.051, P = 0.007; Figure 1D). Across all
sessions, we recorded from a total of 729 neurons across multiple regions (Figures S2 and
S3), including amygdala (242), entorhinal cortex (114), fusiform gyrus (25), hippocampus
(146), parahippocampal cortex (65), temporal pole (128) and visual cortex (9).

To identify potential human EBCs, we analyzed each neuron’s firing rate as a function of the
patient’s egocentric bearing towards local reference points in the virtual environment
(Figures 1E and S4) (Jercog et al., 2019; LaChance et al., 2019; Sarel et al., 2017; Wang et
al., 2018). Briefly, for each cell we iterated through a grid of candidate reference points
(Figure 1F), each time assessing the degree to which the cell’s firing rate throughout
navigation varied as a function of the subject’s egocentric bearing towards a given candidate
reference point (comparing against surrogate statistics to test for significance). We then
identified contiguous clusters of candidate reference points with significant egocentric tuning
and measured each cluster’s overall statistical significance using cluster-based permutation
testing (Maris and Oostenveld, 2007). The center of mass of the largest significant cluster of
significant candidate reference points (“reference field”) defined the reference point (Figure
1G). Our analysis thus resulted in the identification of individual neurons that behaved as
EBCs by changing their firing rate to track the subject’s egocentric bearing towards a
reference point in the virtual environment (Figure 2; Table S2). For example, the EBC in
Figure 2A had its reference point in the “northeast” part of the environment (Figure 2A, left),
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and the cell’s firing rate increased when this reference point was ~45° to the right of the
subject’s current heading (Figure 2A, middle). We further illustrate this cell’s tuning towards
its reference point with a vector-field map (Figure 2A, right), showing the cell’s preferred
allocentric direction as a function of location (Jercog et al., 2019; Wang et al., 2018).

In total, we observed 90 EBCs, 12% of all neurons, which is significantly more than expected
by chance (binomial test vs. 5% chance, P < 0.001). On average, there were 5.0 = 1.2 (mean
+ SEM) EBCs per recording session. We found at least one EBC in 16 of 18 sessions and in
12 of 14 patients. Some EBCs showed additional firing-rate modulations related to the
patients’ allocentric direction and/or location (Figures 3A, S5, and S6), but a significant
number of “pure” EBCs remained after excluding those EBCs that were also significantly
tuned to allocentric direction and/or place (n = 59; 8%; binomial test, P < 0.001). EBCs were
most prevalent in the parahippocampal cortex, where they comprised 28% of all neurons
(Figure 3B). This result supports the idea that the functional role of the parahippocampal
cortex includes the egocentric representation of space (Weniger and Irle, 2006).

For EBCs, the computed vector-field maps (e.g., Figure 2A, right) often showed a systematic
change in the cell’s preferred allocentric direction across different locations of the
environment, which contrasts with the activity of neurons that code for allocentric directions
(“direction cells”) because those cells’ vector-field maps consistently represent the same
preferred allocentric direction across different locations. For example, one such direction cell
activated when a subject was moving “west”, irrespective of its current location (Figure
S5A). There were 78 direction cells in our data set (11% of all neurons; binomial test, P <
0.001; Figure S5B), which as a group showed a broad range of preferred allocentric
directions, which were not reliably clustered (Rayleigh test, z = 1.705, P = 0.182). To
illustrate the different coding schemes of EBCs versus direction cells, we quantified the
homogeneity of their vector-field maps and found that direction cells exhibited more
consistent directional tuning across the environment than EBCs (#-test, #(166) = 6.913, P <
0.001; Figure S5C).

Egocentric bearing cells have reference points positioned throughout the environment
and show a range of preferred egocentric bearings

Across the population of EBCs, reference points were positioned in many different locations
of the environment, including both the center and the periphery (Figure 3C). Reference points
observed in the same session were not closer to each other than expected by chance
(permutation test, P = 0.812; Figure S7), suggesting that reference points were similarly
broadly distributed across the environment in each experimental session.

Overall, the spatial distribution of reference points overrepresented the environment center:
The number of reference points in the central regions of the environment was higher than
expected from a uniform distribution of reference points across the environment (binomial
tests vs. chance for the 3 innermost bins, all P < 0.001, Bonferroni-corrected; Figure 3D). A
similar overrepresentation of the environment center has been observed in rodents (LaChance
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et al.,, 2019; Wang et al., 2018), supporting the general notion that the center of an
environment has a special role in navigation (Gallistel, 1990).

An EBC’s preferred egocentric bearing depended on the position of its reference point: EBCs
with reference points in the center of the environment showed a bimodal distribution of
preferred egocentric bearings and tended to represent “ahead” and “behind” bearings
(Rayleigh test for 2-fold symmetry, z = 14.215, P < 0.001; Figure 3E). In contrast, EBCs with
reference points in the periphery showed a roughly uniform distribution of preferred
egocentric bearings (Figure 3E).

Egocentric bearing cells also encode distances to the reference points

We next examined whether EBCs supported full vectorial representations of egocentric space
by representing not only egocentric bearing, but also egocentric distance to the reference
points. We first tested whether the firing rates of EBCs correlated positively or negatively
with the subject’s distance to the reference point (LaChance et al., 2019). 10 of the 90 EBCs
showed such a linear relationship between firing rate and distance to the reference point,
which is significantly more than expected by chance (binomial test, P = 0.015). Among these
10 cells, we observed examples of both neurons that significantly increased their firing rates
when the subject was farther away from the reference point (n = 6) and neurons that
significantly increased their firing rates when the subject was closer to the reference point (n
=4) (Figures 3F and 3G).

In a complementary analysis, we computed 2D firing-rate maps that showed the tuning of
each EBC’s firing rate as a function of both egocentric bearing and distance to the reference
point (Wang et al., 2018). In these firing-rate maps, we then identified “bearing-distance
fields” as circumscribed areas of elevated firing. A substantial number of EBCs (n = 32)
exhibited significant bearing-distance fields, in which their firing rates represented bearing
and distance to the reference point conjunctively (Figures 3H-K). For example, Figure 3J
shows the activity of an EBC that responded when the reference point was ahead of the
subject and at a distance of ~4,000 virtual units (vu). Across all EBCs, bearing-distance fields
covered large parts of the 2D bearing-distance map (Figure 3L), with a greater representation
of “ahead” and “behind” bearings and reference-point distances of ~3,000 vu.

These results show that EBCs support full vectorial representations of egocentric space both
via linear distance tuning and via conjunctive bearing-distance fields. The combined
representation of egocentric bearing and distance may be useful for navigation and
orientation because it allows the subject to compute not only the direction to the reference
point, but also its exact location.

Firing rates of egocentric bearing cells covary with spatial memory performance during
navigation

To address the question whether EBCs were involved in spatial memory, we tested whether
EBCs showed firing-rate changes related to spatial memory performance. To this end, we
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identified neurons whose firing rates correlated with ongoing spatial memory performance
(“memory cells”), inspired by the observation that neurons in the monkey hippocampal
formation change their firing with learning (Wirth et al., 2003). Memory cells were
particularly prevalent in the parahippocampal cortex, entorhinal cortex, and amygdala (Figure
3M) and comprised both positive memory cells, whose firing rates increased with better
spatial memory performance, and negative memory cells, which showed the opposite pattern.

A significant number of EBCs fulfilled the criterion for being a memory cell (17 of 90; 19%;
binomial test, P < 0.001), including both positive (n = 8) and negative memory by egocentric
bearing cells (n = 9; Figure 3N). The percentage of memory cells was higher among EBCs
than among non-spatial cells (40 of 523; 8%; y* test, ¥*(1) = 11.504, P < 0.001; Figure 30),
indicating that EBCs exhibited closer links between their firing rates and spatial memory
performance than non-spatial cells. Notably, not only EBCs, but also direction and place-like
cells showed significantly increased percentages of memory cells as compared to non-spatial
cells (direction cells: 14 of 78; 18%; x* test vs. non-spatial cells, y*(1) = 8.807, P = 0.003;
place-like cells: 14 of 85; 16%; x> test vs. non-spatial cells, y*(1) = 7.032, P = 0.008),
suggesting a more general link between the activity of spatial cells in the human MTL and
spatial memory performance.

Relevance of objects for the activity of egocentric bearing cells

Spatial environments are often populated with objects. These objects can serve as beacons to
guide navigation (Chan et al., 2012), their arrangement may define the geometry of the
spatial layout (Ekstrom and Isham, 2017), and their presence can result in a distortion of
allocentric cognitive maps (Boccara et al., 2019). We thus tested for a relationship between
EBCs and neurons coding for such objects, and examined whether reference points were
biased towards object locations.

We first identified “object cells”, which changed their firing according to the identity of the
objects whose locations the subject was learning and retrieving. For example, Figure 4A
shows the activity of an object cell that increased its activity during trials with object #4.
Object cells mainly represented non-spatial information about the objects, because—when
examining object cells that responded to more than one object (n = 44)—the locations of the
preferred objects were not clustered in space (permutation test, P = 0.406; Figure 4B). We
observed 123 object cells overall (17% of all neurons; binomial test, P < 0.001; Figure 4C)
and found that characteristics of object cells were also common among the identified EBCs
(22 object cells among 90 EBCs; binomial test, P < 0.001; Figure 4D). Following theoretical
models (Bicanski and Burgess, 2018), these conjunctive object by egocentric bearing cells
may constitute a neural interface between spatial and non-spatial task features and may thus
provide a neural substrate for pattern completion during memory recall (see below).

We then examined whether reference points of EBCs were biased towards object locations.
Based on the finding of cells that are egocentrically tuned towards spatial goals or objects
(Sarel et al.,, 2017, Wang et al.,, 2018) and in view of the possibility that a single
environmental cue could determine the location of a reference point, we tested whether
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reference points were clustered near object locations (Figure 4E). Only 2 of the 90 reference
points were significantly close to their nearest object location (binomial test, P = 0.943;
Figure 4F). There was also no evidence for significant reference-point shifts towards object
locations when we analyzed remembered instead of actual object locations (one significantly
close reference point; binomial test, P = 0.990), which could have been the case if EBCs had
used the remembered object locations as reference points (Poulter et al., 2020). Further, the
allocentric directions towards reference points were not biased towards any of the distal
landmarks (y* test, ¥*(3) = 1.469, P = 0.689). Together, these findings suggest that the
locations of reference points were not set by a single environmental cue. Instead, the
combined influence of multiple spatial cues may determine the positions of reference points
(O’Keefe, 1991), enabling reference points to be present in any part of an environment. This
view is compatible with the idea that object locations still have a relevant influence on the
locations of reference points and that the absence of reference points near the environmental
boundary (Figure 3D) may thus be driven by the absence of objects near the boundary.

Egocentric bearing cells participate in context reinstatement during spatial memory
recall

Theoretical models propose that memory recall is often triggered when an individual
encounters a sensory cue (Staresina and Wimber, 2019). The cue then induces pattern-
completion mechanisms that activate the neural representations underlying a reinstatement of
the original spatiotemporal context associated with the cue (Miller et al., 2013). Hence, we
hypothesized that object cells and EBCs (which we had identified using the navigation
periods) might function in concert to facilitate object recognition and context reinstatement
during spatial memory recall (Figure 5A). To test this idea, we analyzed their activity during
the cued-recall period of the task, when subjects viewed one of the 8 objects that served as
memory cues for the associated locations.

Examining object-cell activity during the cue period, we found that object cells rapidly
increased their firing rates when subjects viewed the cells’ preferred versus unpreferred
objects (cluster-based permutation test, P < 0.001; Figure 5B). This result is consistent with a
possible involvement of object cells in object recognition. In conjunctive object by egocentric
bearing cells (i.e., object cells that also behaved as EBCs), this firing-rate increase during the
presentation of preferred objects was particularly pronounced, exceeding the firing-rate
increase in the object cells that did not also behave as EBCs (cluster-based permutation test,
P =0.002; Figures 5C and 5D). Following theoretical accounts (Bicanski and Burgess, 2018),
such activity in conjunctive object by egocentric bearing cells may relate to pattern
completion that facilitates a transition from the cueing object to a reinstatement of the
associated spatial context.

We then tested for a potential role of EBCs in reinstating the objects’ spatial contexts. We
therefore examined whether the activity of EBCs during cue presentation varied with the
location of the presented object relative to the cell’s reference point (Figure SE). The firing
rates of EBCs were greater when the location of the cueing object was close to the reference
point (cluster-based permutation test, P = 0.006; Figure 5F), which suggests that EBCs
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participate in reinstating remembered spatial contexts. Together, object cells and EBCs may
thus be involved in the different neural processes of object recognition, pattern completion,
and spatial context reinstatement during spatial memory recall.

Egocentric bearing cells in the hybrid spatial navigation—episodic memory task

Episodic memories are past personal experiences of unique events at particular times and
places (Tulving, 2002). Egocentric, self-centered neural representations may be relevant for
episodic memories (Bicanski and Burgess, 2018; Buzsaki and Moser, 2013; Wang et al.,
2018, 2020), because episodic memories are often experienced from the original first-person
perspective (Conway, 2009; Tulving, 2002). However, neural evidence for a role of
egocentric neural representations in episodic memories has remained elusive.

To probe the role of EBCs in episodic memory, we conducted Study 2 where we recorded
single-neuron activity in patients performing a hybrid spatial navigation—episodic memory
task (Miller et al., 2018; Tsitsiklis et al., 2020). In this task, subjects formed episodic
memories by encountering unique objects at specific times in particular locations on a virtual
beach. Later, they were asked to recall those episodes. Specifically, each trial began with a
navigation—encoding period (Figure 6A), where patients navigated a virtual beach
environment and traveled to 2 or 3 treasure chests at different random locations. When the
patients reached a chest, it revealed a unique object whose identity, location, and time they
were asked to remember. After the last treasure chest, the patients were passively transported
to one of 2 elevated positions, from where they viewed the whole beach. Next, following a
distractor task, the memory-recall period began, in which patients were asked to perform 2
types of episodic memory recall: On trials with location-cued object recall, patients were
shown a location on the beach and asked to recall the name of the associated object.
Conversely, on trials with object-cued location recall, patients were shown the name of an
object and asked to indicate the location where it had been located. Subjects then also
performed a judgement-of-recency task so that all components of episodic memories (what,
where, and when) were probed.

12 patients completed the hybrid spatial navigation—episodic memory task, contributing a
total of 20 sessions (2140 trials/session; 45—83 min/session). Comparable to previous studies
with this task (Miller et al., 2018; Tsitsiklis et al., 2020), patients recalled 44 + 4% (mean +
SEM) of objects on trials with location-cued object recall and showed above-chance accuracy
on 80% of trials with object-cued location recall (Figure 6B). Across all sessions, we
recorded from a total of 737 neurons in the amygdala (230), entorhinal cortex (85), fusiform
gyrus (26), hippocampus (161), insula (2), parahippocampal cortex (76), temporal pole (150),
and visual cortex (7).

We identified EBCs in the navigation—encoding period of this task using the same methods as
in the spatial reference memory task and replicated our earlier results by finding 74 EBCs
(10% of all neurons; binomial test, P < 0.001; Figures 6C-6G). On average, we found 3.7 +
0.6 (mean = SEM) EBCs per session, including at least one EBC in each experimental
session. Similar to our findings in the object—location memory task, some EBCs showed
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additional firing-rate modulations related to allocentric direction or location, but a significant
number of “pure” EBCs remained after excluding EBCs that were also direction and/or place-
like cells (n = 57; 8%; binomial test, P =0.001).

The network of EBCs showed similar characteristics as in Study 1: EBCs were most
prevalent in the parahippocampal cortex (20%; Figure 6H) and reference points were
positioned in all parts of the environment across cells (Figure 61), with an overrepresentation
of the environment center (binomial test vs. chance for the second-innermost bin, P = 0.005,
Bonferroni-corrected; Figure 6J). The preferred bearings of EBCs with reference points in the
center of the environment showed a bimodal distribution with an overrepresentation of
“ahead” and “behind” bearings (Rayleigh test for 2-fold symmetry, z = 5.161, P = 0.005),
whereas EBCs with reference points in the periphery showed a roughly uniform distribution
of preferred bearings (Figure 6K).

The tuning of egocentric bearing cells persists during passive movement

Humans navigate their environments using not only active but also passive movement when
they do not move themselves (Chrastil and Warren, 2012). Previous studies in rodents
showed that allocentric spatial cell types including place and grid cells considerably change
their activity during passive vs. active navigation (Terrazas et al., 2005; Winter et al., 2015).
Before turning to the involvement of EBCs in episodic memory recall, we thus asked whether
EBCs maintained their tuning during passive movement and found that the egocentric tuning
of EBCs persisted during the passive tower transport period (Figure 7)—indicating that active
navigation is not a necessary condition for the occurrence of EBCs.

To assess this effect, we tested whether the firing of EBCs during passive transport increased
when the subject’s egocentric bearing towards the cell’s reference point was in alignment
with the cell’s preferred egocentric bearing that we had determined during the navigation—
encoding periods. We found indeed that stronger alignment with the preferred egocentric
bearing correlated with greater firing rates (z-test of correlation values vs. 0, #73) = 3.141, P
= 0.002; permutation test, P < 0.001; Figure 7C). As a control, we confirmed that this
phenomenon was not present in non-egocentric-bearing cells (¢-test, #(607) = 0.664, P =
0.507; permutation test, P = 0.237) and that it was significantly stronger in EBCs than in non-
egocentric-bearing cells (z-test, #(680) = 2.732, P = 0.006). These results indicate that EBCs
maintained their tuning during passive movement, potentially helping humans stay oriented
when active locomotion is disabled.

Egocentric bearing cells activate during successful episodic memory recall

We finally tested for a role of EBCs in episodic memory. We thus examined whether they
activated more strongly during successful as compared to unsuccessful episodic memory
recall. As we specifically hypothesized that EBCs would be involved in processing the spatial
component of episodic memories, we furthermore predicted that EBCs would activate early
during location-cued object recall, when recall began with the presentation of a spatial
context cue and proceeded to the subject remembering the corresponding object. Conversely,
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we expected a late activation of EBCs during object-cued location recall, when the subject’s
recall was initiated by a cueing object and then transitioned to reinstating the corresponding
spatial context.

To address these issues, we first examined the activity of EBCs during location-cued object
recall trials, in which subjects were shown a location on the beach and asked to recall the
name of the object they had found at that location during the navigation—encoding period
(Figure 8A). During successful recall periods, EBCs showed increased firing shortly after the
location cue (cluster-based permutation test for successful recall periods vs. 0, P = 0.043),
which was significantly greater than during unsuccessful recalls (cluster-based permutation
test for successful vs. unsuccessful recall periods, P = 0.035; Figure 8B). This memory-
related firing-rate increase was not present in non-spatial cells (Figure 8C) and was
significantly stronger in EBCs than in non-spatial cells (cluster-based permutation test for an
interaction between “performance” and “cell type”, P = 0.040; Figure 8D). As not only EBCs
but spatial cells in general showed significantly increased firing rates during successful
versus unsuccessful recall periods (Figure S8, A to D), our data suggest that EBCs provide a
subcomponent of a larger neural network comprising both allocentric and egocentric spatial
cell types involved in processing spatial information during episodic memory recall.

We then examined the activity of EBCs during object-cued location recall, in which subjects
saw the name of an object and were asked to recall the corresponding location. To indicate
their response, subjects moved a target circle across the beach and pressed a button when the
remembered location was reached (mean response latency £ SEM, 5.5 + 0.4 s; Figure 8E).
Here, during successful recall, EBCs showed increased firing rates at a later timepoint that
preceded the subjects’ response (cluster-based permutation test for successful recall periods
vs. 0, P = 0.042). The firing rates during successful recall were significantly greater than
during unsuccessful recall (cluster-based permutation test for successful vs. unsuccessful
recall periods, P = 0.032; Figure 8F). These effects were not present in non-spatial cells
(Figure 8G) and were significantly stronger in EBCs than in non-spatial cells (cluster-based
permutation test for an interaction between “performance” and “cell type”, P = 0.006; Figure
8H). Not only EBCs but spatial cells in general showed increased firing rates during
successful versus unsuccessful recall periods (Figure S8, E to H), again indicating that EBCs
are a subcomponent of a larger neural basis underlying spatial information processing during
episodic memory recall.

Together, these results suggest that EBCs participate in successful episodic memory recall.
The observation that EBCs activate early when spatial information is the memory cue and
that they activate late when spatial information is the memory target may indicate that EBCs
are particularly involved in processing the spatial component of episodic memories. We thus
speculate that the activity of EBCs during recall helps reinstate the egocentric spatial context
of an episodic memory, which might potentially enable the subject to re-experience the
subjective, first-person perspective of the original experience.
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Discussion

Humans encode, store, and recall information about places, distances, and directions in both
allocentric and egocentric reference frames (Ekstrom et al., 2018). Using single-neuron
recordings in epilepsy patients performing virtual navigation tasks, we described human
egocentric bearing cells, EBCs, whose activity encoded the subject’s egocentric direction
towards local reference points in space. A subset of EBCs showed neural activity consistent
with a vectorial representation of egocentric space by also encoding the distance to their
reference point. EBCs may thus provide a neural code for egocentric spatial maps in the
human brain, analogous to how place cells and head-direction cells support allocentric spatial
maps. Such an egocentric code provides the subject with self-centered orientation relative to
the proximal spatial layout and allows route planning from a first-person perspective. EBCs
may thus facilitate egocentric navigation strategies in human behavior.

Our observation of human EBCs builds on prior studies that showed how neurons in rats and
bats represent egocentric information (Alexander et al., 2020; Deshmukh and Knierim, 2013;
Gofman et al., 2019; Hinman et al., 2019; Jercog et al., 2019; LaChance et al., 2019; Sarel et
al., 2017; Wang et al., 2018), how human neurons respond to location-dependent and
location-independent views of spatial landmarks (Ekstrom et al., 2003), and how fMRI
activity in the human brain changes in response to particular views of spatial scenes (Epstein
and Higgins, 2007; Epstein and Kanwisher, 1998; Epstein et al., 2003). Our findings thus
contribute to understanding how the brain may support navigation and memory (Table S3).

EBCs showed a broad spatial distribution of reference points across the virtual environment
in both tasks. Any part of an environment may thus serve as a reference point, replicating
observations in the rodent hippocampal formation (Jercog et al., 2019; Wang et al., 2018).
Additionally, we found that the distribution of reference points overrepresented the
environment center, which also resembles prior findings in rodents (LaChance et al., 2019;
Wang et al., 2018) and underscores the idea that the center of an environment has a distinct
role for navigation (Gallistel, 1990). Reference points were not significantly biased towards
object locations, which could have been the case if reference points were determined by a
single environmental cue (Sarel et al., 2017; Wang et al., 2018). Multiple factors may thus
determine the position of reference points, such as the combined influence of object
locations, boundaries, and/or distal cues. This enables reference points even in parts of an
environment that are devoid of any cues (O’Keefe, 1991), allowing the EBC network to
provide the subject with a comprehensive egocentric map of its surrounding environment.
The absence of reference points near the environmental boundary (in Study 1) is compatible
with this view and may indicate that present or past object locations have a relevant influence
on the position of reference points. Future studies could scrutinize the mechanisms by which
reference points arise and whether reference points are allocated depending on task demands
by experimentally manipulating specific aspects of an environment’s layout.

EBCs were particularly prevalent in the parahippocampal cortex. This region is the human
homologue of the rodent postrhinal cortex, where center-bearing cells and egocentric
boundary cells have been found in rats (Gofman et al., 2019; LaChance et al., 2019),
suggesting that the relevance of this brain region for egocentric spatial representation is
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conserved across species. Furthermore, the abundance of EBCs in the parahippocampal
cortex may be relevant clinically because it helps explain why parahippocampal cortex
lesions cause disruptions of performance on navigation and memory tasks that require
egocentric reference frames (Ploner et al., 2000; Weniger and Irle, 2006). Due to the
parahippocampal cortex lesions, the patients may have had a reduced number of EBCs—as
well as fewer center-bearing cells and egocentric boundary cells—which in turn may have
accounted for the impaired egocentric navigation and memory performance in these patients.
Of note, parahippocampal lesions have also been associated with impaired allocentric
navigation, indicating that the human parahippocampal cortex is not only relevant for
egocentric but also for allocentric human navigation (Aguirre et al., 1996; Bohbot et al.,
1998; Epstein, 2008).

Our results indicate that EBCs are relevant for human memory. First, we found that EBCs
activated more strongly during successful than during unsuccessful episodic memory recall,
suggesting that egocentric single-neuron codes of space contribute to the neural basis of
episodic memory. As EBCs activated early when spatial information cued the episodic
memories and late when spatial information had to be recalled, EBCs may be specifically
involved in representing spatial aspects of episodic memories. We thus speculate that EBCs
contribute to episodic memory by reinstating the egocentric spatial context of the original
experience. Relatedly, during spatial memory recall in the spatial reference memory task,
EBCs showed increased firing when subjects viewed objects whose associated locations were
close to the cells’ reference points. This finding implicates EBCs in memory recollection by
participating in a neural cascade that starts with the recognition of a sensory cue and,
following pattern completion, leads to a reinstatement of the spatial context associated with
the cue (Staresina and Wimber, 2019). Object cells and conjunctive object by egocentric
bearing cells may support object recognition and pattern completion in this process, followed
by spatial context reinstatement in EBCs. Finally, we also demonstrated that EBCs changed
their firing as a function of ongoing spatial memory performance during navigation. EBCs
showed increases as well as decreases in their firing rates during periods with good
performance, suggesting that both excitatory and inhibitory mechanisms shaped their
contribution to spatial memory performance during navigation. Accordingly, EBCs are
presumably part of larger neural networks with both positive and negative feedback circuits
between the participating ego- and allocentric cell populations that collectively support
spatial navigation.

Conclusion

In this study, we identified a neural code for egocentric spatial maps in the human MTL.
EBCs appeared to constitute this code’s key unit by encoding egocentric directions between
local reference points in the spatial environment and the navigating subject. EBCs may thus
provide the subject with an egocentric representation of its proximal environment, allowing
the use of egocentric navigation strategies in human spatial behavior. EBCs may furthermore
be useful for remembering spatial and episodic memories by helping to process spatial
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information related to the memories, thus contributing to a vivid recollection of past
experiences.
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Figure 1. Spatial reference memory task and analysis procedure for identifying egocentric bearing cells. (A) In
each trial, a given object (“cue”) had to be placed at its location (“retrieval”). Patients received feedback depending on
response accuracy (“feedback™) and re-encoded the correct object location afterwards (“re-encoding”). (B) Virtual
environment. Allocentric and egocentric reference frames are illustrated. (C) Spatial memory performance values
across all trials from all patients. Red line, chance level. (D) Change in spatial memory performance between first and
last trial. Blue line, mean across subjects. (E) Definition of egocentric bearing. (F) Left, candidate reference points.
Right, illustrative tuning curve for one candidate point depicting firing rate as a function of egocentric bearing
(coloring) towards this point. Significance of each candidate reference point is tested via surrogate statistics. (G)
Cluster-based permutation testing identifies the largest cluster of significant candidate reference points (“reference
field”). The “reference point” is the center of mass of the reference field. Coloring, preferred egocentric bearings
according to the inset in F.
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circle). Coloring, preferred egocentric bearing towards each location of the reference field (see colored circle in the
middle column). Gray dots, candidate reference points without significant tuning. P-value, significance from cluster-
based permutation test. Middle column, tuning curve showing how the cell’s firing rate varies as a function of
egocentric bearing towards the reference point (maximum firing rate at bottom right). Colored circle indicates
egocentric bearing. Inset, spike shapes as density plot (number above inset indicates spike count); yellow, maximum;
blue, 0. Right column, vector-field map showing the cell’s preferred allocentric heading direction across the
environment (gray arrows). Large black circles, environmental boundary. A (B; L; R), reference point ahead (behind; to
the left; to the right) of the subject. ms, milliseconds; uV, microvolt. AMY, amygdala; EC, entorhinal cortex; HC,
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Overlap between EBCs, direction cells, and place-like cells. (B) Percentage of EBCs across brain regions. Asterisks,
significance from binomial tests vs. 5% chance (dashed line). White numbers, total number of cells per region. (C)
Spatial distribution of reference points. Dotted line separates center reference points (dark green) from periphery
reference points (lime green). (D) Distribution of reference-point distances to the environment center. Black shading,
significance at Pcor. < 0.05 vs. chance (gray stairs). (E) Distribution of preferred egocentric bearings towards reference
points in the environment center (left) and towards periphery reference points (right). P-value from Rayleigh test for 2-
fold symmetry. (F) Example EBC showing activity linearly correlated with reference-point distance. Gray bars, firing
rates; red lines, linear fit. P-values result from the comparison against surrogate statistics. (G) Distance-tuning curves
for all EBCs, sorted by peak-firing distance to the reference point. Translucent coloring, absence of significant linear
distance tuning. (H) Example EBC with a bearing-distance field, which also exhibited linear distance tuning. Firing-
rate map shows firing rate as a function of egocentric bearing and egocentric distance to the reference point. Black line
delineates the bearing-distance field. P-value results from the comparison against surrogate statistics. (I) Example EBC
with a bearing-distance field, but without linear distance tuning. (J) Additional example EBCs with bearing-distance
fields. (K) Relative bearing- and distance-extent of all bearing-distance fields. Inset shows relative 2D extent of all
bearing-distance fields. Green, significant bearing-distance fields; gray, unsignificant fields. (L) Summary distribution
of all bearing-distance fields. (M) Distribution of memory cells across brain regions. (N) Examples of EBCs that also
behaved as memory cells by increasing (left) or decreasing (right) their firing rates in relation to better memory
performance. P-values result from the comparison against surrogate statistics. Red lines, linear fit. Firing-rate residuals
are displayed since the effect of time/experience was regressed out beforehand. (O) Prevalence of memory cells among
egocentric bearing, direction, and place-like cells vs. non-spatial cells. Asterisks, significance from y* tests. FG,
fusiform gyrus; FR, firing rate; max, maximum; min, minimum. n.s., not significant; *P < 0.05; **P < 0.01; ***P <
0.001.
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Figure 4. Relevance of objects for the activity of egocentric bearing cells. (A) Example object cell with firing rates
that vary as a function of the objects whose locations have to be learned and retrieved throughout the task. Each bar
shows the firing rate during trials with a given object. Orange bar depicts the cell’s preferred object. P-value results
from the comparison against surrogate statistics. (B) Mean distance between preferred objects of object cells with at
least 2 preferred objects. Red line, empirical mean distance between preferred objects; gray bars, histogram of
surrogate distances. Inset, number of preferred objects per object cell. (C) Distribution of object cells across brain
regions. (D) Overlap between object cells and EBCs. (E) Illustration of the proximity (inverse of the distance) of all
arena locations to their closest object location in one example cell. Black dots, object locations; white dot, reference
point; gray dotted lines, margin for cell-specific surrogate reference points. Inset shows the rank (here, 0.61) of the
empirical proximity between the reference point and its closest object location (black line) relative to the surrogate
proximities between surrogate reference points and their closest object locations (colored histogram). (F) Histogram of
the proximity of reference points to their closest object location, ranked with respect to the proximity of surrogate
reference points to their closest object location, for all EBCs. Vertical black line, 5% alpha level; red bar, number of
reference points that are significantly close to their nearest object location. The expected null distribution of the ranked
empirical values is a flat histogram (dotted horizontal line). ***P < 0.001.
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Figure 5. Egocentric bearing cells participate in context reinstatement during spatial memory recall. (A)
Hypothesis on the cognitive processes during memory cues: object recognition (supported by object cells) may trigger
pattern completion (involving the activity of conjunctive object by egocentric bearing cells) and context reinstatement
(associated with EBC activity). Planning of navigation routes may follow. (B) Firing rates of object cells during cue
presentation of trials with the preferred object(s) vs. trials with unpreferred object(s). (C) Firing rates of conjunctive
object by egocentric bearing cells during cue presentation of trials with their preferred object(s) as compared to object
cells that are not EBCs. (D) Firing rates of conjunctive object by egocentric bearing cells during cue presentation of
trials with the unpreferred object(s) as compared to object cells that are not EBCs. (E) Illustration of the separation of
cue periods into “close” and “far” depending on whether the location of the cueing object is close to or farther away
from the reference point, respectively. (F) Firing rates of EBCs during cue presentation of trials in which the object
location is close to the reference point vs. trials in which the object location is farther away from the reference point.
Shaded areas, SEM across cells. P-values result from cluster-based permutation tests, which control for multiple
comparisons across the entire time windows; black shading at top, time points from the significant cluster. Firing rates
in B, C, D, and F are baseline-corrected with respect to a one-second baseline interval before the onset of the cue
period.

20



P

Distractor task

K

Object
cue
Location recall (self-paced; 2x or 3x)  Location recall, feedback
C Reference field and point Tuning curve n=1234 Preferred heading
P=0.04 (PHC) for reference point il directions
3 T e e A 8 a4
@ = ?{ @
-149
0 ms 2
=
>
'R =
w
¥
X (vu) 425 X (vu) 315
n=377
D P <0.01 (PHC) 4
. e A
- 2
2
N >
2
= Sl
= =
N >
n=416
F 44
k4
=
-78
0 ms 2
ey )
Z <
N 'R =
X (vu)
n=1592
G P <0.01 (AMY) 38
ms 2
N >

Count

to center
reference points

to periphery
reference points

)
o

Egocentric bearing cells (%)
=

B

Tower transport (~2.6 s)

# sessions
FS

o
o

0.5 1
Object recall
memory performance

53

# trials o

0 0.5 1
Location recall
memory performance

Region

305

315

25 50

Distance to center (vu)

Preferred egocentric bearings




615

620

625

Figure 6. Replication of egocentric bearing cell activity in the hybrid spatial navigation—episodic memory task.
(A) At the beginning of each trial @, the subject was passively transported to a location on the beach. Figure shows the
subject’s movement schematically from the side (gray arrow). Blue arrows, subject’s heading directions. During the
navigation—encoding period of each trial @, the subject navigated towards 2 or 3 treasure chests. Upon arrival, the
chest opened and the subject encoded both the object within and the location of the chest. Next, the subject was
passively transported ® to an elevated recall position. During the subsequent distractor task @ the subject was asked to
follow a coin hidden underneath one of 3 moving boxes. Then, during location-cued object recall ®, a location on the
beach was shown and the subject was asked to recall the associated object. Conversely, during object-cued location
recall ®, the name of an object was shown, and the subject was asked to recall the associated location. (B) Memory
performance for object and location recall. Red dotted line, chance level. (C to G) Example EBCs in the hybrid spatial
navigation—episodic memory task. Same depiction as in Figure 2. (H) Distribution of EBCs across brain regions. (I)
Spatial distribution of reference points. (J) Distribution of reference-point distances to the environment center. Black
shading, statistical significance at Pcor. < 0.05 vs. chance (gray stairs). (K) Distribution of preferred bearings towards
reference points in the environment center and towards periphery reference points. P-value from Rayleigh test for 2-
fold symmetry. **P < 0.01; ***P < 0.001.
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Figure 7. The tuning of egocentric bearing cells persists during passive transport. (A) Schematic of the tower-
transport period. Gray arrow, subject’s movement; blue arrows, subject’s heading directions. (B) Behavioral data from
an example tower transport, in which the subject is transported from its location on the beach (Start) to the elevated
position (End). Blue arrows, subject’s heading direction at select time points. Red dot, this cell’s reference point. Gray
dashed lines, vectors from the subject’s location (unfilled gray dots) to the reference point. Green arrow, egocentric
bearing at Start. Height values of the subject’s position are omitted for clarity. Inset, alignment of the current egocentric
bearing with the preferred egocentric bearing across the entire transport period (“1” indicates perfect alignment). (C)
Mean correlation between firing rates and the alignment of the subject’s current egocentric bearing with the preferred
egocentric bearing during passive transport. Point clouds, surrogate means based on shuffled data. Inset, example
correlation across time bins from one transport period. *P < 0.05; **P < 0.01.
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Figure 8. Egocentric bearing cells activate during successful episodic memory recall. (A) Schematic for location-
640  cued object recall. (B and C) Firing rates of EBCs (B) and non-spatial cells (C) during successful vs. unsuccessful
object recall. (D) Interaction effect showing a significant difference between the activity of EBCs and non-spatial cells
during successful vs. unsuccessful recall periods. (E) Schematic for object-cued location recall. (F and G) Response-
locked firing rates of EBCs (F) and non-spatial cells (G) during successful vs. unsuccessful location recall. (H)
Interaction effect showing a significant difference between the activity of EBCs and non-spatial cells during successful
645 vs. unsuccessful recall periods. Firing rates in B, C, D, F, G, and H are baseline-corrected with respect to a one-second
baseline interval before the onset of the recall period. In B, C, F, and G: black shadings at top, significant clusters of
firing-rate differences between successful and unsuccessful recall periods (cluster-based permutation tests, P < 0.05);
gray shadings, significant deviations of firing rates from 0 during successful recall periods (cluster-based permutation
tests, P < 0.05). In D and H, black shadings indicate significant interaction effects (cluster-based permutation tests, P <
650 0.05). All cluster-based permutation tests control for multiple comparisons across the entire time window.
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STAR Methods

Resource availability
Lead contact

Further information and requests for resources and reagents should be directed to and will be
fulfilled by the lead contact, Lukas Kunz (drlukaskunz@gmail.com).

Materials availability

Not applicable.

Data and code availability

Data to recreate the figures are available at https://github.com/NeuroLuke/KunzNeuron2021.
Raw data are not publicly available because they could compromise research participant
privacy, but are available upon request from the lead contact, Lukas Kunz. All custom
MATLAB code generated during this study for data analysis is available at
https://github.com/NeuroLuke/KunzNeuron2021. Any additional information required to
reanalyze the data reported in this paper is available from the lead contact upon request.

Experimental model and subject details
Human subjects

Across both studies we tested 15 human subjects, who were epilepsy patients undergoing
treatment for pharmacologically intractable epilepsy at the Freiburg Epilepsy Center,
Freiburg im Breisgau, Germany. Of those, 14 participated in the spatial reference memory
task (7 female; age range, 19-51 years; mean age = SEM, 33.1 + 3.0 years) and 12
participated in the hybrid spatial navigation—episodic memory task (6 female; age range, 19—
51; mean age = SEM, 35.2 + 3.3 years). Eleven patients completed both tasks and some
patients contributed more than one session per task (Table S1). Informed written consent was
obtained from all patients. The studies conformed to the guidelines of the ethics committee of
the University Hospital Freiburg, Freiburg im Breisgau, Germany.

Methods details

Neurophysiological recordings

Patients were surgically implanted with intracranial depth electrodes in the medial temporal
lobe for diagnostic purposes in order to isolate the epileptic seizure focus for potential
subsequent surgical resection. The exact electrode numbers and locations varied across
subjects and were determined solely by clinical needs. Neuronal signals were recorded using
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Behnke-Fried depth electrodes (AD-TECH Medical Instrument Corp., Racine, WI). Each
depth electrode contained a bundle of 9 platinum-iridium microelectrodes with a diameter of
40 pm that protruded from the tip of the depth electrode (Fried et al., 1999). The first 8
microelectrodes were used to record action potentials and local field potentials. The ninth
microelectrode served as reference. Microelectrode coverage included amygdala, entorhinal
cortex, fusiform gyrus, hippocampus, insula, parahippocampal cortex, temporal pole, and
visual cortex. We recorded microwire data at 30 kHz using NeuroPort (Blackrock
Microsystems, Salt Lake City, UT).

Spike detection and sorting

Neuronal spikes were detected and sorted using Wave Clus (Chaure et al., 2018). We used
default settings with the following exceptions: “template sdnum” was set to 1.5 to assign
unsorted spikes to clusters in a more conservative manner; “min_clus” was set to 60 and
“max_clus” was set to 10 in order to avoid over-clustering; and “mintemp” was set to 0.05 to
avoid under-clustering. All clusters were visually inspected and judged based on the spike
shape and its variance, inter-spike interval (ISI) distribution, and the presence of a plausible
refractory period. If necessary, clusters were manually adjusted or excluded. Furthermore,
clusters were excluded that exhibited mean firing rates of <0.1 Hz during the analysis time
window [following (Ekstrom et al., 2003)]. Spike waveforms are shown as density plots in all
figures (Reber et al., 2019).

In the spatial reference memory task, we identified N = 729 clusters (also referred to as
“neurons” or “cells” throughout the manuscript) across 18 experimental sessions from all 14
patients. In the hybrid spatial navigation—episodic memory task, we identified N = 737
clusters across 20 experimental sessions from all 12 patients. Neuronal responses from
different sessions were treated as statistically independent units. An experienced rater
(B.P.S.) assigned the tips of depth electrodes to brain regions based on post-implantation
MRI scans in native space so that neurons recorded from the corresponding microelectrodes
could be assigned to these regions. We recorded n = 242 (230) neurons from amygdala, n =
114 (85) neurons from entorhinal cortex, n = 25 (26) neurons from fusiform gyrus, n = 146
(161) neurons from hippocampus, n = 0 (2) neurons from the insula, n = 65 (76) neurons
from parahippocampal cortex, n = 128 (150) neurons from the temporal pole, and n = 9 (7)
from visual cortex (numbers outside brackets refer to the spatial reference memory task;
numbers inside brackets refer to the hybrid spatial navigation—episodic memory task). Due to
low numbers of neurons in fusiform gyrus, insula, and visual cortex, we excluded these
regions from region-specific analyses.

For recording quality assessment (Figure S3), we calculated the number of units recorded on
each wire; the ISI refractoriness for each unit; the mean firing rate for each unit; and the
waveform peak signal-to-noise ratio (SNR) for each unit. The ISI refractoriness was assessed
as the percentage of ISIs with a duration of <3 ms. The waveform peak SNR was determined
as: SNR = Apeak/SDnoise, Where Apeak 1S the absolute amplitude of the peak of the mean
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waveform, and SDhoise 1S the standard deviation of the raw data trace (filtered between 300
and 3,000 Hz).

Spatial reference memory task

During experimental sessions of Study 1, patients sat in bed and performed a spatial reference
memory task on a laptop computer (Figure 1), which was adapted from previous studies
(Doeller et al., 2008; Kunz et al., 2015, 2019). The task was developed using Unreal Engine 2
(Epic Games, Cary, North Carolina, USA).

During the task, patients first learned the locations of 8 everyday objects by collecting each
object from its location once (this initial learning phase was excluded from all analyses).
Afterwards, patients completed variable numbers of test trials (Figure 1A) depending on
compliance. Each test trial started with an inter-trial-interval of 3—5 s duration (uniformly
distributed). Patients were then shown one of the 8 objects (“cue”; duration of 2 s). During
the subsequent retrieval period (“retrieval”; self-paced), patients navigated to the remembered
object location and indicated their arrival with a button press. Next, patients received
feedback on the accuracy of their response using one of 5 different emoticons (“feedback”;
duration of 1.5 s). The retrieved object then appeared in its correct location and patients
collected it from there to further improve their associative object—location memories (“re-
encoding”; self-paced). The patients could use several different strategies to retrieve the
location of the objects: They could encode the object locations in an allocentric reference
frame by remembering the object locations as a function of their relationship to the
combination of all distal cues. Subjects may have also encoded the object locations in an
egocentric reference frame by tracking the location of each object relative to them throughout
the task. Other strategies such as beaconing (e.g., a specific object is close to the mountain
with the snow-covered peak) may have been employed as well.

Response accuracy was measured as the Euclidean distance between the response location
and the correct location (“drop error”). Drop errors were transformed into spatial memory
performance values by ranking each drop error within 1 million potential drop errors.
Potential drop errors were the distances between the trial-specific correct object location and
random locations within the virtual environment. This transformation accounted for the fact
that the possible range of drop errors is smaller for object locations in the center of the virtual
environment as compared to object locations in the periphery of the virtual environment
(Miller et al., 2018): For objects in the environment center, the potential drop errors are in the
range between [0, R], whereas they are in the range between [0, 2*R] for objects in the
periphery of the arena (where R is the arena radius). Using the transformation procedure,
performance values are mapped onto a range between [0, 1], irrespective of whether the
associated objects are located in the center or the periphery of the environment. A spatial
memory performance value of 1 represents the smallest possible drop error, whereas a spatial
memory performance value of 0 represents the largest possible drop error. Chance level is at
0.5, because in that case a given drop error is smaller than 50% of the potential drop errors
and larger than the other 50% of potential drop errors. To quantify performance increases
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within sessions, we computed the change in spatial memory performance between the first
and the last trial (averaged across the eight different objects). Similar performance increases
were seen when first and second sessions were analyzed separately (paired f-test: first
sessions, #(13) = 2.653, P = 0.020; second sessions, #3) = 6.106, P =0.009).

The virtual environment comprised a grassy plain with a diameter of ~10,000 virtual units
(vu), surrounded by a cylindrical cliff. There were no landmarks within the environment. The
background scenery comprised a large and a small mountain, clouds, and the sun (Figures 1A
and 1B). All distal landmarks were rendered at infinity and remained stationary throughout
the task. Patients navigated the virtual environment using the arrow keys of the laptop
computer (forward; turn left; turn right). Instantaneous virtual locations and heading
directions (which are identical with viewing directions in our task) were sampled at 50 Hz.
We aligned the behavioral data with the electrophysiological data using visual triggers, which
were detected by a phototransistor attached to the screen of the laptop computer. The
phototransistor signal was recorded together with the electrophysiological data at a temporal
resolution of 30 kHz.

Spatial navigation—episodic memory task

During experimental sessions of Study 2, patients sat in bed and performed a computerized
hybrid spatial navigation—episodic memory task, which was adapted from previous studies
(Miller et al., 2018; Tsitsiklis et al., 2020). The task was developed using Unity3D (Unity
Technologies, San Francisco, USA). The virtual environment comprised a beach surrounded
by a circular wooden fence with a diameter of 100 vu. There were no landmarks within the
environment. Some landmarks (palms and barrels) were close to the wooden fence outside
the environment. Half of the beach was adjacent to the sea. The background scenery
comprised multiple mountains, palms, and the sky (Figure 6A).

Patients performed up to 40 trials per session. On each trial, patients were placed in a random
location on the virtual beach (“passive home base transport”; Figure 6A®). Subjects
remained at this location until they initiated the trial with a button press. They then navigated
to a number of treasure chests, which appeared successively on the beach (“navigation—
encoding period”; Figure 6A®, left). Subjects were encouraged to travel to each chest as
quickly as possible in order to receive bonus points for efficient navigation. Upon arrival at a
chest, subjects were automatically rotated to directly face the chest, and the chest then opened
to reveal an object and the name of this object (Figure 6A®, right). After 1,500 ms, the chest
and object vanished. Subjects traveled to 2 or 3 chests during the course of a trial. In a full
session with 40 trials, subjects encountered 100 chests.

After traveling to the last chest in a trial, subjects were passively and smoothly moved to one
of 2 elevated positions where they had an overhead perspective view of the environment
(“passive tower transport”; Figure 6A®). The first elevated position was located at
411/91/409 (x/y/z, where y 1is height); the second elevated position was located at
327/91/308. Subjects then played a distractor game (Figure 6A®), where they had to track
which of 3 constantly moving boxes contained a coin. After the distractor game, the recall
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period of the trial began. In a given trial, subjects completed either location-cued object recall
or object-cued location recall.

During location-cued object recall, n + 1 different locations on the beach were successively
indicated with a small blue circle (in random order), where n corresponds to the number of
treasure chests opened during the preceding navigation—encoding period. In response to each
highlighted location, subjects were given four seconds to say out loud the name of the object
that was contained in the treasure chest at that location or “Nichts” (German for “nothing”)
for the one location not associated with a treasure chest (Figure 6A®, left). Correctness of
the response was evaluated using Cortana (Microsoft, Washington, USA). Start and end times
of these four-second periods were indicated by a sound.

During object-cued location recall, the names of the objects contained in the » treasure chests
from that trial were successively shown to the subjects (in random order). After each
presentation, subjects then had to move a small blue target circle (radius of 13 vu) across the
beach and to press a button when the circle had reached the remembered location of the
associated treasure chest (self-paced; Figure 6A®, left).

After being probed for all the locations/objects from a given trial, the subjects then completed
a recency judgement task in which they were asked to judge which of 2 objects they had
encountered later during the preceding navigation—encoding period (this period was not
analyzed in this study). During recall, subjects were thus tested for all components of
episodic memory: object, location, and time information. Finally, subjects received feedback
(points) on the correctness of their responses—i.e., whether they had correctly recalled the
object names during location-cued recall (Figure 6A®, right); whether they had correctly
recalled the locations during object-cued recall (Figure 6A®, right); and whether they had
correctly indicated which object they had encountered later during the trial. The next trial
started by transporting the subject back onto the beach (“passive home base transport™).

Patients navigated the virtual environment using a game controller (forward; turn left; turn
right). Instantaneous virtual locations and heading directions were sampled at 60 Hz. We
aligned the behavioral data with the electrophysiological data using triggers, which were sent
from the paradigm to the recording system.

To quantify the patients’ episodic memory performance, we calculated 2 different metrics:
object-recall performance determined whether an object was correctly recalled in a given
location-cued object recall period. For object-cued location recall periods, location-recall
performance was quantified as the Euclidean distance between the remembered location and
the correct location of the treasure chest in which the cueing object had been encountered
during the preceding navigation—encoding period (“drop error”). Using the same rationale
and procedure as in the spatial reference memory task, drop errors were ranked within one
million potential drop errors to give normalized location-recall performances (see above),
with values of 1 representing the best possible response and values of 0 representing the
worst possible response (Miller et al., 2018).
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Quantification and statistical analysis
General information on statistics

All analyses were carried out in MATLAB 2018b and 2020b using MATLAB toolboxes,
custom MATLAB scripts, and FieldTrip (Oostenveld et al., 2011). Unless otherwise
indicated, we considered results statistically significant when the corresponding P-value fell
below an alpha level of o = 0.05. Analyses were two-sided, unless otherwise specified.
Binomial tests evaluated the significance of proportions of neurons relative to a chance level
of 5%, unless otherwise specified. Surrogate statistics were generally one-sided to assess
whether an empirical test statistic exceeded a distribution of surrogate statistics significantly,
unless otherwise specified. Statistics on angular data were carried out using the CircStat
toolbox (Berens, 2009). The significance of overlaps between different functional cell types
was assessed using y” tests.

Information on cell-type identification

At each time point, the participant’s allocentric direction and location was given by the yaw
value and the (x/y)-coordinate [or (x/z)-coordinate in the hybrid spatial navigation—episodic
memory task] of the virtual character’s position in the virtual environments, respectively.
Neuronal spike times were adjusted to the behavioral time axis according to the trigger time
stamps. We then downsampled the behavioral data to 10 Hz [following (Jacobs et al., 2010)]
and calculated the neuronal firing rate (Hz) for each sample (i.e., for each 100 ms time bin).
Time periods in which the patient remained stationary for >2 s were excluded from the
analyses.

To identify different cell types, we employed an ANOVA framework (Ekstrom et al., 2003;
Manns et al., 2007; Qasim et al., 2019; Tsitsiklis et al., 2020; Wood et al., 2000), in which we
assessed the effects of different factors on firing rates. For example, to identify egocentric
bearing cells, we used a three-way ANOVA with factors “direction”, “place”, and
“egocentric bearing” (see below). In all ANOVAs (computed via MATLAB’s anovan
function), we used Type Il sums of squares, which controls for main effects of other factors
when determining significance of a given factor. Empirical F-values of a given factor were
considered significant, when they exceeded the 95" percentile of 101 surrogate F-values,
which we obtained by performing the same ANOVA on circularly shifted firing rates [with
the end of the session wrapped to the beginning; following, e.g., (Hoydal et al., 2019; Qasim
etal., 2019)].

Tuning curves are displayed as the estimated marginal means of a given factor when
controlling for the other factors (computed via MATLAB’s multcompare function), inspired
by analysis procedures in rodents that identify independent effects of different factors on
firing rates (Burgess et al., 2005; Hardcastle et al., 2017).

We note that neuronal tuning strengths in our study were generally lower than in rodents [for
similar tuning strengths, see for example (Ekstrom et al., 2003; Jacobs et al., 2010; Miller et
al., 2013; Qasim et al., 2019; Tsitsiklis et al., 2020)]. For example, head-direction cells in
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rodents often exhibit baseline firing rates of about 0 Hz and increase their firing rates up to
about 100 Hz at the preferred head direction (Taube et al., 1990). Directionally sensitive
neurons in our study (“direction cells”; e.g., Figure S5A) showed only moderate firing rate
increases when subjects moved in the preferred direction (on average, maximum firing rates
of the directional tuning curves were 2.8 times as high as the minimum firing rates of the
directional tuning curves). Similarly, the response profiles of spatially-modulated neurons
(e.g., Figures S6, A to E) were not as clear as in rodent place cells, which is why we call them
“place-like cells” in this study.

Different factors may contribute to the reduced selectivity of neuronal responses: In humans,
it is not possible to adjust the localization of microelectrodes after implantation and a search
for strongly tuned cells is thus not possible. Moreover, patients did not physically navigate
the spatial environment, but rather completed a virtual navigation task, potentially associated
with broader spatial tuning (Chen et al., 2018). Additionally, neuronal firing in the human
brain may be higher-dimensional than in rodents meaning that more internal and external
factors (including ongoing thoughts, spontaneous occurrence of memories and ideas, and
stimuli in the patient’s room) influence neuronal firing rates. Finally, (subtle) epileptogenic
processes may have also affected the sharpness of the neurons’ tuning curves (Shuman et al.,
2020).

Egocentric bearing cells

We used the term “egocentric bearing cell” in this study to succinctly describe the egocentric
tuning of neurons in the human medial temporal lobe to reference points in the surrounding
virtual environment, but we note that similar tuning has been observed in prior rodent studies
[e.g., (Wang et al., 2018)].

We identified egocentric bearing cells using a two-step procedure (Figures 1F and 1G). In the
first step, separately for each candidate reference point, we analyzed each neuron’s firing rate
via a three-way ANOVA with factors “direction”, “place”, and “egocentric bearing” to assess
the relevance of “egocentric bearing” while controlling for effects of “direction” and “place”.
We calculated egocentric bearings as the angular difference between the subject’s
instantaneous heading angle and the concurrent angle of the vector from the subject’s
location to the reference point (Figure 1E). Candidate reference points (n = 112) were evenly
distributed across the virtual environment (Figure 1F). No candidate reference points were
located outside the circular boundary in the spatial reference memory task because the
circular cliff was opaque. In the hybrid spatial navigation—episodic memory task, some
candidate reference points were positioned slightly outside the circular wooden fence
(Figures 6C—6G), because the subjects could look through the wooden fence. The factors
“direction” and “egocentric bearing” could take on one of twelve values (angular resolution,
30°). In the spatial reference memory task, the factor “place” could take on one of 100 values
representing a 10 x 10 grid overlaid onto the virtual environment. In the hybrid spatial
navigation—episodic memory task, the factor “place” could take on one of 36 values
representing a 6 x 6 grid overlaid onto the virtual environment, similar to our previous study
using the same task (Tsitsiklis et al., 2020). Only factor levels with >5 separate observations
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(for example, 5 temporally distinct visits to location bin i) were included to ensure sufficient
behavioral sampling. For the factor “egocentric bearing” we then extracted the raw ANOVA
F-value (Fempirical) and the corresponding estimated firing rate map (€FRempirical), Which is the
tuning curve of the firing rate as a function of “egocentric bearing” while controlling for
“direction” and “place” (for examples, see the middle column of Figure 2). Because Fempirical
was estimated for all candidate reference points, this analysis resulted in a map of Fempirical
values across all candidate reference points. Using the circular-shift procedure described
above, we estimated 101 surrogate F-values (Fsumogate) for each candidate reference point,
resulting in 101 Fisumogate maps across the candidate reference points. A candidate reference
point was considered significant, if its Fempirica value exceeded the 95™ percentile of its
Fsurmogate values (corresponding to P < 0.05). Because we tested for significance in 112
different reference points, we had to control for multiple comparisons (Maris and Oostenveld,
2007). Hence, in the second step, we employed cluster-based permutation testing (Oostenveld
et al., 2011) to assess the overall significance of the cell regarding egocentric bearing tuning;:
contiguous clusters of significant candidate reference points were identified and their
percentiles of Fempirical Within Fisumogate Were summed up, resulting in a cluster-percentilecmpirical
value (for example, a contiguous cluster of 10 significant candidate reference points, where
all candidate reference points had a percentile value of 97%, resulted in a cluster-percentile
value of 970%). We considered this cluster-percentileempirical value statistically significant if it
exceeded the 95" percentile of surrogate cluster-percentilesumogate Values (corresponding to P
< 0.05). Here, cluster-percentilesurrogate Values were created by using each of the Fsurrogate maps
as a hypothetical Fempirica map once, each time assessing its cluster-percentil€surrogate Value by
comparing it against all other F* maps (both the remaining Fiurogate maps and the Fempirical
map), as described above.

Egocentric bearing cell plots

For each egocentric bearing cell, we show the contiguous cluster of significant candidate
reference points (i.e., the “reference field”; e.g., Figure 2A, left): each significant candidate
reference point is depicted as a colored, bold dot; non-significant candidate reference points
are indicated as gray, small dots. Coloring corresponds to the circular mean of the estimated
firing rate map eFRempirical fOr that candidate reference point (for example, red means that the
neuron’s firing rate increased when the subject was moving towards this point; cyan means
that the neuron’s firing rate increased when the subject was moving away from this point).
We obtained each cell’s reference point by calculating the center of mass of the reference
field using MATLAB’s regionprops function.

As an approximate illustration of the cell’s egocentric bearing tuning, we additionally show
the cell’s preferred allocentric direction as a function of location (e.g., Figure 2A, right).
Here, the location-specific allocentric direction tuning curve is estimated via a two-way
ANOVA with factors “direction” and “place”, which takes only data points into account
when the subject is in the vicinity of a given location. The 112 candidate reference points
(Figure 1F) served as these locations and the arbitrarily chosen vicinity of a location was
defined as the location’s coordinate = 1/3 of the arena diameter. For example, the vector-field
map in Figure 2A, right, shows that allocentric direction tuning of this cell varies across
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different locations, twisting towards a spot in the northeast part of the virtual environment.
This vector-field map can thus illustrate the egocentric bearing cell plot. Of note, the vector-
field map does not match the egocentric bearing cell plot closely in cases when direction and
egocentric bearing explain relevant and independent amounts of variance in the firing rates.
This is due to the fact that the egocentric bearing cell plot shows egocentric bearing tuning
while accounting for the effects of direction and location (three-way ANOVA with factors
“direction”, “place”, and “egocentric bearing”), whereas the vector-field map shows direction
tuning while only accounting for the effect of location (two-way ANOVA with factors

“direction” and “place”).
Preferred egocentric bearing

For each egocentric bearing cell, we extracted its preferred bearing towards the reference
point via the circular mean of the corresponding tuning curve. Tuning curves are displayed as
circular histograms, with the length of the wedges depicting firing rates. Bimodality (i.e., 2-
fold, 180-degree symmetry) of preferred egocentric bearings was tested by applying a
Rayleigh test on the preferred egocentric bearings multiplied by 2.

Control analyses in the spatial reference memory task confirmed that the preferred egocentric
bearings of EBCs towards their reference points were stable across time (correlation between
the preferred bearings from the first vs. second data half, #(88) = 0.497, P < 0.001), which
was also evident when analyzing the full shape of the tuning curves (mean correlation
between the egocentric tuning curves from both data halves = SEM, r = 0.469 + 0.027; ¢-test
of the correlation values against 0, #89) =17.193, P <0.001).

Effects of tasks

We note that our paradigms may have encouraged the presence of egocentrically tuned
neurons needed to solve the tasks (for example, due to the exact spatial layouts of the tasks)
and that other tasks may have led to a different prevalence of egocentric versus allocentric
single-neuron responses (Ekstrom et al., 2003; Georges-Frangois et al., 1999; Rolls and
O’Mara, 1995).

Effects of hemisphere

We observed that egocentric bearing cells were slightly more prevalent in the right than in the
left hemisphere: In the spatial reference memory task, 14.4% of all neurons from the right
hemisphere were egocentric bearing cells, whereas 9.0% of all neurons from the left
hemisphere were egocentric bearing cells (y? test, y*(1) = 4.786, P = 0.029). In the hybrid
spatial navigation—episodic memory task, 10.2% of all neurons from the right hemisphere
were egocentric bearing cells versus 9.8% of all neurons from the left hemisphere (> test,
x*(1)=0.025, P=0.876).

Effects of epileptic processes

To examine whether epileptic processes influenced the prevalence of egocentric bearing cells,
we determined the number of egocentric bearing cells when excluding neurons that were
recorded on microelectrodes implanted in brain regions potentially involved in the generation
of epileptic seizures as defined by clinical criteria. These control analyses revealed 74
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egocentric bearing cells among 570 neurons in the spatial reference memory task (13.0%;
binomial test vs. 5% chance, P < 0.001) and 63 egocentric bearing cells among 589 neurons
in the hybrid spatial navigation—episodic memory task (10.7%; binomial test vs. 5% chance,
P <0.001). These results are similar to our findings when examining all neurons.

Egocentric bearing cells: reference points

To test whether reference points of different egocentric bearing cells recorded during the
same session were closer to each other than expected by chance, we calculated the average
distance between all reference points from a given session and averaged across sessions
afterwards (Dempirical). TO create surrogates, reference points were randomly assigned to the
different sessions multiple times, each time calculating the average distance between all
reference points from a given “surrogate session” and averaging across “surrogate sessions”
afterwards (Dsurrogate). We then tested how often Dempiricat Was smaller than Dsyrrogate.

In order to test whether reference points were particularly prevalent in the center of the
environment, we estimated the distance of each reference point towards the environment
center and binned them into 20 bins. We then tested each bin count against the bin-wise
chance level (which is dependent on the ring area of the bin) using binomial tests (including
Bonferroni correction for 20 different bins).

To understand whether preferred egocentric bearings varied as a function of whether the
reference point was located in the center or the periphery of the environment, we split the
egocentric bearing cells into 2 groups depending on whether the center distance of their
reference points was within half of the arena radius (center reference points) or outside half
of the arena radius (periphery reference points). In the spatial reference memory task, half of
the arena radius was 2500 vu; in the hybrid spatial navigation—episodic memory task, half of
the arena radius was 25 vu.

To test whether the reference points were significantly close to their nearest object location,
we first estimated the Euclidean distance of each reference point towards its closest object
location (Dempirical). We then compared Dempirical against surrogate distance values (Dsurrogate)
that were obtained by calculating the distance of surrogate reference points towards their
nearest object location. Surrogate reference points were created on a cell-specific basis by
randomly drawing locations from a circular ring area that had the same distance from the
environment center as the corresponding empirical reference point (with a margin of +450 vu,
which is the distance between 2 neighboring candidate reference points; Figure 4E). We used
this method for creating surrogate reference points in order to account for the fact that the
distances of reference points to the environment center were not randomly distributed but
overrepresented small distances (Figure 3D). If Dempirical Was smaller than the 5™ percentile of
Dsurrogate Values, the empirical reference point was considered significantly close to its nearest
object location. This analysis was performed in relation to both the actual object locations
and the remembered object locations. Remembered object locations were calculated as the
average response location for a given object.
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To examine whether the allocentric directions towards reference points were biased towards
the distal landmarks, we counted how often the allocentric directions towards reference
points were aligned with specific distal landmarks (small mountain, large mountain, small
gap, or large gap). Using a y” test, we then tested whether the empirical counts deviated from
the distribution of expected counts, which we estimated based on the angular extensions of
the landmarks.

Egocentric bearing cells: goal tuning

In the main text, we showed that reference points were not biased towards object locations.
This finding implicates that egocentric goal-direction tuning towards the object locations was
not a major source of egocentric bearing cell tuning. To provide further evidence for this
conclusion, we directly estimated egocentric goal-direction tuning towards the object
locations in egocentric bearing cells. Hence, for each egocentric bearing cell and for each
object location, we performed a three-way ANOVA with factors “direction”, “place”, and
“egocentric goal direction” to estimate the effect of egocentric goal direction on the cell’s
firing rate (Fempiricat). We then calculated the maximum F statistic across object locations
(Fmax-empirical) and compared them to surrogate maximum F statistics (Fmax-surrogate). 1hese
Frnax-surrogate Statistics were estimated using the identical procedure as for Fmax-empiricat With the
only difference that object locations were circularly shifted around the center of the
environment. For each egocentric bearing cell, we then estimated the rank of Fmax-empirical
within the Fmax-surogate Values and compared these ranks against the chance level of 0.5
(chance level is 0.5, because Fmax-empirical 18 larger than half of the Fmax-surrogate Values and
smaller than the other half of Fiax-surrogate Values in this case). We found that the ranks of Finax-
empirical Were not above chance level (one-sample #-test, #(89) = -0.621, P = 0.536), further
demonstrating that egocentric goal-direction tuning was not a major source of egocentric
bearing cell tuning.

Egocentric bearing cells: distance tuning
Linear distance tuning

To investigate whether egocentric bearing cells linearly encoded the distance towards the
reference point, we first analyzed each egocentric bearing cell’s firing rates as a function of
direction, place, and egocentric bearing towards the reference point in a three-way ANOVA.
The reference point was given by the previously performed egocentric bearing cell analysis.
We then extracted the residuals from this ANOVA to correlate them with the distances of the
subject to the reference point. We used the ANOVA residuals instead of the original firing
rates in order to control for the effects of the other factors (place, direction, and egocentric
bearing). We then calculated the Pearson correlation (7empirical) between the distances to the
reference point and the residuals. 7empirical Was compared against surrogate correlation values
(7surrogate), Which we obtained using the identical procedure as described for 7empiricat With the
only difference that the firing rates were shifted relative to the navigation data before entering
the ANOVA. We considered a cell to exhibit distance tuning (e.g., Figure 3F), if rempirical
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exceeded the 97.5™ percentile of rsumogate Values (positive distance tuning) or if it fell below
the 2.5" percentile of 7surrogate Values (negative distance tuning). The total number of distance-
tuned egocentric bearing cells (with either positive or negative distance tuning) was tested
against the chance level of 5% using a binomial test. Since there were no obstacles in the
virtual environment, Euclidean distance is identical with path distance in this task.

Conjunctive bearing-distance tuning

To examine whether egocentric bearing cells encoded distances towards reference points by
increasing their firing rates at conjunctions of specific egocentric bearings to and particular
distances from the reference point, we estimated 2D bearing—distance firing-rate maps (Wang
et al., 2018). Firing rates were estimated by dividing the number of spikes by the dwell time
in each bearing—distance bin (bearing bin size, 15°; distance bin size, 200 vu; smoothing with
a Gaussian kernel of 5-bin size and a SD of 2). We created 1001 surrogate bearing—distance
firing-rate maps by circularly shifting the empirical firing rates relative to the behavioral data.
We then identified the largest contiguous cluster of bearing—distance bins in which the
empirical firing rate exceeded the 95 percentile of surrogate firing rates (clusterempirica) and
tested for significance of this cluster using cluster-based permutation testing. During cluster-
based permutation testing, we obtained a surrogate cluster for each surrogate firing-rate map
(clustersurogate) by identifying the largest contiguous cluster of bearing—distance bins in which
the surrogate firing rates exceeded the 95" percentile of the firing rates from all other
surrogate firing-rate maps and the empirical firing-rate map. Empirical clusters
(clusterempirical) Were considered significant when they exceeded the 95" percentile of all
surrogate clusters (clustersumogate) and we termed them “bearing—distance fields”. To
characterize bearing—distance fields, we estimated their extent along the bearing axis (relative
to the bearing extent of the entire firing-rate map), their extent along the distance axis
(relative to the distance extent of the entire firing-rate map), and their total extent (relative to
the total extent of the entire firing-rate map).

Egocentric bearing cells: passive movement

To understand whether egocentric bearing cells maintained their tuning during passive
transport, we examined the activity of egocentric bearing cells during the tower-transport
period of the hybrid spatial navigation—episodic memory task (Figure 7).

For a given cell and trial, we calculated the egocentric bearing of the subject towards the
cell’s reference point for each time point during the transport period (10 Hz temporal
resolution) and calculated its alignment with the preferred egocentric bearing that had been
estimated in the preceding egocentric bearing cell analysis (on data from the navigation
periods). A high alignment value (close or equal to 1) meant that the instantaneous egocentric
bearing during passive transport was aligned with the preferred egocentric bearing, whereas a
low alignment value (close or equal to -1) meant that the instantaneous egocentric bearing
during transport was exactly opposite to the preferred egocentric bearing (e.g., Figure 7B).
Specifically, alignment with the preferred egocentric bearing was estimated as: alignment; =
cos(bearingpreferred - heading;), where bearingpreferred 1 the preferred egocentric bearing (from
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the navigation period) and heading; is the heading direction of the subject at time ¢ (during the
tower-transport period). In each tower-transport period, we then correlated the firing rates of
egocentric bearing cells with the corresponding alignment values in order to test whether
stronger alignment was associated with higher firing rates. In each cell, we averaged the
correlation values across trials afterwards. Across egocentric bearing cells, we then tested
whether correlation values were significantly above 0—indicating that there was a general
positive association between egocentric bearing cell firing rates and the alignment of the
subject’s current egocentric bearing with the preferred egocentric bearing. As a control, we
compared the empirical mean correlation value against surrogate means obtained by
performing the trial-wise correlations on shuffled data (the firing rates were randomly
shuffled with respect to the alignment values on each trial). As another control, we tested for
this effect in non-egocentric-bearing cells that had a non-significant reference field.

Direction cells

Rodent head-direction cells (Taube et al., 1990) activate whenever an animal’s head is
pointing in a specific global direction that is defined relative to a world-referenced coordinate
system (for example, when the head is pointing “north” or “south”). Here, we identified
“direction cells” that exhibited firing-rate modulations as a function of the patients’ current
heading direction within the virtual environment.

To identify direction cells, we analyzed each neuron’s activity by means of a two-way
ANOVA with factors “direction” and “place”. The factor “direction” could take on one of
twelve values (angular resolution, 30°). In the spatial reference memory task, the factor
“place” could take on one of 100 values representing a 10 x 10 grid overlaid onto the virtual
environment. In the hybrid spatial navigation—episodic memory task, the factor “place” could
take on one of 36 values representing a 6 x 6 grid overlaid onto the virtual environment,
similar to our previous study using the same task (Tsitsiklis et al., 2020). Only factor levels
with >5 separate observations were included to ensure sufficient behavioral sampling. We
then extracted the ANOVA F-value for the factor “direction” (Fempiricat) and the estimated
firing rate map (€FRempirical), While controlling for the factor “place”. We calculated statistical
significance of Fempiricat Values using surrogate statistics as described above. For each
direction cell, we extracted its preferred direction via the circular mean of the directional
tuning curve.

To compare the vector-field maps of direction cells with the vector-field maps of egocentric
bearing cells, we computed “vector-field strengths” as the Rayleigh vector length of all
vectors in the vector-field map (a completely homogeneous vector-field map would result in
a Rayleigh vector length of 1; a completely inhomogeneous vector-field map would result in
a Rayleigh vector length of 0).

Direction cells vs. egocentric bearing cells

Egocentric bearing cells encode egocentric directions towards local reference points, whereas
direction cells encode allocentric directions. However, egocentric direction towards a
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reference point becomes increasingly similar to allocentric direction with increasing distance
of the reference point from the subject.

In the main text, we showed that the homogeneity of vector-field maps differed between
egocentric bearing cells and direction cells. We performed additional analyses on the data
from the spatial reference memory task to clarify the relationship between egocentric bearing
cells and direction cells. First, to provide evidence that egocentric bearing cell tuning did not
spuriously arise due to potential collinearities between the factors “direction” and “egocentric
bearing” in our three-way ANOVA framework designed to identify egocentric bearing cells,
we performed this ANOVA on surrogate data [testing for significance of the tuning curves by
comparing against other surrogate data following (Kutter et al., 2018)]. In this way, we
empirically estimated the percentage of egocentric bearing cells that may have arisen due to
chance (for example, due to interdependencies between the factors “direction” and
“egocentric bearing”). As expected, this approach resulted in 4.9% (rn = 36) statistically
significant outcomes (i.e., false positives) in the spatial reference memory task, confirming
the a priori chosen alpha level of a = 0.05.

Second, we performed the egocentric bearing cell analysis using a two-way ANOVA, with
factors “place” and “egocentric bearing”, in order to test for the number of egocentric bearing
cells when not controlling for allocentric direction in our ANOVA framework. Using this
approach, we observed 112 egocentric bearing cells in the spatial reference memory task
(15.4%; binomial test vs. 5% chance, P < 0.001; as reported in the main text, we identified 90
egocentric bearing cells when also controlling for allocentric direction). Furthermore,
egocentric bearing cell test statistics (i.e., each cell’s cluster-percentileempiricat value) were
highly similar between both types of ANOVA (Spearman correlation, #(727) = 0.620, P <
0.001) and the overlap between egocentric bearing cells identified via the 2 different analyses
was significantly higher than expected by chance (i test, y*(1) = 165.256, P < 0.001).

Together, these analyses show (i) that egocentric bearing cells exhibit essential differences in
their tuning as compared to direction cells; (i) that egocentric bearing cells do not spuriously
arise from potential collinearities between the factors “direction” and “egocentric bearing” in
our ANOVA framework; and (iii) that egocentric bearing cells can also be identified in an
ANOVA framework with a reduced number of predictors (i.e., with the factors “place” and

2 <

“egocentric bearing” instead of the factors “direction”, “place”, and “egocentric bearing”).

Place-like cells

We identified place-like cells (Figure S6) using the same procedure as described for direction
cells by means of a two-way ANOVA with factors “direction” and “place”. We defined place
bins as those spatial bins in which the empirical firing rate exceeded the 95 percentile of
surrogate firing rates (Ekstrom et al., 2003).
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Memory cells

We identified memory cells (e.g., Figure 3N) as those cells that exhibited a significantly
positive or negative partial correlation between their firing rates and spatial memory
performance. We used a partial correlation in order to control for the effects of
time/experience. Memory-performance values were ranked before computing the partial
correlation. Empirical correlation values (7empirical) Were compared against surrogate
correlation values (Fsumogate) Obtained by performing the same analysis based on circularly
shifted firing rates. We labeled a neuron as a “memory cell”, if 7empirical €xceeded the 97.51
percentile of Fsumogate Values (positive memory cell) or if it fell below the 2.5™ percentile of
Fsurrogate Values (negative memory cell). The number of memory cells (positive and negative
memory cells combined) was then tested against 5% chance level using a binomial test.

Object cells

To identify object cells (e.g., Figure 4A), we analyzed each neuron’s activity using a three-
way ANOVA with factors “direction”, “place”, and “object”. The factor “object” could take
on one of 8 different values (because each patient learned and retrieved the locations of 8
different objects). For all time bins of a given trial, the factor “object” had the same value.
The analysis relied on the same time points as the analyses of egocentric bearing cells,
direction cells, and place-like cells. Time points during the cue period did not contribute to
this analysis. We obtained object cells and preferred objects (i.e., objects for which the cell’s
empirical firing rate exceeded the 95" percentile of surrogate firing rates) using surrogate
statistics as described above. Preferred objects are indicated as orange bars in Figure 4A.
Cells without a preferred object were excluded from the object-cell population.

To examine whether the preferred objects of object cells with >2 preferred objects exhibited a
specific spatial relationship (i.e., whether they were clustered in space), we estimated the
average Euclidean distance between the locations of all preferred objects, separately for each
object cell with >2 preferred objects, and averaged across cells afterwards (Dempirical). We
created surrogate distance values (Dsurogate) by randomly selecting n object locations per cell,
where n corresponds to the number of preferred objects in a given cell. We then determined
the percentile of Dempirical Within Dsyrrogate to test whether Dempirical Was smaller than the 5
percentile of Dsurogate-values (in this case, the locations of preferred objects would be closer
to each other than expected by chance; Figure 4B).

Spatial cells and non-spatial cells

Spatial cells were all cells that were either egocentric bearing cells, or direction cells, or
place-like cells. Non-spatial cells were all cells that were neither egocentric bearing cells, nor
direction cells, nor place-like cells.
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Neural activity during spatial memory recall

In order to examine the activity of egocentric bearing cells and object cells during the cue
period of the spatial reference memory task (Figure 5), we extracted the cells’ time-resolved
firing rates during each cue period (duration of 2 s, with an additional 1 s data segment before
the onset and after the offset of the actual cue period; temporal resolution of 4 Hz; no
smoothing). Firing rates were baseline-corrected with respect to a 1 s baseline period (-1 to 0
s before the onset of the recall period).

We first examined the effects of the presentation of preferred versus unpreferred objects in
object-cells, conjunctive object by egocentric bearing cells, and object by non-egocentric-
bearing cells. Object cells and preferred objects had been identified in the preceding object-
cell analysis, which was based on data from the retrieval period, feedback period, and re-
encoding period (not including the cue periods). For each cell, we calculated one firing-rate
time course associated with the presentation of preferred objects (mean across trials in which
a preferred object was shown) and one firing-rate time course associated with the
presentation of unpreferred objects (mean across all other trials). Afterwards, we used cluster-
based permutation testing [10001 permutations; (Maris and Oostenveld, 2007)] to identify a
significant cluster of contiguous time points in which recall events exhibited significantly
higher firing rates during the presentation of preferred versus unpreferred objects, separately
for the different groups of cells.

In egocentric bearing cells, we then examined the effects of the presentation of objects whose
associated object locations were close to the reference point (“close” objects) versus the
presentation of objects whose associated object locations were farther away from the
reference point (“far” objects). Hence, for each egocentric bearing cell, we calculated one
firing-rate time course associated with the presentation of “close” objects (those 2 objects
whose associated locations were closest to the reference point) and one firing-rate time
course associated with the presentation of “far” objects (all other objects). Afterwards, we
tested across egocentric bearing cells whether firing rates were higher during trials with
“close” objects as compared to trials with “far” objects using cluster-based permutation
testing (10001 permutations).

Neural activity during episodic memory recall

To test whether egocentric bearing cells have a role in episodic memory recall, we examined
their activity during the recall periods of the hybrid spatial navigation—episodic memory task
(Figure 8).

With respect to location-cued object recall, we extracted each cell’s firing rates during each
recall event (duration of 4 s, with an additional 1 s data segment before the onset and after the
offset of the actual recall period; temporal resolution of 4 Hz; no smoothing). Firing rates
were baseline-corrected with respect to a 1 s baseline period (-1 to 0 s before the onset of the
recall period). For each cell, we then calculated one firing-rate time course associated with
successful object-recall performance (mean across recall events in which the correct object
was recalled) and one firing-rate time course associated with unsuccessful object-recall
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performance (mean across recall events in which the correct object was not recalled).
Afterwards, we tested across egocentric bearing cells (and, as a control, across non-spatial
cells) whether time-resolved firing rates were significantly increased during successful recall
events. To this end, we used cluster-based permutation testing (1001 permutations) to identify
a significant cluster of contiguous time points in which successful recall events exhibited
firing rates that were (i) significantly above 0 and (ii) significantly higher than during
unsuccessful recall events (using two separate analyses). To test whether the contrast between
successful and unsuccessful recall events was significantly stronger in egocentric bearing
cells than in non-spatial cells, we performed a cluster-based permutation test (1001
permutations) on the firing-rate differences between successful and unsuccessful trials for
egocentric bearing cells versus non-spatial cells.

For object-cued location recall, we extracted each cell’s firing rates during each recall event
(variable duration, with an additional 1 s data segment before the onset and after the offset of
the actual recall period; temporal resolution of 4 Hz; no smoothing). Firing rates were
baseline-corrected with respect to a 1 s baseline period (-1 to 0 s before the onset of the recall
period). We aligned the firing-rate time courses relative to the response time point and used
the data from a time window of -5 to 1 s relative to the response time for further analysis. For
each cell, we then calculated one firing-rate time course associated with successful location-
recall performance (mean across trials in which location-recall performance was above 0.9)
and one firing-rate time course associated with unsuccessful location-recall performance
(mean across all other trials). We opted for an absolute performance cutoff of 0.9 to
differentiate between successful and unsuccessful recall periods, but similar results were
obtained when using a session-specific median split of performance values. Afterwards, we
tested across egocentric bearing cells (and, as a control, across non-spatial cells) whether
firing rates were significantly increased during successful recall events. Again, we used
cluster-based permutation testing (1001 permutations) in order to identify a significant cluster
of contiguous time points in which successful recall events exhibited firing rates that were (i)
significantly above 0 and (ii) significantly higher than during unsuccessful recall events
(using two separate analyses). To test whether the contrast between successful and
unsuccessful recall events was significantly stronger in egocentric bearing cells than in non-
spatial cells, we performed a cluster-based permutation test (1001 permutations) on the
firing-rate differences between successful and unsuccessful trials for egocentric bearing cells
versus non-spatial cells.
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Supplemental Tables

Table S1. Patients, related to Figures 1 to 8.

Spatial reference memory task

Hybrid spatial navigation—episodic memory task

Patient | Index Session # Trials Index Session # Trials
1 TH_001 0 21
2 39
2 OF_001 OF _001a 39 TH_002 0 32
OF_001b 78 1 32
3 OF_002 OF_002 34 TH_003 1 40
2 28
4 OF_003 OF_003a 167 TH_004 0 40
OF_003b 162 1 40
5 OF_004 OF_004a 166 TH_005 0 40
OF_004b 162 1 40
6 OF_005 OF_005 54 TH_006 0 40
1 40
7 OF_006 OF_006 98 TH_007 0 24
8 OF_007 OF_007 36
9 OF_008 OF_008 67
10 OF_009 OF_009 162 TH_008 0 32
1 24
11 OF 010 OF_010 102
12 OF 011 OF 011 54 TH_009 0 40
13 OF 012 OF 012 102 TH_010 0 40
1 40
14 OF 013 OF 013a 167 TH 011 0 40
OF_013b 164
15 OF 014 OF 014 94 TH 012 0 40
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Table S2. Additional characteristics of findings, related to Figures 2, 3, 4, 5, 6, 8, S5, S6,
and S8.

Figure Additional characteristics of findings for illustrative purposes

2A, middle | ANOVA statistics associated with the tuning curve: F(11, 29506) = 6.706, P < 0.001. Difference between
maximum and minimum firing rate = 0.946 Hz.

2B, middle | ANOVA statistics associated with the tuning curve: F(11, 20896) = 3.016, P < 0.001. Difference between
maximum and minimum firing rate = 1.267 Hz.

2C, middle | ANOVA statistics associated with the tuning curve: F(11, 8033) = 3.839, P < 0.001. Difference between
maximum and minimum firing rate = 1.148 Hz.

2D, middle | ANOVA statistics associated with the tuning curve: F(11, 18459) = 3.600, P < 0.001. Difference between
maximum and minimum firing rate = 1.278 Hz.

2E, middle | ANOVA statistics associated with the tuning curve: F(11, 20896) = 5.639, P < 0.001. Difference between
maximum and minimum firing rate = 0.496 Hz.

3F, left Linear fit (red line): y = 0.248 * 10 * x — 0.130. Difference between maximum and minimum firing rate =
0.915 Hz.

3F, right Linear fit (red line): y = -0.147 * 107 * x + 1.220. Difference between maximum and minimum firing rate
=0.950 Hz.

3H Average firing rate within the bearing-distance field: 11.325 Hz; average firing rate outside the bearing-

distance field: 8.937 Hz. The difference is 2.388 Hz.

31 Average firing rate within the bearing-distance field: 1.079 Hz; average firing rate outside the bearing-
distance field: 0.495 Hz. The difference is 0.584 Hz.

3J, left Average firing rate within the bearing-distance field: 8.136 Hz; average firing rate outside the bearing-
distance field: 5.754 Hz. The difference is 2.382 Hz.

3J, right Average firing rate within the bearing-distance field: 3.573 Hz; average firing rate outside the bearing-
distance field: 2.817. The difference is 0.756 Hz.

3N, left Linear fit (red line): y = 0.871 * x — 0.418.

3N, right Linear fit (red line): y = -2.040 * x + 0.959.

4A ANOVA statistics associated with the tuning curve: F(7, 8037) = 11.729, P < 0.001. Difference between
maximum and minimum firing rate = 2.948 Hz.

5B Average firing rate within the significant time window for preferred objects: 0.602 Hz; average firing rate
within the significant time window for unpreferred objects: -0.070 Hz. Paired t-test: #(122) = 4.218; P <
0.001.

5C Average firing rate within the significant time window for object by egocentric bearing cells: 1.837 Hz;

average firing rate within the significant time window for object by non-egocentric-bearing cells: 0.269
Hz. Two-sample #-test: #(121) = 4.275, P < 0.001.

SF Average firing rate within the significant time window for close objects: 0.291 Hz; average firing rate
within the significant time window for far objects: -0.070 Hz. Paired #-test: #(89) = 3.103, P = 0.003.

6C, middle | ANOVA statistics associated with the tuning curve: F(11, 6401) = 2.031, P = 0.022. Difference between
maximum and minimum firing rate: 1.064 Hz.

6D, middle | ANOVA statistics associated with the tuning curve: F(11, 5739) = 3.096, P < 0.001. Difference between
maximum and minimum firing rate: 1.024 Hz.

6E, middle | ANOVA statistics associated with the tuning curve: F(11, 6537) = 2.492, P = 0.004. Difference between
maximum and minimum firing rate: 0.439 Hz.
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6F, middle

ANOVA statistics associated with the tuning curve: F(11, 6588) = 2.218, P = 0.011. Difference between
maximum and minimum firing rate: 0.779 Hz.

6G, middle

ANOVA statistics associated with the tuning curve: F(11, 6588) = 12.111, P < 0.001. Difference between
maximum and minimum firing rate: 2.665 Hz.

8B

Average firing rate within the significant time window (successful>unsuccessful) for successful trials:
0.446 Hz; average firing rate within the significant time window (successful>unsuccessful) for
unsuccessful trials: 0.135 Hz; paired #-test between successful and unsuccessful trials: #(73) = 2.511, P =
0.014. Average firing rate within the significant time window (successful>0) for successful trials: 0.446
Hz; one-sample #-test for successful trials versus 0: #(73) =2.099, P = 0.039.

8D

Average firing rate within the significant time window for successful-unsuccessful trials in egocentric
bearing cells: 0.311 Hz; average firing rate within the significant time window for successful-unsuccessful
trials in non-spatial cells: 0.034 Hz; two-sample z-test: #(651) =2.674, P = 0.008.

8F

Average firing rate within the significant time window (successful>unsuccessful) for successful trials:
0.295 Hz; average firing rate within the significant time window (successful>unsuccessful) for
unsuccessful trials: -0.118 Hz; paired #-test: #(73) = 3.090, P = 0.003. Average firing rate within the
significant time window (successful>0) for successful trials: 0.295 Hz; one-sample #-test for successful
trials versus 0: #(73) = 2.445, P=0.017.

8G

Average firing rate within the significant time window for successful-unsuccessful trials in egocentric
bearing cells: 0.350 Hz; average firing rate within the significant time window for successful-unsuccessful
trials in non-spatial cells: -0.037 Hz; two-sample z-test: #(651) = 3.147, P = 0.002.

SSA

ANOVA statistics associated with the tuning curve: F(11, 29517) = 23.435, P <0.001. Difference between
maximum and minimum firing rate = 1.540 Hz.

S6A

ANOVA statistics associated with the tuning curve: F(49, 17045) = 1.799, P < 0.001. Difference between
maximum and minimum firing rate = 1.951 Hz.

S6B

ANOVA statistics associated with the tuning curve: F(39, 14097) = 2.656, P < 0.001. Difference between
maximum and minimum firing rate = 1.526 Hz.

S6C

ANOVA statistics associated with the tuning curve: F(47,29517) = 3.293, P < 0.001. Difference between
maximum and minimum firing rate = 2.592 Hz.

S6D

ANOVA statistics associated with the tuning curve: F(47,29517) = 2.866, P < 0.001. Difference between
maximum and minimum firing rate = 1.824 Hz.

S6E

ANOVA statistics associated with the tuning curve: F(62, 17087) = 3.292, P < 0.001. Difference between
maximum and minimum firing rate = 5.083 Hz.

S8B

Average firing rate within the significant time window (successful>unsuccessful) for successful trials:
0.307 Hz; average firing rate within the significant time window (successful>unsuccessful) for
unsuccessful trials: 0.054 Hz; paired #-test between successful and unsuccessful trials: #(157) = 3.863, P <
0.001. Average firing rate within the significant time window (successful>0) for successful trials: 0.354
Hz; one-sample #-test for successful trials versus 0: #157) =3.149, P = 0.002.

S8D

Average firing rate within the significant time window for successful-unsuccessful trials in spatial cells:
0.252 Hz; average firing within the significant time window for successful-unsuccessful trials in non-
spatial cells: 0.019 Hz; two-sample #-test: #(735) = 3.446, P =0.001.

S8F

Average firing rate within the significant time window (successful>unsuccessful) for successful trials:
0.194 Hz; average firing rate within the significant time window (successful>unsuccessful) for
unsuccessful trials: -0.067 Hz; paired r-test: #157) = 3.662, P < 0.001. Average firing rate within the
significant time window (successful>0) for successful trials: 0.248 Hz; one-sample #-test for successful
trials versus 0: #(157) = 3.137, P =0.002.

S8H

Average firing rate within the significant time window for successful-unsuccessful trials in spatial cells:
0.267 Hz; average firing rate within the significant time window for successful-unsuccessful trials in non-
spatial cells: -0.041 Hz; two-sample #-test: #735) =2.959, P =0.003.

The results in this table are for illustrative purposes only.
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Table S3. Allocentric and egocentric single-neuron codes in the medial temporal lobe,

1335 related to Figures 1 to 8.
Allocentric Egocentric
Animals Humans Animals Humans
Head-direction cell® Direction cell®* Item-bearing cell? Egocentric bearing
kS cell®
]
<
,g Place cell° Place-like cell®f Item-bearing cell with | Egocentric bearing
§ distance tuning® cell with distance
< tuning®
3
N Social place cell® - - -
s 2
; g Social place cell Spatial target cell® Item-bearing cell? -
\><' = tuned to an inanimate
% g object®
S
< Grid cell® Grid celll - -
= 4
2 Band cell - - -
V)
QO
- Path equivalence cell® - -
Border cell! - - -
5
T S
= § Boundary-vector - Egocentric boundary -
§ io cell™ cell”; item-bearing
S § celld
v
s s . . .
Q&: < - - Center-bearing cell®; Egocentric bearing
L2 = item-bearing cell? cell with a center
§ % reference point®; path
Q
° 5 cellP
= 8
i % Spatial view cell? - Item-bearing cell? Egocentric bearing
S o cell with reference
O = . b
point at a boundary
= Landmark-vector - Egocentric cue Egocentric bearing
= § '§ cell’; object-vector direction cell?; item- cell with reference
g 'é § cell®; vector-trace cell' bearing cell? point at an object®
< )
R o~
Z g - - Goal-vector cell"; -
2 3 . .
8 S £ item-bearing cell
. tuned to a goal?
%Taube et al., 1990); this study; ¢(Tsitsiklis et al., 2020); 4Wang et al., 2018); ¢(O’Keefe and Dostrovsky, 1971);
f(Ekstrom et al., 2003); &Omer et al., 2018); "(Hafting et al., 2005); i(Jacobs et al., 2013); i(Krupic et al., 2012); X(Miller
et al., 2015); (Solstad et al., 2008); ™(Lever et al., 2009); "(Hinman et al., 2019); °(LaChance et al., 2019); P(Jacobs et
al., 2010); 9(Rolls, 1999); "(Deshmukh and Knierim, 2013); S(Hoydal et al., 2019); (Poulter et al., 2020); “(Wilber et al.,
1340  2014); Y(Sarel et al., 2017); “-” denotes that no evidence has been obtained so far to the best of our knowledge.
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Supplemental Figures

A B

Allocentric coding via place cells

Egocentric coding via egocentric bearing cells

Figure S1. Illustration of the egocentric coding scheme of egocentric bearing cells as compared to the allocentric
coding scheme of place cells, related to Figures 2, 6, and S6. (A) Coding of spatial information in an egocentric
reference frame (white lines), which is centered on the subject. The subject and the surrounding room are shown from a
bird’s eye view. The reference point of a hypothetical egocentric bearing cell is shown in red. The activity of this
egocentric bearing cell provides the subject with the information that the area of the environment that is marked by the
reference point is about 35° to the right and about 2 meters away from the subject. (B) Coding of spatial information in
an allocentric reference frame, which is bound to the external environment. The place field of a hypothetical place cell
is shown in blue. The activity of this place cell provides the subject with the information that the subject is standing in
the south-east part of the environment.
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Figure S2. Examples of microelectrode locations, related to Figures 2, 3, 4, and 6. (A to E) Example
microelectrode locations in regions for which region-specific analyses were performed (i.e., amygdala, entorhinal
cortex, hippocampus, parahippocampal cortex, and temporal pole). Electrode contacts of depth electrodes appear as
dark circles on the MRI scans. Red arrows point at putative microelectrode locations, which protrude 3—5 mm from the
tip of the depth electrode (often not visible on MRI scans). White triangles indicate the borders of the different brain
regions.
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Figure S3. Quality assessment of single-neuron recordings, related to Figures 2 to 8. (A and B) Histogram of units
per wire. On average, 1.516 + 0.037 [1.520 £ 0.034 (mean + SEM)] units per wire were recorded. (C and D) Histogram
of the percentages of inter-spike intervals (ISIs) that were shorter than 3 ms. On average, units exhibited 0.434 +
0.031% [0.545 £ 0.040% (mean = SEM)] ISIs that were shorter than 3 ms. There was 1 unit [5 units] with values >5%.
(E and F) Histogram of mean firing rates (FRs). On average, units exhibited mean FRs of 2.268 £0.112 [2.437 £ 0.115
(mean + SEM)] Hz. (G and H) Histogram of the mean waveform peak signal-to-noise ratio (SNR) of each unit. On
average, the SNR of the mean waveform peak was 8.820 + 0.168 [8.704 £+ 0.164 (mean + SEM)]. Numbers outside
brackets refer to the spatial reference memory task (panels A, C, E, and G); numbers inside brackets refer to the hybrid
spatial navigation—episodic memory task (panels B, D, F, and H).
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Figure S4. Behavioral sampling of egocentric bearing towards candidate reference points, related to Figures 2, 3,
6, and 7. For each candidate reference point, the distribution of egocentric bearings towards this candidate point is
depicted. Top, data from the spatial reference memory task; bottom, data from the hybrid spatial navigation—episodic
memory task. Distributions are expressed as probabilities. Black line, mean across sessions; gray area, SD across
sessions. Numbers above each subpanel indicate the (x/y) or (x/z)-coordinate of the candidate reference point in virtual
units. A (B; L; R), ahead (behind; to the left; to the right) of the subject.
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Figure S5. Direction cells, related to Figure 3. (A) Left, example direction cell encoding allocentric direction. Gray
shaded area, tuning curve; black line, preferred direction; colored circle, allocentric direction. Right, vector-field map
of this example direction cell, illustrating that allocentric direction tuning is consistent across the environment. Black
circle, environmental boundary. (B) Distribution of allocentric direction cells (n = 78) across brain regions. Dashed
line, 5% chance level. White numbers, total number of cells per region. (C) Comparison of vector-field strengths
between direction cells and egocentric bearing cells. AMY, amygdala; EC, entorhinal cortex; HC, hippocampus; PHC,
parahippocampal cortex; TP, temporal pole. E, east; N, north; S, south; W, west. a.u., arbitrary units; ms, milliseconds;
pV, microvolts; vu, virtual units. Error bars indicate SEM. *P < 0.05; **P <0.01; ***P < 0.001.
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Figure S6. Place-like cells, related to Figure 3. (A to E) Examples of place-like cells. For example, the hippocampal
place-like cell shown in (A) increased its firing rate when the subject was in the “southeast” part of the environment.
Colored areas depict smoothed firing rates as a function of place (dark blue, low firing rate; dark red, high firing rate).
White line delineates place bins. Gray line, patient’s navigation path. Only bins with >5 separate traversals were
included in the analysis to ensure sufficient behavioral sampling. Black circle, environmental boundary. ms,
milliseconds; uV, microvolts. (F) Distribution of place-like cells across brain regions (n = 85; binomial test vs. 5%
chance, P < 0.001). Dashed line, 5% chance level. White numbers, total number of cells per region. AMY, amygdala;
EC, entorhinal cortex; HC, hippocampus; PHC, parahippocampal cortex; TP, temporal pole. *P < 0.05; **P < 0.01;
*¥*%P <0.001.
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Figure S7. Session-wise examples of reference-point distributions in the spatial reference memory task, related
to Figure 3. (A to D) Examples of the spatial distribution of reference points in four different sessions. There were
both sessions in which the reference points appeared randomly distributed across the environment (e.g., panel B) and
sessions in which the reference points appeared relatively close to each other (e.g., panel C). Dark green dots, center
reference points; lime green dots, periphery reference points; solid black line, environmental boundary; dotted black
line, radius separating center reference points from periphery reference points. (E) Evaluation of the distance between
reference points from the same session (“Empirical”) versus the distance between reference points from different
sessions (“Surrogates”), showing that reference points from the same session were not closer to each other than
reference points from different sessions. vu, virtual units.

53



1410

1415

1420

1425

1430

A B C D

Spatial cells Non-spatial cells Interaction
Cue with location, recall object name Cue onset
Location cue ———— Object recall 084 =

(4s)

Subject speaks
object name

Firing rate (Hz)

1012 3 45 101 2 3 45 101 2 3 45
Time (s) Time (s) Time (s)

. . . Response onset
Cue with object name, recall location

Object cue ———> Location recall 0.6 1 i ; 1
(self-paced) = i i
- . T
L
[
“Where was g’
the duck?” T ]
-0.4 - :
- Subject chooses location 5 4 -3 -2 -10 1 5 4 3 -2 101 5 4 -3 2 10 1
<€ with cursor Time (s) Time (s) Time (s)
= Successful = Spatial cells, successful minus unsuccessful
= Unsuccessful Non-spatial cells, successful minus unsuccessful

Figure S8. Spatial cells activate during successful episodic memory recall, related to Figure 8. (A) Schematic for
location-cued object recall. (B and C) Firing rates of spatial cells (B) and non-spatial cells (C) during successful
(green) versus unsuccessful (red) object recall. Spatial cells exhibited increased firing rates during successful object
recalls shortly after the location cue (cluster-based permutation test for successful vs. unsuccessful recall periods, P =
0.004; cluster-based permutation test for successful recall periods vs. 0, P = 0.023). Spatial cells comprise egocentric
bearing cells, direction cells, and place-like cells; non-spatial cells comprise all other cells. (D) Interaction effect
showing a significant difference between the activity of spatial cells (dark gray) and non-spatial cells (light gray)
during successful versus unsuccessful recall periods (cluster-based permutation test for an interaction between
“performance” and “cell type”, P = 0.011). (E) Schematic for object-cued location recall. (F and G) Response-locked
firing rates of spatial cells (F) and non-spatial cells (G) during good (green) versus bad (red) location recall. Spatial
cells exhibited increased firing rates during good location recalls (cluster-based permutation test for successful vs.
unsuccessful recall periods, P = 0.007 and P = 0.010, respectively; cluster-based permutation test for successful recall
periods vs. 0, P = 0.004). (H) Interaction effect showing a significant difference between the activity of spatial cells
(dark gray) and non-spatial cells (light gray) during successful versus unsuccessful recall periods (cluster-based
permutation test for an interaction between “performance” and “cell type”, P = 0.035). Firing rates in B, C, D, F, G,
and H are baseline-corrected with respect to a one-second baseline interval before the onset of the recall period. In B,
C, F, and G, black shadings at top indicate significant clusters of firing-rate differences between successful and
unsuccessful recall periods; gray shadings indicate significant deviations of firing-rates from 0 during successful recall
periods (cluster-based permutation tests, P < 0.05). In D and H, black shadings indicate significant interaction effects
(cluster-based permutation tests, P < 0.05). All cluster-based permutation tests control for multiple comparisons across
the entire depicted time window.
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