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Abstract
We construct two types of unital separable simple C*-algebras: AZC] and AZCZ, one exact but not amenable, the other

nonexact. Both have the same Elliott invariant as the Jiang—Su algebra — namely, AZC" has a unique tracial state,
C; Ci —
(Ko(A"). ko (A7) |1, ]) = @ 20,

and K, AST) = 0} ¢ = 1,2). We show that ASi (i = 1,2) is essentially tracially in the class of separable
z z y y p

Z -stable C*-algebras of nuclear dimension 1. Azci has stable rank one, strict comparison for positive elements and
no 2-quasitrace other than the unique tracial state. We also produce models of unital separable simple nonexact
(exact but not nuclear) C*-algebras which are essentially tracially in the class of simple separable nuclear Z -stable
C*-algebras, and the models exhaust all possible weakly unperforated Elliott invariants. We also discuss some basic
properties of essential tracial approximation.

1. Introduction

Simple unital projectionless amenable C*-algebras were first constructed by Blackadar [2]. The
C*-algebra A constructed by Blackadar has the property that Ko(A) = Z with the usual order but with
nontrivial Kj(A). The Jiang—Su algebra Z given by Jiang and Su [27] is a unital infinite-dimensional
separable amenable simple C*-algebra with Elliott invariant exactly the same as that of the complex
field C, Let A be any o -unital C*-algebra. Then K;(A) = K;(A® Z) (i =0, 1) as abelian groups and
T(A) 2=T(A® Z).If Ais aseparable simple C*-algebra, then A ® Z has nice regularity properties. For
example, A ® Z is either purely infinite or stably finite [42]. In fact, if A ® Z is not purely infinite, then
it has stable rank one when A is not stably projectionless [42], or it almost has stable rank one when it
is stably projectionless [38]. Also, A ® Z has weakly unperforated Ko-group [23]. Another important
regularity property is that A ® Z has strict comparison [42] (see also Definition 2.6). If A has weakly
unperforated Ky(A), then A and A ® Z have the same Elliott invariant. In other words, A and A @ Z
are not distinguishable from the Elliott invariant.

The Jiang—Su algebra Z is an inductive limit of 1-dimensional noncommutative CW complexes. In
fact, Z is the unique infinite-dimensional separable simple C*-algebra with finite nuclear dimension in
the UCT class which has the same Elliott invariant as that of the complex field C (see [16, Corollary
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2 X. Fuand H. Lin

4.12]). These properties give Z a prominent role in the study of structure of C*-algebras, in particular
in the study of classification of amenable simple C*-algebras.

Attempts to construct a nonnuclear Jiang—Su-type C*-algebra have been on the horizon for over
a decade. In particular, after Dddarlat’s construction of nonamenable models for non—type I separa-
ble unital AF-algebras [13], this should be possible. The construction in [13] generalised some ear-
lier constructions of simple C*-algebras of real rank zero such as that of Goodearl [25]. Jiang and
Su’s construction has a quite different feature. To avoid producing any nontrivial projections, unlike
Daidarlat’s construction, Jiang and Su did not use any finite-dimensional representations as a direct
summand of connecting maps in the inductive systems. The construction used prime-dimension drop
algebras, and connecting maps were highly inventive so that the traces eventually collapse to one. In
fact, Rgrdam and Winter took another approach [43] using a C*-subalgebra of C([0, 1], M, ® M),
where p and q are relatively prime supernatural numbers. One possible attempt to construct a nona-
menable Jiang—Su-type C*-algebra would use C([0, 1], B, ® By), where By, and B are, respectively,
nonamenable models for M, and M constructed in [13]. However, one usually would avoid computa-
tion of the K-theory of tensor products of nonexact simple C*-algebras such as By, and B,. Moreover,
Rgrdam and Winter’s construction depends on knowing the existence of the Jiang—Su algebra Z'. On the
other hand, if one considers nonexact interval ‘dimension drop algebras’, besides controlling K-theory
one has additional issues such as the fact that each fibre of the ‘dimension drop algebra’ is not simple
(unlike the usual dimension drop algebras, whose fibres are simple matrix algebras).

We will present some nonexact (or exact but nonnuclear) unital separable simple C*-algebras AZC
which have the property that their Elliott invariants are the same as that of the Jiang—Su algebra Z —

namely, (KO(AS),KO(AZC)+, [lAZC]) = (Z,Z+,1), K1 (AS) = {0} and A has a unique tracial state.

Moreover, AZC has stable rank one and has strict comparison for positive elements. AZC has no (nonzero)
2-quasitrace other than the unique tracial state. Even though Azc may not be exact, it is essentially
tracially approximated by Z. In particular, it is essentially tracially approximated by unital simple
C*-algebras with nuclear dimension 1.

In this paper, we will also study the tracial approximation. We will make it precise what we mean by
saying that AZC is essentially tracially approximated by Z (Definition 3.1, Lemma 8.1). We expect that
regularity properties such as stable rank one, strict comparison for positive elements and almost unper-
forated Cuntz semigroups, as well as approximate divisibility, are preserved by tracial approximation.
In fact, we show that if a unital separable simple C*-algebra A is essentially tracially in Cx, the class
of Z-stable C*-algebras, then — as far as the usual regularity properties are concerned — A behaves just
like C*-algebras in C5. More precisely, we show that if A is simple and essentially tracially in Cs, then
A is tracially approximately divisible. If A is not purely infinite, then it has stable rank one (or almost
has stable rank one, if A is not unital) and has strict comparison, and its Cuntz semigroup is almost
unperforated. If A is essentially tracially in the class of exact C*-algebras, then every 2-quasitrace of
m, for any a in the Pedersen ideal of A, is in fact a trace.

Using AZC, we present a large class of nonexact (or exact but nonnuclear) unital separable simple
C*-algebras which exhaust all possible weakly unperforated Elliott invariants. Moreover, every
C*-algebra in the class is essentially tracially in the class of unital separable simple C*-algebras which
are Z -stable, and has nuclear dimension at most 1.

The paper is organised as follows: Section 2 serves as preliminaries, where some frequently used
notations and definitions are listed. Section 3 introduces the notion of essential tracial approximation for
simple C*-algebras. In Section 4 we present some basic properties of essential tracial approximation.
For example, we show that if A is a simple C*-algebra and is essentially tracially approximated by
C*-algebras whose Cuntz semigroups are almost unperforated, then the Cuntz semigroup of A is almost
unperforated (Theorem 4.3). In particular, A has strict comparison for positive elements. In Section 5
we study the separable simple C*-algebras which are essentially tracially approximated by Z -stable C*-
algebras. We show that such C*-algebras are either purely infinite or almost have stable rank one (or do
have stable rank one, if the C*-algebras are unital). These simple C*-algebras are tracially approximately

divisible and have strict comparison for positive elements. In Section 6 we begin the construction of
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AZC. In Section 7 we show that the construction in Section 6 can be made simple, and the Elliott
invariant of AZC is precisely the same as that of a complex field, just as with the Jiang—Su algebra Z. In
Section 8 we show that Af has all expected regularity properties. Moreover, Af is essentially tracially
approximated by Z . Using AZC, we also produce, for each weakly unperforated Elliott invariant, a unital
separable simple nonexact (or exact but nonnuclear) C*-algebra B which has the said Elliott invariant,
has stable rank one, is essentially tracially approximated by C*-algebras with nuclear dimension at most
1, has almost unperforated Cuntz semigroup, has strict comparison for positive elements and has no
2-quasitraces which are not traces.

2. Preliminaries

In this paper, the set of all positive integers is denoted by N. If A is unital, U(A) is the unitary group of
A. A linear map is said to be c.p.c., if it is a completely positive contraction.

Notation 2.1. Let A be a C*-algebra and F C A be a subset. Let € > 0. Seta, b € A and write a = b
if ||a — b|| < €. We write a €, F if there is x € F such that a ~, x.

Notation 2.2. Let A be a C*-algebra and let S C A be a subset of A. Denote by Her 4 (S) (or just Her(S),
when A is clear) the hereditary C*-subalgebra of A generated by S. Denote by A! the closed unit ball
of A, by A, the set of all positive elements in A, by AL := A, N Al and by Ay, the set of all self-adjoint
elements in A. Denote by A (or A™) the minimal unitisation of A. When A is unital, denote by GL(A)
the set of invertible elements of A and by U(A) the unitary group of A.

Notation 2.3. Let € > 0. Define a continuous function f, : [0, +c0) — [0, 1] by

0, t € [0,€/2],
fe(®) =141, t € [€, ),
linear, te€ [€/2,€].

Definition 2.4. Let A be a C*-algebra and set Mo (A); := U,ery Mn(A);. For x € M, (A), we identify
x with diag(x,0) € M, (A) for all m € N. Set a € M,(A), and b € M,,(A),. We may write
a ® b = diag(a,b) € Myum(A)s. If a,b € M, (A), we write a < b if there are x; € M,,(A) such
that limi_mna —x;.“bxiH = 0. We write a ~ bif a < b and b < a hold. The Cuntz relation ~ is an
equivalence relation. Set W(A) := M (A);/~. Let (a) denote the equivalence class of a. We write
(ay < (b)ifa < b. (W(A), <) is a partially ordered abelian semigroup. Let Cu(A) = W(AQ K). W(A)
(resp., Cu(A)) is called almost unperforated if, for any (a), (b) € W(A) (resp., Cu(A)) and any k € N,
when (k + 1){a) < k({b), we have (a) < (b) (see [40]).

Let B C A be a hereditary C*-subalgebra, and set a, b € B,. Itis clear that a <p b implies a <4 b.
Conversely, if a <4 b, then, for any € > 0, there exists x € A such that ||la — x*bx|| < £/4. Choose
e € Bl suchthat la—eael| < &/4.Then||a — ex*b'/*b1/2b/4xe|| < /2.1t follows thata <p b'/> ~p b.
In other words, a <4 b © a < b.

Remark 2.5. It is known to some experts that the condition that W(A) be almost unperforated is
equivalent to the condition that Cu(A) be almost unperforated. To see this briefly, let us assume that
W(A) is almost unperforated and set a, b € (A ® K), such that (k + 1){a) < k(b). Let {e; ;} be the
system of matrix units for I and E,, = 3.7 | 1 ; ® ¢;;, and let & > 0. Note that E,aE, € M, (A), for
all n € N. Moreover, a ~.3 E,ak, for some large n € N. It follows from [40, Proposition 2.2] that
(a—¢&)s S (EpakE, —e/4); and (E aE, — €/4); < (a — €/8),. By [40, Proposition 2.4], there exists
6 > 0 such that (k + 1){(a — €/8)+) < k((b — 6);). Repeating Rgrdam’s results [40], one obtains that
(b —06)s) < (EnbE,,) for some even larger m (m > n). Now one has (k + 1){(E,aE, — €/4);) <
k{E,DE,,). By the last paragraph of Definition 2.4, this holds in M,,(A). Since W(A) is almost
unperforated, (a — &)y < (EqaE, —€/4)y < EwbE,,. Then (a — €)y < EbE,, < b. It follows that
a < b. Therefore W(A) being almost unperforated implies that Cu(A) is almost unperforated.
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To see the converse, just notice again that A is a hereditary C*-subalgebra of A ® K; then (a) < (b)
in Cu(A) = W(A ® K) implies {a) < (b) in W(A).

Definition 2.6. Denote by QT (A) the set of 2-quasitraces of A with ||7|| = 1 (see [4, IT 1.1, IT 2.3]) and
by T(A) the set of all tracial states on A. We will also use T(A) as well as QT (A) for the extensions on
M (A) for each k. In fact, T(A) and QT (A) may be extended to lower semicontinuous traces and lower
semicontinuous quasitraces on A ® K (see before [17, Proposition 4.2] and [7, Remark 2.27(viii)]).

Let A be a C*-algebra. Denote by Ped(A) the Pedersen ideal of A (see [36, 5.6]). Suppose that A is a
o-unital simple C*-algebra. Choose b € Ped(A), with ||b|| = 1. Put B := bAb = Her(b). Then by [8],
A®K = B® K. For each T € QT (B), define a lower semicontinuous functiond, : A® K, — [0, +c0],
x B limy, e T( Sin (x)). The function d is called the dimension function induced by 7.

We say A has strict comparison (for positive elements) if, for any a,b € A ® K, the statement
dr(a) < d.(b) for all T € QT (B) implies that a < b.

3. Tracial approximation

Definition 3.1. Let P be a class of C*-algebras that is closed under isomorphisms, and let A be a
simple C*-algebra. We say A is essentially tracially in P (abbreviated as ‘e. tracially in P’) if, for any
finite subset 7 C A, any & > 0 and any s € A, \ {0}, there exist an element ¢ € Al and a nonzero
C*-subalgebra B of A which is in P such that the following hold:

(1) |lex —xel|| < e forall x € F.
(2) (1-e)x €z Band ||(1 —e)x]| = ||x|| — & forall x € F.
3) e <.

Proposition 3.2. Let P be a class of C*-algebras and let A be a simple C*-algebra. Then A is e. tracially
in P if and only if the following hold: For any € > 0, any finite subset F C A, any a € A, \ {0} and any
finite subset G  Co((0, 1]), there exist an element e € Al and a nonzero C*-subalgebra B of A such
that B in ‘P, and the following hold:

(1) |lex —xel|| < eforall x € F.
2) g(l—e)x ez Bforallg e Gand ||(1 —e)x|| = ||x|| — e forall x € F. and
B)esa.
Proof. The ‘if” part follows easily by taking G = {¢}, where ¢(¢) =t for all 7 € [0, 1].

‘We now show the ‘only if” part.

Suppose that A is e. tracially in P. Let £ > 0 and let 7 C A be a finite subset, and without loss of
generality we may assume that F ¢ A!. Moreover, without loss of generality (omitting an error within
£/16, say), we may further assume that there is e5 € A}r such that

eax =x =xep forall x € F. (e3.1)

Seta € A, \ {0}, lete > Oandlet G ={g1,82,...,8n} C Co((0,1]) be a finite subset.
By the Weierstrass theorem, there are m € N and polynomials p;(¢) = 2.7, ﬁ,(c’)tk such that

|pi(t) — gi(1)] < e/4forallt € [0,1] and all i € {1,2,...,n}. (€3.2)

LetM=1+max{’,8,(j) i=1,2,...,n, k= 1,2,...,m} and ¢ := m

Now, since A is e. tracially in 7, there exist an element ¢ € Al and a nonzero C*-subalgebra B C A
such that B in P, and the following hold:

(1) Jlex—xe|| <o forallx € FU {ea}.
2) (1-e)xes Band ||(1 —e)x]|| = ||x]| =6 forallx € FU{ea}.
3) esga.
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It remains to show that g;(1 —e)x €.p Bforallx € F,i=1,2,...,n.
Claim: For all x € Fand all k € {1,2,...,m}, we have (1 — e)kx S B. In fact,
k-1
. 1 >
(1-e)rx (€21 (1-e kez_lx z(kz)é (I —e)ea(l —e)es---(1 —e)ea(l —e)x E(k()s B. (e3.3)

Note that 2k%6 < 2m>6 < &/16mM. The claim follows.
By formula (¢3.2) and the claim, for x € Fandi € {1,2,...,n} we have

m
gi(l—e)x ~epa pi(1—e)x = > B (1 - e)x €4 B. (e3.4)
k=1

Remark 3.3.

(1) A similar notion as in Definition 3.1 could also be defined for nonsimple C*-algebras. However, in
the present paper we are interested in only the simple case.

(2) Note that in Proposition 3.2, g(1 — ¢) is an element in A. But g(1 — e)x € A. In the case that A
is unital, the condition ||(1 — e)x|| > ||x|| — € for all x € F in condition (2) of the definition 3.1 is
redundant for most cases (we leave the discussion to [22]).

(3) The notion of tracial approximation was first introduced in [29] (see also [30]). Let P be a class of
unital C*-algebras — for example, the class of C*-algebras which are isomorphic to C*-algebras of
the form C([0, 1], F), where F are finite-dimensional C*-algebras. If, in Definition 3.1, 1 — e can
be chosen to be the unit of B(€ P), then A is TAI or A has tracial rank at most 1 [30, 32]. In general,
if A is unital simple and is TAP (see [14, Definition 2.2] and [18]), then A is e. tracially in P. The
difference is that we allow e to be a positive element rather than a projection.

To see this, let A be a unital simple C*-algebra which is TAP. Fix a finite subset / C A that
contains 14. Fix € > 0 and a € A, \{0}. By a well-known result due to Blackadar (see, for example,
[3, I1.8.5.6]), there is a unital separable simple C*-subalgebra C C A such that 7 c C. Let {F, }nen
be an increasing sequence of finite subsets of C whose union is dense in C, and F c Fj. Since A
is TAP in the sense of [14, Definition 2.2], there are nonzero projections p, € A and C*-algebras
B, C A with B, in P, and p,, is the unit of B, (n € N), which satisfies

(1) ||pnx —xpull < &/2n for all x € F,,
(ii) pnXpn €g/on By forall x € F,, and
(iii) 1-p, < a.

Assume that for each n € N, there is some x € F such that ||p,xp,.|| < |[p»x]| < ||x]| — €. Then
since F is a finite set, we can find xg € F and an increasing sequence of natural numbers {7, };nen
such that ”pnmxopan < |lxo||—& forallm € N. Define ac.p.c. linearmap ¢ : C — [*(A)/co(A) by
@(x) := w({pn,XPny> PrsXPny, - . }), where x € C and 7 : [¥(A) — [*(A)/co(A) is the quotient
map. By condition (i) we see that ¢ is a homomorphism. Since ¢(14) = ﬂ({pnl,pnz, .. }) *
0, ¢ is nonzero. Since C is simple, ¢ is injective and hence isometric. However, ||¢(xg)|| =
||7r({pn]x0,pn2xo, . })H < supmeNHpnmxopnm < ||xo]| — &: a contradiction. Therefore, there is
ng € N such that ||pn0x|| > ||x]| — e for all x € F. Set e := 14 — py,; then by (i)—(iii) and the choice
of ng, we have

(1) |lex — xe|| < e forall x € F,
(2') (1 -e)x €z By, and ||(1 — e)x]|| = ||x|| — & for all x € F and
(3) esga.

Hence A is e. tracially in P.

We note also that in general, a C*-algebra that is essentially tracially in P may not be TAP (see
Remark 8.5).
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(4) The current definition is also related to the notion of a ‘centrally large subalgebra’ ([37, Definition
4.1] and [1, Definition 2.1]) but not the same. The main difference is that the C*-subalgebra B in
[1, Definition 2.1] is fixed. In fact, for a simple unital C*-algebra A and a class of C*-algebras P, if
A has a centrally large subalgebra B with B € P, then A is essentially tracially in 7P. On the other
hand, in general, if A is essentially tracially in P, one may not find a centrally large C*-subalgebra
B which is in P (for example, if P is the class of finite-dimensional C*-algebras, then every unital
infinite-dimensional simple AF-algebra is e. tracially in P, but may not have centrally large finite-
dimensional C*-subalgebras [37, Theorem 6.8]).

(5) In [21], a notion of asymptotically tracial approximation is introduced, studying tracial approxima-
tion of certain properties which are closely related to weakly stable relations. It also mainly studies
unital simple C*-algebras with a rich structure of projections. This is different from Definition 3.1.
However, if A is a unital (infinite-dimensional) simple C*-algebra which is asymptotically tracially
in the class C of 1-dimensional noncommutative CW complexes, then one can show that A is also
essentially tracially in the same class C. Moreover, many classes P of C*-algebras are preserved
by asymptotically tracial approximation [21, Section 4]. Some more discussion may be found in a
forthcoming paper [22].

Definition 3.4. Let P be a class of C*-algebras. The class P is said to have property (H) if, for any
nonzero A in P and any nonzero hereditary C*-subalgebra B C A, B is also in P.

Proposition 3.5. Let P be a class of C*-algebras which has property (H). Suppose that A is a simple
C*-algebra which is e. tracially in ‘P. Then every nonzero hereditary C*-subalgebra B C A is also e.
tracially in P.

Proof. Assume P has property (H) and A is e. tracially in P. Let B C A be a nonzero hereditary
C*-subalgebra of A. Set F Cc Band s € B, \ {0}, and € € (0, 1/4).

Without loss of generality, we may assume that F C B}r. Letd € B}r be such that dx ~ .30 x =g/3p xd
and x =3 dxd for allx € F.

Put ) = £/32. By [15, Lemma 3.3], there is §; € (0, &) such that for any C*-algebra E and any

x,y € EL if x =5, ¥, then there is an injective homomorphism ¢ : Herg (fgl/z(x)) — Herg(y)

satisfying z ~4, ¥ (z) for all z € Herg (fe, /z(x))l.

Note that there is 6, € (0, 1) such that for any C*-algebra E and any x,y € EL, if xy =g, yx, then
x4y 5/ yxl/4, 183172 ~6./2 y1/2x1/8 and x178y ~5./2 yxl/8,

Let 6 = 65/2. Let G = {t,t!/4,+1/8} < Cy((0, 1]). Since A is e. tracially in P, by Proposition 3.2
there exist a positive element @ € Al and a nonzero C*-subalgebra C ¢ A which is in 7 such that

(1) |lax — xal|| < 6 forall x € Fu {d,d"/?, d*},
(2) g(1-a)x €5 Cforallg € Gand [|(1 - a)x|| > [Ix|| - & forall x € FU {d, d"/?,d*} and
3)asgs.

By (2), there is ¢ € C such that ¢ =50 (1 - a)'*d. By (1) and the choice of 6, we have ¢ =g,
d'?(1 —a)'*d'/?. Then by [15, Lemma 3.3] and the choice of 6}, there is a monomorphism

¢ : Hera(fe,2(c)) — HerA(d”z(l —a)'/4d'/2) cB

satisfying ||¢(x) —x|| < &; forall x € Herc(fsl/z(c))l. Define D := ¢(Herc(fe 2(c))) € B. Since C
is in P and P has property (H), D = Herc(fx,/2(c)) is in P. Set b := dad € B}. Then by (1) and the
choice of d, we have

|lbx — xb|| = ||dadx — xdad|| =4, ||adxd — dxda|| =2, ||ax —xa|| < 6 for allx € F. (e3.5)
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By (2), for any x € Fthere is X € C such that (1 — a)/*x(1 —a)'/* ~og, X. Then

(1-0b)x = (1 —dad)x =35 (1 —a)dxd
24e, (1—a)Bd(1 =)' (1 - ) *x(1 —a)'*- (1 - a)'Bd(1 - a)'/

_ ) (€3.6)
Nye CXC Xg (€ —&1)iX(c —&1)s
X g 90((c - 81)+X(C - 81)+) €D.
In other words,
(1-b)x €, D. (€3.7)
Therefore, for all x € F,
1->b)x|| =||(1 - dad)x ZH 1 —ad? x“—6
11 = b)xll = 11(1 - dad)x] > ||(1 - ad?) s

2 [|(I-a)x|| =31 2 [|x[| =6 =381 2 [Ix]| - &.

By (3), we have b = dad <4 s. Note that b, s € B. Since B is a hereditary C*-subalgebra, we have
b <p s. By formulas (e3.5) and (e3.7), we see that B is also e. tracially in P. m]

4. Basic properties

Notation 4.1. Let WV be the class of C*-algebras A such that W(A) is almost unperforated.
Let Z be the Jiang—Su algebra [27]. A C*-algebra A is called Z-stable if A® & = A. Let C¢ be the
class of separable Z-stable C*-algebras.

Lemma 4.2. Let A be a simple C*-algebra which is e. tracially in W, and set a, b, c € A;\{0}. Suppose
that there exists n € N satisfying (n+1){a) < n(b). Then for any € > 0, there exist a|,a, € A, such that

(1) a=eai+an,
2) a; Sa band
(3) a2 sac.

Proof. Without loss of generality, one may assume that a, b, c € A1\{0} and € < 1/2. Then (n+1){a) <
n{b) implies that there exists r = :“;1:1 rij ®ei j € A® My such that

n+l

a®Zei,i Re/128 r*(b®Zei,i)r. (ed.1)
i=1 i=1

Set F := {a,b} U {r,-,j,r;ﬁj L, j=1,2,...,n+ 1} and M =1+ ||r|. Let o = Since

e
R2M2(n+])*

A is e. tracially in W, by Proposition 3.2, for any ¢ € (0 , there exist f € AL\ {0} and a

’ 256M?n+l)2)
C*-subalgebra B C A which has almost unperforated W (B) such that

() Ifx=xf|| <6 forx € F,
@) (1= )%, (1= HY2a(l = HY2 (1 - )41 - f)Y/* es B forall x € F and
(3) fse

Putg=1-f.Let

G:= {g”“x,gl/zxs’l/z,g”“xg”4 tx € 7}~
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8 X. Fuand H. Lin

Setx € GN A,. By (2'), there is ¥ € B such that ||x —x|| < 8. Letx’ := (X +x*)/2 € Bs,. Thenx =5 x’.

’

Then x” + 6 > x > 0, which implies ||x'_“ <6.Thenx ~5 x' =x} —x
amap « : G — Bsuchthata(GN A,) C By, and

x =5 a(x) forall x € G.
From (1”) and (2'), one can choose ¢ sufficiently small such that
a~epo g'7ag'? + (1-¢)?a(1 - g)'* and

(gl/zagl/2 - 8/8)+ Xe/l6 (a(gl/zag1/2) - e/8)+.

By (1’) and formula (e4.1) (with ¢ sufficiently small), one can also assume that

n+l

n
g'%ag'? ® Z eii ~cion R [g'*0g"* ® Z eii|R
o1

i=1

where R := 3L (¢1/4r; ;) ® e; ;. By formulas (¢4.5) and (¢4.2) and 6 < T

a(g1/4bg1/4) ® Z ei,i)R,

i=1

n+l

Ck(gl/zagl/z) ® Z €ii Xe/32 R*

i=1

where R := 3L a(g'*r; ;) ® e; ;. Then by the choice of o,
n+l n
0’(81/2081/2) ® Z €ii Xefl6 R*((a(gl/4bgl/4) - 0’)+ ® Z ei,i)R
i=1 i=1
By formula (e4.7) and [40, Proposition 2.2], one has

n+l

n
12, 1/2) 8) ® ( ( 1/4}, 1/4) _ ) @ e
( ( €/ Zelm g'"bg o). ;el,l
Since W (B) is almost unperforated, one obtains

(os"%as') ~e/8), = (ol e""%) =)

By [40, Proposition 2.2] and formulas (e4.4), (e4.9) and (e4.2), it follows that

(50 o) (o) e

< (a(g1/4bg1/4) _O_) < gpg* < b,
+
By (1) and the choice of §,
axepe (1= ) Pa(l= )2+ f12af12,

Choose

ay = (gl/2 8/2) - ((1 _ P21 = )12 —s/2)+ and

a = fl/zafl/2.
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Then by formula (e4.11), one has a; <4 b. Note that (3”) implies ay <4 c¢. Thus a; and a, satisfy (2)
and (3) of the lemma. By formula (e4.12),

axene (1= N)'Pa(l =N+ fPaf'? ~ppar+an.
So (1) of the lemma also holds, and the lemma follows. O

Theorem 4.3. Let A be a simple C*-algebra which is e. tracially in VV (see Notation 4.1). Then A € W.

Proof. We may assume that A is nonelementary. Set a, b € M,,,(A); \ {0} with ||a|| = 1 = ||b|| for some
integer m > 1. Set n € N and assume (n + 1){a) < n(b). To prove the theorem, it suffices to prove that
ash.

Note that if B € W, then for each integer m, we have M,,(B) € W. It follows that M,,(A) is e.
tracially in W. To simplify notation, without loss of generality one may assume a, b € A..

By [21, Lemma 4.3], Her(fi/4(b)), contains 2n + 1 nonzero mutually orthogonal elements
bo, b1, ..., by, such that (b;) = (bg),i =1,2,...,2n. Without loss of generality, we may assume that
[|boll = 1.If by is a projection, choose ey = by. Otherwise, by replacing bg by g1 (bg) for some continu-
ous function g; € Cy((0, 1]), we may assume that there is a nonzero ¢y € A, such that boey = egbgy = €.
Replacing b by g(b) for some g € Co((0, 1]), one may assume that bbg = bob = by. Put ¢ = b — by.
Note that

ce:0=(b—-bpyey=bey—ey=boey—eyg=0=egpc. (e4.15)
Keep in mind that b > ¢ + eg, ¢ L eq and 2n{bg) < {(c) = (b — bg). One has
(2n+2){a) < 2n(b) < 2n({b — by) + {(by)) < 2n{c) +{c) = 2n+ 1){c). (e4.16)

By Lemma 4.2, for any & € (0, 1/2) there exist aj, ap € A, such that

(i) a =¢pp ar+ay,
(ii) ay <a c and
(iii) a> <A eo.

By (i)—(iii) and applying [40, Proposition 2.2] (recall beg = egb = (), one obtains
(a—¢€)y Say+ay Sc+ey<b. (ed.17)

Since this holds for every € € (0, 1/2), one concludes that a < b. o

Corollary 4.4. Let A be a simple C*-algebra which is e. tracially in C¢. Then W(A) is almost unperfo-
rated.

Proof. Tt follows from [42, Theorem 4.5] and Theorem 4.3. O

Definition 4.5. Let A be a C*-algebra. Let 7 denote the class of C*-algebras A such that for every
a € Ped(A), \ {0}, every 2-quasitrace of aAa is a trace.

Set A € Tand let B C A be a hereditary C*-subalgebra. If b € Ped(B), \ {0}, then b € Ped(A), and
bBb = bAb. It follows that every 2-quasitrace of bBb is a trace. Hence 7 has property (H).

Proposition 4.6. Let A be a simple C*-algebra which is e. tracially in T. Then A is in T.

Proof. Fix a € Ped(A)! and let C = Her(a). We will show that every 2-quasitrace of C is a trace.
We may assume that C is nonelementary. Set T € QT(C). Fix x,y € Cg, with ||x]|, |[|[y]| < 1/2. Set
g€ (0,1/2). Let F:={x,y,x+y}. Let n € N be such that £ > 1/n. By [2], Lemma 4.3], there exist
mutually orthogonal norm 1 positive elements cy, c3,...,c, € AL\{0} such that ¢y ~ ¢y ~ -+ ~ ¢y.
Then d.(c1) < 1/n < e.
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10 X. Fuand H. Lin

Let § € (0, &) be such that for any d € C! and z € C1

sa’

if ||[d, z]|| < &, then
22 (1=d)'?z(1 = d)'? +d'?zd"? (e4.18)
and

(@) e (1= ) 221 = @)2) +7(a22a"2). (e4.19)

(Note [4, 11.2.6] that H[(l —d)'2z(1 - d)'/?, dl/zzdl/z]” can be sufficiently small depending on ¢.)
Note that 7 has property (H). Since A is simple and e. tracially in 7, by Proposition 3.5 C is also e.
tracially in 7. There exist an element e € C! and a nonzero C*-subalgebra B ¢ C such that B is in 7,
and the following are true:

(1) |lez —ze|| < 6 forall z € F.
() (1-e)2z(1-¢)!/? €sp Bforall z € .
3) esc.

We may choose ep € Ped(B)! such that
2) (1-e)'2z(1 —e)'/? €5 By := egBep forall z € F.

Note that for z € F, e'/2ze!/? is self-adjoint. One has (e1/2zel/2)+, (el/zzel/z)_ € Herz(e). Then

e () () )

< dT((el/zzel/2)+) + dT((el/zzel/z)i) <2d.(e) < 2¢. (e4.21)
Then by (1), the choice of ¢ and formulas (e4.18) and (e4.19), for z € F,
7(2) ¢ T((l —e)'/?z(1 - e)”z) + T(el/zzel/z) (e4.22)
(by formula (e4.21)) ~2, T((l —e)'27(1 - 6)1/2). (e4.23)
By (2'), there are X, ¥ € (Bj)s, such that
(1-e)'x(1-e)* 5%, (1-¢)'Py(1-€)'* %5 3. (c4.24)

Then

fi 1 4.23
r(+y) R (1= 0 PGy (1 - )12)

formula (e 4.24) _
s T(X+))

( is a trace on B)) = 7(X) +7()
formula (e 4.24
Ormu§4(§ ) T((l - e)1/2x(1 - e)1/2) +T((1 - e)l/zy(l - 6)1/2)
formula (e 4.23)

Rde 7(x) +7(y).
Since & and § are arbitrary small, we have 7(x + y) = 7(x) + 7(y), and therefore 7 is atraceon C. O

Definition 4.7. Let A be a C*-algebra. Recall that an element @ € Ped(A), is said to be infinite if there
are nonzero elements b, ¢ € Ped(A); such that bc = cb =0,b+c¢ < c and ¢ < a. A is said to be finite
if every element a € Ped(A), is not infinite (see, for example, [33, Definition 1.1]). A is stably finite if
M, (A) is finite for every integer n > 1.
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Recall that a simple C*-algebra A is purely infinite if and only if every nonzero element in Ped(A),
is infinite (see [33, Condition (vii), Theorem 2.2]). Let PI be the class of C*-algebras such that every
nonzero positive element in the Pedersen ideal is infinite.

Theorem 4.8. Let A be a simple C*-algebra which is e. tracially in PI. Then A is purely infinite.

Proof. Note that A has infinite dimension. Set a € Ped(A), \ {0} with ||a|| = 1.

Since fij4(a)Afija(a) is an infinite-dimensional simple C*-algebra, one may choose c,d €
fia(@)Afija(a), \ {0} such that cd = dc = 0.

Since A is e. tracially in PI, there exist a sequence of positive elements ¢, € A, with |le,|| < 1 and
a sequence of C*-subalgebra B,, C A such that B,, in PI, and the following are true:

(1) a =y e *aey)* + (1= e,)' Pa(l —e,)'2.
2 (- en)l/za(l - en)1/2 €1/2n By and H(l - en)l/za(l - en)l/ZH 2 lall - 1/2".
3) ensc.

By (2), there is b, € By, such that b, ~1/on (1 —e,)"/?a(1 - e,)"/?. Then by (1),

a =ypn by + ei/zae:l/z. (e4.25)

Note that inf,, {||b, ||} = ||lal|/2 > 0. Choose 0 < & < ||a]|/16.
By [37, Lemma 1.7], for all sufficiently large n we have

0# (b, —-2¢) S (b,, + e,lq/zaei,/2 - 28) S a. (e4.26)
+
Note that (b,, — 2¢), € Ped(B,); \ {0}. Then there are d;, d> € Ped(B,,), \ {0} such that d; L d»,
di+dy s dy < (b, —2¢)s and

di+dy S (b —28)s S a. (e4.27)
It follows that a is infinite, and therefore A is purely infinite. O

Proposition 4.9 ([42, Corollary 5.1].). Let A be a o-unital simple C*-algebrasuch that W (A) is almost
unperforated. If A is not purely infinite, then aAa has a nonzero 2-quasitrace for every a € Ped(A),\{0}.
Consequently, A is stably finite.

Proof. This is a theorem of Rgrdam [42, Corollary 5.1]. Since we do not assume that A is exact and will
use only 2-quasitraces, some more explanation is in order. The explanation, of course, follows exactly
the same lines as the proof of [42, Corollary 5.1].

Seta € Ped(A)i and B := aAa. Then B is algebraically simple (see, for example, [3, 11.5.4.2]).
Assume that B has no nonzero 2-quasitraces.

Consider W(B). Note that W(B) c W(A), and W(B) has the property thatifx € W(B)andy € W(A)
such that y < x, then y € W(B). It follows that W(B) is almost unperforated. Since B is algebraically
simple, every element in W(B) is a strong order unit.

Set ¢, € W(B) (with t a strong order unit). The statement (and the proof) of [40, Proposition 3.1]
imply that if there is no state on W(B) (with the strong order unit ¢), then there must be some integer
n € N and u € W(B) such that

nt’ +u < nt +u. (e4.28)
Then by [40, Proposition 3.2] (see the proof also), as W(B) is almost unperforated,

" <t (e4.29)
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On the other hand, by [4, 11.2.2], every lower semicontinuous dimension function on W(B) is induced
by a 2-quasitrace on B. Since B is assumed to have no nonzero 2-quasitraces, combining with [40,
Proposition 4.1] (as well as the paragraph before it) shows that there is no state on W(B). Therefore
formula (¢4.29) implies that for any b, ¢ € B, \ {0}, we have b < c. It follows that B is purely infinite
and so is A.

To see the last part of the statement, suppose that there are b, ¢ € Ped(A)!\ {0} such that bc = ch = 0
andb+c < c.Leta=b+cand B =aAa. Note that a € Ped(A),. Then B has nonzero 2-quasitraces.

Therefore

d:(c) =2 d.(b+c)forall T € QT (B). (e4.30)
On the other hand, for any 7 € QT'(B) and any 1 > & > 0,

T(fe(b+¢)) =7(fe(b) + fe(c)) = T(fe(b)) + T(fe(c)). (e4.31)

Fix 1 > &9 > O such that f.,(b) # 0. Since B is algebraically simple, 7(fx, (b)) > 0 for all 2-quasitraces
7. Fix 7 € QT (B). Then, by equation (e4.31),

de(b+¢) 2 7(fey (b)) +dr(c) > dr(c). (e4.32)

This contradicts formula (e4.30). It follows that no such pairs b and c exist. Thus A is finite.
Since M, (A) has the same relevant property as A, we conclude that A is stably finite. O

Corollary 4.10. Let A be a o -unital simple C*-algebrasuch that A is e. tracially in V. Then A has strict
comparison.

Proof. By Theorem 4.3, W(A) is almost unperforated. It follows from Remark 2.5 that Cu(A) is almost
unperforated. Fix e € Ped(A), \ {0} and let B := Her(e). As in the proof of Proposition 4.9, every lower
semicontinuous dimension function on W(B) is induced by a 2-quasitrace of B. Set a,b € (A ® K);
such that d.(a) < d(b) for all T € QT (B). By [17, Propositions 4.2, 4.6], a < b. O

5. Essentially tracially Z -stable C*-algebras
Recall from Notation 4.1 that C is the class of separable Z-stable C*-algebras.

Theorem 5.1. Let A be a o -unital simple C*-algebra which is e. tracially in Cx. Then A is either purely
infinite or stably finite. Moreover, if A is not purely infinite, then it has strict comparison for positive
elements.

Proof. It follows from [42, Theorem 4.5] that every C*-algebra B in C# has almost unperforated W(B).
It follows from Theorem 4.3 and Remark 2.5 that Cu(A) is almost unperforated. By Proposition 4.9, if A
is not purely infinite, then it is stably finite, and by the proof of Corollary 4.10, A has strict comparison
for positive elements. i

Definition 5.2. Let A be a simple C*-algebra. A is said to be tracially approximately divisible if for any
g > 0,any F = {x1,x2,...,xn} C A, any element ey € Ai withery; = y; = y;er forsome y; =4 x;,
1 <i<m,anys e A, )\ {0}, and any integer n > 1, there are § € Al, a C*-subalgebra D ® M,, c A
and a c.p.c. map 8 : A — A such that the following are true:

(1) x =~z x" + B(x) for all x € F, where ||x’|| < ||x]|, x” € Her(8).
(2) B(x) €. D® 1, and epB(x) = B(x) =, B(x)eF forall x € F.
(3) 6<s.

The notion of approximate divisibility for C*-algebras was introduced in [6]. The term ‘tracially
approximate divisibility’ appeared in [32] (for special cases, see [32, Definition 5.3, proof of Theorem
5.4], [29, Lemma 6.10], [15, Definition 10.1]).
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(1) If A is a unital separable simple C*-algebra which is approximately divisible, then it is tracially
approximately divisible. To see this, recall that by [6, Theorem 1.4(d)], A has strict comparison. Let
& > 0, a finite subset F C A, a € A, \ {0} and n € N be given. We assume that 1 € F. Choose
an integer m such that d-(a) > 1/m for all T € QT (A) (recall that A is a unital separable simple
C*-algebra and QT (A) is a simplex, by [5, 11.4.4]). Choose an integer k > mn. It follows from [6,
Corollary 2.10] that we may assume that F C» P;_; An ® Iy, © Pi_; An ® My,, where A,
is a C*-subalgebra of A and k; > k. Write k; = [;mn + r;, where [;,r; € Nand 0 < r; < mn,
i=1,2,...,s. Note that 1 € @le A, ® My,. So each A, is unital. In each M, find a projection
e; withrank [;mn,i=1,2,...,s. Pute = ea;?:l 14, ® ¢; and 6 = 1 — e. We will identify M, ,,,, with
Mj;m ® M,,. Then we have

(i) Ox =, x0 for all x € F,
(i) (1 -0)x(1-0) =exe €, @f:l A, ®e; C @le(An ® Mlim) ® 1, and
(iii) 0 S a,asd(1—¢) < 1/mn < d(a) forall T € QT (A).
From this we conclude that A is tracially approximately divisible (see also Proposition 5.3).

(2) Note that the Jiang—Su algebra Z is not approximately divisible, as it has no nontrivial projections.
However, by Theorem 5.9, it is tracially approximately divisible.

(3) In a subsequent paper [20, Theorem 4.11], at least in the separable case, we show that the converse
of Proposition 5.3 also holds. In fact, in [20, Lemma 4.9] we show that a weaker version of
Definition 5.2, without mentioning er, implies the conditions stated in Proposition 5.3. In other
words, in Definition 5.2, any reference to ey could be omitted. However, the proof is somewhat
more involved; we refer the reader to [20] for further discussion.

(4) There is also a notion called ‘tracially almost divisibility’ (see [48, Definition 3.5]). That definition
uses quasitraces, whereas Definition 5.2 does not mention quasitraces. They are quite different.
However, it is not hard to show that tracially approximate divisibility implies tracially almost
divisibility. In [20], we show a separable simple C*-algebra A which is tracially approximately
divisible, has strict comparison and stable rank one and has a nice description of its Cuntz semigroup.
These imply, in particular, that A has the tracially almost divisible property defined in [48, Definition
3.5]. The converse, in general, does not hold even with strict comparison — for example, A = C;_; (Fw)
(see [20, 7.3]).

Proposition 5.3 (compare [32, 5.3]). Suppose that A is a simple C*-algebra which satisfies the following
conditions: For any &€ > 0, any finite subset J C A, any s € A, \ {0} and any integer n > 1, there are
6 € Al and a C*-subalgebra D ® M,, C A such that

(i) 6x = x0 forall x € F,
(i) (1-6)x €. D® 1, forall x € Fand
(iii) 6 < s.

Then A is tracially approximately divisible.

Proof. Let F C A afinite subset, € > 0, s € A, \ {0} and an integer n be given. Suppose that there are
a finite subset 7 and an element er € Al such that ery = y = yep forall y € 7, and if x € F, there
is y € F such that ||y — x|| < /4. Without loss of generality, we may assume that F ¢ Al. We may
further assume that 7 c Al

Let ¢ € (0, £/8) be a positive number such that for any elements z € Al and w € A}r, [lzw —wz|| <6
implies that

||(1 w2z -1 —w)‘/ZH <&/8. (€5.1)
Put 7| = FU {er} U F. Suppose that there are § € Al and D as in the statement of the proposition,

such that (i), (ii) and (iii) hold for ¢ (in place of &) and F; (in place of F).
Then in Definition 5.2(3) holds.
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Define 8: A — Aby B(a) := (1 -6)""2a(1-6)"/?foralla € A.Itis ac.p.c. map. For each x € F,
define x1 := 8'/2x0'/? € Her(#). Then ||x;|| < ||x||. Note that by the choice of &, for all x € FU F/,

erB(x) = ep(1-0)"x(1-6)'"% ~pp (1-6)Pepx(1-60)'7 x5 B(x) mops BX)ep.  (€5.2)
Moreover, for all x € Fj,
B(x)=(1-0)"x(1-6)~ 5 (1-0)x €5 D® 1,. (e5.3)
So Definition 5.2(2) holds. Also by the choice of ¢, for all x € Fj,
x=0x+(1-0)x =4 020"+ (1-6)2x(1-6)"72 = x; +B(x). (e5.4)
Hence Definition 5.2(1) holds. Thus A is tracially approximately divisible. O

The following lemma is convenient folklore:

Lemma 5.4. Let § > 0. There is an integer N(8) > 1 such that for any C*-algebra A, any e € Al and
any x € A, if x*x < e and xx* < e, then

1/n

ey x5 x ~g xe'!" foralln > N(6). (e5.5)

Proof. Let 6 > 0 be given. Choose N(§) > 1 such that

2
max{ (1 - tl/") t

Then for any C*-algebra A, any e € Al and any x € A satisfying x*x < e and xx* < e,

(1=l =1 (1= ) < (1= et =)

for all n > N(5). Similarly, we also have |[x(1 — e!/")|| < 6 for all n > N(5). The lemma follows. O

.1 € [0, 1]} < 6% foralln > N(6). (€5.6)

1/2
<6 (€5.7)

Theorem 5.5. If A is a simple C*-algebra which is tracially approximately divisible, then every heredi-
tary C*-subalgebra of A is also tracially approximately divisible.

Proof. Let B be a hereditary C*-subalgebra of A, F c B! be a finite subset, £ > 0, s € B, \ {0} be a
positive element and n > 1 be an integer. Suppose also that there exists a finite subset 7 c B! such that
y €g/4 F forall y € F, and there exists an element ey € B! such that epx = x = xep forall x € F'.
Let g9, g1 € Co((0, 1]) be such that 0 < go, g1 < 1, g0(0) =0, go(¢t) = 1 fort € [1 — /64, 1] and gy is
linear on [0, 1 — £/64]; and g;(¢) =0ifr € [0,1 — £/64], g1(1) = 1 and g, is linear on [1 — £/64, 1].
Put by := go(er) and by := g (eF). Then

boby = by = b1by, by > ef, ||b() - eF|| < 8/64. (e5.8)

Since for all x € F' we have epxx* = xx* = xx"ep and epx*x = x*x = x*xeF, by the spectral theory,
we have b;xx* = xx* = xx*b; and b;x*x = x*x = x*xb;, i =0, 1. It follows that

bix=x=xb; and bix* =x* =x"b; forallx e F, i=0,]1. (e5.9)

Let 71 = {b1} U F. Choose § > 0 in [15, Lemma 3.3] associated with £/64 (in place of &) and
o = ¢g/64. Setn = min{5§/4, £/256}.
We choose N := N(n) > 1 as in Lemma 5.4.
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Let0 < 61 < n/2. Moreover, we choose §; sufficiently small that if C; c C, is any pair of C*-algebras
andc € Co withO<c<landc €5 Ci,andif 0 < cj,c2 < landcicy =4, 2 s, €21, then

c'IN €, ()} and clc;/Nc] ~ cé/N. (e5.10)

Since A is tracially approximately divisible, there are 8, € AL, a C*-subalgebra D, ® M,, C A and a
c.p.c. map 8 : A — A such that

(1) x =g,/2 x1 + B(x) such that ||x(|| < 1 and x| € Her(6,) for all x € 77,
(2) B(x) €s,2 Dy ® 1,, and boB(x) =¢,/2 B(x) =, /2 B(x)bg for all x € F; and
(3) 0, < s.

Choose d(x) € (D, ® 1,)! such that
1B8(x) = d(x)|| < 6y for all x € Fi. (e5.11)

Let by = B(b)"/N . By equation (¢5.9), B(b1) > B(x)*B(x) and B(b;) > B(x)B(x)* for all x € F' (see,
for example, [5, Corollary 4.1.3]). By condition (2) here, the choice of N and application of Lemma 5.4,

baf(x) = B(b)N B(x) ~,, B(x) forall x € F. (5.12)
Recall that B(by) €5, D, ® 1,,. By the choice of §;, we may choose d € (D, ® 1,), such that
ld - ball < 7. (e5.13)
Then, with b := byb, by, by the second part of formula (e5.10),
ld=bll<2n  and  fejea(d)d =gj64 d ~2yy b. (e5.14)

By the choice of 1, applying [15, Lemma 3.3] yields an isomorphism

Y f5/64(d)(Da ® Mn)f£/64(d) — bAb C B

such that

lle(y) = yll < /64yl forall y € fo/64(d)(D ® 14) fej64(d). (e5.15)

Note that f./64(d)(Dy ® My,) foea(d) = Dy ® My, and fj64(d) (Do ® 1,) fo64(d) = Dy ® 1, for
some C*-subalgebra D| c D,. Let D}, = ¢(D). Define a c.p.c. map @ : B — B by

a(y) :=bB(y)b forall y € B. (e5.16)

Then, for all x € F|, by formulas (e5.14) and (e5.11),

a(x) = bB(x)b ~22p+e/64) fej64(d)dB(x)df ¢j64(d) (e5.17)
6, fesoa(d)dd(x)dfsj6a(d) €z64 Dp ® 1, C bAb C B. (€5.18)

If y € F, choose x € F such that ||y — x|| < &/4. Then a(y) ~g/4 @(x) €.4 Dp ® 1,. Define
y1 = box1bg. Then, by conditions (1) and (2) and equation (e5.12),

Y X1 /2424 bo(x1 + B(x))bo = y1 + boB(x)bo (e5.19)
~ap Y1 + bob2S(x)baby (€5.20)
~6, Y1 +bobaboB(x)bobabo = y1 + a(x) (e5.21)
g4 y1+a(y) forallye F. (e5.22)

Downloaded from https://www.cambridge.org/core, IP address: 63.155.50.205, on subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2021.79


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2021.79
https://www.cambridge.org/core

16 X. Fuand H. Lin

Note that 61 /2 + /4 +2n+ 26, + /4 < &. Put 6 :=36,/2+2n. Then 0 < 6, < 5¢/256. Also for all
y e F,

era(y) g4 era(x) = epbobaboB(x)bobrby =5, epB(x) ~ g /64 boB(x) =5, B(x) (e5.23)
x5, B(X)bo 60 B(X)eF Xsyrepa a(y)er (e5.24)

(recall ||bo — er|| < £/64). Put 65, = boB.bo. Then y; € 6;,B6;,. Moreover,
0y < 0, < 5. (e5.25)

From formulas (e5.22), (e5.18), (e¢5.24) and (e5.25), the theorem follows. O

Lemma 5.6. Let A be a C*-algebra and setn € N. Let ey, . .., e, € Ay be mutually orthogonal nonzero
positive elements. Assume dy, . ..,d, € Ay such thatd; < e; (i =1,...,n), and e;d; = 0 whenever

i<jandi,j=1,...,n Then for any a € diAdy +---+d,Ad, and any € > 0, there are nilpotent
elements x,y € A such that ||la — yx|| < e.

Proof. Seta € diAdy +---+d,Ad, and fix € > 0. Then there exist a;,...,a, € A and 6 > 0 such
that a =, fs(di)aifs(di) + -+ fs(dn)anfs(dy,). Set xq,...,x, € A such that x7x; = fs(d;) and
xix] € ejAe;, i =1,...,n (see [40, Proposition 2.4]). For i, j € {1,...,n} and i < j, e;d; = 0 implies

* *
XX XX = 0, thus

X =0 (i<)). (e5.26)

Claim 1: (x| +x2 + - +x,)" = 0.

Proof of Claim 1: Note that (x| + x2 + --- + x,)"*! is a sum of n"*' terms with the form
XigXky * Xk (K15 ook € {1,...,n}). Assume xg Xk, -~ Xg,+1 # 0; then xgxg,, # 0 (G =

., n). By equation (e5.26), it follows that k;.; < k; — 1 (i =1,...,n). In particular, k,,+; < k, — 1.

Then k;4 < ky, — 1 < k-1 — 2. An induction implies that k,+; < k| —n < 0, which gives a contradic-
tion. Thus all n**! terms of the form Xj, Xk, - - - Xn41 are zero. It follows that (x; +xp + - - +xn)'“r1 =0.

Claim 2: (fs(di)ax} +- -+ fs(dn)anx;)"" = 0.

Proof of Claim 2: Let y; = fs(d;)a;x} (i=1,...,n). Fori < j, using equation (5.26), we have

= fs(diaix; fs(dj)a;x; = fs(di)aix; (xjxj)ajx = fs(di)a;(x;x;)" xjaix;=0.  (e5.27)

Then, as in the proof of Claim 1, we have (y + - - - + y,,)**! = 0. Claim 2 follows.

Letx =xi+---+x,andlety = yy+---+y, = fs(d)ax] +- -+ fs(dn)anx;,. Then by Claims 1 and
2, both x and y are nilpotent elements. For i, j € {1,...,n} and i # j, e;e; = 0 implies xl-x;‘xjx;‘. =0,
thus x7x; = 0. Then yx = f5(d1)a1 fs(d1) +- -+ fs(dp)anfs(dn) =¢ a. |

Recall that a non-unital C*-algebra is said to almost have stable rank one if for every hereditary
C*-subalgebra B C A, B lies in the closure of invertible elements of B [38, Definition 3.1].

Theorem 5.7. Let A be a simple C*-algebra which is tracially approximately divisible. Suppose that A
is stably finite and W (A) is almost unperforated. Then A has stable rank one if it is unital, or almost
has stable rank one if it is not unital.

Proof. We assume that A is infinite-dimensional. Fix an element x € A and fix £ > 0. We may assume
that x is not invertible. Since A is finite, x is not one-sided invertible. To show that x is a norm limit of
invertible elements, it suffices to show that ux is a norm limit of invertible elements for some unitary
u € A. Note that since A is simple, A is prlme Thus, by [39, Proposition 3.2, Lemma 3.5], we may
assume that there is @’ € A, \{0} and a’x = xa’ = 0. There is ¢ € A, such thata’ea’ # 0.Puta = a’ea’.
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Let By = {z € A : az = za = 0}. Then x € By, and By is a hereditary C*-subalgebra of A. There is
e, € Bo, with ||ep|| = 1 such that e} xe, ~/64 X. SO fes64(€} )X fe6a(€}) =16 . Put ey, = fesea(e})
and B = Her(ep). Without loss of generality, we may further assume that x € B.

Since we assume that A is infinite-dimensional, aAa contains nonzero positive elements ag, a; such
that aga; = 0.

Since A is simple, there is ¢ € A such that ebc(al)l/z # 0 (see the proof of [12, 1.8]).

Note that since e, € Ped(B), we have Ped(B) = B (see, for example, [3, 11.5.4.2]). It follows that
there are yq, y2,...,Vm € B such that

Zy;‘ebcalc*ebyi =ep. (e5.28)

i=1

It then follows that {(e;) < m{a;). Put n = 2m.
For any z1,22,...,2, € By which are n mutually orthogonal and mutually equivalent positive
elements,

n{z1) < (ep) < may).
Since W(A) is almost unperforated,
Z1 $4ai. (€5.29)

Since B is a hereditary C*-subalgebra of A, by Theorem 5.5, B is also tracially approximately divisible.
There are b € BY, a C*-subalgebra D ® M,, C B and a c.p.c. map 3 : A — A such that

(1) x =g/8 xo + B(x), where xo € bAb,
(2) B(x) €3 D® 1, and
3) b < ag.

Thus, there is x; € D \ {0} such that
[lx = (xo +x1 ® 1,)|| < &/4. (e5.30)
Choose a positive element d € D such that
lldx1d — x1]| < g/4. (e5.31)

By the choice of n, we have d ® e1,1 < a1, where {e; ;} forms a system of matrix units for M,,.

Define g1 :==ap, g2 :=ai, g2+i =d®e;; (i=1,...,n—-1).

Define hy :=b, h1y; i =d®e;; i=1,...,n).

Note that h; < g; (i = 1,...,n+1)and g;h; = 0,ifi < jandi,j = 1,...,n+ 1. Note that
xo+dx1d® 1, € hiAhy + hpAhy + - - - + hyy1 Ahyy1. Then by Lemma 5.6, there are nilpotent elements
v,w € A such that xo + dx;d ® 1, =4 vw. Choose § > 0 such that vw =4 (v +6)(w +6). Since v, w
are nilpotent elements, v + ¢ and w + ¢ are invertible. Then, combining formulas (e5.30) and (e5.31),

X R X0+ X1 ® 1y Mpss X0+ dr1d ® 1, ~pp (v+6)(w+6) € GL(Z). (€5.32)

Therefore we have shown that x € GL(X). Thus, in the case that A is unital, A has stable rank one.

Since, by Theorem 5.5, this works for every hereditary C*-subalgebra of A, A almost has stable rank
one in the case that A is not unital. m]

Remflrk 5.8. Under the assumption of Theorem 5.7, if x € A is not invertible, then there is a unitary
u € A such that (ux)e = e(ux) = 0 for some e € A, \ {0}. The proof shows that ux can be approximated
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18 X. Fuand H. Lin

by products of two nilpotents in A. The idea of the proof is taken from the proof of [15, Lemma 11.1],
which originates from that of [38, Lemma 2.1] and [39].

In a subsequent paper [20], we will show that a separable simple C*-algebra which is tracially
approximately divisible has strict comparison for positive elements. So there is a redundancy in the
assumption of Theorem 5.7.

Theorem 5.9. Let A be a simple C*-algebra. If A is essentially tracially in C, then it is tracially
approximately divisible.

Proof. We assume that A is infinite-dimensional. Let A be a simple C*-algebra which is e. tracially in
Ce. By [42, Theorem 4.5], every Z-stable C*-algebra B has almost unperforated W (B) (see Remark
2.5). Then, by Theorem 4.3, W(A) is almost unperforated. Let ¢ > 0, F c Al afinite subset, a € A, \ {0}
and n > 1 an integer be given. Since A is infinite dimensional, choose a1, a; € Her(a); \ {0} such that
ayjar = aza) = 0.

There are e € Al and 6 > 0 such that

fslea)x =4 x =gpa xfs5(eq) forallx € F. (e5.33)

Note that by Theorem 5.5, A1 1= fs5/2(ea)Afs/2(ea) is also a (o--unital) simple C*-algebra which is e.
tracially in C# (as C¢ has property (H); see [46, Corollary 3.1]).

Note also that fs/2(ea)afs/2(ea) < a. To simplify notation, by replacing x by fs(ea)x fs(ea) for
all x € F,aby fsp(ea)afsy(ea) and a; by fspp(ea)aifsp(ea) (i = 1,2), without loss of generality
we may assume that x, a, a;, a> € A;. We may also assume, without loss of generality,

eix=x=xej forallx € F (e5.34)

for some strictly positive element e € A}. Note that fs5/2(ea) € Ped(A). Therefore A; is algebraically
simple and fs5/2(eq) is a strictly positive element of A;. There are an integer / > 1 and x; € Ay,
i=1,2,...,1, such that

1
D xjaix; = e (€5.35)

=1
Set Fi = FU {e;}. Choose 0 < < &/2 such that if §’ € Al with ||6’x — x8’|| < 7, then
(0)'2x ~pp x(6")"? for all x € Fy. (€5.36)

There exist 0, € A}r and a Z -stable C*-subalgebra B of A such that

(i) [161x —x61]| < /64 and ||(1 — 6;)/%x — x(1 - 61)'/2|| < /64 for all x € F,
(i) (1-0)"2x(1=0)"2, (1-01)"2x,x(1-01)"2, (1= 6))x,x(1-01), (1 =01)x(1 = 61) €64 B
for all x € F; and
>iii) 61 < a».

Let
F = {(1 —0) (1= 02, (1= 61) 20, x(1 = 61)"2, (1 = 0)x, x(1 = 6)), (1 = 6))x(1 = 6;) :
x € F}

For each f € F>, fix b(f) € B such that ||b(f)|| < 1 and

ILf = b(H)I <n/32. (€5.37)
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LetG={b(f): f € F2}. We write B=C ® Z. Since Z is strongly self-absorbing, without loss of
generality we may assume that there is a finite subset G; € C suchthatG = {yQlg :ye G} CcC®le.
To further simplify notation, without loss of generality we may assume that there exists a strictly positive
element ec € C such that

epy =y =yep forall y € Gy, (€5.38)
where ep =ec ® 1.

For any integer n, choose m such that m > [ and n divides m. Let ¢ : M,, — Z be an order O c.p.c.
map such that

le —y(1m) Sz ¥(er) (€5.39)

(see [43, Proposition 5.1(iv) implying (ii)]). Define ¢ : M,;, — Bby ¢(c) := ec @ y/(c) forall ¢ € My,.
Set

0 :=ep—¢@(lp)=ec®lz—ec@Y(1y) =ec ® (1z —y¢(1,)) <p ec ®Y(er,1). (e5.40)
Note that
0rg = g0, forall g € G. (e5.41)
It follows from formulas (e5.37) and (e5.41) that for any y € F>,

92y Rg/32 y92. (6542)

Define D := ecce : C ® Y(ey,1) and D’ the C*-subalgebra generated by
{ecce :CQyY(z):ceCandze M,}. (e5.43)

Recall that ¢ gives a homomorphism H : C*(y(1,,)) ® M,, — Z such that H(t ® g) = ¥(g) for all
g € M,,, where «(t) =t for t € sp(¥(1,,)) (see [49, Corollary 4.1]). It follows that D’ = D ® M,,.
Define 81 : A — A by

1/2 1/2
Bi(y) = (15— 62)"*y(15-62)"* forally € A (5.44)
(where 1 7 denotes the identity of A when A is not unital and is the identity of A if A has one). Note also

that (1 — 6)'/2 is an element which has the form 1 + £;(6) for f;(r) = (1 —1)'2 =1 € Co((0, 1])L. If
g =y ® lg € G, then (noting that y € G; C C, and seeing equation (5.38)),

Bi(g) =(1-0)g=g—ec®(lz —¢(lm))g (e5.45)
=(ec®lz)g—ec®(lz —y¥(lm))g (e5.46)
= (ec ®U(I)) (Y& 17) = (e *vel*) @u(ln) € D& 1, (e5.47)

Defineac.p.c.mapfS: A — Aby
B(x) =B ((1 — o) 2x(1 - 91)1/2) forall x € A. (5.48)
For x € F,let f = (1 —6;)"2x(1 - 6;)'/%. Then, by formula (¢5.37),
BE) = Bi((1= 00" 2x(1 = 00)'2) =32 B1(B()) € D& 1, (€5.49)
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Put 6 = 6; + (1 — 6;)'726,(1 — 6,)'/2. We have
0<0<0,+(1-0)"*01-0)"?=1. (5.50)

For x € F, let f" = (1 — #;)x. Recall that we assume that 5(f’) = y’ ® 15 for some y’ € CL. Then
for x € F, applying formulas (¢5.37) and (e5.41) repeatedly, we have

(1-6)x=(1-8)x—(1-61)"%6,(1-6)"%x (€5.51)
~p32 (1=0D)x = (1 =601)x0, = (1 - 01)x(1 - 62) (5.52)
~pm b(F)(1=62) = (1= 62)'2b(f')(1 - 62)"/? (€5.53)
= Bib() =y B1((1 =6 2x(1 = 01)2) = Bx). (e5.54)

From equations (¢5.49) and (e5.54), we have
(1-0)x€,8D®1,,forallx € F. (e5.55)

Recall that (1 —61)"2x,x(1 — 6))"/2, (1 = 6,)"2x(1 - 6,)/? € F,. Hence, for x € F, by (i) above and
formula (e5.42),

Ox = (91 +(1-6)"0,(1 - 91)1/2)x ~an/es X01 + (1= 01)20,x(1 = 61)!/2 (€5.56)
23 x01 + (1= 0)'2x(1 = 01)1260; ~, 35 X601 + 62 (1 — 6;)2x(1 - 6;)!/> (5.57)
/32 x01 + (1= 61)2x6,(1 - 6))'/? (€5.58)
/64 X01 +x(1 = 61)20,(1 - 67)"/% = ox. (€5.59)

Note that by formulas (e5.40) and (e5.35), in W(A) we have
m(62) =mlec ® (1z —y(1m))) (€5.60)
< m(ec ® l!/(el,l)> <{ec®Y(ly)) <{ec ®1lg) < l{ay). (e5.61)
Therefore (recall that W(A) is almost unperforated), since [ < m,
02 S a. (e5.62)
It follows (noting that aja; = aza; = 0) that
0=01+(1-6)'"20,(1-0)"*<ar+a <a. (€5.63)

Finally, the theorem follows from formulas (e5.59), (e5.55) and (e5.63), the fact that D ® 1,, is embedded
into D ® 1,, unitally (as n divides m) and Proposition 5.3. O

Corollary 5.10. Let A be a simple C*-algebra which is e. tracially in Cx. If A is not purely infinite, then
it has stable rank one if it is unital and almost has stable rank one if it is not unital.

Proof. By Theorem 5.9, A is tracially approximately divisible. By Theorem 5.1, if A is not purely
infinite, then it has strict comparison for positive elements. It follows then from Theorem 5.7 that A has
stable rank one if it is unital and almost has stable rank one if it is not unital. m]
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Remark 5.11. For the rest of this paper, we will present nonamenable examples of C*-algebras which
are possibly stably projectionless and are essentially tracially in the class Ce, the class of Z-stable
C*-algebras.

6. Construction of AS

In this section we first fix a separable residually finite-dimensional (RFD) C*-algebra C, which may not
be exact.

Let B be the unitisation of Cy((0,1],C). Since Cy((0,1],C) is contractible, V(B) = N U {0},
Ko(B) =Z and K{(B) = {0}.

Let us make the convention that B includes the case that C = {0} — that is, B = C.

Letp = p? . p? - -+ be a supernatural number, where p1, p», ... is a sequence (possibly finite) of
distinct prime numbers and r; € N U {co}. Denote by D, the subgroup of Q generated by finite sums of
rational numbers of the form 1%, where m € Zandi e NN [1,r;].

Denote by M}, the UHF—algejbra associated with the supernatural number p.
The following is a result of Dddarlat [13]:

Theorem 6.1. Fix a supernatural number 0. There is a unital simple C*-algebra Ay which is an inductive
limit of My,(y) (B) with injective and unital connecting maps such that

(Ko(Ad), Ko(Ad)s, [1a,]) = (Do, Doy 1),

K (Ay) = {0}, and Ay has a unique tracial state and tracial rank zero.

Proof. This is taken from [13]; we retain the notation used there. For the supernatural number 9, there is
a standard Bratteli system {B , } given by Glimm. We use Déddarlat’s restricted system as defined in [13,
Definition 3]. Let D = AF (xr). Then D is the UHF-algebra with (Ko(D), Ko(D)s+, [1p]) = (Do, Doy, 1).
Set Ay = B(g) as in [13, Proposition 8]. Note that [13, Definition 3(ii)] implies that the connecting
maps in the restricted system are injective (see also [13, proof of Proposition 8]). The proof of [13,
Proposition 9] shows that B(g) is a unital simple C*-algebra of real rank zero and stable rank one,
(Ko(Av), Ko(Ad)+, [lAD ]) = (Dy,Dy,, 1), and has a unique tracial state. Note also that since K (B) = 0,
K1 (B(x)) = 0. So K;(Ap) = 0. The fact that A has tracial rank zero is also known and, for example,
follows from [28, Theorem 3.7.9]. m]

We will review the construction of Ay and introduce some notation for our construction.

Definition 6.2. Fix a supernatural number 9. Choose a Bratteli system AF (g) (see [13, Definition 2])
for My given by Glimm. Recall that B = Cy((0, 1], C)~. Following Dadéarlat’s construction (see [13,
Definition 3, proof of Proposition 8]), one may write Ay = lim, (Md;, (B), 6;) d;m =d, - d,,, where
dn, d;, > 1 are integers, 0, : Mg, (B) — Mg, (B) is defined by

6,(f) = (5 ')’n?f)) for all f € My, (B) (e6.1)

and vy, : B — Mg, is a unital homomorphism, a d,, — 1-dimensional representation (we then use y;,
for the extension y, ® idg, : Mg, (B) — M(q4,-1)a;,) Which also has the form described in the proof of
[13, Proposition 8]. By that proof, this can always be done.

In the Bratteli system AF (rr), we may also assume, by passing to a subsequence, that

lim d,, = co. (e6.2)
n—o00
Also, we assume for any n that {y,, : m > n} is a separating sequence of finite-dimensional represen-
tations. For a more specific construction of Ay, readers are referred to [13, Definition 3, Proposition 8,
Section 3].
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It is important that for any T € T(B),
lim |7 0 6;,(a) — T(ya(a))| = O foralla € My, (B). (e6.3)
n—oo

(Note that by T we mean 7 ® try;,, where try, is the tracial state of M, .)
Consider 0, ,, ;= 6/ _ 06, ,0---00;, : Mg, (B) = Mg, (B). Then we may write

n-1

0 Yimn(f)

where Y, 1 B — Mg, a4, -1 is a finite-dimensional representation. (In the rest of the paper, we also
USE Y, = Ymn ®idy 1 My (B) = Mg, ja;,-1)n for all integers N > 1.) Therefore, if we fix a finite
subset F,, C Mg, (B), we may assume that for any a € F,, \ {0}, we have y,, ,(a) # O for some
large n > m. Choose a function g € C([0, ||a||)+ such that 0 < g(¢) < 1 for all z € [0, ), g(¢) = 1 if
1 € [llall = llall/2m, ||lall) and g(7) = 0if ¢ € [0, [[al| - [|al|/m]. We may assume that Y, (g(lal)) # O
for all a € Fy, \ {0}. It follows that ||y (lal)|| > (1 = 1/m)|la|| for all a € F,, \ {0}. Thus we may
assume that for any a € F,,, and all n > m,

Spn(f) = (f 0 ) forall f € Mg, (B), (e6.4)

[ymn(@| = (1 =1/m)|lall. (e6.5)

In what follows, Ay = lim,_, (Mg, (B), 5,,) is the C*-algebra in Theorem 6.1 and &), is as described in
formula (e6.1) such that formula (e6.5) holds for n > m + 1.

We wish to construct a unital simple C*-algebra AS with a unique tracial state such that Ko (AS) = Z
and K (AS) = {0}.

The strategy is to have a Jiang—Su-style inductive limit of some C*-subalgebras of
C([0,1], M, (B) ® M,(B)) for some nonnuclear RFD algebra B, or perhaps some C*-subalgebra of
C([0,1], Mp,4(B)). However, there are several difficulties to be resolved. One should avoid using
M, (B) ® M, (B) as building blocks, since there are different C*-tensor products and potential dif-
ficulties in computing the K-theory. Other issues include the fact that each fibre M,, (B) is not simple.

We begin with the following building blocks:

Definition 6.3. For a pair of integers m, k > 1, define
Emk :={f € C([0,1], Myux(B)) : f(0) € My (B) ® 1 and f(1) € 1,, ® My}

Note that here one views M,,,(B) ® 1, 1,, ® My € M,,(B) ® My = M, (B) as unital C*-subalgebras.

Fix integers m,n > 1. Let D(m, k) = M,,(B) ® My. Define ¢y : D(m,k) — My (B) ® 1 by
wo((a,b)) :=a® 1y forall (a,b) € D(m, k) and ¢, : D(m, k) — My by ¢1((a,b)) =1, ® b.
Then

Emi =A{(f,8) € C([0,1], Myni(B)) ® D(m, k) : f(0) = ¢o(g) and f(1) = ¢1(g)}. (e6.6)

Denote by 7, : Ejyx — D(m, k) the quotient map which maps (f, g) to g. Denote by mg : E,; x —
M,,(B) ® 1 the homomorphism defined by 7 ((f, g)) := ¢o(g) = f(0) and by 1} : E;;x — 1,y @ Mg
the homomorphism defined by 71 ((f, g)) := ¢1(g) = f(1).

Lemma 6.4. If m and k are relatively prime, then E,, x has no proper projections.

Proof. Recall that B = Cy((0, 1], C)~, the unitisation of Cy((0, 1], C). Let 75 be the tracial state on
M,,,(B) induced by the quotient map B — B/Cy((0,1],C) = C, and let try be the tracial state of M.
Lett =13 ® trg.

Lete € E,, x be anonzero projection. Note that E,, € C([0, 1], M,k (B)). Note also that Ko (B) = Z
and 1 is the only nonzero projection of B. Then for each x € [0, 1], e(x) is a nonzero projection in
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M, (B). One easily shows that 7(e(x)) is a constant function on [0, 1]. Let 7(e(x)) =r € (0, 1]. But
7(e(0)) € {i/m : i =0,1,...,m} and 7(e(1)) € {j/k,i =0,1,...,k}. Since m and k are relatively
prime, 7(e(0)) = 7(e(1)) = 1. Hence 7(e(x)) = 1 for all x € [0, 1]. This is possible only when
e=1,I1. O

Lemma 6.5. Suppose that m and k are relatively prime. Then
(Ko(Em.k), Ko(Emk),» [1E,]) = (Z.NU{0},1)  and  Ki(Emx) = {0}.
Proof. Let
I={f€Enx: f(0)=f(1) =0}
Then I = Cy((0,1)) My (B) = S(M,,1 (B)). 1t follows that
Ko(I) = Ki(Myu(B)) ={0}  and  Ki(I) = Ko(Mui(B)) = Z. (6.7)
Consider the short exact sequence
0> 1-5 Epi =5 D(m, k) — 0, (e6.8)

where t; : I — E,, ¢ is the embedding and 7, : E,,, x — D(m, k) is the quotient map. One obtains the
following six-term exact sequence:
Ko() =3 Ko(Emi) =5 Ko(D(m, k)
T Lo (¢6.9)

Te x1 41«1

Kl(D(m’k)) — Kl (Em,k) — KI(I),

which becomes

L0

0 LS Ko(Emi) 8 Z02Z

Tor Lo (€6.10)
Tex1 LI x1
0 «— K (Em’k) — Z.
Note that
im(7e.0) = {(x,5) € Ko(D(m, k) : ¢0,0(x) = @1.0(0)}-
The lemma follows from a straightforward computation. O

Set T € T(C([0, 1], M}k (B))). By, for example, [26, Theorem 2.1] and the Choquet and Fubini
theorems,

= [ fd(ux )
8.T (C([0,11))XBT (M (B))

for all f € AfF(T(C(]0, 1], M,,,x(B))))sa, Where u is a probability Borel measure on [0, 1] and up is
a probability Borel measure on 9,7 (M, (B)). By the Fubini theorem again, we may write 7(f) =
/[0’1] a1 (f(t))du, where o is a tracial state of M, (B). Let I be the ideal in the proof of Lemma 6.5.
Then I = Cy((0,1)) ® Mk (B). Now set T € T(Ep, ) such that ||7|7|| # 0. Since (1/||77]))7]; can
be extended to a tracial state of C([0, 1], M;,x(B)), we may write 7|;(f) = /(0,1) o (f(t))du for all
f € Cp((0,1)) ® M, (B), where o is a tracial state of M, (B) and u is a Borel measure on (0, 1)
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24 X. Fuand H. Lin
(with ||| = |I7|7]l € 1). Since Ep, 1 /1 = M,,,(B) ® My, as in [31, 2.5], one may write

1
7(f) :‘/0 o (f(t))dv forall f € Epy &, (e6.11)

where o7 is a tracial state on M,,(B), o is a tracial state on My, v is a probability Borel measure on
[0, 1], vl(0,1) = il0,1), and if [|7|7 || = O, then v|(,1) = 0.

Notation 6.6. Let y : B — M, be a finite-dimensional representation with rank r — that is, 7 is a finite
direct sum of irreducible representations y; : j = 1,2,...,1, each of which has rank r; (1 < j < [),
such that r = 25.:1 rj. We will also use y for y ® id,,, : M,,,(B) — M,.,, for all integers m > 1. In what
follows we may also write M;, for My (C - 1g) for all integers L > 1. In this way, y (or v ® id,,) is a
homomorphism from M,,,(B) into M,,,, C M,,,(B).

Let &9, &1,&2,...,&k-1 : [0,1] — [0, 1] be continuous paths. Define a homomorphism

H : C([0, 1], My (B)) — C([0, 11, M((k=1)r+1)mn (B))

by
foéo(r) 0 0
0  y(fe&i(®) --- 0
H(f)(t) = : : : for all f € C([0, 1], M., (B))
0 0 o y(fo&a(n)

and 7 € [0, 1]. Note that H can be also defined on E,, ,, ¢ C([0, 1], My, (B)). But in general, H does
not map E,, , into E,, ,. However, with some restrictions on the boundary (restriction on &;s), it is
possible that H maps E,,, ,, into E,, ;.

For the convenience of the construction, let us add some notation and terminology.

Set f,g € M,,(B). We write f =° g if there is a scalar unitary w € M,, such that w* fw = g. Also, if
f,g € C([0,1], M, (B)), we write f =* g if there is a unitary w € C([0, 1], M,,) such that w* fw = g.

6.7. We will construct A = limy,—,« (A, ¢m). The construction will be by induction. Fix B as in Notation
6.6.Set A| = E35.

Denote by 3 the supernatural number 3. Write A5 = lim,_ (Md;l(B),(S,Q) (see Theorem 6.1),
where

5(f) = ({; %f(’f)) for all f € My, (B), (e6.12)

as in formula (e6.1), which also has the properties in equations (e6.2) and (¢6.3) (with d,, = 3! for some
integer [ > 1). Hence, without loss of generality, by passing to a subsequence we may assume, for all n,

T <13 (€6.13)
n

Recall that B = Cy((0,1],C)~. For each t € [0, 1], denote by 6, : B — B the homomorphism
defined, for all f € B, by

0:(f)(x) := f((1 - 1)x) forall x € (0,1]. (e6.14)
Note also that for any integer / > 1, we will use 6, for 8, ® id; : M;(B) — M;(B). Thus, if f € M;(B),
01(f) = f(0) € M;. (e6.15)

It should be noted that 6y = iday, ().
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We state the inductive step as the following lemma:

Lemma 6.8. For A,, = E, 4. With (pm,qm) = 1, we have (5, p,n) = 1 and (3, q,,) = 1. There exist
Apn = E

Pstogmats Where (Pmait, @me1) = 1, (5, pma1) = 1 and (3, gm+1) = 1, and a unital injective
homomorphism ¢, : Ay — A1 Of the form

0, (f)(1) 0 0
0 Ym(foéi(1)®1s --- 0
em(N)O) = . : : u (e6.16)
0 0 o Ym(f o ér(t) ® 15

forall f € A, where u € U(C([0,1], Mp,.,q1))> Om : A — C([0,1], Mg, 4., (B)) is a homo-
morphism, k > 1 is an integer, t € [0,1] and vy, :

My, g (B) = MR(m)png,. IS a finite-dimensional
representation, where R(m) > 1 is an integer. Moreover, the following are true:

(1) Each&; - [0,1] — [0, 1] is a continuous map which has one of the following three forms:

@y iftefo,3/4],
&) = {1/2 e Gl (€6.17)

&) =1/2forallt € [0,1],

12423 ifre[0,3/4],
i = {1 ift € (3/4,1], (e6.19)

and each type of &; appears in equation (¢6.16) at least once.
(2) 5k/5kR(m) =1/R(m) < 1/3™.

(3) For a fixed finite subset F,, C Ay \ {0} C ([0, 1],

(e6.18)

Mp,,.q.,(B)),

lym(f ()N > (1 =1/2m)|| f]| # 0 for some 7 € [0, 1].
4) We have

On(f) = diag(e(l)(f), W (f)), (€6.20)

where 80 1 E,, . — (([0,1], Msp,,q,, (B)) is defined — if £;(3/4) = 1/2 — for each f € E,5,, 4.
by

00 (£)(¢) = f(&i(0) ift €[0,3/4],
© | Oaemzjay (f(&(1)) ift € (3/4,1],

and where 6; : Mp,, 4 (B) = M, . (B) (recall that B = Cy((0, 1], C)~) is a unital homomor-
phism defined by

0:(f)(x) = f((1 =t)x) forall x € (0,1] and all ¢ € [0, 1] (e6.21)
and, if §;(3/4) = 1, for each f € E}, 4,

0D (f)(1) = f(&(1), 1e[0,1].

Proof. To avoid the potential complication of computing relative primality of integers, we will have a
three-stage construction.
Stage 1: Write Ay, = E,,, 4,,» Where (P, qm) = 1. Also (5, p,) = L and (3, gm) = 1.
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26 X. Fuand H. Lin

Fix any finite subset 7,,, C Ep,, 4,. \ {0}. One can choose a finite subset S C [0, 1] such that, for any
f € Fu,thereiss € S, || f(s)|| > (1=1/2m)|f]| # 0. Note that 7' = {f(s) : f € Fyand s € S} \ {0}
is a finite subset of M, 4,. (B). By passing to a subsequence, we may assume (replacing y,, by ¥.u » as
mentioned in formula (¢6.5)) that

lym(g)l > (1= 1/2m)ig]l # 0 forall g € F. (€6.22)
It follows that for any f € F,,,,
lym (f(sNI = (1= 1/2m)||f]| # O for some s” € S c [0, 1]. (6.23)

Define y;, : Mp,, (B) @ My, — Mg, .. (B) ® Ms,, by y;, =6, ® s, where

mPm

a 0

Om(a) = (0 ')’m(a)

) foralla € M, (B), and s(c) =c® Isforallc € M,,,. (e6.24)

Define Y : Ep,, g0, — Edypr.sam bY
Um(F) (@) ==, (f(1) forall f € E,, , andt e [0,1]. (€6.25)

Set f € Ep,, 4,- Then f(0) = b ® 1,,,, where b € M,,,, (B). Thus,
Ym(£)(0) = ¥,,(£(0)) = 6,u(b) ® (14, ® 15) € My, p, (B) ® 1sg,,. (e6.26)

On the other hand, f(1) = 1,,, ® ¢, where ¢ € M, . Thus

Y (£)() =¥, (f(1) = 14,,p, ® (c® 15) € 14,,p,, ® Msg,,. (e6.27)

So indeed, ¥, maps E,, 4, into Eg,. p.. 54,
Note that for 7 € [0, 1], we have for all f' € Ep,, 4, (writing y,, for y,, ® idp,, )

wnip == G Jers (¢6.28)

Recall that y,, : M}, 4,.(B) = MR(m)pma. is @ unital homomorphism with R(m) = d,,, — 1. Note that
by formula (¢6.13), we may assume that R(m) > 3™.

Stage 2: We will use a modified construction of Jiang and Su and define ¢,, on [0, 3/4].

Choose a (first) pair of different prime numbers k(g and k; such that

ko > 15¢m and ki > 15kodpm.- (€6.29)

In particular, kg, k1 # 3, 5.
Recall that (3, ¢,,) = 1, (5, pn) = 1 and d,,, = 3' for some I,, > 1. Therefore, (kodppm, k15¢m) =

1. Let pms1 = kodmPm> qGme1 = k15q, and k = koky. Then (pims1, gme1) = 1, (5, pme1) = 1 and
(3, gm+1) = 1. Write

k=ro+m(0)gms and k=ri+m(1)pm1, (e6.30)
where m(0), rg, m(1),r; > 1 are integers and

0< ro <dqm+1, Yo= k(l’l’lOdqm+1), (6631)
0<ri <pm, r1=k(modpmyr). (€6.32)
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Moreover, by formula (€6.29),

k—=r1—ro>k—=qmit — Pms1 = k —k15qm — kodmpm
= kl(kO - SQm) - kOdmpm
> k1(10gm) — kodmpm > 0. (€6.33)

We will construct paths &;. At ¢t = 0, define

0 if 1 <i <o,
£(0) = LosiEn (6.34)
1/2 ifrg<i<k.
Note that since
705qm = kSqm = kok15¢m = 0(modgny1), (€6.35)

r05qm = toqm+1 for some integer fo > 1. Note also that if f € Eq, p,, 54,.> then f(0) = b ® 154, for
some b € Mg, p,.(B). Hence f(0) ® 1,, = b ® 1,54, = (b® 1) ® 1 for any f € Egq,,p,..5qm- On

mPm

the other hand, for any f € Eq, p,. 5¢,.

qm+1

diag(f (£r+1(0)), - -, F(€x(0))) =* (£(1/2)) @ Lin(0)gp - (€6.36)
In fact, there is a scalar unitary so € My (0)g,1 dim pimSgm SUCh that

k—r
0
sadiag(b, b,....,b)so=0b® lm(g)qu forall b € Mdmpqum (B)

(recall that f(1/2) € Mg,, p,.54,,(B)). Therefore, there exists a unitary vo € U(Mp,,.,4,..,) such that for
all f € EdmpmaS(Im’

f&©)y o -0
0 f(&O)--- 0

po(f) = vy Vo (6.37)

0 0 e F(E(0)

isinMp, . (B)®lg,.,.
At t = 3/4, define

So pg defines a homomorphism from Eg, ,. 54,, into M, (B)® 1g,..,.

12 ifl<i<k—r,
(3/4) = 6.38
&34 {1 ifk—r <i<k (e6.38)

As in the case at 0, by formula (e6.32),
rdmpm = kdwpm = kokidmpm = O(mOdeH)'

So one may write r1d,, pm = t1pm+1 forsomeintegert; > 1.Set f € Eq,.p,,.5q.,- Then f(1) = 14, p,. ®c
for some ¢ € Ms,,,. It follows that 1, ® f(1) =1,,.., ® (1, ® ¢). Also,

diag(f(€1(3/4)s -+ f(Ek-r, 3/H)) = Ln(1) ppey ® f(1/2).
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In fact, there is a scalar unitary s1 € Myu(1) p,sidi pmSqn SUCh that
k—r;
——
sydiag(b,b,...,b)s1 = Lu)p,., ®bforallb e My, .54, (B).

Thus there is a unitary v3/4 € U(Mp,,. g ) Such that for f € Eq, p,. sq..5

f(&1(3/4)) 0 e 0
0 ey - 0
p3/4(f) = V3 . . . V3/4 (€6.39)
0 0 < f (6 (3/4))

defines a homomorphism from Eg,, ., 54,, t0 1p,.., ® Mg, ., (B).
To connect &;(0) and &;(3/4) continuously, on [0, 3/4], let us define (see formula (e6.33))

2/3 if1<i<r,
é:i(l) = 1/2 ifro<i<k-ry, (€6.40)
12423 ifk—r <i<k.

Let v € C([0,3/4], Mp,,.,g....) be a unitary such that v(0) = vo and v(3/4) = v34. Now, on [0, 3/4],
define, forall f € £, 4.,

Ym(f) o &1(2) 0 0
\ Um(f) o &a(t) -
om(f) (1) = v(1) : : : v(t). (€6.41)
0 0 o Ym(f) o & (1)
Stage 3: We connect 3/4 to 1, recalling that 711 (E ..., gt ) = Lppas ® Mg,
We first extend &; by defining
&i(t) =¢&(3/4) forallt € (3/4,1], i=1,2,... k. (e6.42)
Recall equation (¢6.28); at t = 3/4, for each i and for f € E,, 4.,
- [fEGH) 0

un(NEai = (TG D) @1s (¢6.43)

For k —r; <i < k, define, fort € (3/4,1] and f € E},, 4,.>

. _ [f(&(3/4)) 0 _(f(y 0
I () "( 0 ym(f<§,-<3/4>>>)®15‘( 0 ym(fm))@“' (649

Recall that y,,,(f(1)) = f(1) ® 14,,1. Therefore there exists a scalar unitary s3 € M, 4..54,, such that

mqm
5 Fmi())(0)s3 = 1a, ® f() @ Isforall f € Ep, 4., 1€ [3/4,1].

Note that f(1) has the form 1,, ® c for some ¢ € M,,,. So there is a scalar unitary s4 € My, p,...qm5
such that

sadiag (G k—r+1 (F)@)s o s ¥m i (F)(0)s4 = Lrdpp, ®c® 15 =14, ®c® Ls. (e6.45)
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Now recall formula (e6.14) for the definition of 6;. For 1 <i < k — ry, define, for ¢t € (3/4, 1],

Ym(f(£i(1)))

Note that 6,(f(£:(3/4))) = 61(f(1/2)) € Mp,.q4., (see formulas (¢6.38) and (e6.15)). Recall that
em(f)(3/4) €y, ®M,, . (B). Note that for 1 <i < k —ry,

Gi () (1) = (94“—3/‘” (Of &@®)y 0 ) ® Is forall f € Ep, 4. (c6.46)

01(f(1/2)) 0

er,i(f)(l) = ( 0 ym(f(l/Z))) ®lsforall f € Ep, 4..-

Moreover (see also equation (e6.30)), there is a scalar unitary s5 € My,(1) p,...1dp pmgm5 SUch that

s3diag (@1 (N V). Dk, (FD)35 = L1y @ (“f 0 et

Thus, for t = 1, there is a unitary vi € 1, ., ® My, ., such that
Jmi(ND 0 o0
10 Gmanm -0
p1(f) =] : : : Vi (€6.47)
0 0 < G (F)(1)
defines a homomorphism from E,, 4. to 1, ., ® M, . . There is a continuous path of unitaries

{v(®) : t € [3/4,1]} © M, . g, such that v(3/4) is as defined and v(1) = v; — so now v €
C([0,1], Mp,,.., g,y ) Withv(0) = vg and v(1) = vy, and v(3/4) is consistent with the previous definition.
Now define, for z € (3/4, 1],

Ima(f)6) 0 -0
wm,2(f)(t) e
em(N)@) =v(O)7 . : . PO (6.48)
0 0 dmr(HO)

forall f € E,, .- Note that by formulas (¢6.43), (e6.46), (€6.47) and (e6.39),

en(f)(1) = pi(f) forall f € Ep, ... (¢6.49)

Hence ¢, is a unital injective homomorphism from £, ;. t0 Ep . 4 .
from the fact that U;_ &;([0,1]) = [0, 1], as 7o > 1 and k — 1 > 0.)
For convenience of notation and for later use, letus define Y, ; : Ep,, .. — C([0, 1], Mg, p,.5q,.(B))

(Note that injectivity follows

by
- _ JUm(foé&i(n) ifre0,3/4],
Ym,i(f)(1) = {Jm,i(f)(t) e Glal. (€6.50)
forall f € E,,, 4,.- Then we may write, forallz € [0,1] andall f € E|, 4,.,
Gma (D@0 0 0
Uma2(f)(1) -+ 0
em () (1) =v(®)" : : : v(t). (€6.51)
0 0 e P (1)
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Define " : E,, . — C([0,1], M}, 4, (B)), foreach f € E,, . by

0(1)’ = f(ft(t)) ifr e [0’3/4]’ 6.52
(o {94(,3/4) (FEW)) if1e(/a1], (0052
if £&(3/4) = 1/2; and if £;(3/4) = 1, define

0D (f)(t) := f(&(r)) forall 7 € [0,1]. (€6.53)

Define 87 (f) := 0 (f) ® 1s for f € Ep,, 4, and Oy, : Ep,, o — C([0, 1], Msyp, 4., (B)), for each
feEp, 4. by

On(f) = diag(ﬁ(l)(f), ,0® (f)) forall 7 € [0, 1]. (6.54)

By formulas (¢6.48), (¢6.28) and (e6.46), as well as the definition of ®,,, and by conjugating another
unitary in C([0, 1], M., g,... ), We may write

O, (f) 0 0
0 ym(foé)®ls - 0
om(f)=u" : : : u forall f € A,,. (e6.55)
0 0 e ym(f o) ® s

So ¢, does have the form of formula (e6.16). Condition (1) of the lemma follows from the definition of
&; and formulas (e6.40), (e6.42) and (e6.33). Condition (2) follows from formulas (e6.13) and (¢6.28)
(and two lines after it). Condition (3) follows from formula (e6.23). Finally, condition (4) follows from
the definition of ®,,. O

Definition 6.9. From 6.7 and Lemma 6.8, inductively, we define Ay = E3s5, A, = Ep, 4, and
homomorphism s ¢, : Ay — Ams1t = Ap,..i.qms as described in Lemma 6.8. Then we define
A =1limy 00 (A @m)-

Remark 6.10. It should be noted that if £(0), f(1) € M),
scalar matrices.

then ©,,(f(0)) and ®,,,(f (1)) are also

mqm?

7. Conclusion of the construction

Definition 7.1. Let {¢; : 1 < i < m} be a collection of maps described in Lemma 6.8(1).
Note that each of the three types occurs at least once. Such a collection is said to be full. Let

C = {g;l) o fj(g) 1<i<m,1<j< mz} be a collection of compositions of two maps in Lemma
6.8(1). This collection is called full if {fj(.z) 1<j< mz} is a full collection, and for each fixed é:]('z)’

{gi(l) : §l.(1) o §J(.2) € Cz} is also a full collection. Inductively, a collection of n compositions of maps in
Lemma 6.8(1),

c,,:{g% g0 0ol 1sj(i)3m,-:i:1,2,...,n}

is called full if {gj‘;‘ 1<jn) < mn} is a full collection, and for each fixed £*" (m) i) the collection

(1 2 (n—
{éjj(l) °&imy O °& j(n— 1) tEji 0 &j@ 0o &jm-1) °&jn) € Cn}

is full.
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Lemma 7.2. Let E=&;(yo&j) 0 -0&;m : [0,1] — [0, 1] be a composition of n maps, where each
Eiky 2 [0,1] = [0,1] (1 £ k < n) is one of the three types of continuous maps given in Lemma 6.8(1).
Then for any x,y € [0, 1],

[E(x) —EWI < (2/3)". (e7.1)
Moreover, if {E jil<j<l } is a full collection of compositions of n maps as before, then
U E5([0,1]) = [0, 1], (€7.2)

and for each t € [0, 1], {Ej(t) 11<j< l} is (2/3)"-dense in [0, 1].

Proof. Note that for each i and for any x, y € [0, 1], we have |&;(x) — &;(y)| < (2/3)|x — y|. Then, by
induction, for all x, y € [0, 1],

IE(x) = EW)] =€) 0 &) 0+ 0 Ejim) (x) = Ej(1y 0 €2y 0+ 0 Ejimy ()] (€7.3)
<2/3)|Ejay 00 Ejm (X)) = Ejy 0 0 Ejm) ()] (€7.4)
<2 (2/3) e =yl < (2/3). (e7.5)

One already observes that U;cs&;([0,1]) = [0, 1] if {f i€ S} is a full collection. An induction
shows that if {E jl<j<l } is a full collection, then

ui._]aj([o, 1) = [0, 1].

To show the last statement, fix ¢ € [0, 1]. Setx € [0, 1]. Then for some y € [0,1] and j € {1,2,...,1},
Ei(y) =x.
Now, by the first part of the statement, for any ¢ € [0, 1],
|Z;()-&;(n)| < @2/3)"
It follows that

|2 (1) = x| = |B; (1) —8;(0)| < (2/3)". O

Theorem 7.3. The inductive limit A defined in Definition 6.9 can be made into a unital simple C*-
algebra AZC such that

(Ko(A2), Ko(A2)s, [1a.], Ki(AL)) = (Z,Z4, 1,{0}). (e7.6)

If C is not exact, then AZC is not exact.

Proof. For convenience, one makes an additional requirement in the construction. Let F, 1 C
Fm2s---»Fmn,-.. beanincreasing sequence of finite subsets of A, such that U, F;, , is dense in A,,.

One requires @ (Fm,m+1) € Fmat,1 a0d @ (Fnman) C Foetn mon=1,2,. ...

This is done inductively as follows: Choose any increasing sequence of finite subsets Fj; C
Fi2,...,C Aj such that U, F; , is dense in A;. Specify F; = Fi 1 \ {0}. Choose A, and define
@1 : A1 — Aj; as in the construction of Lemma 6.8.

Choose an increasing sequence of finite subsets F» 1, F22,... of Ay such that ¢; (}'1,") C Fon
(n=1,2,...)such that U, F, , is dense in A,. Specity F» = F2;1 \ {0}.

Once F, 1, Fm,2, - - . are determined, specity F,,, = F,.,1 \ {0}. Then construct A,,+1 and ¢, : Ay —
A1 as in Lemma 6.8. Choose Frpi1,1, Fmt1,25 - - - 80 that @ (Fmme1) € Fonet,1 and @y (Frmen) C
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Fm+l.n, as Well as Frpi1.n C Foel n+1- Moreover, U, Fri1 5 i dense in A,41. Choose Frvr = Frrin \
{0}. Thus the requirement can be made.

Let us now prove that A is simple. For this, we will prove the following claim:

Claim: For any fixed 7, and g € A;\{0}, there exists n > i such that ¢; ,(g) is full in A,. Without
loss of generality, we may assume that ||g|| = 1. There are j and f € J; ; such that || f — g|| < 1/64.

To simplify notation, without loss of generality we may write i = 1. Set ¢; j» = @100 ¢;
for j > j. Then ¢y ;/(f) € ¢;(Fj-1,;7) € Fj.1. Recall also that each ¢, is unital and injective. To
further simplify the notation, without loss of generality we may write 7; ; \ {0} = F,,, = Fi1 \ {0}
We assume that m > 128. By construction, for some ¢ € (0, 1),

1Ym (f DN > (1 =1/72m)[| f]| # 0. (€7.7)

By continuity, there is n(m) > 1 such that for any (2/3)"("~!_dense set S of [0, 1],
1Ym (F)I = (1 =1/2m)]| f]] # O for some s € S. (e7.8)

For any f € C([0, 1], Mp,,q,,(B)) and i, denote h(t) =y (f o & (2))®1s (for t € [0, 1]). Then, for any
k>mandj(t € [0,1]),

Yi(ho & (1)) = yi(ym(f 0 & 0 &j(1)) ® 1s) =y (f 0 & 0 & (1)) ® Lsr(x), (€7.9)

where R(k) is the rank of y; and ¢; and ¢; are as defined in Lemma 6.8(1). Denote

Tt ()(0) = et (f(1)) © 15 for all f € C([0, 1] My g, (B)) (and 1 € [0, 1]). (e7.10)

Therefore, from Lemma 6.8 and formula (e6.16) (also keep in mind Remark 6.10), we may write, for
each feA, =E,, 4.

Ho(f) 0

7_’m(f o 51(2)) ® 1R (m+1)
Cmme2(f) = w] . wi,  (e7.11)

- 2
0 '}/m(f o é:l((rzﬁ_l)) ® 1R(m+1)

where Hy : A, — C([O, 1]’Ml4)pmqm) is a homomorphism (for some integer Ly > 1), w; €

C([0,1]1, M), .,4,..,) is @ unitary, R(m + 1) is the rank of ¥,,,41 and {é-‘](.z) c1<j<l(m+ 1)} is a full
collection of compositions of two &;s (maps in Lemma 6.8(1)).

Therefore, by induction, for any n > n(m) + m one may write, from the construction of Lemma 6.8
(see equation (e6.16)), forall f € Ay, = Ep, 4.

H(f) 0
')_/m(f © El) ® 1R(n,l)
Cman(f) =w" . w, (€7.12)

0 Ym(f 0 E)) & 1R,

where H : A,, — ([0, 1], MLp,.q,.(B)) is a homomorphism (for some integer L > 1), E; is a
composition of n—m maps in Lemma 6.8(1) such that the collection {Ej 1<j< l} isfull, R(n, j) > 1
is an integer, j = 1,2,...,l,and w € C([O, 1],M,,nqn) is a unitary.
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It follows from Lemma 7.2 that

12 (x) - (y)] < (2/3)" " forallx,y e [0,1], 1<i<l, and U E([0,1]) =[0,1].
(e7.13)

Fix any ¢ € [0,1] and x € [0, 1]; by Lemma 7.2, there are y € [0,1] and j € {1,2,...,1} such that
E;(y) = x. Then
|=;(6) — x| = [2;(1) - E;(»)| < 2/3)"™™ < (2/3)"". (€7.14)

It follows from the choice of n(m) and formula (¢7.8) that, for f € F,,,

63\’
[ym(foE;®)|| = (1= 1/m)lIfIl > (6—4) forall ¢ € [0, 1]. (e7.15)

Since || (E,(¢)) — g(E;(#))|| < 1/64, this implies that

632 — 64
| > ——— forallt € [0,1]. (7.16)

lym (2 (&) 2 =

Since for each ¢ € [0, 1], we have y,,(g 0 E;(t)) € M}, 4...i =1,2,...,1, we know that ¢, ,,(g)(z) is
not in any closed ideal of M), ,, (B) for each ¢ € [0, 1]. Therefore ¢, »(g) is fullin E,, 4, = An. This
proves the claim.

It follows from the claim that A is simple. To see this, let / € AS be an ideal such that  # AS and
put C, = ¢5.00(Ap). Then C,, € Cpyq forall n. Seta € Cp, \ {0}. By the claim, there is n” > m such that
ais full in C,, and therefore a is full in every C,, for n > n’. In other words, a ¢ C,, N1 for all n. It follows
that C,,, NI = {0}, as C,,, € C,, forall n > m. It is then standard to show that I = {0}. Thus AZC is simple.

Since, by Lemma 6.5, we have for each m that

(Ko(Am), Ko(Am)ss [1a,,]. K1 (Am)) = (Z,Z4,1,{0}),

one concludes (as each ¢, is unital) that
(KO(AZC),KO(AZC)+, |14 |- K1 (49)) = @221, (0D, (€7.17)

Finally, if C is not exact, then B is not exact, since B has quotients of the form C & C, which is not exact.
Define @ : B — C([0, 1], M5(B)) by

O(f)(t) =0,(f)®1sforall f € Bandt € [0, 1], (e7.18)
where 6; : B — B is defined in formula (¢6.14). Note that for f € B,

O(f)(0)=0g(f)®115=f®115 € M3(B) ® 15 and D(f)(1)=f(0)®1;5€C-1;s.
(e7.19)

One then obtains a unitary u € C([0, 1], M;s) such that
u'®(f)u € Es 5. (e7.20)

Define ¥(f) := u*®(f)u forall f € B. Then ¥ is a unital injective homomorphism. In other words, B is
embedded unitally into A; = E3 5. Since each ¢, : A, = A,41 is unital and injective, B is embedded
into Ag. Since B is not exact, neither is AZC (see, for example, [47, Proposition 2.6]). O

Proposition 7.4. If C is exact but not nuclear, then AZC is exact and not nuclear.
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Proof. Note that since C is nonnuclear and exact, so is B. Note also that A, = E, . is a C*-subalgebra
of the exact C*-algebra C([O, 11, Mp,.q. (B)). So each A,, is exact. By [47, 2.5.5], Ag is exact.

Let® : B — A; = E35 be as in the end of the proof of Theorem 7.3. Let ﬂ(()l) : Ay —> M3(B) ® Ms
be the evaluation at 0, namely ﬂ(()l)(f) = f(0) for all f € Aj. Letn; : M3(B) ® 15 — B be given
by defining 771 ((bi,j) 3,3 ® 15) = b1,1, where b; ; € B, 1 < i, j < 3. Then 5 is a norm 1 c.p.c. map.
((]1’1) : Al = Bby n(()l’l)(f) =110 nél). Note that nél’l) o @ is an isomorphism. In fact,

71'(()1’1) o ®(b) = 6y(b) = b (see equation (e7.19)) for all b € B.
The foregoing is illustrated in the following diagram:

Define 7

B d A (e7.21)
«
. M3(B) ® 15
idp
lﬂ]
B

We will use the same diagram in the n-stage.

In Lemma 6.8(4), let us denote &; such that &, (r) = 2¢/3 for ¢ € [0,3/4] and 8V (£(0)) = £(0)
for all f € E3 5 (note that we do not change the connecting map, but only for convenience in equation
(e7.22)). So by formulas (e6.16), (€6.20), (6.52) and (e6.53), we may write

01(F)(= pr2() = ujdiag(612 (). H{(f) Ju forall f € Ay, (e722)

where (12 := 91"+ A} — C(]0, 1], M;5(B)) and 62 ()(0) = f(0) for f € Ay, and H] :
Ay = Ezs5 — C([0,1],M},4,(B)) is a homomorphism. Note that the image of H{ is in a corner
of C([0,1], Mp,4,(B)), and u; € U(C([0,1], Mp,4,)). Similarly, again by formulas (¢6.16), (¢6.20),
(e6.52) and (e6.53), we may also write

015(f) = u;diag(e“ﬁ) ), Hg(f))uz forall f € A, (€7.23)

where 83 (f)(0) = £(0) for f € Ay, H} : A; — C([0,1],Mp,q,(B)) is a homomorphism and
uz € U(C([0, 1], M}, 4,)). By induction, for any n > 1 we may write

Q1a(f) = u;;diag(e“’") (f),H;<f>)un for all f € Ay, (7.24)

where 610 (£)(0) = £(0), H, : Ay — C([0,1], M}, (B)) is a homomorphism and u, €
C([0,1], Mp,,.,4,..,)- (One should be warned that u;diag(e(l’"),o, e 0)14,, is notin A,,.)

Now we prove that AZC is not nuclear. We follow the proof of [13, Proposition 6]. Assume otherwise:
For any finite subset  C B and € > 0, if AS were nuclear, then ¢ o o @ would be nuclear. Therefore
there would be a finite-dimensional C*-algebra D and c.p.c. mapse : B— D and 8: D — AZC such
that

1,00 0 @(B) — Bo a(b)|| < &/2 forall b € F. (€7.25)

Since AZC is assumed to be nuclear, by the Effros—Choi lifting theorem [1 1], there exist an integer n > 1
and a unital c.p.c. map B, : D — A, such that

[1Bx) = @n.0 0 Bu(x)|| < /2 for all x € a(F). (€7.26)
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Thus
[|@n,00 (91,0 0 @(B) = B 0 (D))]| < e. (€7.27)
As @, is an isometry, this implies that

o100 ®(b) = B o a(b)| < eforall b € B. (€7.28)

Let 71'(()”) tEp,.q. = Mp,(B) ® 1,4, be the evaluation at 0 defined by n(()")(a) := a(0). We have, by
equation (e7.24),

7 (91,0 0 D(b)) = diag(Bo(b) ® 115, Hj,(@(£))(0)) for all b € B. (e7.29)
Recall that 6y(b) = b. Now a rank one projection p corresponding the first (1, 1) corner is in M), (B) ®

1y, Put ¢ = u,(0)* pu,(0). We now use the n-stage diagram (e7.21). Letn, : M, (B)® 1,, — B
be defined by 17,(x) = u,(0)gxqu,(0)* for all x € M,, (B) ® 1,4, which is a unital c.p.c. map

M (un(O)*((b,-,j)anpn ® lqn)un(O)) = by,1. Note that 77, oné") 0@y, 0® =idp. By formula (¢7.28),

6= 10 0 B0 at)| =

M 0 7 (91,0 0 ®(b) = By 0 a(b))” <eforallbeB.  (e7.30)

This would imply that B is nuclear. Therefore AZC is not nuclear. The foregoing could be illustrated by
the following diagram, which is only approximately commutative below the top triangle:

M, (B)®1,,

(n)
idp ‘Pl,noq}

—

- _ En i‘)ﬂn,m
AC

Theorem 7.5. The inductive limit AZC in Theorem 7.3 has a unique tracial state.

Proof. First we note each unital C*-algebra A,, = E,, ... has at least one tracial state, say 7,,. Note
that ¢, o is an injective homomorphism. So we may view T, as a tracial state of ¢, 0 (Am). Extend 7,
to a state 7, on AS. Choose a weak*-limit of {t,,,}, say 7. Then  is a state of the unital C*-algebra A
Note that ¢,,.c0(Am) C @n.c0(Apn) if n > m. Then for each pair x,y € ¢y, 00(Am), and for any n > m,
t,(xy) = t,,(yx). It follows that 7 is a tracial state of AZC. In other words, AZC has at least one tracial state.

Claim: For each k, each a € Ay with ||la|| < 1 and each & > 0, there exists N > k such that, for all
n>N,

|T1 ((,ok,n(a)) - Tz(tpk,n(a))| <egforall r;,m € T(A,). (e7.31)

Fix a € Ag. To simplify the notation, without loss of generality we may assume that k = 1.
Choose m > 1 such that

1/3™ ! < g/4. (€7.32)
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Put ¢ = 91 m(a). There is ¢ > 0 such that
lg(x) —g(y)|| < g/4dforall x,y € [0, 1] with |[x — y| < 6. (e7.33)
Recall that here we view vy, as a map from M, 4, (B) t0 Mg(m)p,nq..- Note that for each f € A,,, since
Ym(f () is ascalar matrix forall # € [0, 1], we have that y,,,( f(¢)) (x), as an element in Mg ) p,.q,. (B).
is a constant matrix (for x € (0, 1]) in Mg(m)p,q., (Co((0, 1], C)™). Hence (see equation (e7.10) for
Ym), for t € [3/4,1] —recalling that &;(t) = &;(3/4) for all ¢t in [3/4,1] -
0(1-3/2) (Ym (f(Ej 0 &) B/4)) = Vi (f (B 0 &) (3/4)) = T (f (B} 0 &)) (1). (e7.34)

(Recall the definition of 6, in formula (e6.21)). Therefore (see the definition of 6@ in formula (e6.52)),
for any i with &;(3/4) # 1,

9(1) 5 (fog, _ )_/m(fOEj Ofi)(l) ift e [0,3/4], 735
(T 221)) 0 {94(13/4)(')_’m(f03j 0&)(3/4)) ifre (3/4,1] (733)
= Tm(f(E) 0 &)) (). (e7.36)
For those i such that &;(3/4) = 1, one also has
0 (Fm(f ©E})) = ¥m(f 0 Ej 0 &). (€7.37)

It follows (recall Lemma 6.8(4) for the definition of ®,,,, and also keep Remark 6.10 in mind) that

0,1 (f) 0 0
0 ’}7m(fo§5§2)) 0
Omr1 (@m(f)) =u" _ : uforall f € Ay, (€7.38)
S

where u € C([0, 1], Msk,p,...qm.) i @ unitary (the integer k» is the integer k in Lemma 6.8 for
Om+1), O A — c([o, L], M7 (0) g (B)) is a homomorphism for some integer 7(0) > 1 and

{fj(,z) 11<j< k’} is a full collection of compositions of two maps in Lemma 6.8(1). Moreover, by
Lemma 6.8(2),

T(0)/5k'R(m) < 1/3™. (€7.39)

Then, combining with equation (e7.9), we may write @, m+2 : Am — Ams2 as

Hpr1(f) 0 0
0 )_’m(foffz))@’lr(]) 0
Cmms2(f) = u} . : ui (€7.40)
- 2
0 0 )’m(f 06;(,31>) ® 1, (1(m))

for all f € A,,, where u; € ([0, 1], M, ,q,...) is a unitary, Hyi1 @ Ay — C([0, 11, M7 (1) ppugon (B))

is a homomorphism for some integer 7'(1) > 1, {fj(.z) 11<j< l} is a full collection of compositions
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of two maps in Lemma 6.8(1) and r(I(j)) > 1 is an integer, j = 1,2, ...,1(m). Moreover,

L(m)
T()/5R(m)| D\ r(1(7) | < 1/3™. (e7.41)

Jj=1

Therefore, by Lemma 6.8 — noting equations (e6.16), (€6.20) and (¢7.36) — and the proof of Theorem
7.3 (see equation (¢7.9)), as well as equation (e7.38) repeatedly, one may write, for each n > m and all

fGAI’n7

Huyn(f) 0
7m(f ° El)

Omn(f) =w" W, (€7.42)

0 Ym(f o EL)
where w € ([0, 1], M}, 4, ) is a unitary, Hy,, ,, : Ap — C([0, 11, M1(0) png., (B)) is @ homomorphism

for some integer L(0) > 1,Z; : [0, 1] — [0, 1] is a composition of n—m many &;s and {Ej 1<j< L}
is a full collection. Moreover,

L(0)/5LR(m) < 1/3™. (e7.43)

We choose N such that (2/3)V =" < § and choose any n > N.
Set1; € T(A,) (i = 1,2). Then, for any f € A,

1
(/) = /O o) (FO)duss i=1,2, (c7.44)

where o7 (¢) is a tracial state of M, 4, (B) for all ¢ € (0, 1), 0;(0) is a tracial state of M, (B) ® 1,,,
0(1) is a tracial state of 1 pn ® Mg, and y; is a probability Borel measure on [0, 1], i = 1,2. For each
t € [0,1] and for f(t) € M}, 4, € Mp, 4, (B),

o () (f(1) =u(f(1), =12, (e7.45)
where tr is the normalised trace on M, ,, (see equation (e6.11)). For each j € {1,2,...,L}, by
Lemma 7.2,

|2;(x) —E;(»)] < (2/3)""™ < s forallx,y € [0, 1]. (€7.46)
By the choice of ¢,
g o Ej(x) —g o Ej(y)|| < e/4 forallx,y € [0, 1]. (€7.47)
For each f € A,,, write
H(f)(1) = (H’"”éf (@) 8) forall 7 € [0,1]. (€7.48)
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38 X. Fuand H. Lin
Then one has, for each f € A, andi = 1,2,

1
e mn()) = / 1 (D) (o ()t (e7.49)
0
1 1 L
- [ e e+ [ Do) | (e7.50)
0 0 J=1
By formula (¢7.47), recalling that ||g]| < 1,

L

1
/tr(@(go 1(1/2)) @(gosj(z))dﬂiqgm)/o du; = /4. (e7.51)

J=1

By formula (e7.43),

1
/0 |loi (1) (H' (8) (1) |dpi < (1/3)™ < /4. (e7.52)

Recall that ¢ ,,(a) = ¢m.n(g). Thus, by formulas (¢7.49), (¢7.50), (¢7.51) and (e7.52),

L
(010 (a)) Ztr (E;,(1/2))| < /2, i=1,2. (e7.53)
j=1

Therefore,
[t (e1.0(0)) = T2(1.0(a))] < & (€7.54)

This proves the claim.
To complete the proof, set 51,52 € T(AS). Seta € AS and & > 0. Then there is f € A for some
k > 1 such that

lla = er. ()| < &/3. (€7.55)

Let 7; , = 5; © ¢, . Then, by the claim, there exists N > k such that for all n > N,

[t (@r,n(£) = Ton(@rn ()] < &/3. (e7.56)
It follows that
[51(¢1.00(f)) = s2(0.00 ()] < £/3. (e7.57)
Therefore,
Is1(a) = s2(a)] < [s1(a) = 51 (pr.0o ()]
+]51 (k.00 () = $2(k.00 ()] +[52(@) = 52 (01,00 ()] < &.
It follows that s1(a) = s2(a). Thus AS has a unique tracial state. 0

Remark 7.6. Recall that the construction allows B = C (with C = {0}). In that case, of course, AZC =Z.
Note that when B = C, we have 6,(b) = b forall b € M, 4,,. In other words, 6; = idp.
Let

Zpam =1 €C([0,1]1, M}y, 4,.) - £(0) € M), ®1,, and f(1) € 1), & My, }. (€7.58)
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In general (when C # {0}),one has Z,,, , C Ep. 4..asweviewC C Band M., C Mp . (B).
Let ¢%, = ¢mlz,,,,, - Then, since v € C([0,1],M),, 4,...) (see the line before formula (c6.48)),
O3 (Zppsam) S Zppiet.gms: - Thus, one obtains a unital C*-subalgebra (of AS)

B, = lim (Z,,,.q..- ¢5)- (€7.59)

n—oo

Then B, = Z [27].

8. Regularity properties of Af
In this section, let Af be the C*-algebra in Theorem 7.3.

Lemma 8.1. The inductive system can be arranged so that AZC has the following properties:

1) AZC has a unital C*-subalgebra B, = Z.
(2) For any finite subset F C A, and & > 0, there is e € (A1)} \ {0} such that the following hold:
(i) e(t) € My, . g forall t € [0,1] and e(1) = 0.
>ii) |lex — xe|| < & for all x € ¢, (F).
(i) @mr1,00((1 = €)P0(f)) €c B forall f € F, and for any € (0, ),

[t (1= P en)| = (1= Dleml forall y e Fo e8.1)

(iv) di(e) < 1/3™ forall v € T(Ap41).
(Recall that F,,, was constructed in the proof of Theorem 7.3.)

Proof. We will keep the notation used in the proof of Lemma 6.8.
For (i), we note that the C*-subalgebra B, = lim, .« (Z,,m,qm, cpmlzpm,qm) has been identified in
Remark 7.6, where

Zpam =1 €C([0,1], M}, 4,.) - £(0) € M, ®1,, and f(1) € 1), ® My, }. (e8.2)

There is 6 € (0, £/2) such that if |t — ¢’| < 26,

lom (f)(2) = em () ()]l < g/4 forall f € F. (8.3)

In particular, there is 11 € (0, 1) (1 —#; < &) such that

l@m (F)(@) — om(f)(D)]|| < g/dforall f e Fandt € (11, 1). (e8.4)

Choose a continuous function g € C([0,1]) such that 0 < g < 1, g(r) = 1 for all # € [0,1]
and g(t) = (1 —t)/(1 —1;) for t € (21,1]. Let eg(t) = g(z) - 14,, for all t € [0, 1]. Note that
eo(0) = 1,4 € Mp,(B)® 1y, and eg(1) =0 € 1, ® M,,,. So ey € A,,. Moreover, ey is in the
center of A,,. Define oy : M, (B) ® My, — M, p, (B) ® Msy, by o) ® s, where

mPm

oyla) = (01(()(1) 8) foralla € M), (B) and s(c) =c® 15 forallc € M, , (e8.5)

where 61 : Mp,, (B) — M, C Mp, (B) is defined by 61(c)(x) = c(0) for c € M, (B) =
M, (Co((0,1],C)7) and for all x € [0,1], and the “0” in the lower corner of the matrix has the
size of (dy — 1)pm X (dy — 1) pm. Then define oy : A, — ([0, 1], My, p,,.54,, (B)) by

o1 (f)(t) =oo(f(1)) forall f € E, . andt e [0,1]. (e8.6)
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It follows that for all fixed ¢ € [0, 1],

o1 (eo) (1) = op(eo(t)) = 00(g(1) - 1a,,) = 00(g(1) - 1, ® 14,,) (e8.7)
[P ot 105 ot (s

where the last “0” in the last matrix has the size (d;;, — 1) pimgm X (dm = 1) pmqm- Thus
oz (60)(0) =bhb® 15qm and 0'1(60(1)) =0, (e8.9)
1p,, O
where b = O’" ol It follows that o1 (eo) € Eq,,p,,.5q.,- Note that for each 7 € T(A,,), by formula
(e 6.13).
d-(o1(eg)) < 1/3™. (e8.10)

Let us recall the definition of i}, ; in the proof of Lemma 6.8, 1 < i < k (see formula (¢6.50)). Then
for all f € A,,, by formulas (¢6.50), (e6.44), (¢6.46) and (e6.52), for each ¢ € [0, 1] we have

5 (i) )

Um,i(f)(t)o1(eo)(t) = (9 (({)(t) ym(?(t))) ®15-(g(t) (}qum 8) ® Is (e8.11)
_ (9(i)(f)(t) 80 L 8) ® 15 (e8.12)
_ (&) 1p,q, O o)1) 0
—( O” g O)@ls-( 0 ym(f(t)))®15 (e8.13)
= 01 (e0) (Om.i () (1) (e8.14)

In other words, forall f € E,, 4.

Imi(f)oi(eo) = ai(eo)fmi(f), i=12,... k. (e8.15)

Define « : [0, 1] — [0, 1] by

_ % ifr € [0,71], 1
alr) = {1 if1e (n,1]. (c8.16)

Thenforallj, foa € Ep, 4, if f € Ep, 4,. Moreover, by formula (¢8.3),

lem(f) 0@ = om(f)Il < e/4forall f e F. (e8.17)

Therefore, for each f € A,,;, eacht € [0, 1] and each 8 € (0, ), with [ = d,pmSqm,

(1 =80 1 ppg 0V (foalr) 0

(1 = o1 (€0)Pm,i(f) o a(t) = a (f(y) 15 (€S18)

fori=1,2,...,k.Fort € [0,t], by the definition of g,

(1 =g 1y -0V () (1) =0. (8.19)
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Fort € (11,1],

(1=g@) - 1pam 0D (f) oalt) = (1-g(0)P -0V (f)(1) € My, .- (€8.20)

Hence

(17 = 1(0)PPmi(f o @) € C([0,1], Ma,, p, 54 )- (€8.21)

Moreover, by formula (e7.8), for f € F,, we have

(1 = o1 (€0))Pdm,i (f) 0 af| = (1 = 1/m) || £ (e8.22)

Using the same v as in formula (e6.48), with o (eg) (f) repeating k times, define

o1 (eo)(r) 0 0
0 oilen)®) -~ O
e =v()" : : : v(1). (e8.23)
0 0 e

With b as in the line after equation (¢8.9), b ® 1s,4,, ® 1,, = b ® 1,54, = (b ® 1)) ® 1,,,,, (see formula
(€6.35)). Since o1 (ep) € Eqg,,p,n.5q.> as in equation (e8.9),

mPm

b®ls,, 0 - 0
0 b®lsg, -+ 0
e(0) = vg : vo € Mp,,.., ® lg,., (e8.24)
0 0 - b®ls,,

(see formula (e6.37)). Combining with the fact that e(1) = 0, one concludes thate € E,, .| ..., = Am+1.
Moreover, by equation (¢8.7) and the fact that v € C([0, 1], M, p (see discussion before formula
(€6.48)), e(t) € M),

m+1Gm+1 )

foreach t € [0, 1] and e(1) = 0. So part (2)(i) of the statement of the lemma

m+1qdm+1
holds.
By equation (e8.15) and (e6.51), one computes that for all f € A,,,
0’1(60)‘;m,1(f) 0
eom(f) =v" v (e8.25)
0 o-l(eO)I»Zm,k(f)
Uma(f)oi(eo) 0
=¥ v =on(f)e. (e8.26)
0 U,k (o (eo)
In other words, part (2)(ii) in the statement of the lemma holds. Now
(11 = 01(e0))Pm,1 (f) o 0
(1-e)fou(foa)=v" v
0 (11 = o1(e0)Pmi(f) o

forall f € A,,, where ! = d,pnS5qm. Note that (1—e)P,,(f)oa € E
(€8.21) that

Pms1sqmsr - 1t fOllows from formula

(1=ePou(f)oa € Zp,. qm forall f eF. (e8.27)
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Then, by formula (e8.17),
(1= )P 0(f) €c/a Zppyargmn forall f € F. (e8.28)
It follows that
(,om,w((] —e)f f) €. B, forall f € F. (€8.29)

Moreover, by formula (e8.22), formula (e8.1) also holds, so part (2)(iii) of the statement of the lemma
holds. It follows from formula (e8.10) that part (2)(iv) also holds. |

Lemma 8.2. Let

Epq={(f.c):C([0,1],Mpy(B)) & (M, (B) ® M) : mo(c) = f(0) and 71 (c) = f(1)}, (e8.30)

whereng : Mp(B)®M,; — M, (B)®1,; C My, (B) defined by no(c1®c2) := c1®1, forallcy € M, (B)
and cy € My, and i : Mp,(B) @ My — 1, ® My, C M, (B) defined by m1((c1 ® c2)) := 1, ® c3 for
all ¢y € M, (B) and c> € My, (see formula (¢6.6)). Let

Lpg={(f.c): C([0.1], Mpg) & M}, : molar,, (c) = £(0)}, (e8.31)

where mo|m,, (c) = c® 14 forall c € M.
Suppose that a, b € Ep, 4, are such that

(1) a(r) € ([0, 1], M,q) and a(1) = 0 and
(2) there is by € C([0, 1], M), such that bo(t) < b(t) forall t € [0, 1] and

asbyinL,, (e8.32)

(i.e., there exists a sequence x,, € Lp, 4 such that x,box,, — a).

Then
asbink,,. (e8.33)
Proof. Let 1 > & > 0. Consider a continuous function hs € E, 4:

lMpq(B) ifr € [0,1-4],
hs(t) =40 ifre (1-6/2,1], (e8.34)
linear otherwise.

Since a(1) = 0, there exists §yp > 0 such that ”a - hlééza . hg{)z” <e.

Note that &4, lies in the center of C([0, 1], My, (B)), and for any f € L, 4 and any n € N, we have
Bl € E, ,. Thensincea < bgin L, ,, one checks B2 an/? < hl/zbohl/2 < by <binkE, .. This
P-4 p-q S 6o 0 g

6() ’ 6()
implies that a ~ hg{)zahgéz < bin E,, 4. Since this holds for any 1 > & > 0, one concludes that a < b
inkp 4. O

Definition 8.3 (compare [19, 2.1.1.]). In the spirit of Definition 3.1, a simple C*-algebra A is said to
have essential tracial nuclear dimension at most 7 if A is essentially tracially in N, the class of C*-
algebras with nuclear dimension at most n — that is, if for any € > 0 and any finite subsets F C A and
a € A, \ {0}, there exist an element ¢ € Al and a C*-subalgebra B ¢ A which has nuclear dimension
at most » such that
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(1) |lex —xe|| < & forall x € F,
(2) (1 —e)x €z Band ||(1 —e)x]|| = ||x|| — & for all x € F and
3) e sa.

Let us denote by Nz ¢ the class of separable nuclear simple Z -stable C*-algebras.

Theorem 8.4. The unital simple C*-algebra Af is essentially tracially in N s s and has essential tracial
nuclear dimension at most 1, stable rank one and strict comparison for positive elements. Moreover,
AZC has a unique tracial state and has no 2-quasitraces other than the unique tracial state, and

(KO(AZC),KO(AZC)+, [1Ag],1{| (AZC)) = (Z,Z.,1,{0)). (€8.35)

Recall that if C is exact and not nuclear, then AZC is exact and not nuclear (Theorem 7.3), and if C is
not exact, then AZC is not exact (Proposition 7.4).

Proof. We will first show that AZC is essentially tracially in Nz ;. We will retain the notation from the
construction of AS.

Fix a finite subset F and an element a € AS, with [la|| = 1. To verify that AS has the specified
property, without loss of generality we may assume that there is a finite subset G C A} such that
¢1,00(G) = F. Since U,=1 F} , is dense in A; (see the proof of Theorem 7.3), we may assume that
G c Fim for some m > 1. By the first few lines of the proof of Theorem 7.3, we may assume
that ¢1 ,(G) C gol,m(}' l,m) C Fm+1,1. Starting from m + 1 instead of 1, to further simplify notation,
without loss of generality we may assume that G ¢ F; ; = F; U {0}. Without loss of generality, we may
assume that there is a’ € (A;)! with ||@’|| = 1 such that

lor.e(a’) —all < 1/4. (e8.36)

It follows from [40, Proposition 2.2] that

P1eo(f1/a(a") = fija(e1.0(a)) < a. (e8.37)
Put a) = fi/4(a’) (+ 0). Since AS is simple, there are x1,x2, ..., xx € AS such that
k
D xienelag)xi = 1. (€8.38)
i=1
It follows that for some large ng, there are y1, y2,...,yx € An, and ny > ng such that
k
> Pyt (V7)1 (@) gy (1) = 1, || < 1/4. (e8.39)
i=1
It follows that ag := ¢y ,, (ay) is a full element in A, .
Set
d =inf{d;(ap) : T € T(An,)}. (€8.40)

Since aq is full in A,,, and ag € (A,,),, we have d > 0. Choose m > n; such that
dj4>1/3"1. (e8.41)

By applying Lemma 8.1, we obtain e € (A,,;1)} \ {0} such that

(i) e(t) € My, g, Torallf € [0,1] and e(1) = 0,
(ii) |lex —xe|| < eforall x € gom(<p1,m(g)),
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(iii) @m+1,00((1 = €)@m(p1,m(x))) €c Bz, and
H‘Pm+1,00((1 - e)ﬁ"m(‘ﬁl,m(x)))” > (1- l/m)”‘Pl,m(x)”

for all x € F; 1, and
(iv) d.(e) < 1/3" forall T € T(A;41)-

Denote a; = ¢n, m(ao). It is full in A,,. Write, as in Theorem 6.8 and equation (e6.16),

0, (ar) 0 0
0  Ymlajoép)®ls --- 0
em(ay) =u” . . . u, (e8.42)
0 0 - ymlar o &) ® 1s

where u € U(C([0, 1], My, qmis (B)))s Om = A — C([0, 1], Mk, 4., (B)) is a homomorphism, k > 1
is an integer and y,, : B — Mg is a finite-dimensional representation. Moreover,

k/5kR(m) < 1/3™. (e8.43)
Let
0 0 0
0 ym(aoé)®1s -+ 0
by =u*| . . . u. (e8.44)
0 0 c Ym(ar o &) ® 1s

Note that by € C([0, 1], M, g, )- Moreover, since a| € E,,, 4,.. we have a1(0) = a} ® 1,,, for some
a\ € My, (B). Therefore,

Y@t =7m{e}) @ L. (e8.45)
Put
0 O
0= f 8.46
0 (O 7’"(“1)) (e8.46)
and
0 0 0 0
= ®1ls = N3 ' ®1 ‘ 847
co (O ')’m(al(()))) 5 (O ')’m(al)) 5qm = Co Sqm (e )
Note that c6 € Mg, p,,- Put
ci(r) = 0 0 ®ls, i=ro+lrg+2 k (e8.48)
l B 0 ym(ay o &(t)) 5 =70 ) s k. .

Recall (see formula (e6.34)) that at r = 0,

0 if 1 <i <y,
(0) = 8.49
§i(0) {1/2 ifro <i <k (e8.49)

Recall also (see the line after equation (¢6.35)) that ro5g,,, = togm+1 for some integer 79 > 1. Hence

(co ® Lsg,,) ® Ly = c{ ® lyysq,, = (¢ ® 14) ® 1g,,,,- On the other hand, since k = r +m(0)gu+1 (see
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equation (e6.30)), we have

0 0

diag(crs1(0). ... cx(0)) =* ((o Ym(ar(1/2))

) ® 15) ® lm(O)qu- (e8.50)

Note that =* is implemented by the same scalar unitary as in equation (e6.36) (see also the end of Notation
6.6 for the notation =*). As in formula (¢6.37) (and the line after it), since by € C([0, 1], Mp, .. gmur)
(mentioned earlier), this implies that by € Lj,, ., 4.... (see equation (e8.31)).

Since a; > 0, bo(t) < ay(t) for all t € [0, 1] (see equation (e8.44)). Since ¢y is an injective unital
homomorphism for all £, by equation (e8.40), we also have

inf{dr(gm(an) : T € T(Am1)} = inf{de(n, me1 (a0)) 1 T € T(Am)} 2 d. (e8.51)
By formulas (¢8.42), (e8.44), (8.43) and (e8.41), we conclude that for each ¢ € (0, 1),
do(e(t)) <do(bo(t), dry(e(0)) <dry(bo(0)) and dq(e(1)) < dr(pm(ar)(1)), (e8.52)

where o is the unique tracial state of Mp,,,,,4...,, To is the unique tracial state of M, ., ® 1, ., and 7y is
the unique tracial state of 1, ., ® M,, . . Note that e(1) = 0. It follows that for all 7 € T(Lp, ., .qms1)»

d.(e) < d(by). (e8.53)
By, for example, [24, Theorem 3.18],
esboin Ly, .\ g (e8.54)
By Lemma 8.2,
e om(@) inEp, g = Amsl. (8.55)
It follows that
e S Pmeo(ar) = fia(¢1,0(a)) < a. (e8.56)

Combining this with (ii) and (iii) here, we conclude that AZC is essentially tracially in N s ;. Since
B, = %, which has nuclear dimension 1 [44, Theorem 6.4], AZC has essential tracial nuclear dimension
at most 1. Since Z is in 7, AZC is e. tracially in 7. By Proposition 4.6, every 2-quasitrace of AZC isa
tracial state. By Corollary 5.10, A has stable rank one. O

Remark 8.5. Note that the proof of Theorem 8.4 actually shows that AZC is essentially tracially ap-
proximated by Z itself, as B, = Z. Let P be the class of separable nuclear C*-algebras. Then AZC is
essentially tracially in P, since Z € P. By Proposition 7.4 and Theorem 7.3, AZC is not nuclear if C is not
nuclear. Since AZC has no nonzero projection other than the identity, for nonnuclear C it cannot be TAP.

Theorem 8.6. Let (G, G, g) be a countable weakly unperforated simple ordered group, F be a countable
abelian group, A be a metrisable Choquet simplex and A : G — Aft,(A) be a homomorphism.

Then there is a unital simple nonexact (or exact but nonnuclear) C*-algebra A which is e. tracially
in N# s s and has essential tracial nuclear dimension at most 1, stable rank one and strict comparison
for positive elements, such that

(Ko(A), Ko(A)s, [14]. K1 (A), T(A), pa) = (G, G+, 8. F. A, 2). (e8.57)
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Proof. It follows from [24, Theorem 13.50] that there is a unital simple A with finite nuclear dimension
which satisfies the UCT such that

(Ko(Ao), Ko(Ao)s, [1a,]- K1(A0), T(Ao), pa,) = (G, Gy, 8, F, A, Q). (e8.58)

Let AZC be the C*-algebra in Theorem 7.3 with Ag nonexact (or exact but nonnuclear). Then define
A= A0®Af. Note that since A is a separable amenable C*-algebrasatisfying the UCT, by [45, Theorem
2.14], the Kiinneth formula holds for the tensor product A = Ap ® AZC. Since the only normalised
2-quasitrace of AZC is the unique tracial state, and

c c
(50 ), ] 5 45) = 22101
one computes (applying the Kiinneth formula) that
(K()(A)’ K()(A)+, [1A]’ K (A)7 T(A)’ PA) = (G’ G+, 8> F,A, /l) (6859)

We will show that A is essentially tracially in V¢ g ¢ and has e. tracial nuclear dimension at most 1. Once
this is done, by Definition 8.3 A has essentially tracial nuclear dimension at most 1 and by Corollary
5.10 has stable rank one and strict comparison for positive elements.

To see that A is essentially tracially in Nz 55, set 1 > & > 0, let F C Al {0} be a finite subset
and set d € A, \ {0}. Without loss of generality, we may assume that ||x|| > & for all x € F. For each
x € F,put a(x) = g3 (xx*) and b(x) = g,2/16(xx"), where g, (t) € Co((0,1]) such that g, () = 0
fort e [O, [Ix]1? = r/2], g (t)=1fort e [||x||2 —r/4, 1] and g, is linear in [||x||2 —r/2, |Ix||> - r/4].

2
Note that b(x)xx*b(x) = (g 2 /]6(xx*)) xx*. Therefore,
b(x)xx*b(x) = (||xx*|| - (8/4)2)17()6)2. (8.60)
By Kirchberg’s slice lemma (see, for example, [41, Lemma 4.1.9]), for each x € F there are c(x) €
(Ag): \ {0}, d(x) € Azc+ \ {0} and z(x) € Ag ® AZC such that z(x)*z(x) = c¢(x) ® d(x) and z(x)z(x)* €
Her(a(x)). We may assume that ||c(x)|| = ||d(x)|| = 1. This also implies that ||z(x)z(x)*|| = 1. Put
F =Fu {x*x,xx*, a(x), b(x), c(x),d(x),d ()", z(x), 2" (x), 2(x)*z(x), 2(x)z(x)" : x € ]:}-

Without loss of generality, we may assume that there are n € N, M > 1 and finite subsets Fy C A and
Fi C AZC such that for all y € F7,

Y €p2peu F = {Z a; ®bj,a; € Fo,b; € .7:1}, (e8.61)
i=1

c(x) € Fo, d(x),d(x)"/* € F forallx € F, (€8.62)

lfoll, ANl < Mif fo € Fo and fi € F. (e8.63)

By Kirchberg’s slice lemma, there are ag € (Ag)+ \ {0} and by € (AS), \ {0} such that ap ® by < d.
Letus identify Ag with Ag® Z (see [48, Corollary 7.3]).In Ag® Z , choose 14,®a, witha, € Z,\{0}
such that 14, ® a; $a, ao. Choose b, € (B;); \ {0} ¢ AS such that b, Sac bo.
Note that B, = Z}, ® B,, where &) = Z. Put ¢ := o-(a )®b, € B, where o : la, ® Z(C Ag) —
Zp ® 1p_ is an isomorphism. Consider Dy := Ag ® 0'(1,40 ® Z’) ® 1p, C Ag ® B,. We may also write
Do=(A)®ZF)®0(la,® Z) ® 1p_. There is a sequence of unitaries v, € Dy such that

lim v}, (14, ® 0(a;) ® 1. )vy =14, ®a, ® 5. (e8.64)
n—oo y g
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It follows that
le ®co = le ®o(a,) @b, ~ le ®a,®b, Say® by < d. (e8.65)

By Remark 8.5, there exists e| € Af with 0 < e; < 1 such that for all f € Fi,
lerf = ferll < 2/64nM),  (Lac = e1)f €c2josiuns) Bes (e8.66)
”(1Ag - el)fH > (1 - .92/64(nM))||f|| and e; < co. (8.67)

Put B = Ag® B,. Then by [ 10, Theorem B], B is a separable simple Z -stable C*-algebra and has nuclear
dimension at most 1.

Put e = 14, ® ¢;. Then 0 < e < 1. For any f” € F”, we have that "/ = "' | a; ® b; for some
a; € Fp and b; € F. It follows from formula (e8.66) that

i=1 i=1

n

Zai ® (e1b; — bjey)

i=1

llef” = f"ell = < £2/64.  (e8.68)

Also by formula (e8.66), for ' € F”,

n n
(1- e)f" - (] - le ®e1)(Zai ®bi) = Zai ® (lAf —el)bi €s2/64 Ao ® B;. (e8.69)

i=1 i=1
It follows (recall formula (e8.61)) that for all f € F,
llef — fell < £*/16 and (I—e)f €x2/16 Ao ® B; = B. (€8.70)

Moreover, by formulas (e8.65) and (e8.67),

e<ap®by<d. (e8.71)

To estimate ||(1 — e)x|| for x € F, we note that by formula (¢8.67) (recall that ||c(x)|| = ||d(x)|| = 1),
for x € F we have

H(l —e)(c(n) ® d(x))1/2|| - Hc(x)1/2 ® (1Azc - el)d(x)mH (8.72)

> (1 - 82/64)||c(x)||||d(x)|| - (1 - 82/64). (€8.73)

Then by formulas (¢8.70) and (e8.73),

(1 =e)z(x)z(x)"(1 = )|l = ||z(x)*(1 - 6)22(36)”
> |[(1-e)z(x)*z(x)(1 — e)|| — £2/8 (e8.74)

=|a-acwe d(x))1/2”2 ~&%/8

2
> (1 - 52/64) _ 828 > 1 - 58%/32. (€8.75)
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Since b(x)z(x)z(x)* = z(x)z(x)*b(x) = z(x)z(x)*, we compute by formulas (¢8.60) and (¢8.75)) that
for all x € F,

(1 = e)xx* (1= e)|| ||(1 —e)b(0) P b(0)2(1 - e)“ (¢8.76)
> (Ixl2 = £2/16) 11 = )b () (1 = e)] (€8.77)
> (Ixl2 = £2/16) 11 = )z(0)2(x)" (1 = )] (e8.78)
> (Ill? = £2/16) (1 - 562/32) 2 |lx|]* = 76 /32 (e8.79)
> |lxl|* = 2ellxl| + . (¢8.80)

(Recall for the last inequality that ||x|| > &.) It follows that for all x € F,
(1 —e)x|| = ||x]| — &. (e8.81)

This, together with formula (¢8.70), implies that Ag ® AZC is essentially tracially in N'¢ g g, since B is
Z -stable and has nuclear dimension no more than 1 (see [10, Theorem B]).

Now suppose that we choose AS not exact. Since AS embeds into Ag ® AS and AS is not exact,
Ay ® AZC is also not exact (see, for example, [47, Proposition 2.6]). If AZC is exact but not nuclear, then
Ap ® AZC is exact but not nuclear (by [9, Propositions 10.2.7, 10.1.7]). O

Remark 8.7.

(1) Let Ap be a unital separable nuclear purely infinite simple C*-algebra in the UCT class. Then the
proof of Theorem 8.6 also shows that A := Ay ® Af is a nonexact purely infinite simple C*-algebra
(if C is nonexact) which has essential tracial nuclear dimension 1 and Ell(A) = Ell(Ap).

(2) If the RFD C*-algebra C at the beginning of Section 6 is amenable, then Cy((0, 1], C) is a nuclear
contractible C*-algebra which satisfies the UCT. It follows that the unitisation B of Cy((0, 1],C)
also satisfies the UCT. Therefore D (m, k) and I = Cy((0, 1), M,,,x (B)) in formula (¢6.8) satisfy the
UCT. Thus E,, « is nuclear and satisfies the UCT. It follows that Af is a unital amenable separable
simple stable rank one C*-algebra with a unique tracial state which also has strict comparison for
positive elements and satisfies the UCT. By [34, Theorem 1.1], AZC is Z-stable. By [35, Theorem
1.1], AZC has finite nuclear dimension. Then by [16, Corollary 4.11], AZC is classifiable by the Elliott
invariant (see also [16, Remark 4.6]). Since AZC has the same Elliott invariant of Z, it follows that
AC = Z.

3) Oil the other hand, we make no attempt at this time to classify C*-algebras AS constructed in
Section 6 in the nonnuclear cases. We do not know whether AS" is isomorphic to AS? if C; and
C, are nonisomorphic, nonnuclear C*-subalgebras. In fact, as it stands, Af may depend on the
connecting maps used in the construction.
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