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Abstract

Let A be a separable simple exact Z-stable C*-algebra. We show that the unitary group
of A has the cancellation property. If A has continuous scale then the Cuntz semigroup of A
has strict comparison property and a weak cancellation property. Let C be a 1-dimensional
non-commutative CW complex with K;(C') = {0}. Suppose that A : Cu™(C) — Cu™(4) is a
morphism in the augmented Cuntz semigroups which is strictly positive. Then there exists
a sequence of homomorphisms ¢, : C — A such that lim,,_,, Cu™(¢,) = A. This result
leads to the proof that every separable amenable simple C*-algebra in the UCT class has
rationally generalized tracial rank at most one.

1 Introduction

Recently there has been some rapid progress in the Elliott program of classification of separable
amenable C*-algebras. For example, all unital separable amenable simple Jiang-Su stable C*-
algebras in the UCT class have been classified up to isomorphisms by the Elliott invariant (see
[22], [23], [15], and [40], for example). Let A be a unital Z-stable C*-algebra, where Z is the
Jiang-Su algebra. It was shown by M. Rgrdam ([36]) that A either has stable rank one, i.e., the
invertible elements in A are dense in A, or A is purely infinite. As a consequence, in the finite
case, by [30] and [31], A has the cancellation of projections and U(A)/Uy(A) = K;i(A). There
are other regular properties for Z-stable C*-algebras (see also [43]). It is these regular properties
that make the class of unital separable amenable simple Z-stable C*-algebras classifiable.

One may expect that non-unital simple Z-stable C*-algebras have similar properties. Indeed,
by M. Rgrdam ([36]), non-unital simple Z-stable C*-algebras also have strict comparison for
positive elements and nice picture of Cuntz semigroups (see [18]). It is shown by L. Robert ([33])
that, if A is a simple stably projectionless Z-stable C*-algebra, then A has almost stable rank
one, i.e., the invertible elements in A, the unitization of A, are dense in A. If A is a separable
simple Z-stable C*-algebra which is not stably projectionless, then A must have stable rank
one. So we will mainly consider stably projectionless simple C*-algebras. There is a fundamental
difference between unital simple C*-algebras and stably projectionless simple C*-algebras. In
[20], we show that there is a unique separable amenable simple stably projectionless Z-stable
C*-algebra Zy in the UCT class with a unique tracial state such that K;(2y) = K;(C) (i =0, 1).
Let A be any finite separable amenable simple C*-algebra. Then A® Zj is a separable amenable
simple stably projectionless Z-stable C*-algebra such that K;(A ® Zy) = K;(A) (i =0,1) and
T(A® Zy) = T(A). This means that there is a rich class of separable simple amenable stably
projectionless Z-stable C*-algebras. C*-algebras studied in [20] have the property that all
pairing pa : Ko(A) — Aff(T'(A)) are zero, and, under the assumption of UCT, they are all have
the property A =2 A® Zy. However, there are also separable amenable stably projectionless simple
C*-algebras which cannot be written as A ® Zy for any separable simple amenable C*-algebra A
(when the pairing pa : Ko(A) — Aff(T'(A)) is not zero but pa(Ko(A))NAff (T (A)) = {0}—see



Theorem 5.31 of [21]). Also in [37], it is shown that stably projectionless simple C*-algebras
may not even Z-stable.

More recently a classification theorem for non-unital separable simple amenable Z-stable
C*-algebras with stable rank one in the UCT class was presented in the original version of [21].
The motivation of this note is to provide a technical result that removes the condition of stable
rank one. We will not, however, prove that, in general, a separable simple stably projectionless
Z-stable C*-algebra has stable rank one. Instead, we will show that these C*-algebras have nice
properties which will lead to a reduction theorem, i.e., every separable amenable simple stably
projectionless C*-algebra in the UCT class has rationally generalized tracial rank one without
assuming that A® @ has stable rank one. Therefore, as in [21], the additional condition of stable
rank one in the classification theorem mentioned above is removed.

We begin with the question whether a non-unital separable simple Z-stable C*-algebra A
still has the cancellation of projections for A and the property U(A)/Uy(A) = K1(A). In this
note, we first show that, indeed, U(A)/Uy(A) = K1(A) (see Corollary 3.7).

One notices that we study the unitary group of M, (A) not that of M, (A) as M, (A) has no
unitaries. Naturally we study the Cuntz semigroup Cu(A) of A, not Cu(A) when A is stably
projectionless but Ko(A) # {0}. To make the strict comparison more meaningful, we assume that
A has continuous scale. It should be noted that A is not Z-stable and we do not know whether
A has stable rank one. We do not even know whether Cu(A) has cancellation of projections.
Nevertheless, we will show that, in the case that A has continuous scale, indeed, Cu(fl) has the
strict comparison and a weak cancellation property. These two aforementioned properties (one
for K| and one for Cu(A)) are proved without assuming A has stable rank one.

L. Robert shows ([32]) that the augmented Cuntz semigroup Cu”™ classifies homomorphisms
from 1-dimensional noncommutative CW complexes with trivial Kj-groups to C*-algebras of
stable rank one. This result played an important role in the proof of the fact that every unital
separable finite simple C*-algebra with finite nuclear dimension in the UCT class has rationally
generalized tracial rank at most one. Since unital separable simple amenable Z-stable C*-
algebras in the UCT class with rationally generalized tracial rank at most one are previously
shown to be classified by the Elliott invariant, this latter result leads to the classification of all
unital separable simple amenable C*-algebras of finite nuclear dimension in the UCT class (see
15)).

The additional condition that C*-algebras have stable rank one in the classification results for
non-unital simple C*-algebras mentioned above was used to apply the following existence result
of L. Robert ([32]): Let C be a 1-dimensional noncommutative CW complex with K;(C) = {0}
and with a strictly positive element ec. If A : Cu™(C) — Cu™~(A) is a morphism in Cu with
Aec]) < [a] for some a € Ay, then there exists a homomorphism ¢ : C — A such that
Cu™(¢) = A

As mentioned in the abstract, we show, without assuming A has stable rank one, that there
is a sequence of homomorphisms ¢y, : C' — A such that limg_,o, Cu™(pr) = A, if A is an exact
separable simple Z-stable C*-algebra and A([¢]) # 0 for any ¢ € C \ {0} (see Definition 5.1).
It turns out that this weaker version of existence theorem will be sufficient for the purpose
of proving that every separable simple amenable stably projectionless C*-algebra in the UCT
class has rationally generalized tracial rank at most one. Therefore, we are able to remove
the redundant condition of stable rank one in the original version of [21]. Together with the
classification theorem in [21], every finite separable simple amenable Z-stable C*-algebra in the
UCT class, in fact, has stable rank one.

Let C be a 1-dimensional NCCW complex. L. Robert shows that there are 1-dimensional
NCCW complexes Cy, C4, ..., C,, such that Cy = Cy((0, 1)), C,, = C, C; is either stably isomorphic
to C;_1, or Cj; is the unitization of C;_1, or C;_1 is the unitization of C;, 7 = 1,2, ...,n. Let B be a



separable simple stably projectionless Z-stable C*-algebra. Then B has almost stable rank one.
We first show that, for C' = Cp, a homomorphism h can be produced so that Cu™(h) will be
the given A. We then show our approximate version of existence theorem holds for C*-algebras

Cy and beyond. However, this process requires to change the target algebra B to M, (B) (for
any integer n > 1). The problem is that we do not know whether M, (B) has stable rank one.

Let ¢, : C — M,(B) be homomorphisms such that Cu™(¢) = Cu™(t). Suppose that
e € My(C) is a nonzero projection and p = ¢(e) and ¢ = t)(e). Note that [p] = [¢] in € Cu™(B)
if and only if there is an integer 1 < m (< 2) such that p®1,, ~ ¢®1,, in the Cuntz semigroup of
B. However, the classification of homomorphisms by Cu”™ is not possible without p ~ g. We will
not attempt to prove that the functor Cu™ (introduced by Robert) classifies homomorphisms
from 1-dimensional noncommutative CW complexes. The existence part of Theorem 1.0.1 of
[32] depends on the uniqueness part of that. Nevertheless, we will find a way to circumvent this
to obtain an approximate version of existence theorem without the uniqueness theorem.

The paper is organized as follows: In section 2, we list some basics regarding the notion
of almost stable rank one and other notations. In section 3, we show that, with slightly more
general assumption, U(A)/Uy(A) = K1 (A) for any separable simple Z-stable C*-algebra A. In

section 4, we present some crucial technical statements about comparison in M, (A) (for any
integer n > 1) involving unitaries. We show that Cu(A) has the strict comparison and a weak
cancellation when A has continuous scale. In section 5, we start some discussion of approximation
in augmented Cuntz semigroups and perturbation of homomorphisms. In section 6, we deal with
unitization. Finally we present the main results in section 7.
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2 Basics

Definition 2.1. Let A be a C*-algebra. Denote by A the C*-algebra generated by A and C-1;4,
where 1 ; is not in A. Denote by ﬂ'é A= C- 1; = C the quotient map. We also write Wé for

the extension from M,,(A) to M,.

Definition 2.2 ([33]). If C is a unital C*-algebra, let GL(C') be the group of invertible elements
of C. A C*-algebra A is said to have almost stable rank one, if GL(B) is dense in B for every
hereditary C*-subalgebra B of A, where B is the unitization of B, if B is not unital.

If A has almost stable rank one, by the definition, every hereditary C*-subalgebra of A has
almost stable rank one.

For a separable simple C*-algebra A, if A does not have stable rank one, but has almost
stable rank one, then A must be projectionless, by the following observation which is known.

Proposition 2.3. Let A be a o-unital C*-algebra which has almost stable rank one. Then A
has stable rank one, if A has a nonzero full projection. If A is simple and My,(A) has almost
stable rank one for each n, then A either has stable rank one, or A is stably projectionless.

Moreover, if A is simple and has almost stable rank one, then Ped(A), the Pedersen ideal of
A, has no infinite elements (see Definition 1.1 of [25]), and A is finite.

Proof. Fix an integer n > 1. Suppose that M, (A) has almost stable rank one. Let p € M, (A)
be a nonzero full projection. By the definition, the invertible elements of pM, (A)p is dense



in pM,,(A)p. So pM,(A)p has stable rank one. By [6], since A is o-unital, pM,,(A)p is stably
isomorphic to A. Therefore A has stable rank one. Note that the above works for n = 1. This
proves the first part of the statement.

Suppose that A is simple and has almost stable rank one. If A has stable rank one, A has
stable rank one. Then A and A are stably finite. In particular, Ped(A) has no infinite elements.
Now suppose that A does not have stable rank one but has almost stable rank one. If Ped(A)
has an infinite element, by Theorem 1.2 of [25], A has a non-trivial projection. By the first part
of the proposition, A has stable rank one. A contradiction.

If A is not finite, there is v € A such that vv* = 1 and v*v # 1. Then 1 —v*v € A is a
non-zero projection. By what has been proved, this would imply that A has stable rank one. [

The following is a non-unital version of a result of Rgrdam ([36]) which follows from Theorem
6.7 of [36] and a result of L. Robert (Theorem 1.2 [33]).

Theorem 2.4. Let A be a o-unital simple Z-stable C*-algebra. Then one and only one of the
following must occur:

(1) A is purely infinite,

(2) A has stable rank one,

(3) A does not have stable rank one, but has almost stable rank one and is stably projection-
less. Moreover A has a non-zero 2-quasitrace.

Proof. Suppose that neither does A have stable rank one, nor A is purely infinite.

Note, since A is Z-stable, so is M,,(A) for each n € N. If M,,(A) contains a non-zero projection
p for some n € N, then B = pM,,(A)p, as a unital hereditary C*-subalgebra, is also Z-stable
(Corollary 3.1 of [41]). By Theorem 4.5 of [36], W(B) is almost unperforated. If B does not
have stable rank one, then, by Corollary 3.6 of [7], My(B) does not have stable rank one for any
k. Therefore, by Theorem 6.7 of [36], none of My(B) are finite. Then, by Corollary 5.1 of [36]
(see also Proposition 4.9 of [19]), B is purely infinite. By the assumption at the very beginning,
M,,(A) has no non-zero projection for all n. In other words, A is stably projectionless. Then,
by [33], A has almost stable rank one. Moreover, by Corollary 5.1 of [36] (see Proposition 4.9 of
[19]), A has a non-zero 2-quasitrace. O]

We do not know, at the moment, whether case (3) of Theorem 2.4 can actually occur.

Proposition 2.5. Let A be a C*-algebra which has almost stable rank one. Then, for any
integer n > 1, GL(My(A)) is dense in My (A). Moreover, GL((A® K)~) is dense in A® K.

Proof. We prove the first part by induction. Suppose that GL(M,,(A)) is dense in M, (A). We

will show that GL(Mp+1(A)) is dense in M, 41(A).

——
Let x € M, 41(A). Put p = diag(14,0,0,...,0). Let a = pxp, b = (1-p)x(1—p), c = pr(1—p)
and d = (1 — p)xp. Hence we may write

= <Z z> . (e2.1)

Let £ > 0. By the inductive assumption, there is ¥’ € GL(M, (A)) such that ||b — ¥'|| < e. Note
c(t)"td = pr(1 = p)() (1 — p)ap € p(Mn(A))p (= A). (e2.2)

Therefore (since A has almost stable rank one) there is 2 € GL(A) such that ||z—(a—c(b')~'d)|| <
. Set a' = z+c(b')"'d € A. Then

la—d|| = |la—c®)td—z| <e. (e2.3)



Moreover, a’' — c(b/)1d = z. Put

a ¢
y=d +b +c+d= <d b’)'

Then y € M, 1(A) and ||z —y| < e. It follows from Lemma 3.1.5 of [26] (see the proof of Lemma
3.4 of [30]) that y is invertible.

For the last part, let a € A ® K and 1 > ¢ > 0. Viewing M, (A) as a C*-subalgebra of
A® K, we may assume that a € M, (A) for some large n. By what has been proved, we have an
invertible element b € M, (A) such that ||b — a|| < e. Write b = (¢ j)nxn With ¢;j = aij + a;j,
where o; ; € C and a;; € A. Let E,, be the identity of Mn([l) Put z =b+e- (Lagi)y~ — E,).
Then = € GL((A® K)~) and ||a — z| < e. O

Definition 2.6. Let A be a C*-algebra. Denote by A! the unit ball of A. Let a € A,. Denote
by Her(a) the hereditary C*-subalgebra aAa. If a,b € Ay, we write a < b, (a is Cuntz smaller
than b), if there exists a sequence of x,, € A such that a = lim,_, =}z, and z,x; € Her(b). If
a S band b < a, then we say a is Cuntz equivalent to b and write a ~ b. The Cuntz equivalence
class represented by a will be denoted by [a]. So we write [a] < [b], if a S b. Also [a] < [b] means
that, if for any increasing sequence {x,} such that [b] < sup,, x,, then [a] < z,, for some n. It is
well known that, for any 0 < € < |lal|, [(a — €)4+] < [a] (see the middle of the proof of Lemma
2.1.1 of [32] and Theorem 1 of [11]). Denote by Cu(A) the Cuntz semigroup of A (equivalence
classes in A® K). An element = € Cu(A) is compact, if x < x. In what follows, we will also use
the augmented semigroup Cu™(A) introduced in [32] and the revised version in [34]. We refer
the reader to [32] and [34] for details of the definition of Cu™ and the related terminologies.

Definition 2.7. Let A be a C*-algebra. Denote by QT (A) the set of 2-quasitraces of A with
norm 1, and by 7T'(A) the tracial state space of A. Both could be empty in general.

For any (non-unital) separable C*-algebra A, denote by Ped(A) the Pedersen ideal of A.
Suppose that B is a full hereditary C*-subalgebra of A such that B C Ped(A). If 7 € QT(B),
we will continue to write 7 for 7 ® Tr, where Tr is the densely defined trace on K. We write
QTy(B) for the set of all 2-quasitraces of B with the norm at most one. Since A is stably
isomorphic to B, 7 € QTy(B) gives a densely defined 2-quasitrace of A. Denote by ET(A) the
set of all densely defined 2-quasitraces on A with the topology given in [18] (see the paragraph
above Theorem 4.4 of [18]). In most cases, we will consider only those C*-algebras with the
property tga/t every 2-quasitrace is a trace, for example, A is exact.

If 7 € QT(A), we will also continue to write 7 on A ® K for 7 ® Tr, where Tr is the standard
(densely defined) trace on K. So we will view QT(A) the set of densely defined 2-quasitraces on
AR K.

Definition 2.8. Let S be a convex subset of a convex topological cone (which has zero) (such
as QT (A)). Let Aff(S) be the set of all real valued continuous affine functions on S with the
property that, if 0 € S, then f(0) = 0. Define (see p. 2826 of [32])

Aff (S) = {f:Aff(S): f(r) >0 for 7 # 0} U {0}, (e2.4)
LAGL(S) = {f:S—[0.00]: H{fubs fo 7 f. fu € ABL(S)} and (e2.5)
LAff:(S) = {fl — f2 : f1 € LAff+(S) and f2 < AH+(S)} (e 2.6)

Note that 0 € LAff, (.S). For the most part of this paper, S = T(A4), or S = /Q\T(A) in the above
definition will be used. In particular, if S = QT(A) and f € LAff,(S), then f(0) = 0.



Definition 2.9. For any € > 0, define f. € C([0,00))+ by f(t) =01if t € [0,¢/2], fo(t) =1 if
t € [e,00) and f-(t) is linear in (¢/2,¢).

Let A be a C*-algebra and 7 be in @\T(A) For each a € A, define d;(a) = lim._,o 7(fz(a)).
Note that f.(a) € Ped(A) for all @ € A;. Recall that A is said to have the Blackadar strict
comparison for positive elements, if a, b € (A ® K)4, then a < b whenever d-(a) < d-(b) for all
non-zero 7 € a/T(A)

Let A be a separable stably finite simple C*-algebra. There is an order preserving homo-
morphism ¢ : Cu(A) — LAff{ (QT'(A)) defined by ¢([a]) = d-(a) for all 7 € QT(A) and for
all @ € (A® K)4. Let Cuy(A) be the sub-semigroup of those elements in Cu(A) which can-
not be represented by non-zero projections (see Proposition 6.4 of [18]) and let V(A) be the
Murray-von Neumann equivalence classes of projections in A ® K. If A has the strict compari-
son, t|cy, (4) is surjective and is an order isomorphism, following Corollary 6.8 of [18], we write

Cu(A) = (V(A)\{0})ULAfF (@\T(A)), where the mixed addition and the order are defined in the
paragraph above Corollary 6.8 of [18] (see also page 10 of [39]). In particular, if z € V/(A) \ {0}
and y € LAﬁLr(CfQ\Z:(A)), thenx+y=zify=0,and x+y = 1(z) +y, if y #0, and, x < y, if
t(z)(t) <y(t) forall t #0, and y < z, if y < 1(x).

Definition 2.10. A separable simple C*-algebra A is said to be regular, if A is purely infinite,
or if A has almost stable rank one and Cu(A4) = (V(A4) \ {0}) U LAff (QT(A)) (see 2.9 above).
By [6], for any non-zero hereditary C*-subalgebra B of A, B® K = A ® K. Therefore Cu(B) =
Cu(A). Hence, if A is a separable regular simple C*-algebra, then every non-zero hereditary
C*-subalgebra of A is regular (see the last paragraph of 2.7). Except 3.6 and 3.7, we only
consider the case that A is finite. By [33] (also Theorem 2.4 above) and Theorem 6.6 of [18], if
A is a separable simple Z-stable C*-algebra, then A is regular. Recall that a separable simple
C*-algebra is said to be pure (introduced by Winter in [43] with non-unital version in subsection
6.3 of [34]) if Cu(A) is almost unperforated and almost divisible. While it is not used in this
paper, we would like to mention that a finite regular simple C*-algebra is pure, and, a separable
simple C*-algebra which has almost stable rank one is regular if and only if it is pure as shown
in subsection 6.3 of [34] (see also Theorem 6.2 of [39] and Corollary 5.8 of [18], and 1.1.4 of [1]).
We use the term “regular” only for the convenience here.

We would like to state the following version of a result of Rgrdam. Note that we do not
assume that M,,(A) has almost stable rank one.

Lemma 2.11. Let A be a C*-algebra which has almost stable rank one, a and b € M, (A)+ for
some integer n > 1 (or in (AR K)y ). Suppose that a < b, then, for any e > 0, there is a unitary
U e M,(A) (orU e (A®K)) such that

U* f-(a)U € Her(b). (€2.7)

Proof. By Proposition 2.5, GL(M,(A)) is dense in M,(A) (or GL((A® IC)A)V is dense in A® K).
Then the proof of (iv) = (v) in Proposition 2.4 of [35] (applying Theorem 5 of [29]) works
here. O

The following is taken from the proof of 1.5 of [27]. But it is also known (see [33]).

Lemma 2.12. Let A be a C*-algebra which has almost stable rank one. Suppose that a € (A®
K)+ (oraec Ay), be Ay, and a Sbin Cu(A). Suppose that 1/4 > ¢ >0 and f./4(a) € Her(b).

(1) Then, for any 0 < n < e/4, there is a unitary v € (A® K) (or u € A) such that
ufy(a)u* € Her(b) and ufe(a) = f-(a).



(2) Moreover, there is a partial isometry v € (AQK)*™ (orv € A*) such that ve, cv* € AQK
(or in A) for all ¢ € Her(a), vav* € Her(b) and vf.(a) = f-(a).

(8) Furthermore, without assuming f.4(a) € Her(b), there is also a partial isometry v €
(A K)™ (orve A*) such that ve,cv* € AR K (orin A), vive = ¢ = cv*v and vev™ € Her(b)
for all ¢ € Her(a).

Proof. There is a unitary w; € (A ® K) (or wy € A) such that by = wi f/s(a)wi € Her(b), by
Lemma 2.11. Denote a; = w1 f,/4(a)w] € Her(b). Note that a1b; = a;. Therefore

1(br = Vw1 feya(a)l| = [[(br — Vw1 feja(a)wr]] = 0. (€2.8)

In other words, b1w1f5/4(a)1/2 = w1f5/4(a)1/2. It follows that y; = u11f5/4(a)1/2 € Her(b).
Moreover,

Yiy1 = fepa(a) and y1y7 = wifeja(a)wy. (e2.9)

In what follows, for any d € A}r and 1 > § > 0, es(d) denotes the open spectral projection of
d associated with the interval (¢, 1]. Since Her(b) has almost stable rank one, by Theorem 5 of

—_

[29], there is a unitary z; € Her(b) such that
ziea(l) = wier |y l)- (¢2.10)
Note that
61/4(|y1\) = 6’1/4(fe/4(a)1/2) = es,(a) (e2.11)

for some §; € (¢/8,¢/4). By (¢2.10) and (e2.11),

zwies, (a) = 21 (z1e1/4(ly1])) = exa(ln]) = es, (a). (e2.12)

Write 21 = a-1H~er(b)+b’ for some b’ € Her(b). Replacing 21 by -1+, we may view z1 as a unitary

in (A® IC} (or in A). Put u; = zfw; € (A® IC; (or u; € A). Then, for any € fas, (a)(A® K),
by (€2.12), uix = zjwies, (a)x = es,(a)r = z. In particular, u; f:(a) = f-(a). We also have,
since z; € Her(b)™,

uy fp(a)u] = 27 (w1 fr(a)wy)z1 < 27bz1 € Her(b). (e2.13)

This proves the first part of the lemma.
To see the second part of the lemma, let 1, = £/4"*!. By virtue of the first part of the

lemma, we obtain a sequence of unitaries {u,} C (A ® K) (or in A) such that
Unbn—1u;, € Her(b), upz =z for all « € Her(b,—1), (e2.14)

where by = f(a), by, = upn fy, (bp—1)u;, for n = 1,2,.... Note

[unt1(un - ut fy, (@) = (un - fy, (@) = [[(unsr = 1) (un - ur fr, (b) (e2.15)
= [[(unt1 = D) (un - w) fr, (b) (u1 - - - ug) || = [[(uns1 — 1)bn|| = 0. (€2.16)
In other words, Upt1uy - - u1fy,(a) = Up---uyfy,(a). Moreover, upiiuy---uife(a) = fo(a)

for all n. It follows that lim, oo Uptity, - uiz converges in norm for all x € Her(a) and
limy, o0 Un 1%y - - - urzUy - - - wjuy, | converges in norm to an element in Her(b). Choose a strictly

positive & of Her(a)4+ with ||z|| = 1 and zf:(a) = fz(a). Let z = limy_yo0 Unt1Uy - w1z € A.



Then zz* = limy o0 Upt1Un - - u1x2u>{ ~upuy € Her(b). Let z = vt/ be the polar decom-
position in (A ® K)** (or in A**). Then v is a partial isometry and, since z is a strictly positive

element of Her(a), ve, cv* € A, vive = ¢ = cv*v, vev* € Her(b) for all ¢ € Her(a), and
vfe(a) = U:E1/2f€(a) = lim upqq - 'u11'1/2f€(a) = lm upq1---uife(a) = fe(a).

One also notices that the third part of the lemma holds from the proof above as we may replace
a by wiaui with u1 f,/4(a)ui = fejs(uraui) € Her(b).
O

Corollary 2.13. Let A be a C*-algebra which has almost stable rank one, and a € (A ® K)4
(ora € Ay) and b € Ar. Then a S b if and only if there is x € AQ K (or x € A) such that
x*x = a and xz* € Her(b).

Moreover, if a1, aa, ..., an are mutually orthogonal elements in Ay such that a; ~ a1 in Cu(A)
fori=1,2,...,n, and a = > " a; S b, then there is a hereditary C*-subalgebra A; C Her(b)
such that there is an isomorphism ¢ : My(A2) — A; where As = Her(d) for some d € Her(b)
such that ¢=1(d) = d and there is z € A such that z*z = a1 and zz* = d.

Proof. The first part follows from Lemma 2.12. In fact, in the second part of Lemma 2.12, we
choose z = va'/2. Then z*z = a'/?v*va!/? = a and zz* = vav* € Her(b).

By Lemma 2.12, there is v € A™ such that a = vav* € Her(b) and vc,cv € Her(b) and
v*ve = ¢ for all ¢ € Her(a). Let yg = vajv*. Then, by the first part of this lemma, there is
z € A such that z*z = a; and by = zz* € Her(y;). Note that b; ~ va;v* in Her(a) C Her(b),
i =1,2,...,n. Thus we have z; € Her(a) such that xx; = by and z;x} € Her(va;v*),i=1,2,...,n.
Note that z12] = zjz1 = b1. Put Ay = Her(>_;", x;z}). One then checks that A; = M, (As),
where As = Her(b;). The corollary follows.

O

We would like to end this section with the following folklore.

Lemma 2.14. Let A be a C*-algebra and 0 < a < b < 1 be elements in A. Then, for any
0 <e<é <|al, there exists z € A such that

(a—e)s S(b—¢)s, (a—¢&)y <2"2 and 22* € Her((b—¢)4). (e2.17)

Proof. Choose 0 < ¢ < &’ < &” < ||a|| and define g € Cy((0, 1]) such that g(¢t) =1 for t € [¢”,1]
and (t — ')y < g(t) <1forte (¢,e"), g(t)=0if t € (0,&). Then (a —€')+ < g(a) and

(€)g(a) < g(a)'?ag(a)'’? < g(a)'Pbg(a)'/>. (e2.18)
It follows that
9(a)!2((b—e)1)g(a)'* > g(a)'/*(b— €)g(a)/? (€2.19)
= g(a)'*bg(a)'/? — £g(a) > (¢' — £)g(a). (€2.20)
Thus
(a—e)y <gla) < (1/(€ —)gla) 2 (b— ) 4g(a)' /> S (b—e)4. (e2.21)

Since the above holds for any 0 < e <€, (a —¢)y < (b—¢€)+. Let
2= (1/(¢' — &))/2(b — £)}*g(a)/2. Then

g(a) < 2"z and 22* = (1/(¢' —¢))(b— e)i/Zg(a)(b - 5)1/2 € Her((b—¢)4). (e2.22)



3 Unitary groups

The main purpose of this section is to present a Ki-cancellation result for separable regular
simple C*-algebras.

Definition 3.1. Let A be a unital C*-algebra. Denote by U(A) the unitary group of A and by
Uo(A) the path connected component of U(A) containing 14.

Proposition 3.2. Let A be a C*-algebra and u € Uy(M,(A)) be a unitary with the form
u=a-ly z +a for some o €T and a € My(A). Then u € Up(Mn(A)™). In particular, if
a =1, then u = exp(iby) exp(ib2) - - - exp(iby,) for some by, ba,...,by € Mp(A)s.q.-

Proof. Replacing u by ua, we may assume that Té(u) = 1, = 1. Let u = exp(ih1) exp(iha) - - - exp(ihy),
where hj € M,(A)s.q.. For each hj, there is a scalar self-adjoint matrix a; € M,(C-1j;) such
that 72 (h;) = 7 (a;). Note that, since 7 (u) = 1,,,

exp(iay) exp(iag) - - - exp(iag) = 1p.
Define, for t € [0,1],
u(t) = exp(ithy) exp(ithy) - - - exp(ithg ) exp(—itag) exp(—itag_1) - - - exp(—itay).
Then u(1) = u(exp(iar) exp(iaz) - - - exp(iag))* = w and u(0) = 1,,. However,
m&(u((t))) = exp(itay) exp(itag) - - - exp(itay) exp(—itay) exp(—itaj_,) - - - exp(—ita;) = 1,.

Therefore u(t) € M, (A)~ for all t € [0,1].
Suppose that o = 1. Since now u € Uy(M,,(A)~), u = exp(ihy)exp(ihs) - - exp(ihy,) for

some hi,ha,....,hym € M,(A)~. Let wé(hj) = \j -1y, where \; € T, j = 1,2,...,m. Then
E;”Zl Aj = 2km for some integer k. Choose b; = h; — A\j (= hj — A\jlu,), j = 1,2,...,m. Then
b;j € M, (A). Note A; - 1y, is in the center of M,,(A)~. Then
exp(iby) exp(iba) - - - exp(iby,) = exp(ihy) exp(ihg) - - - exp(ihy, ) exp(i Z —Aj) = u.
j=1
O

Lemma 3.3. Let A be a finite reqular simple C*-algebra which has mo nonzero projections,
u € U(fl), and ai,ag, ..., am € Asq.. Then, for any a € AL\ {0}, any € > 0, there is an integer
no > 2 such that, for any integer n > ng, there is a hereditary C*-subalgebra B C A, and a
unitary v € C- 15 + B, b1,bs,...,bp, € B such that B = U*(My(Her((c —n)4)))U for some

unitary U € M, (A) and for some 0 < n < ||c||, where ¢ € Her(a)+ such that
lv—u|l <e and ||a; —bj|| <e/2(m+1), 1 <j<m. (e3.1)

Moreover, we may assume that 4[c| < [a].
(Note that here we identify A with the first corner of My (A).)

Proof. Fix a strictly positive element of e4 of A with [le4|| = 1. Write u = a - 1; 4+ x for some
x€Aand a € T. Let 1/2 > ¢ > 0. Choose 1/2 > § > 0 such that

| fs(ea)zfs(ea) —zll < /4 and | fs(ea)a;fs(ea) —ajl| <e/2(m+1), j=1,2,..,m. (e3.2)



Choose b; = fs(ea)ajfs(ea), 1 < j < m.Let Ay =C-1;+ Her(fs(ea)). It is standard to find a
unitary v € A; such that

|lv —ul| <e. (e3.3)

Let D = Her(f5/2(ea)). Note that D C Ped(A). Choose 0 < Jp < /2 such that f5,(a) # 0.
Since both fs,(a) and f5/16(ea) are in Ped(A), there is an integer k& > 2 such that

(k = Dla] = (k = D[f5,(a)] = [f5/16(ea)]- (e3.4)

Choose ng = 4k. Let n > ng. Let ¢ € A® K with 0 < ¢y < 1 such that d-(cy) =
(1/n)d-(f5/8(ea)) for all 7 € QT(A). Thus

4d-(co) < d-(a) for all 7€ QT(A)\ {0}. (e3.5)

It follows that 4[co] < [a] in Cu(A). Since A has almost stale rank one, by the first part of Lemma
2.12, there is ¢ € Her(a)4 such that ¢ ~ ¢g and d-(c) = (1/n)7(fs/8(ea)) for all 7 € QT(A).
Since Cu(A) = (V(A) \ {0}) ULAff (QT(A)) and A has no non-zero projection,

41 < [a] and [fys(en)] = nld]. (3.6)

We now view A as a C*-subalgebra of M,,(A) (as the first corner of M, (A)). Let

n

c1 = diag(e,c, ..., ©).
Then, by (e3.6), fs/2(ea) < f5/3(ea) S c1. Therefore there is 0 < 19 < 1 such that

fsj2(ea) S foolcr). (e3.7)

Choose 0 < 1 < 1p/2. Since A has almost stable rank one, from the last part of (e3.6), by

Lemma 2.11, there is a unitary U; € M,,(A) such that
Co = U1(01 — T])_|_Uik e A. (638)

By (e ;).7), since A has almost stable rank one, applying Lemma 2.11 again, there is a unitary
Uy € A such that

Us fs(ea)Usa € Her(cz). (e3.9)

n—1

———
Put c3 = UscaUs. Put U = diag(Us, 1, ...,15)Ur. Then fs(ea) € Her(cz). Moreover, B =
Her(cz) = U* M, (Her((c —n)4))U*. Then v € C-1; + Her(c3).
L]

Lemma 3.4. Let A be a finite separable reqular simple C*-algebra and let u € A be a unitary.

If diag(u, 1) € Uy(Mz(A)), then u € Uy(A).

Proof. Note that, if A has a nonzero projection, then, by Proposition 2.3, A has stable rank one.
Then the lemma follows from Theorem 2.10 of [31]. So we now assume that A has no nonzero
projection.

We may assume that 72 (diag(u,1)) = 1. By the second part of Proposition 3.2, we may
write u = exp(iby) exp(ibz) - - - exp(iby,) for some b; € Mo(A)sq, 1 < j < m. Let 1/2 > ¢ > 0.
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By virtue of Lemma 3.3, without loss of generality, we may assume that u € 1; + B and there
are aj, ag, ..., ay € Ma(B)s4. such that

||diag(u, 1) — exp(ia1) exp(iag) - - - exp(ian )| < €, (e3.10)

where B = U*M,,(Her(c))U C A for some ¢ € A,, n > 4, and where U € M, (A) (recall that we
identify A with the first corner of M,(4)). Put C'= U*Her(c)U.
Write u = 1; + b for some b € B. Let uy =15+ b € B and

Sy A > jal > ia”
v1:(13+2771)-(13+2772) ----- (1B+Zn771). (e3.11)
n=1 ’ n=1 ’ n=1 ’
Hence
[|diag(u1,15) —vi]| <e. (e3.12)

Thus diag(uy,15) € Ug(M2(B)™). Recall that A has almost stable rank one. Thus the set of
invertible elements of C is dense in C' = U*Her(c)U, C has stable rank at most 2 (see the
proof of Theorem 6.13 of [34]), by Theorem 2.10 of [31], the map from U(M,,(C))/Us(M,(C))
to U(MQn(é))/UO(MQR(é)) is injective. It follows that u; € Up(M,,(C)). By Lemma 3.2, uy €

Uo(My,(C)~) = Up(B). It follows that u € Up(A).
O

Theorem 3.5. Let A be a separable finite reqular simple C*-algebra and let u € U(A).

(1) For any a € A, \ {0}, there is a unitary v € C-1; + Her(a) such that uv* € Up(A).

(2) Ifu=a-1;+ax for some o« € T and x € D for some hereditary C*-subalgebra D of A
and u € Up(A), then v =a - 15 +x € Up(D).

Proof. If A has stable rank one, the theorem is well known and follows from the fact ([6]) that
every nonzero (full) hereditary C*-subalgebra D of A is stably isomorphic to A and the inclusion
t: D — A induces an isomorphism on K;(D), and then apply Theorem 2.10 of [31].

We will prove the case that A is not assumed to have stable rank one. Therefore we assume
A has no nonzero projection (see Proposition 2.3).

For (1), by Lemma 3.3, without loss of generality, we may assume u = 1 ; +b for some b € B,
where B = U*M,,(Her((c — n)4+))U C A for some 0 < n < ||c||, and ¢ € Her(a);, n > 8 and
4[c] < [a], and where U € U(M,(A)).

Put C = U*Her((c—n)4)U and u; = 15+b. Since GL(C) is dense in C, by (the proof of ) The-
orem 6.13 of [34], C has stable rank at most 2. It follows from Proposition 5.3 of [31] that there

n—2
~ - RN
exists a unitary vg € Mz(C) such that uiv] € Up(M,(C)), where vy = diag(vo, 15,15, ..., 15).
Let w € M>(C-14) be the scalar matrix such that 7 (vg) = 7& (w). By replacing vy by vow?*,
we may assume that 75 (vg) = Ly (ey- Hence vg € Ms(C)~. Write vy = Ly, +y for some

y € Ms(C). Tt follows that 7£ (u1v;) = 1. Then, by Lemma 3.2, ujv} € Up(B). Let vy = 15 +y.

Then uv; € Up(A). Since 4[c] < [a] and A has almost stable rank one, by Lemma 3.2 of [16],
there is a unitary V' € A such that (note that n > 0)

V*My(C)V C Her(a). (e3.13)
Then V*yV € Her(a). Define v = V*vaV. Then v has the form described in the lemma. Put
W = V*uv3V. Since uvi € Up(A), one has

<‘gf (1)> € Up(My(A)). (c3.14)
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Applying Lemma 3.4, one concludes W € Uy(A). Thus

(V*uV)v* € Up(A). (e3.15)

There exists a continuous path of unitaries {H(t) : t € [0,1]} C U(M2(A)) such that

H(0) = (VluV 8) <% ‘D and H(1) = <11‘ 8) <”0 ?) - <“g ?) (¢3.16)

By (e3.15), H(0) € Uy(M2(A)). Therefore diag(uv*,1) € Uy(M2(A)). Applying Lemma 3.4
again, one obtains uv* € Up(A).

To see part (2), we may assume that o = 1. Let ¢ : D — A be the inclusion map. Since
D is a full hereditary C*-algebra and A is separable, it follows that D is stably isomorphic to
A and v @ K1(D) — Ki(A) is an isomorphism (see, for example, Corollary 2.10 of [6]). Let

uy = 15 + . Then 14 ([u1]) = [u] is zero in K (A) from the assumption that u € Up(A). Thus
[u1] is zero in K1(D). Therefore, for some integer n > 1,
2n+1

—
diag(ul,lb,...,lb) S Uo(Mgn(D)) (8317)

Since D is a finite separable regular simple C*-algebra, by repeatedly applying Lemma 3.4, we
conclude that u; € Uy(D).
O

Corollary 3.6. Let A be a separable reqular simple C*-algebra. Then the map
U(My(A))/Ug(Mn(A)) = U(Mps1(A))/Up(Mp41(A)) (€3.18)
is an isomorphism. In particular, U(A)/Uy(A) = K1(A).

Proof. The finite case follows immediately from Theorem 3.5. Suppose that A is a purely infinite
simple C*-algebra. By the comment before Remark 3.1 of [7], eAe is extremally rich for any
projection e € A. Applying Proposition 5.4 of [7], one concludes that A is extremally rich. Since
C has stable rank one, by Proposition 6.8 of [7], A is extremally rich. By [45], A has real rank
zero, and, hence, A has real rank zero. By theorem 6.10 of [8], the corollary follows (when A is
a purely infinite simple C*-algebra). O

Corollary 3.7. Let A be a separable simple Z-stable C*-algebra. Then the map
U (Mo(A))/Uo(Mn(A)) = U (M1 (A)) /U (M 41(A) (e3.19)

is an isomorphism. In particular, U(A)/Ug(A) = K1(A).

4 Comparison in B

The main purpose of this section is to present Theorem 4.11 and Theorem 4.12.

4.1. Let A be a separable simple C*-algebra and let T (A) be the cone of densely defined positive
lower semi-continuous traces on A equipped with the topology of point-wise convergence on
clements of the Pedersen ideal Ped(A) of A. By Proposition 3.4 of [39], T(A) has a Choquet
simplex T}, as its base. Let f be a lower semicontinuous affine function on T'(A) such that f(t) > 0
for all t € T(A)\{0}. Then, a standard compactness argument shows that inf{f(t) : t € T} > 0.

By I.1.4 of [1], together with a standard compactness argument, one obtains an increasing
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sequence f, € Aff(T(A)) such that lim,_eo fn(t) = f(t) for all t € T(A). In other words,
f € LA (T(A)).

Now suppose that A is a finite separable regular simple C*-algebra. It follows that M, (A)
has almost stable rank one, for all n € N. Let us assume that every densely defined 2-quasitrace
is a trace. Then LAff, (QT(A)) = LAff, (T(A)). Let a € Ped(A)4 \ {0}. Then C = Her(a) is
algebraically simple. Choose f € Aff, (T(A))\ {0} such that f(7) < d,(a) for all 7 € T(A)\ {0}.
Then there is ¢ € (A ® K)4 such that d(¢) = f(r) for all 7 € T(A), and ¢ < a. Since A has
almost stable rank one, by 2.13, there exists * € A ® IC such that zz* = ¢ and b = z*x € C,.
Note that d.(b) = f(7) for all 7 € T(A). By Theorem 5.3 of [16], Her(b) has continuous scale.
Note also that Her(b) ® K = A® K.

In the case that QT'(A) = T(A) and T'(A) is compact, the map f — f|p4) is affine and
continuous, and an order isomorphism from LAff, (T'(A)) onto LAff, (T'(A)) as T(A) is a convex
topological cone with the metrizable Choquet simplex T'(A) as its base (note 0 € Aff{ (T'(A))-see
2.8). Therefore, since A is regular (see 2.10), in this case, Cu(A) = (V(A) \ {0}) ULAff  (T'(A)).

In what follows we will also use the augmented Cuntz semigroup Cu™~(A) for a separable
C*-algebra. Roughly speaking, Cu™(A) is a semigroup of the formal differences of elements of
the form [a] — n[l;] in an equivalence relation. The reader is referred to [32] and [34] for the
technical details there.

4.2. Throughout this section, B is, unless otherwise stated, a finite separable stably projection-
less simple C*-algebra with continuous scale such that M, (B) is regular for each integer n > 1,
and QT'(B) = T(B) (for example, B is an exact finite separable simple stably projectionless
Z-stable C*-algebra with continuous scale — see 2.10).

Note that, by (the proof of) Theorem 6.13 of [34], B has stable rank at most two. Also,
since B has continuous scale, T'(B) is compact (see Theorem 5.3 of [16]). We also have, as B is
stably projectionless, Cu(B) = LAff, (T'(B)).

Ifa € (B®K); \ {0}, a(r) = 7(a) for all 7 € T(B) is a function in LAff, (T(B)) (or for
all 7 € T(B) as a function in LAff, (B)) and [/CL\](T) = d;(a) for all 7 € T(B) is a function
in LAff  (T(B)) (or for 7 € T(B) as a function in LAff,(T(B))). Note that [/d\] is a lower
semicontinuous affine function in LAff (T'(B)) with values in (0, 0o].

Note that, if a,b € (B® K)4+ and d-(a) < d,(b) for all 7 € T(B), then a < b (recall that B
is stably projectionless). In particular, B has strict comparison for positive elements.

Moreover, if a,b € (B® K) and [a] < [b] in Cu™(B), then, as B has stable rank at most 2,
by Corollary 4.10 of [34],

[a] +2[15] < [b] +2[15] in Cu(B). (e4.1)

It follows that d,(a) < d.(b) for all 7 € T(B). Therefore a < b, or [a] < [b] in Cu(B). This also
implies that Cu(B) is order embedded into Cu™(B).
These facts will be repeatedly used.

Note that B is unital. Suppose that B # Ped(B). Let a = d+b, where d € M, (C-13)+\ {0}
and b € Ped(B);. Then 7(a) = oo for those 7 € T(B) which is not bounded (see the last
part of 4.9 of [15]). If B is stable, then 7(a) = oo for all 7 € T(B). On the other hand, if
B = Ped(B), but B is not of continuous scale, then 7'(B) is not compact. We may need to use
the weak*-closure of T'(B), or choose another basis. Therefore, it is more than convenient to
consider a hereditary C*-subalgebra of B which has continuous scale (see 4.1). In the current
case, Cu(B) = V(B) \ {0} ULAff (T(A)). One can choose a nonzero element a € Ped(B) such
that @ is continuous. By Proposition 5.4 (see also Theorem 5.3) of [16], aBa has continuous
scale. By Brown’s stable isomorphism theorem, aBa ® K = B ® K. Since we are studying
elements in B ® I, we may therefore well assume that B has continuous scale.
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Definition 4.3. Let A be a unital C*-algebra with stable rank at most m (m > 1). Denote
by Cu(A)~ the set of equivalence classes of elements in Cu(A) with the following equivalence
relation: x = y if and only if  + m[l4] = y + m[l4] in Cu(A). The map = — (z,0) gives an
order embedding from Cu(A)~ to Cu™(A) (see 3.1 of [32], Subsection 4.2 and Corollary 4.10 of
[34]). So, in this unital case, we may view Cu(A)~ C Cu™(A).

Let B be a non-unital stably finite C'*-algebra with continuous scale and let 7¢ be the tracial
state of B that vanishes on B. Define

LAff (T(B))° = {f € LA, (T(B)) : f(rc) € {0} UNU {oo}}. (e4.2)

Lemma 4.4 (Theorem A.6 of [17] and Theorem 6.11 of [34]). Let B be in 4.2. Then Cu(B)™ =

(Ko(B)+ \ {0}) ULAff (T'(B))® (see lines above Theorem 6.11 of [34] —also at the end of 2.9).

Proof. By the assumption, applying Theorem 6.11 of [34], one obtains Cu™(B) = Ky(B) U
LAff7(T(B)) (see also 1.1.4 of [1] and the first part of 4.1). Note that, as in the proof of
Theorem 6.13 of [34], B has stable rank at most 2. So, the definition of Cu™(B) in [34] coincides
with that in [32] (see subsection 4.2 of [34]).

Let =,y € Cu(B) which are not represented by projections and are represented by elements
a,b € (B ® K)+ such that [7£(a)] = n[lz] and [rZ(b)] = m[1z] for some integers n,m > 0,
respectively. Suppose that d,(a) = d.(b) for all 7 € T(B). We will show that z = y. Let 7¢
be the tracial state of T'(B) which vanishes on B. The condition d,.(a) = dy.(b) implies that

n = m. It then follows from Theorem 6.11 of [34] that there exists k (= 2) such that (in Cu(B))
la] +n[lg] +k[15] = [b] + n[lz] + k[13]. (e4.3)

Thus = = y (see also Corollary 4.10 of [34]).

Now consider the case that [rZ(a)] = oo = [78(b)]. Then, for any 1 > ¢ > 0, f.(a) €
Ped(B ® K). Hence [1Z(f-(a))] < co. Also, there is 0 < 1 < &, as [a] is not represented by a
projection and B is simple,

d-(f-(a)) < 7(fy(a)) for all T € T(B). (ed.4)

For mB(b), since 0 is the only non-isolated point of the spectrum of mZ(b), one may find
g € Co((0, ||b]|])+ such that [7Z(g(b))] = [7E(f-(a))]. Let m = [7E(f-(a))] < oc. Note that T'(B)
is compact. One then can find 0 < § < 1/2 such that [7Z(fs5(b))] = [r&(f,(a))] and

d-(f-(a)) < 7(fy(a)) < dr(f5(b)) for all 7€ T(B). (e4.5)

Consider C' = f5/4(b)(B ® K) f5/4(b) and let {e,,} be an approximate identity for B @ K. Then

7(F5/4(8)2enfsa()/) 7 7(f3a(0)) for all 7€ T(B). (c4.6)
It follows that (recall T'(B) is compact) there is ng > 1 such that, for all n > ny,
T(f5a(8)" e fsa(9)'?) > 7(f52(0)) = dr(f5(0)) > dr(fe(a)) for all 7€ T(B).  (e4.7)

Choose b’ = f5/4(b)1/26n0+1f5/4(b>1/2 + g(b). Then [¥] < [p] in Cu(B). We also have [rE (V)] =
[7E(g(b)] = [7E(f-(a))] = m. It follows from (e4.7) that

d; (V') > d-(f-(a)) for all T € T(B). (e4.8)
It follows that

dr(b') —m > d.(f-(a)) —m for all 7€ T(B). (e4.9)

14



It follows from Theorem 6.11 of [34] that in Cu™(B),

(', m) > (f-(a),m) (e4.10)
which means that, for some integer k > 1, in Cu(B)7
]+ ml1 5] + k[15) > [¥) + ml15) + K[L5] > [fo(a)] + mi1 5] + k{1 5. (e4.11)

Since B has stable rank at most two, by Corollary 4.10 of [34], [b]4-2[1 3] > [f:(a)] 4 2[13]. Since
the above holds for all 0 < ¢ < 1, one concludes that

[b] +2[15] > [a] +2[15]. (e4.12)
The same argument also shows that
la] +2[15] > [b] + 2[15]. (e4.13)

It follows that [a] = [b]. This shows that the map from Cu(B)~ to (Ko(B)4 \{0})ULAff  (T(B))®
is an order embedding.
The map is surjective follows from the first part of Theorem A.6 (and Def. A.5) of [17].
U

Lemma 4.5. Let A be a C*-algebra which has almost stable rank one. Suppose that a € M,(A)
and b € M,.(A) (for some r > 1). Then dist(z, LG(Ma.(A)) = 0, where LG(Mo,(A)) is the set
a b

of invertible elements in M27-<A) and T = 0 0

Proof. For any € > 0, by Proposition 2.5, there is an invertible element y € M,(A) with the
inverse y~! such that |ja — y|| < e. Put

_(y b (vt o0
z= (0 5) and w = < 0 1/€>. (e4.14)
Then ||z — z|| < € and w is invertible and
(1 b/e
2w = <0 1 > . (e4.15)

. 0 b . . . . .. . .. .
Since <0 ée) is a nilpotent, zw is invertible. As w is invertible, z is invertible.

O

Lemma 4.6. Let B be as in 4.2. Suppose that a,b € M,(B)y and c,d € M,(B); such that
a <b (in M.(B)) and ¢ < d (in M.(B)) for some integer r > 1. Suppose also that b L d.

Then, for anyn > 0 and € > 0, there is a unitary U € Ma,(B), § > 0, and h € Her(fs(b+d))
with ||| <1 such that

\U* fy(a+c)U — h| <e. (e4.16)

(We identify M, (B) with the hereditary C*-subalgebra {<O 8) € Mo (B) : b e M.(B)}.)
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Proof. Fix 1 > n > 0. There are z1 € M,(B) and z2 € M,(B) such that (see 2.13)
rizy = a, x12] € Her(b), ||a5x2 — ¢l <n/4, and xe25 € Her(d). (e4.17)

* *
Put z = <i1 8) Then z*z = <x1x1 —gw?m 8) By Proposition 2.2 of [35], there is r € M,.(B)
2

- » _ _(xir O o _ (fap2la+c) 0O
such that r*(zjx1 + 2522)r = f/2(a +¢). Let y = <$2T O) . Then y*y = ( n/ 0 0)
Let y = v|y| be the polar decomposition of y in My, (B)**. By applying Lemma 4.5 above

and Theorem 5 of [29], there is, for any o > 0, a unitary W € My, (B) such that

Wio(lyl) = vis(ly])- (e4.18)
We choose a sufficiently small o so that
W fo(a+ )2 = vfy(a+ )2 (e4.19)
Then
W fy(a+ W = vfyla+ " < fualyy”): (e4.20)
Note that (see 1.1.11 of [2])
« _ (Tarrtey o rarrta < xirria} 0
vy (ZL‘QTT*ZL‘T xgrr*ac;) =2 ( 0 mrr*x%) ’ (e4.21)
b2 0
Thus yy* € Her(f), where f = ( 0 d1/2> .
b1/2 d1/2
Put z = ( 0 0 > . Then (recall b L d)
“—ptdand 2= (00 (4.22)
22" = and 272 = (.- ed.
For any 1 > & > 0, choose 0 < § < 1/2 such that
1f5([2DW fola + )W f5(|2]) = W fy(a + QW] <e. (e4.23)

Let z = ulz| be the polar decomposition of z in Ma,(B)**. By Lemma 4.5 above and Theorem

5 of [29] again, there is a unitary Wy € Mo, (B) such that W1 f5(|z]) = ufs(|z]). It follows that
W5 (2T = fs(b+ d). (e4.24)
Let h = Wi fs(|z|)W f(a + c)W* f5(|z])W{ € Her(fs(b+ d))+. Then ||h|| <1 and
[WAW f(a+ c)W* Wy — h|| < e.
0
Definition 4.7 (A.1 of [17]). Let B be a separable C*-algebra with compact T(B) # (). Let

a € M, (B)+ define

w([a]) = inf{sup{d,;(a) = 7(c) : 7€ T(B)}:0<c¢<1 and ¢ € aM,(B)a}. (e4.25)

Note that [a] is continuous on T'(B) if and only if w([a]) = 0, and if a ~ b, then w([a]) = w([D]

w([b]).
(see A.1of [17]). If B has continuous scale and p € M, (B) is a projection, then p and Ly =P
are both lower semicontinuous. Thus both are continuous.
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Lemma 4.8. Let B be a nonunital simple C*-algebra and a € M, (B), with 0 < a < 1 such
that 0 is not an isolated point of sp(a). Then, for any 1/2 > &y > 0, there exists 0 < § < &g
such that there is an element b € Her(fs(a))+ \ {0} such that b L f5,(a) and there is a nonzero
element ¢ € M, (B)+ N Her(b)4.

Moreover, if T(B) is a nonempty compact set, then

inf{r(c): 7 € T(B)} > 0. (e4.26)

Proof. The existence of b follows from the spectral theory immediately. For the existence of c,
note, since b # 0, bM,(B)b # {0}. Choose ¢ € bM,(B)b, \ {0}. By the simplicity of M,(B),
7(c) > 0 for all 7 € T(B). Since we also assume that T'(B) is compact, inequality (e4.26) holds.
O

Lemma 4.9 (Compare Lemma A.3 of [17]). Let B be as in 4.2 and a,b € M,(B), (wherer > 1
is an integer). Suppose that 78 (a) < 7E(b) and

d-(a) + 4w([b]) < d-(b) for all 7€ T(B). (e4.27)

Then, for any 1 > n > 0, there exists a sequence of unitaries U, € MQT(B) and a sequence of
elements hy, € Her(b)+ with ||hy| <1 such that

Tim Uy fy(@)Us = haf| = 0. (e4.28)

In particular, a < b.

Proof. Let us assume that 0 < a, b < 1. It suffices to prove that (e4.28) holds for f, (a) in place
of a for any 0 < my < 1. If [a] is represented by a projection, then d-(a) is continuous. So

inf{d;(b) —d-(a) : 7 € T(B)} > 4w([b]). (e4.29)
Otherwise, for any fixed 0 < n; < 1/2, there exist n1 > 11/2 > 12 > 12/2 > n3 > 0 such that
dr((@—m)1) < 7(fua(@) < de((a— 1) 1) < drla) for all T€T(B).  (e4:30)
Then
inf{d,(b) — d-(fp,(a)) : 7 € T(B)} > 4w([b]). (e4.31)
Thus, in both cases, we may assume, without loss of generality (replacing a by f, (a)) that
inf{d,(b) : 7 € T(B)} > d = inf{d;(b) — d,(a) : 7 € T(B)} > 4w(b). (e4.32)

By applying Lemma A.2 of [17], one obtains non-zero elements by € M,(B)+ and by,b €
M, (B)4+ with by L by such that

bo+ b1 <V, [V]=1b], nB(by) = nB(V), (e4.33)
2w([b]) < dr(bo) < d/2, dr(b1) > d-(b) —d/2 for all T € T'(B), (e4.34)

and, for any ¢, € M,(B)s with ¢/, € biM,(B)b; and d,(c,,) > dr(b) on T(B), there exists
ng > 1 such that

d- (b)) — dr(c}) < w([b]) + (1/64) inf{r(bo) : 7 € T(B)} for all 7€ T(B).  (e4.35)

In fact, the proof of Lemma A.2 of [17] states that b’ = g1 ,,, (b) for some strictly positive function
g1, on (0, ||b]|] as in the proof of Lemma A.2 of [17] (we replace a by b and o’ by V'). Recall
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from A.1 of [17] that w([t']) = w([b]). Moreover, [7Z(b1)] = [7£(b)]. Replacing b by b', without
loss of generality, we may assume that by + b1 < b. We may also assume 0 < by +b; < b < 1.
Note, for any integer m > 1, that by + bym < bé/m + bym = (bp + bl)l/m < b'/™. By choosing
large m, we may assume that wg(bym) = Wg(bl/m) = p1 is a projection. Replacing b; by bym
and b by b'/™, we may further assume that 72 (b1) = 7€ (b) = p;. Similarly, we may assume that
78 (a) = po is also a projection. Since 7 (a) < 7£(b), there is a scalar matrix Uy € M, (C-15)
such that 2 (UgalUp) < p1. Hence we may also assume that p2 < py.
We may further assume that there are integers ms < mj such that

p; = diag(1,1,...,1,0,--- ,0), i =1,2. (e4.36)
/—/g
Let P = diag(1g,15,...,15,0,---0), i =1,2.
Put dy = inf{7(by) : 7 € T(B)}. Note that the above holds for the case that w([b]) = 0. Note
that (by —1/n)+ < by and d,((by —1/n)+) /" d-(b1), so by (e4.35), for some §; > 0,

d-(b1) — d-(fs5(b1)) < w([b]) + do/64 for all T € T'(B) (€4.37)

and all 0 < § < §;. We also assume 72 (f5(b1)) = p1 (0 < & < &1). Let {e,} be an approximate
identity for B such that epen+1 = ent16n =en, n=1,2,.... Put

E, = diag(en, en,...,en) € M (B), n=1,2,.... (e4.38)
Then {E,} is an approximate identity for M, (B), and for all i and n,
EnP; = PE, and E,(1 — Ey) =0=(1— Ep)Ey, if k>n+ 1. (e4.39)

We have bi/2Enb}/2 /" by (in the strict topology). Let ¢, = Ei/2b1E71/2, n=12..1t
follows that d-(c,) ,* dr(b1) on T'(B). By the construction of by, there exists ng > 1 such that

dr(by) — dr (B Enbt’?) = dr(b1) — dr(cn) < w([b]) + do/64 (e 4.40)

for all 7 € T'(B) and for all n > ny.
One then computes, by (e4.40), (e4.34) and (e4.32), that, for n > ng, for all 7 € T(B),

d-(cn) > dr(by) — w([b]) — do/64 > dr(b) — d/2 — w([b]) — do/64
> d,(a) +d/2 — w([b]) — do/64 > dr(a) + d/4 — do/64 > dy(a). (ed.41)

Since 0 < a < 1 and 7f(a) = 7E(P), for any 0 < < 1/2, ﬂ'g(fn/g(a)) = n8(a) = ps. Put
ar, = Exfy2(a)Eg, k = 1,2,.... Then, by (e4.41), aj, < cn for any k > 1 and n > ng, as B has
the strict comparison.

On the other hand, since Wg(fn/g(a)) = n8(a) = nB(P,) and 78 (b1) = nB(P),

by = P1 +boo, and f,2(a) = P>+ ano
for some bgg, agy € My(B)s.q.. For any € > 0, there is kggp > 1 such that, if k > ko,
(1 - Ep)by ~ (1 — Ep)P, and E,boo ~: boo ~= booEy/? =~ By *boo B,/

Thus, by also (e4.39), Ex(Py + boo) = Ey/*PLE}? + Exboo ~se Ev/*byE}/?. Therefore, (with a

similar consideration for P, + ago)
lim (B0 + (1= B)Y2Pi(1 = B)Y/2) — by = 0 and (c4.42)

lim (B fy (@B + (1= B P Po(1 = B)Y?) = fya(@)] = 0. (c4.43)
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Put 2, = By f0(a) B + (1= Bp)Y2Py(1 - Ey)Y2 and gy, = B0 B} + (1 Ep)Y2Pi(1 -
E)Y2 k=1,2,.... Since y, — by, we may also assume (by Proposition 2.2 of [35]) that, for all
n Z no,

fs1/8(yn) < 1. (e4.44)
Since, for any fixed &g > 0,
Jm | £ (yie) = foo (b1) | = 0, (e4.45)
we may assume, without loss of generality, for all k > 1, Wg(f(;l/Q(yk)) =p = ﬂ'g(f(gl/g(bl)) and
7(f51/2(Wr)) = 7(f5,/2(b1)) — do/64 for all T € T(B). (e4.46)
It follows by (e4.37) (with § = 1/2) that
7(f5,/2(yk)) > dr(b1) — w([b]) — 3do/64 for all T € T(B). (e4.47)
Since M, (B) has continuous scale, there is kg > ng such that
d-(1—-E,) <7(1—E,_1) <dp/64 for all 7€ T(B) and for all n > ko. (e4.48)
It follows that, for k& > ko,

7(f5,/2(yr)) < dr(yk) < dr(ck) +do/64 (e4.49)
= d, (0 Eybl’?) + do /64 < d.-(by) + do /64 for all T € T(B). (e 4.50)
Let gs, € Co((0,1])4+ with 1 > g(t) > O for all t € (0,01/4), gs, (t) >t for t € (0,01/16), gs,(t) =1

for t € (61/16,01/8) and g5, (t) =0 if t > 6, /4.
Since g5, (yx) f5,/2(yx) = 0, by (e4.49), we conclude that, for k > ko,

dr (95, (yr)) + 7(f5,/2(yx)) < dr(yr) < dr(b1) +do/64 for all 7€ T(B). (e4.51)

Then, by (€4.47) and (e4.34), for all k > ko,
dr (g6, (yr)) < (dr(b1) — 7(f5,/2(yr))) + do/64 (e4.52)
< w [b])+3d0/64+d0/64:w([b])-i-do/lﬁ<d0 (84.53)

for all 7 € T'(B). Moreover, since Wg(yk) =p = Trg(f(;l/Q(yk)) for all k,
95, (yr) € My (B). (e4.54)
It should be noted and will be used later that, for any 0 < x < 1,
x < fs(x) + gs,(x) for all 0 <9 < d1/8. (e4.55)
Note, for all k > n+ 1> n > ng, that ¢, L (1 — E)Y2P (1 - Ek)l/Q,
ar <S¢ and (1 — Ep)V2Py(1 — Ep)Y? < (1 — ER)Y2P (1 — E)Y2. (e4.56)
Put yp,,, = cn + (1 — Bp) 2P (1 — ER)Y2, k=1,2, ...

There exists a function x € Co((0, [|a|) with 0 < x < 1 such that x(f,/2) = fy. For any ¢ > 0,
there exists do > 0 such that, if 0 < ej, ey < 1 be elements in a C*-algebra with ||e; — ea|| < 0o,
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then [[x(e1) — x(e2)|| < ¢/32. By Lemma 4.6, for any fixed k > n+1 > n > ng, there are §; > 0
and a unitary V' € My, (B) and hy, € Her(fs, (v}, ,,))+ with [|hgll <1 such that

IV* f/2(xx)V — hi|| < min{e/32, d2}. (e4.57)
By (e4.43), choose ky, 1 > ko such that, for all & > ky, 1,
Ix(fyy2(@r)) = x(fj2(a))|| < /32. (e4.58)
Thus we have
V" fa(@)V = x(hi)|| < 3e/32. (e4.59)
Recall (see (e4.39)), for n > ng and k > max{ky, 1, ko,n + 1},

ye = B2, EM? 4 (1 — B)Y2P (1 — Ey)Y? = EV?0,EY? + PL(1 — By Py (€4.60)
< E}?0EM? + PL(1 — E,)P, = EY?0EY? + (1 — E)Y?Pi(1 — E)'Y? =y, (€4.61)

By (e4.55),
Yn < f61/8(yn) + g5, (yn) = Un (e 4.62)
Thus hy € Her(gy,). Choose ¢’ > 0 such that

1o (@n)x (i) for (Gn) — x(ha) || < £/16. (e4.63)

By (e4.53) and the strict comparison of B, gs,(yn) < bo. Recall by 1 by and fs, /g(yn) < b1. By
applying Lemma 4.6 again, we obtain a unitary W € My, (B) and h € Her(by + by) C Her(b)
such that

W™ for(4n)W — h| < /8. (e4.64)
Let U = VW. Then, by (e4.59), (e4.63),

U* fn(@)U =330 Wx(hi)W = 16 W for (n) X (i) fer (Gn) W (e4.65)
=W fo (gn>WW*X(hk)WW*f5’(gn)W Re/4 }_L(W*X(hk)W)}_L (e 4.66)

Note that h(W*x(hy)W)h € Her(b). This proves the first part of the lemma. To see the last
part, let 0 < o < 1/2, the first part and Proposition of 2.2 of [35] imply that, for large n,

fo(Up fn(a)Un) S 0. (e4.67)
It follows that f,(fy(a)) ~ U fo(fy(a))Un = fo(Usfy(a)Uy) S b for all 0 < o < 1/2. Hence
fn(a) S b (for all 0 <n < 1/2) which implies a < b. O

Lemma 4.10. Let B be as in 4.2 and let a € M. (B)y with 0 < a < 1. Then there ex-
ists a sequence 0 < a, < 1 in Her(a) such that [a,] < [an+1], [a] = sup{[a,] : n € N} and
limy, 00 w([an]) = 0.

Proof. If there is a sequence t,, € (0,1) such that t,41 < t,, and lim,_,~ t, = 0 and ¢,, & sp(a)
for all n, then one obtains an increasing sequence of projections {p,} such that p,, € Her(a), and
such that for any 0 < € < 1, f-(a) < p,, for all sufficiently large n. Let a,, = p,,. Then w([p,]) =0
and [a] = sup{[a,] : n € N}. Thus we assume that [0,79] C sp(a) for some ny € (0, 1].
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As in the proof of Lemma 4.9, we may assume that, for some integer m > 1,

——
78(a) = diag(1,1,...,1,0,--- ,0) = p. (e4.68)
m

—N—
Let P = diag(13,15,...,15,0,...,0). Let {e,} and {E,} be as in the proof 4.9 of (see (e4.38)).
Note that EypP = PE}), for all k. As in the proof of 4.9, if 0 < 1 < 19/16, then

lim (B E/aE? + (1 - E)Y*P(1 — B)Y? —al| = 0 and (¢ 4.69)
e ||<E,1/ 2fala) B + (1= BR)2P(1 = E)'V? — fy(a)]| = 0. (e4.70)
Note 7Z((1 — Ex)/2P(1 — E},)"/?) = p = nB(f,(a)). Note also that, since f,(a)"/2E}.f,(a)'/? ~

fn(a) (in the strict topology), (E;/an(a)E;/Q)A/‘ ]% uniformly on 7'(B) (by Dini’s theorem).
We may therefore assume that, if k& > k,, (for some k, > 1),

(B (@B (7) > Fy(@)(7) = o(m)/16 for all 7€ T(B), (e4.71)

where o(n) = min{inf{7(f,(a)) — d-(fay(a)) : 7 € T(B)},n/16} > 0 (recall [0,70] C sp(a)).
Moreover, since M, (B) has continuous scale, we may assume, for all k > k),

[1— Ep] < (1— Ey) < o(n)/16. (e4.72)
Put a, ) = E;/zfn(a) 1/2
some ky1 >k, + 1,

T(fsm)(ank)) = 7((ank —0(n)+) > 7(ank —4(n))
= 7(ank) —16(n) > 7(fy(a)) —o(n)/8 for all 7€ T(B). (e4.73)

. Choose 0 < §(n) < o(n)/16r. Then, by (e4.71), for any k > k, 1 for

By (e4.70) and Proposition 2.2 of [35], there is k2 > k1 such that, for all & > ko, there is
T5/8,, € Her(fy(a)) such that

Fsimys((1 = ERV2P(1 = B)Y? 4 B2 () EY?) ~ s, (e4.74)

Since B is stably projectionless, for any nonzero 0 < b <1 in M,(B), sp(b) = [0, 1]. Thus

dr (fsgm (ank))) < 7(f(ank)) < dr(fs) 2(ank)) for all e T(B), (4.75)

where 0 < f < 1isin Cp((0, 1]) such that f(t) =1 for ¢t € [6(n)/2,1], f(t) =0 for t € (0,0(n)/4].
Since Cu(B) = LAt (T(B)), there is ¢, 50y € Mr(B)+ with [[cg,, 50|l < 1 such that, for all
T e T(B), dT(cn,Wg(77 ) = 7(f(ayx)) which is continuous on T'(B). Since B has strict comparison,
by (€4.75), cknstm) S fsm)/2(ank). Since M, (B) has almost stable rank one, by Lemma 2.13,
we may assume that ¢y, 5, € Her(f50,)/2(ank))-
Note that (1 — Epy1)Er =0 and P(1 — E)Y/? = (1 — E;)Y/2P for all k. In particular,

P(1 = Egy1)P = (1 — Ep1)/?P(1 — Eg1)'Y? L a, . By Lemma 2.14, there exists z € M, (B)
such that (see also (e4.74))

Fsmy2((1 = Epp)2P(1 = Exy1)Y?) + ety < Foy/a(PL = E1)P) + fsimya(an)
= f5(/a(P(1 = Ex11)P) + apg) ~ 2%z, and (e4.76)
2*2 S [y s(P(1 — Ex)P + ay ) (e4.77)

= fsmys((1 = EDY2P(1 = E)Y2 + B f(a) /%) ~ @5, € Her(fy(a)). (e4.78)
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Define by, 50y = fom)/2((1 = E )YV?P(1 — Epy1)'V?) + Chpo(n) for k > ky 2. From the displays
above, there is yy, , 5, € Her(f;(a)) such that by, 5 ~ Yi 1 5()- By (€4.75) and (e4.73), we have,
for k > ky o, and for all 7 € T'(B),

dr WYrn,s07) = dr (Ore.607)) > dr(Chms(m)) (e4.79)

> [fson (B Fo(@ES D (1) = 7(fsp (@) > T(f(a)) —o(n)/8. (e4.80)

Since [¢g .50y is continuous on T'(B), for k > k; 5, by (e4.72)
(recall fsq2((1 = Epa)Y2P(1 = Br1)Y?) L cpyism)s

W([Yrn,sm]) < o(n)/16 <n/32. (e4.81)

Combining (recall the definition of o(n)) (e4.81) and (e4.80), for all 7 € T'(B),

dr(fsn(a)) + 4w([Yrpsm)]) < 7(fan(@)) + 4w ([Yr ) < 7(fo(a)) — o () + 4w([Yrn.s0p]) (€4.82)
< 7(fy(a)) —50(n)/16 < d.r(yk,m;(n)). (e4.83)

Wealso have [ (fn(a)] < (=€ ()] = p = [nE((1=Buy )P = (80, ama) By Limima
9,

fan(@) < Yk 2m.6(n)- (e4.84)

For each fixed 0 < n < 1/8, there exists p,, > 0 such that (recall [0,70] C sp(a))
7(fyyaa)) > d-(fy(a)) + py, for all 7€ T(B). (e4.85)

Choose 0 < ' < 1/16 such that ' < p1,,/4. Then, for k > k,y o, and for all T € T'(B), by (e 4.80),

(e4.85), (and recall the definition of o(n') and yy, , 5.5 € Her(fy(a))), and (e4.81),

Wry o660 (T) 2 T(fiy (@) = o(0) /8 = dr(fy(a)) + pin/2 = [k, o s (T) + pi/2 (e 4.86)
[

> Wy 28] (7) + 1 = Wy 2m 6] (7) + 40 (U, y 66)]) for all 7€ T(B). (e4.87)

Recall ﬂg(fg(n)((l — Ep)Y?2P(1 — E})Y/?)) = p for all k and for all §(n) < 1/2. It follows from
Lemma 4.9 (or from Lemma A.3 of [17])

fanla) 5 Yk 2md(m) S Yk o’ ,6(n')- (e4.88)

Thus, we obtain a sequence {c,, } which is a subsequence of {yy, , 50} € Her(a) (with n — 0)
such that

[en] < [eny1] and li_>m w([cn]) = 0 (see (e4.81)). (e4.89)
Put x = sup{[c,] : n € N} (see Theorem 1 of [11]). Then, by (e4.84), [fs;(a)] < z for all
0 < n < min{no, 1/16}. It follows that [a] < z. Since each ¢, € Her(a), x < [a]. It follows that
x = [a]. O

In the following statement, it should be noted that we do not assume that B has almost
stable rank one. One of the features of the following statement is the existence of the unitaries
U, which compensates the absence of the cancellation for our later purposes.
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Theorem 4.11. Let B be as in 4.2 and a,b € M,(B)4 (where r > 1 is an integer). Suppose
that 78 (a) < 7E(b), and

d-(a) < d(b) for all 7€ T(B). (€4.90)

Then, for any 1 > n > 0, there erists a sequence of unitaries U, € Mas.(B) and a sequence of
elements hy, € Her(b)4 such that

1Us fy(@)Up — D = 0. (e4.91)

lim
n—oo

Proof. First consider the case that [a] = [p] for some projection p € M,(B). Then d.(a) = 7(p)
is continuous on 7T'(B). Put

o= (1/2)inf{d;(b) —7(p) : T € T(B)} > 0. (e4.92)
Since 7(f1/2n (b)) /* dr(b), as n — oo, there exists ng > 1 such that, for all n > no,
dr(a) + o < 7(f1/20(b)) for all 7€ T(B) and (7€ (f1/2n(b))] = [7E(b)]. (€4.93)

By Lemma 4.10, there exists a sequence of elements b, € Her(b)y with 0 < b, < 1 and an
integer N > 1 such that, for all n > N (as [f jone+1(b)] < [b]),

fijano+1(b) S bp and - lim w([b,]) = 0. (e4.94)

n—oo

Thus, there exists n1 > N + ng, for all n > ny
d-(a) + 4w([bp]) < dr(by) for all 7€ T(B) and [xf(a)] < [7E(by)]. (e4.95)

Applying Lemma 4.9, for any n > 0, there exist a sequence of unitaries U, € My,(B) and a
sequence of elements h,, € Her(by, )+ such that

iy (U7 £(a)0 = o] =0, (c.96)

Note that h,, € Her(b,, )+ C Her(b).

Next consider the case that [a] cannot be represented by a projection. It follows that 0 is
not an isolated point.

Fix 0 < n < 1. Choose 0 < ¢ < n/4, by Lemma 4.8, there exists oy > 0 such that

dr(fey2(a)) + o0 < dr(fy/a(a)) < d-(b) for all 7€ T(B). (e4.97)
Choose b,, € Her(b)+ above. Then, there exists ny > 1 such that, for all n > no,

dr(foj2()) + 4w ([bn]) < dr(b) and [7€ (f.j2(a))] < [7€ (bn)]. (¢4.98)

Applying Lemma 4.9, one obtains a sequence of unitaries U, € Ma,.(B) and a sequence of
elements h,, € Her(b,,)+ C Her(b)+ such that

lim Uy fy(@)Us = ha| = 0. (e4.99)

Theorem follows. O

We now arrive at the following theorem (see Theorem A.6 of [17]).
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Theorem 4.12. Let B be as in 4.2. Then, for any a,b € (B® K)+, if [rE(a)] < [7£(D)] and
d-(a) < d;(b) for all 7€ T(B), (e4.100)

then a < b. Moreover, if [a] is not represented by a projection, then d.(a) < d;(b) for all

T € T(B) implies that a < b.

Proof. For the first part, we note that, for any € > 0, there exists § > 0 such that

dr(fe(a)) < dr(f5(b)) for all 7€ T(B) and [r¢(fs(a))] < [7C (f5(b))]- (e4.101)

With this observation, we reduce the general case to the case that a,b € M,(B)y with 0 <
a, b<1.
For this case, for any 0 < n < 1/2, by Lemma 4.11, there is h € Her(b); and a unitary

U € My, (B) such that
1T £/4(a)U = hl| <n/8. (e4.102)
By Proposition 2.2 of [35], this implies that

Toja(fpja(@) ~ U" fr/a((fr72(@)U = fr/4(U" fra(@)U) S h S0 (e4.103)

Since this holds for all 0 < n < 1/2, one has a < b.
Now suppose that

d-(a) <d;(b) for all 7 € T(B). (e4.104)
If [a] is not represented by a projection, then, by Lemma 4.8, for any 1 > ¢ > 0,
d-(f-(a)) < d(b) for all 7€ T(B) and [7E(f.(a))] < [*E(b)]. (€4.105)

By what has been proved above, f.(a) < b for all 1 > ¢ > 0. Therefore a < b.
O

Combining Theorem 4.12 and Lemma 4.4, we have the following description of the Cu(B).
Note that all all finite exact separable simple stably projectionless Z-stable C*-algebras with
continuous scale satisfy the assumption of the corollary below (see [24]).

Corollary 4.13. Let B be a separable stably projectionless simple C*-algebra with continuous
scale such that M,(A) has almost stable rank one (for alln € N), and such that QT(B) = T(B)
and Cu(B) = LAt (T'(B)). Then, Cu(B) = (V(B) \ {0}) U LAff  (T'(B))°.

Remark 4.14. If both z and y are not compact in Cu(B) and z = y, or equivalently r+k[lg] =
y + k[15] in Cu(B) for some integer k, then, by Theorem 4.12, x = y. So Cu(B) has the weak
version of cancellation. However, we still do not have the cancellation for projections. In other
words, if p @ e ~ ¢ @ e for some nonzero projection e, we do not know that p ~ ¢g. Nevertheless,

if [p@e]+z<[qgde] for some x € Cu(A)4 \ {0}, then [p] < [¢], by Theorem 4.12.

5 Approximation

In this section we will present Lemma 5.3 (see also the last part of Remark 5.4).
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Definition 5.1. Let A and B be C*-algebras and A : Cu™(A) — Cu™(B) be a morphism in
Cu (see [32]). Suppose that ¢, : A — B is a sequence of homomorphisms. We say Cu(yy,)
converges to A and write lim,,_,~ Cu(g,) = A, if, for any finite subset G C Cu™(A), there exists
N > 1 such that, for all n > N,

Cu™(on) () < Ay) and A(z) < Cu™(en)(y), (e5.1)

whenever z,y € G and = < y.
Let Go C Ko(A) C Cu™(A) (see 6.1 of [34]) be a finite subset. Then lim, .o Cu™(¢,) = A
implies that, there is an integer ng > 1 such that, for all n > ng,

Cu”™(¢n)(z) = Az) for all z € Gy (e5.2)

as r < x in Cu™(A).

We write lim?_, . Cu™(y,) = A, if for any finite subset G C Cu™(A), there exists ng > 1

such that, for all n > ny,

Cu™(en)(2) = Az
Cu™(pn)(z) <

) for all z€ GN Ky(A) and (e5.3)
A(y) and A(z) < Cu™(¢n)(y), (e5.4)

whenever z,y € G and ¢ < y and both z and y are not compact.

Lemma 5.2. Let C be a separable C*-algebra of stable rank one and B be a C*-algebra with
finite stable rank. Suppose that \ : Cu™(C) — Cu™(B) is a morphism in Cu and there exists a
sequence of homomorphisms p, : C — B such that

lim Cu™(p,) = A (e5.5)

n—o0

Suppose that Y, : C' — B is a sequence of homomorphisms such that
lim (¢ (a) — pn(a)|| =0 for all a € C. (€5.6)
n—oo

Then

lim Cu™(¢,) = A (e5.7)

n—o0

Proof. Let G C Cu™(C) be a finite subset. Let S ={(f,9): f,g € G, f < g}.
Suppose that (f,g) € S. We claim, in this case, that there is h € Cu™(C) such that

f<h<ag. (€5.8)

Recall that C has stable rank one. We may assume that f = [a/]—m¢[15] and g = [a9] —mgy[1 4],
where a/, a9 € M,((C))+ with ||a/|| < 1 and ||a?|| < 1 for some integer r > 1, and, rank of 7& (af)
is my < r, and rank of 7§ (a?) is my < r. Therefore

(@l @ 1, ] < [a9 & Lpn,] (e5.9)

(in the Cu(C)), where 1,,, and 1,,, are identities of Mp,, (C) and M, (C) respectively.
By (e5.9), there is 1/2 > & > 0 such that

[af ® 1m,] < [fe(a?) @ 1, and [f-(a?)] < [a?]. (€5.10)
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Moreover, by choosing smaller €, we may assume that & (f-(a?)) = f.(7&(a¥)) has the same
rank as that of [75(a%)] = my. Put o = f.(a) and h = [a"] — m4[14]. Then

f<h<yg. (e5.11)
Define f = diag(a’, 1,,,,), h = diag(a”, Ly,) and g = diag(a?, 1,,,). Note that, in Cu(0),
f<h<g. (e5.12)
Choose 0 < ¢ < ¢/4 such that
f < fs(h) <h and h < fs5(g) < g. (5.13)

Let o, 97 : M,(C) — M,(B) be the (unital) extensions of ¢, and ,, respectively. We
claim that, for each (f,g) € S, there is an integer N > 1 such that, for all n > N,

Cu™(¢n)(f) < Ag) and A(f) < Cu™(¢n). (e5.14)

Write A(f) = A(f)+ — mas[l] and A(g) = A(g)+ — mag[lz], where A(f)+ = [ay ;] and
Mg)+ = [ax,y] for some ay f,ay 4 € M, (B); (by enlarging r if necessary), and [72 (ax ;)] = my s
and [18(ay4)] = my 4 are integers.

Note, by (e5.6), we have

ILm [ (¢) — @5 (c)|| = 0 for all ¢ € M.(C). (e5.15)

Then, by (e5.13) and by repeated application of Proposition 2.2 of [35], there exists an integer
N > 1 such that, if n > N,

U () Sy (f5(h) S ep (h) and @} (h) S @5 (f5(9)) S ¢r (9)- (5.16)
Assume that B has stable rank K. Since lim,, o, Cu™(¢,,) = A, we may also assume, if n > N,

[ (@] + (mag + K)[Lg) < Ag)s + (my + K)[15] and (e5.17)
A(F)+ + (mg + K)[15] < [0 (a")] + (mog + K)[15] (e5.18)

for all (f,g) € S. Combining (e5.16), (¢5.17) and (e5.18), we obtain

I
<
37
=
+
3
}/
Q
_|._
=
=
tU._I.
IA
<
37
Sk
§|
+

3
}/
Q
_|._
=
=
tU._I.

[ (a!)] + (mg +miy g + K)[1 5]
= [y ()] + (ma s + K)[15)]

Thus, for all n > N, and, for all (f,g) € S,

Cu™ () (f) < Alg) and A(f) < Cu™(¢n)(g)-
O

Lemma 5.3. Let C be a separable semiprojective C*-algebra with a strictly positive element ec
and B be as in 4.2. .
(1) Let A : Cu™(C) — Cu™(B) be a morphism in Cu with Alec]) < [b] for some b €

Mn(B)+ (and N > 1), and let ¢, : C — Mn(B) be a sequence of homomorphisms such that
limy, o0 CuN(SOk) = A
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Suppose that

(i) Mlec])(r) < [b](r) for all T € T(B), or
(ii) A([ec]) is not a compact element in Cu™(B).

Then exists a sequence of homomorphisms iy : C — bMN(B)b such that
lim Cu™(¢y) = A. (e5.19)
k—o00

(2) If A : Cu™(C) — Cu™(B) is a morphism in Cu, X(lec]) < [b] for some b € Mn(B)4, and
there exists a sequence of homomorphisms ¢y : C — My (B) such that limg_,o Cu™(pr) = A,
then there exists a sequence of homomorphisms 1y : C — bMy(B)b such that

lim Cu™ () = A (e5.20)

n—o0

Proof. Let us consider case (1) first. For any € > 0, there exists k() > 1 such that [px(f;/4(ec))] <
AM[fep16(ec)]) < Mec]) for all k > k(e). Put a(k, €) = pi(f./a(ec)). For case (i), we have

d-(a(k,e)) < d;(b) for all 7 € T(B). (e5.21)

For case (ii), let e € (B®K), be such that [e] = A([ec]). Then e o p for any projection. In other
words, we may assume that 0 is not an isolated point in sp(e). Moreover, since A is a morphism
in Cu, it maps compact elements to compact elements. Hence [ec] cannot be represented by a
projection. It follows that 0 is not an isolated point in sp(ec). Choose i > 0 such that

A(fepr6(ec))] < [fnle)]- (€5.22)

For any n > 0, there is a nonzero element ¢ € Her(e)1 such that ¢ L f,(e) (see Lemma 4.8).
Since B is simple, 7(c¢) > 0 for all 7 € T'(B). It follows that

d-(fn(e)) < d(b) for all T € T(B). (e5.23)
Thus we also have
d-(a(k,e)) < d;(b) for all T € T(B). (e5.24)

Recall that A([ec]) < [b] implies that Cu™ (7)o ([ec]) < [Wg(b)].:I‘hus, in both case (i) and (ii),

by Theorem 4.11, there exist a sequence of unitaries U,, € Moy (B) and a sequence of elements
hy, € Her(b)4+ with ||hy|| < 1 such that

U7 fe(prie) (ec)Un — hull < 1/2"F, n=1,2,.... (€5.25)

Put €, > 0 such that lim, _,, €, = 0. One obtains a sequence of elements e,, € Her(b); with

llen|| =1 and a sequence of uniaries V;, € My (B) such that

llenViy fen Pren)(€C)Vnen — Vi fe, (Pr(en) (€c))Vall < 1/2", n=1,2,...  (e5.26)

Put C,, = foe, (ec)Cfe, (ec), @n : C — Moy (B) by @, (c) = Vi Pk(en) (€)Va, and contractive com-
pletely positive linear maps L,, : C' — Her(b) such that Ly (c) = eV, ¢p(c,) (fe, (ec)cfe, (ec)) Vaen
for ¢ € C. Then

lim || L, (¢)Ly(¢)) — Lp(ed)|| =0 for all ¢,¢ € C. (5.27)
n—oo
Since C' is semiprojective, there exists a sequence of homomorphisms v, : C' — Her(b) such that

li_>m |tn(c) — Ln(c)]| =0 for all ¢ € C. (e5.28)
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Let @7, 47 - C — B be the usual unitization of ®,, and v, respectively. Then, by (e5.26), for
a fixed m, on C- 15 + Cpy,
lim ||, (c) = @, (c)| =0 (for all c € C- 15+ Cyp). (€5.29)

n—o0

Note that V;, are unitaries in Mz(B). Hence Cu™(®,) = Cu™(py(,))- It follows from Lemma
5.2 that
lim Cu™(¢y) = A. (e 5.30)

n—o0

For case (2), we work in B. By the end of 4.2, A([ec]) < [b] in Cu(B). Then, instead of
(e 5.25~), since B has almost stable rank one, by Lemma 2.11, there is, for each k, a unitary
U € Msn(B) such that

U* f-(pr(ec))U € Her(b). (e5.31)
The rest of the proof is similar but simpler. O

Remark 5.4. Let ¢ : C — M,(B) be a homomorphism such that [p(ec)] < [b] in Cu™(B)
for some b € B+, where ec is a strictly positive element of C. Since we do not know whether
Cu™(B) has the cancellation, in the case that [¢(ec)] is represented by a projection, there might
not be any d € By such that [d] = [p(ec)] in Cu™(B). In that case, there would not be any
homomorphism ¢ : C — B, such that Cu™ (1)) = Cu™(p). Suppose that there is d € B, such
that [d] = [¢(ec)] in Cu™(B). We still do not know d ~ ¢(e¢) in Cu(B) without knowing the
cancellation in Cu™(B).

Suppose that [¢(ec)] is not a compact element. In an ideal situation, say there is = € M, (B)
such that z*z = ¢(ec) and zz* € Her(d), then one obtains a partial isometry v € M, (B)** such
that v*vp(c) = ¢(c)v*v = p(c) for all ¢ € C and vp(c)v* € Her(d). Define ¢ : C' — Her(d) by
P(c) = vp(c)v* for all ¢ € C. Then Cu(y) = Cu(yp). However, Cu™ (7)) may not be the same as
Cu™(p) (see Example 6.8 below). It is crucial that we have unitaries U,, in Theorem 4.11.

Let us assume that \([ec]) is compact and A([ec]) < [b] for some b € B,. Suppose that
Mlec]) # [15]. (Recall that A([ec]) may be represented by elements in B ® K.) Since B is
stably projectionless, B has only one nonzero projection 15. To see this, let p € B be a nonzero
projection. Then p € B. Therefore ﬂg(p) = ﬂ'g(lé). This implies that 15 — p € B. Since B
is stably projectionless, p = 15. Therefore, in this case, A([ec]) cannot be represented by an
element in B. Consequently, there will be no sequence of homomorphisms vy, : C — B such that
limy, 00 Cu™(vy) = A Even if A([ec]) = [15] in Cu™(B) and ¢}, : C — My(B) is a sequence
of homomorphisms such that limg_,., Cu™(¢x) = A, and each 9;(ec) is a projection so that
[r(ec)] = AM[ec]) = [15] in Cu™(B), one does not know that vy (ec) ~ 15 in Cu(B). It is then

impossible to perturb ¢, into homomorphisms ¥y : C — B such that limg 00 Cu™(1g) = A

6 Unitization

The next lemma is a result of L. Robert (Lemma 3.2.1 of [32]). The statement in [32] assumed
that B has stable rank one. Thanks to the revised definition of Cu™(A) in [34], the following
lemma also holds for B has finite stable rank. Note that, in [32], the condition of stable rank
one is used (including almost all subsection 3.1 in [32] such as 3.13 and 3.16 there) because the
argument needs the weak cancellation, namely,  + z < y + z implies that z < y (in Cu(B)).
But in Cu™(B), this always holds, by Corollary 4.6 of [34]. Moreover, by Corollary 4.10 and the
first paragraph of subsection 4.2, when B has finite stable rank, the definition of Cu™(B) in [32]
agrees with the revised one in [34]. Therefore the proof of the following is exactly the same as
that of Lemma 3.2.1 of [32].
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Lemma 6.1 (Lemma 3.2.1 of [32]). Let A be a C*-algebra of stable rank one and B be a unital
C*-algebra with finite stable rank. Let eq € A be a strictly positive element. Let a: Cu™(A) —
Cu™(B) be a morphism in Cu such that a(lea]) < [1g]. Then there exists a unique morphism

a™ : Cu™(A) — Cu™(B) in Cu that extends a such that a([1;]) = [1B].

Remark 6.2. In 6.8, it will be shown that there are homomorphisms ¢, : A — B such that
Cu(p) = Cu(yp) but Cu(¢™) # Cu(¢™). It may be worth noticing that Lemma 6.1 deals with a
different situation.

Definition 6.3. Let F} and F5 be two finite dimensional C*-algebras. Suppose that there are
(not necessary unital) homomorphisms ¢, ¢1 : F1 — F5. Define

A= A(F1, Fy,00,01) = {(f,9) € C([0,1], F2) @ F1 : f(0) = ¢o(g) and f(1) = p1(g)}. (€6.1)

Denote by C the class of all C*-algebras of the form A = A(F, F, po, ¢1). These C*-algebras
are called Elliott-Thomsen building blocks as well as one dimensional non-commutative CW
complexes (see [13] and [14]).

Denote by Zj the subclass of C*-algebras C in C such that K;(C) = {0}.

All C*-algebras in C have stable rank one (see, for example, Lemma 3.3 of [22]) and are
semiprojective (see Theorem 6.22 of [13]).

Lemma 6.4. Let A,C' € Zy be C*-algebras such that there is an isomorphism ¢ : AQK =2 C®K.
Then there exists an integer n > 1 and an injective homomorphism v : p(A) — M,(C) such
that 1o 9(A) is a full C*-subalgebra of My, (C) and Cu™(¢) = Cu™(idy(4))-

(Note that we identify A with the first corner A®e;; of A® K.)

Proof. Let D be a liminal C*-algebra. Denote by Irr(D) the set of irreducible representations of
D.Ifd € Dy and € € Irr(D), let us denote r¢(d) the rank of £(d) (with value in {0} UNU {o0}).
Let ey € A}r be a strictly positive element of A. There is N > 1 such that

1 <inf{re(ea) : £ € Iir(A®K)} <sup{re(ea) : £ € ir(A® K)} <N,

viewing A as a hereditary C*-subalgebra of A® K. Put A; = p(A). Then A; is a full hereditary
C*-subalgebra of C' ® K as isomorphisms preserve the full hereditary C*-subalgebras. Hence
A1 = Her(p(ey)). Note that, since ¢ is an isomorphism,

I <inf{re(plea)) : £ € ir(C @ K)} < sup{re(e(ea)) : £ €er(Co K)} < N.
Fix a strictly positive element ec € C. Then, there is N7 > 1 such that
1 <inf{re(ec) : € € Irr(C) } < sup{re(ec) : € € Irr(C)} < Ny.

Let {e;;} C K be a system of matrix units and E; = Zgzl eii (for 5 > 1). Put ¢, = ec ® E,.
Then r¢(c,) = n - re¢(ec). Therefore there is an integer n > 1 such that d-(p(ea)) < d-(c,) for
all 7 € T(C). Working in C if C is not unital, by 3.18 of [22], ¢(ea) < ¢, in Cu(C). Note that
©(A) is a full hereditary C*-subalgebra C' ® K. Since C' ® K has stable rank one, by Theorem
1.0.1 of [32], there is a homomorphism ¢ : ¢(A) — M,,(C) such that Cu™(:) = idcy~(c)-

Note, if ¢(c) = 0 for some ¢ € C, then Cu™(¢)([c]) = 0. Thus, ¢ is injective. To see ¢t o p(A)
is full, one needs to show that ¢ o ¢(ey) is full in M, (C). But to p(es) ~ ¢(ea) and p(eq) is
full since ¢ is an isomorphism. O

We will use the following known and easy fact.
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Lemma 6.5. Let B be as in 4.2. Suppose that b € Mn(B)J’_ is such that [b] is a compact element
in Cu™(B). Then there is g € Cy((0, ||b]|]) such that g(b) is a projection.

Proof. By Theorem 6.1 of [34] (recall B has stable rank at most 2), there is a projection p €
My (B) for some integer N > 1 such that [b] = [p] in Cu™(B).

If 0 is not an isolated point of sp(b), for any € > 0, there is a nonzero element ¢ < b such
that ¢ L f.(b). Since B is simple, 7(c) # 0 for any 7 € T'(B). It follows that

d-(f-(b)) < d-(p) for all T € T(B). (€6.2)

However, since p is compact, for all small e, [p] < [f.(b)] in Cu(B)=. This contradicts with (e 6.2).
So 0 must be an isolated point of sp(b). Thus there is a such g so that g(b) is a projection. [J

Theorem 6.6. Let C' be a C*-algebra in Iy with a strictly positive element ec and B be a
simple C*-algebra which satisfies conditions in 4.2. Suppose that A : Cu™(C) — Cu™(B) is a
morphism in Cu such that \([15]) = [b] for some b € M, (B)y which is compact as an element in

Cu™(B) (for some integer n > 1). Suppose also that there exists a sequence of homomorphisms
¢+ C — Mp(B) such that limy_,o Cu™(¢r) = Acu~(c)-
(1) If )\([60]) is not a compact element, then there exists a sequence of homomorphisms

Yy : C = bM,(B)b such that
lim Cu™(¢) = A

k—o00

(2) If Mec]) is a compact element and A([c]) # 0 for all ¢ € C4 \ {0}, then there exists a
sequence of homomorphisms ¢y, : C — My (B) such that

lim Cu™(¢r) = A
k—o0

Proof. Consider case (2) first. If A([ec]) is a compact element, then, for all sufficiently small
0<e<l,

Allec]) < Allfe(ec)]) < Allec])- (€6.3)

Let g € Co((0, |lec]]])+ with the support in (0,e/2]. Then A([g(ec)]) = 0. The assumption on A
implies that g(ec) = 0. It follows that C' is unital. Since [ec] = [1¢] < [1¢], this implies that

ler(10)) = A([1c]) (for all large k). )
Let eg = 15—1¢. By Lemma 6.5, we may assume that b = p for some projection p € M, (B). If

Aleo]) = 0, then A([1¢]) = A([14))- Define ¢y : € — My (B) by ¢le = pr and ¥x(15) = ¢r(1c)-
(Warning: we only have [¢(15)] + 2[15] = [p] + 2[1 5] in Cu(B) for large k.)
If A([eo]) # O, then, for each k,

d-(or(1¢)) < d-(p) for all 7€ T(B) and d-(¢r(1c)) < d-(p) for all 7€ T(B). (e6.4)

It follows from Corollary A.4 of [17] that (since p is continuous on T'(B))

er(le) Sp in Cu(B). (e6.5)

There is a partial isometry vy, € Mn(B) such that vyvy = @i (1) and viv, < p. Define 9y, : C —
pMy(A)p by ¥r(c) = vipr(c)ug for all ¢ € C and 9 (15) = p. Since C is unital, Cu™(¢r|c) =
Cu™(pg). It follows from Lemma 6.1 that (2) holds.

For (1), we assume that A([ec]) is not a compact element. Again, by Lemma 6.5 and the
fact 15 is a projection, we may assume b = p is a projection. By Lemma 5.3 ((ii) of (1)), we may

assume that there is a sequence of homomorphisms ¢ which maps C' into pMn(B)p such that
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limy 00 Cu™ (1) = Alcu~(c)- Define 9, C — pM,,(B)p such that ¥p|c = ¢ and Yr(1g) = p.
Then

Cu™(¢Yrlc) = Cu™(¢r) and (see Lemma 6.1) lim Cu™ () = A

k—o0

The condition that A([¢]) # 0 for all ¢ € C4 \ {0} may be called “faithful”.

Corollary 6.7. Let C be a C*-algebra in Iy with a strictly positive element ec and B be a
simple C*-algebra which satisfies conditions in 4.2. Suppose that A : Cu™(C) — Cu™(B) is
a morphism in Cu such that X([ec]) < [e] for some nonzero projection e € M,(B) (for some
n € N). Suppose also that there exists a sequence of homomorphisms py : C' — Mn(B) such

that limy_,oo Cu™ (k) = A. Then there exists a sequence of homomorphisms vy : C — M, (B)
such that

lim Cu™(¢klc) = A.
k—ro0

Moreover, if X([ec]) is not a compact element, then we may require that 1y (C) C eMy(B)e.

Proof. Define ¢|c = ¢ and ¥p(15) = 1,. Then the first part of the statement follows. For
the second part, we note that, since B is simple and stably proectionless, and e € Mn(B) is
a nonzero projection, e is a full element in M, (B). It follows that eM,(B)e ® K = B ® K.
Put D = eM,(B)e. By theorem 5.5 of [34], Cu™(D) = Cu™(B). Then the second part of the
corollary follows from part (1) of Theorem 6.6.

O]

Example 6.8. By Theorem 5.27 of [21], there is a separable simple stably projectionless C*-
algebra A with nontrivial Ky(A) and with continuous scale such that kerps = Ky(A) and
A = limy, 00(Cp, 0pn), where Cp, € Iy and ¢y o0 : Cp — C is injective. Choose Cj, so that
00,0 (HKo(Cr)) # 0. This also implies that Ko(Cy) # {0}. Note that, since A is stably projec-
tionless, C), is also stably projectionless.

Let B = A® W, where W is the unique separable amenable K K-contractible C*-algebra
with a unique tracial state (see [17]). Then B has continuous scale and T'(B) = T'(A), and B is
K K-contractible. By the classification theorem in [17], B is in fact a simple inductive limit of
Razak algebras. Then, by Proposition 6.2.3 of [32],

Cu™(B) = {0} ULAff7(T(B)) = {0} ULAff7(T(A)) and Cu™(A4) = Ko(A) ULAff7(T(A)).
By Theorem 1.0.1 of [32], there is a homomorphism j: A — B such that
Cu(j)lro(ay = 0 and Cu™(j)Lagy(r(4)) = idrasy (T(a))-

There is also a homomorphism ¢ : B — A such that CUN(L)|LAff:(T(B>) = id|LAg:(T(B)). Let
Y =10j0ppe : Cp = A. Note Cu™(vo j)’LAﬁ‘:(T(A)) = idpafy (1(4)) - Since (), is stably
projectionless, one has

Cu(w) - Cu(@n,oo)'
But, since ¥ = 0 and ¢p 0,y 7 0,

Cu™(¢) # Cu™(pn,00) and Cu(y™) # Cu(py o).
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7 Existence

Lemma 7.1. Let A be a separable simple stably projectionless C*-algebra with continuous scale
such that M,,(A) has almost stable rank one for all m > 1. Suppose also QT (A) = T(A) and
Cu(A) = LAff (T(A)).

Then, for any Cu morphism X : Cu™(Cy((0,1]))) — Cu™(A) with A([ec]) < [a] for some
a € My (A)y (for some integer n > 1), where ec is a strictly positive element of Co((0,1]), and
M[c]) # 0 for any ¢ € Co ® Ky \ {0}, there is a homomorphism h : Co((0,1]) — My, (A) such
that Cu™(h) = A.

Moreover, if X : Cu™(Cy((0,1]))) — Cu~(A) with X([ec]) < [a] for some a € M,(A)4, then
there exists a homomorphism h : Co((0,1])) — My, (A) such that Cu™(h) = .

Proof. Recall that A shares the same condition that B has in 4.2. Put Cy = Cy((0,1]). Recall
that K;(Cp) = {0}, ¢ = 0,1. Note that, since Cp has stable rank one, by Lemma 3.1.2 of [32],
Cu(Cyp) is order embedded into Cu™(Cp). So Cu™(Cp)+ = Cu(Cp) (see Lemma 3.1.2 of [32]).
Note also that A is unital and has stable rank at most 2 (see the proof of Theorem 6.13 of [34]).

Thus A maps Cu(Cp) to Cu(A)~ (see Lemma 4.4 and Corollary 4.13). Therefore it suffices to
show that there is a homomorphism h : Cy — M, (A) such that Cu(h) = X|cy(cy)-

)
Recall, by Theorem 4.4, that Cu(A)~ = (Ko(A)\ {0}) ULAff (T'(A))°. Suppose that A([c])
is compact for some non-zero ¢ € (Co ® K) . Note [c] = sup{[fi/on(c)] : n € N}. It follows, for
some n > 1,

Ale]) < Al fry2n(e)))- (e7.1)

However, since Cj is stably projectionless, there is co € Her(c)4 \ {0} such that co L fi/n(c).
By the assumption, A([co]) # 0. This contradicts with (e7.1) as Cy has stable rank one. Hence
A([¢]) is not compact for any [c] € Cy @ K4 \ {0}.

Thus A(Cu(Cy)) C LA, (T(A))° (see Theorem 6.1 of [34]).

It follows from Theorem 2.8 of [17] that there is a separable simple C*-algebra A; which
is an inductive limit of Razak algebras with continuous scale such that T'(4;) = T(A). Note
that K;(A1) = {0}, i = 0,1. By Theorem A.26 of [17], there is an embedding ¢ : Ay — A
which maps strictly positive elements to strictly positive elements such that ¢ induces an affine
homeomorphism v : T(A) — T(A;). Let ™ : (A;)~ — A be the unital extension. We also
write ™ for the extension from M, (A7) to M,(A) for each integer n > 1. Thus +~ induces
an isomorphism ¢#~ form LAff, (T(A7)) onto LAff, (T(A)). Since A;™ has stable rank one, it
follows from Theorem 1.0.1 of [32] that there is a homomorphism ¢ : C' — M, (A;) such that

Cu™(p) = () Lo (e7.2)

Define h: C — A by h =1~ o ¢. Then Cu™(h) = A.

For the “Moreover” part, we first note that Cu(A) = LAff{(T'(A)), as A is stably projec-
tionless. Therefore, working in Cu(A), the above argument also works and produces a homo-
morphism ¢ : C' — M, (A) such that Cu(¢) = A. This part also follows from [33].

0

Theorem 7.2. Let C € Iy be a C*-algebra and let A be a separable simple stably projectionless
C*-algebra with continuous scale such that My, (A) has almost stable rank one for all m > 1.
Suppose also QT(A) = T(A) and Cu(A) = LAff,(T(A)). Let ec and ey be strictly positive
elements of C' and A, respectively.

(1) Suppose that there is a morphism X : Cu™(C) — Cu~(A) in Cu such that M\([ec]) < nle4]
for some integer n > 1 and A([c]) # 0 for any ¢ € C1 \ {0}. Then there is an integer m > n and
a sequence of homomorphisms ¢y : C' — M, (A) such that limg_, Cu™(¢x) = A
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(2) Also, if there is a morphism X : Cu™(C) — Cu~(A) in Cu such that A([ec]) < n[l4]
and A([c]) # 0 for all c € (C ® K)+ \ {0}, then there exists an integer m > n and a sequence of

homomorphisms ¢y, : C — M, (A) such that limg_,o, Cu™(¢g) = .

Proof. Following [32] (see page 18 of [32] right above Corollary 3.2.3 of [32]), let A be the family
of C*-algebras in Zy which consists of one C*-algebra Cp((0,1]). A C*-algebra A is in A, if
AeTyand, f A9 K 2B®K, or,if A= B, or if A= B for some Be A,_1,n=1,2,....

It follows from (the proof of) Proposition 5.2.2 of [32] that, C' € A,, for some m > 0. By
Lemma 7.1, the lemma holds for any C*-algebra C € Ag and any A which meets the requirement
of the lemma.

Assume that lemma holds for any C*-algebra C in A,,_1. It suffices to show that the lemma
holds for any C*-algebra C in A,, and any A as described in the lemma. Fix C € A,,.

Case (I) : Suppose that h : C®K — B®K is an isomorphism for some B € A,,_;. In situation
(2), suppose that X : Cu™(C) — Cu™(A) is a morphism in Cu such that A([ec]) < n[lz].

By Lemma 6.4, there is an injective homomorphism ¢ : h(C) — M (B) for some integer
L > 1 such that Cu™(:) = Cu™(idy()). Since B € A;,—1, by the inductive assumption, there

exists an integer mo > n and a sequence of homomorphisms ¢y : M1 (B) — My, (A) such that

lim Cu™(yy) = Ao Cu™(h™1).

k—o0

Define ¢y, : C' — Mpm,(A) by pr(c) = ¢ oo h(c) for all ¢ € C. It follows that
lim Cu™(pr) = A
k—ro0

In situation (1), A maps Cu™(C) to Cu™(A), then the argument above also works (but v, maps
ML(B) into MLmO(A))‘

Case (II): C' = B for some B € A,,_;. Note that C' is unital and A is stably projectionless.
Hence A : Cu™(C) — Cu™(A). (We do not need to consider the case A : Cu™ — Cu™(A).) Let
ep € B be a strictly positive element. Note that Cu™(B) is order embedded into Cu™(B) (see
Proposition 3.1.6 of [32]). Since B € A,,—1 and A([eg]) < A(lec]) < n[l;], by the inductive

assumption, there is an integer mgy > n and a sequence of homomorphisms 1y : B — M, (A)
such that

Jim Cu™ (W) = Ao~ (m). (e7.3)
—00

If A([eg]) is not compact, we apply part (1) of Theorem 6.6 to obtain the desired maps ¢j. If
A([es]) is compact, since A is strictly positive, by (2) of Theorem 6.6, there is also a sequence of
homomorphisms ¢y, : C = B — Mpym,(A) such that

lim Cu™(pr) = A (e7.4)

k—o0

Case (3): C' = B for some B € A,,_1. Let \ : Cu™(C) — CNuN(fl) be such that A([ec]) <
n[1;]. By Lemma 6.1, there is an extension A~ : Cu™(C) — Cu™(A) in Cu such that \~|cy~ ) =
Aand A\(15) = (n+1)[13]. Consider the following splitting short exact sequence (see Proposition
3.1.6 of [32]):

Cu~(n§)

0— Cu™(C) — Cu™(C) = Cu™(C) -0, (e7.5)

where 7€ : C' — C is the quotient map (and its extension). Let a € (C®K)+\{0}. If 7§ (a) = 0,
then A\~ ([a]) = A([a]) # 0. If 7&(a) # 0, then, by the definition, A~([a]) # 0. Thus A~ ([a]) # 0
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for any a € (C ® K) \ {0}. Since B € A,,_1, by the assumption, there exists a sequence of
homomorphisms hy : B = C — ML(/Nl) for some L > n such that limg_o, Cu™(hg) = A™.
Choose ¢k = hi|c. Then limg_,oo Cu™(¢r) = A.

If A : Cu™(C) — Cu™(A) with A([ec]) < nlea], then, since Cu™(A4) — Cu™(A) is an order

embedding, by Theorem 5.3 of [34], one may view A : Cu™(C) — Cu™~(A). It follows from Lemma
6.1, there is an extension A~ : Cu™(C) — Cu™(A) such that A cu~ (o) = A and A ([15]) =
(n+1)[1 ;5]. As proved above, ™ is strictly positive, i.e., \™([c]) # 0 for any ¢ € (C ®K)4 \ {0}.
Since B € A,,_1, there exists a sequence of homomorphisms h; : B = C—> M L(fl) such that
limy_, 00 Cu™(hy) = A~. Define ¢ = hi|c. Then limg_,o Cu™(¢r) = A.

This completes the induction. Theorem follows. ]

Corollary 7.3. Let C € Iy be a C*-algebra with a strictly positive element ec and let A be a
finite separable simple stably projectionless C*-algebra which is Z-stable with continuous scale
such that QT (A) = T(A). Suppose that there is a morphism A : Cu™(C) — Cu™~(A) in Cu such
that A([ec]) < [a] for some a € Ay and A([¢]) # 0 for all ¢ € C4 \ {0}. Then there exists a
sequence of homomorphisms ¢y, : C — aAa such that limg_, Cu™(pr) = \.

Moreover, there exists a sequence of injective homomorphisms ¢y, : C — aAa such that
limj), . Cu™ () = A

Proof. Recall that A satisfies the condition that B satisfies in 4.2. Let e4 € A be a strictly
positive element. Then [e4] is continuous on T'(A). It follows from Theorem 7.2 that there exists
an integer m > 2 and a sequence of homomorphisms v, : C — M,,,(A) such that

lim Cu™(¢y) = A. (e7.6)

k—o0

Since A is stably projectionless and A is strictly positive, A([ec]) is not compact. Applying (2)
of Lemma 5.3, we obtain a sequence of homomorphisms ¢}, : C' — A such that

lim Cu™(¢}) = A (e7.7)

k—o0

To see the last part of the statement and to make homomorphisms injective, for each k£ > 1,
choose 0 < g, < 1/2F*! and define Ly : C — Ay = Her(f-, (a)) by

Li(c) = fe, (a)pr(c) fe (a) for all c e C. (e7.8)

Since C' is semiprojective, by choosing small ej, one obtains a homomorphism ¢} : C' — A
such that (see also Theorem 5.2)

klim l¢h(c) — pr(c)]| =0 for all ¢ € C and (e7.9)
—00
lim Cu™(¢}) = A (e7.10)
k—oo

Choose a nonzero function in gx € Cy((0,1])+ with support in (0,ex/3) and nowhere zero in
(0,ex/3). Put By = Her(gx(a)). Since A is stably projectionless, we may assume that By is
nonzero. Note also By, L Aj. Put

o =sup{d-(gx) : T € T(A)} > 0. (e7.11)
Since A has continuous scale, we have that

lim oy, = 0. (e7.12)

k—o00
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Note that By is a hereditary C*-subalgebra of A and therefore it is also Z-stable (Cor. 3.1
of [41]). Choose a nonzero hereditary C*-subalgebra Dj; C Bj which has continuous scale
(see Remark 5.3 of [16]). By Theorem 6.11 of [34], Cu™(Dy) = Ko(Dy) U LAFT(T(Dy)). By
Corollary A.8 of [17] and Theorem 4.1 of [21], there exists 79 € T'(Dy) such that pp, (z)(19) =0
for all x € Ko(Dy), where pp, : Ko(Dy) — Aff(T(Dy)) is the usual pairing. Recall W is the
unique separable K K-contractible amenable simple Z-stable C*-algebra with a unique tracial
state Ty Define v : Cu™(Dg) — Cu™(W) by 7|g,(p,) = 0 and y(f)(rw) = rf(7) for all
f € LAff (T (Dy,)) for a choice of 0 < r < 1. Recall Cu™(Dy) = Cu™(A). Note that yoA([c]) # 0
for all ¢ € C4 \ {0}. We choose r so that v o A([ec])(Tw) < 1. By Theorem 1.0.1 of [32],
there is an injective homomorphism (since v o A is strictly positive) hy : C — W such that
Cu™(hy) = yo A. Let E be a separable K K-contractible amenable simple Z-stable C*-algebra
with T'(E) = T(Dy,) and has stable rank one (see Theorem 2.8 of [17]). Let hg p : E — Dy, be a
nonzero homomorphism given by Theorem A.26 of [17] so that hg p induces the identification
of T(E) = T(Dyg). Let n : Cu™(W) — Cu™(FE) be defined by n(f)(r) = f(rw) for all f €
LAE:(T(W)) Applying Theorem 1.0.1 of [32] again, there is a monomorphism hy g : W — E
such that Cu™(hwg) =n.

Define hyc,p = hgp o hwgohy : C — Dj. Then hy ¢ p is an injective homomorphism.
Define ¢y, : C' — Her(a) by ¢r(c) = ¢)(c) + hi,c.p(c) for all ¢ € C. Recall that Dy, L By. The
map ¢y, is injective. It remains to show that limjy ,  Cu™(pr) = A

Since hy ¢, p factors through W, Cu™ (hy,c,p)| k() = 0. Note here we view Ko(C') as a subset
of Cu™(C) (see subsection 6.1 and Theorem 6.1 of [34]). Then, by (e7.10), for any finite subset
G C Cu™(C), there exists N > 1 such that, for any k£ > N (see also 5.1),

Cu™(¢r)(x) = A(z) for all x € GN Ky(C). (e7.13)

Let f,g € G, f < g be such that neither f nor g are compact. Recall, by Theorem 5.3 of
[34], that Cu™(A) is order embedded into Cu™(A). Let A~ : Cu™(C) — Cu™(A) be the unique
extension of A given by Lemma 6.1. As in the proof of case (3) in the proof of Theorem 7.2, \™
is strictly positive.

Let f and g be as in the proof of 5.2 with || f||,]|g]| < 1. We also retain other notations in
the proof 5.2 related to f and g.

Since f and g are not compact elements, by (ii) of Theorem 6.1 of [34], neither are f and g.
Since \™ is strictly positive, A~ (f) and A™(g) are not compact. Let dy,d, € M,(A); (for some
r > 1) such that [df] = A\~ (f), and [d,] = A~(g). Note, as A~ is the unique extension of \,

NY(f) = Af) +mgl5] +mg[l;] and A7(g) = A(g) + mg[1 5] +my[15] (e7.14)

(see (?77)). Then (recall that [d4] cannot be represented by a projection), there is 0 < 6 < 1/2
such that

78 (f5(dy)) = 7E(dy), dr(fs5/2(dy)) > 7(f5(dg)) for all 7€ T(A) and  (e7.15)
[f] < [fas(dy)] < [dg]- (e7.16)

Thus, by (e7.10), there exists an integer N1 > 1 such that, for & > Ny,

[ ()] < [fas(dy))- (e7.17)
Therefore (see also (e7.15))

d- () (f)) < 7(f5(dg)) < 7(f5/2(dg)) < dr(f5/2(dg)) < d-(g) for all 7€ T(A) and (e7.18)
dr (0} () < 7(fs(dy)) < 7(f5/2(dg)) < dr(f5/2(dg)) < dr(g) for all 7€ T(A). (€7.19)
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Note that the lower semicontinuous function [f; /Q(dg)] —Jm is strictly positive on the compact
set T'(A). It follows that

n = nf{d-(f5/2(dg)) — 7(f5(dg)) : 7 € T(A)} > 0. (e7.20)

Note that we may assume that f € MT+mQ(C~') (see the lines below (e5.11) and lines below
(e5.8) in the proof of 5.2). We may also assume, for all & > Ny,

(r+mg)oy < n/4. (e7.21)

For any 1/2 > g9 > 0, write

f50( ) =S + Cf,€07 (e 722)

where S € My, (C) 1 and cf ey € Myy,(C)sa. and S| <1 and ||cge, || < 2. Recall (identify-
ing S with the scalar matrix),

W (feo(F) = S+ @hlcrey) and o (foo(F)) = S+ € (¢re0) + hrop(Cre,).  (€7.23)

We estimate that, by (e7.11), for all 7 € T'(A).

|7 (hr,c.p((cre)))] < 2(r +mg)oy < n/2. (e7.24)

Combining this with (e 7.23), (e7.18), and (e 7.20), we obtain, for any 1/2 > ¢ > 0, if &k > Ny,

d- (¢ (fe(f))) < dr(dg) for all 7€ T(A) and (e7.25)
0 (0 (oo (7)) < dr(dg) for all 7€ T(A). (e7.26)

feo (f ] < [dg]. Since N;i does not

It follows from Theorem 4.12, if k& > Ny (in Cu( A)), (o3 (
u(p [dg]. In other words (see also (e7.14)

depend on &g, this implies that (in Cu(A4)) C ) <
and the lines below (e5.8)), if £ > Ny,

Cu™ () (f) + (my +mg +2)[1 5] = [or(al)] +mg[1 5] < Mg) + (mg +my +2)[15] (e7.27)

(recall that A has stable rank at most 2). Thus, if k& > Ny,

Cu™(er)(f) < Ag). (e7.28)
The same argument shows that, if k& > Ny,
A(f) < Cu™(pr(9))- (€7.29)

Hence, combining with the last two displays and (e 7.13), one obtains
limy ,  Cu™(pr) = A

]
Remark 7.4. Let C be a separable C*-algebra such that T'(C') # () and QT(C) = T(C). Let B
be a separable simple C*-algebra with continuous scale such that QT'(B) = T'(B) and Cu(B) =
LAff(T(B)). Let A : Cu™(C) — Cu™(B) be a morphism in Cu such that A([e¢]) < [eg], where
0 <ec <1land0 <ep <1 are strictly positive elements of C' and B, respectively. Let Tp(C)
and Ty(B) be the sets of all traces on C' and B with norm no more than 1, respectively.
Let a € C4 with ||a|| < 1. For each n consider z,, = 2211(1/2”)])(%”’1], where t, = k/2"
and Dlty.,1] 18 the open spectral projection of a associated with the (tj,,1] in C**. Note that

36



dr((a = tkn)+) = T(Pey 1)) for all 7 € Ty(C) and 7(xy) = 2" (1/2M)d,((a — tn)y) for all
T € Tp(C). Moreover,

sup{|7(zy) — 7(a)| : T € TH(C)} < 1/2". (e7.30)

For each s € Ty(B), define, for each a € M, (C)4 (for integer r > 1),

Ar(s)(a) = /OOO M[(a = t)4]) (s)dt. (e7.31)

By Proposition 4.2 of [18], Ar(s) defines a lower semi-continuous quasitrace on C'® K. Note that
B has continuous scale. So eg € Ped(B). Since A([ec]) < [en], if a € M,.(C) 4, M[(a—1t)+])(s) <
r||la| for all ¢ € [0, ||al|]] and s € T'(B). Since QT(C) = T(C), Ar(s) is in Tp(C). Proposition 4.2
of [18] also implies that the map s — Ar(s) is the affine continuous map from Ty (B) to Tp(C)
induced by A. Note

27L

Ar(s)(a) = lim (3 (1/2)A([(a — tn)+]) (5)- (e7.32)
k=1
Moreover, for a € C with |lal| <1,
277,
Tim sup{|Az(s)(a) — (Y _(1/2)M([(@ — thn)+])(5))] - s € T(B)} = 0. (e7.33)
k=1

Let ¢ : C — A be a homomorphism. Then, for any a € Cy with ||a|| <1,

.,
Tim sup{|r(e(e)) = S(1/2)r(p(fijzma(a— ten) i) : T €T(B)} =0, (e7.34)
k=1

Now suppose that B is stably projectionless and X is strictly positive. If ¢ : C' — B is

a sequence of injective homomorphisms such that lim;, , Cu™(ypr) = A, then, for each fixed

a € Cy with |ja|| <1 and n > 1, there is N > 1 such that, when j > N,

M@ = tin)+]) < loj(frjan+e((@ = tit1,n)+)] (e7.35)
< i (f1/m+3((@ = trgrn)+)] S M@ —trgrn)4), k=1,2,...,2" (e7.36)

It follows that, for all 7 € T'(B),

A[(@ = trn)+ ) (7) < 7(05 (frjonra (@ = trgrn)4) < M@ — trp1n)4) (7). (e7.37)

By (e7.34), (e7.33), and (e 7.37),
khﬁrgo sup{|7(¢x)(a) — Ap(7)(a)| : 7 € To(B)} = 0. (e7.38)

Recall that if A is a finite exact separable simple Z-stable C*-algebra then A satisfies the
conditions in the following statement.

Theorem 7.5. Let C' = lim,_, C, with a strictly positive element ec, where each Cy, € Iy and
each map t, : Cp, — Chy1 is injective, and let A be a separable simple C*-algebra with continuous
scale and with a strictly positive element e such that M,,(A) has almost stable rank one for all
m > 1 and QT(A) = T(A), and Cu(A) = LAff{(T'(A)). Suppose that X : Cu™(C) — Cu~(A)
is a morphism in Cu such that X[ec]) < [ea] and X([c]) # 0 for any c € Cy \ {0}. Then there
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erists a sequence of contractive completely positive linear maps L, : C — A and a sequence of
injective homomorphisms hy, : C, = A such that

li_}rn |Ln(ab) — Ly (a)Ly(b)|]| =0 for all a,b e C,
and, for each fized m, le | L (tm,00(€)) = hn(tmn(c))|| =0 for all c € Cpy,

and lim sup |7(Ly(a)) — Ap(7)(a)] =0 for all a € C.
"0 reT(A)

Proof. We first assume that A is stably projectionless. For each k, consider o, = Ao Cu™ (t,00)-
By Corollary 7.3, there exists a sequence of injective homomorphisms ¢y, ,, : C, — A such that
lim;;_, o Cu™(pk,n) = . Then (see (e7.38))

n—oo

lim sup{|7 0 gpn(€) — arp(7)(e)] : 7 € To(4)} = 0 for all ¢ € G (e7.39)

One obtains a sequence of injective homomorphisms h,, : C,, = A and, since C' is amenable, a
sequence of contractive completely positive linear maps L, : C' — A such that (by a version of
Arveson’s extension theorem, see, for example, Theorem 2.3.13 of [26]), for any fixed m,

lm || Ly (tm,c0(€)) — hn(tmn(c))|| =0 for all ¢ € Cy,,

n—oo

lim ||L,(ab) — L,(a)L,(b)|| =0 for all a,b € C and
n—oo

lim sup |[|7(Ln(a)) — Ar(7)(a))|| =0 for all a € C.
N0 reT(B)

If A is not stably projectionless, by Proposition 2.3, A has stable rank one. Then, by Theorem
1.0.1 of [32], there is a homomorphism H : C'— A such that Cu™(H) = A. Choose L,, = H and
hn = H o 1y, o. Then this case also follows. O]

Corollary 7.6. Let C = limy,_,o0(Chp,tn) be as in Theorem 7.5 which is simple and has con-
tinuous scale and A be a finite exact separable simple stably projectionless Z-stable C*-algebra
with continuous scale. Suppose that there is an isomorphism

I': (Ko(C), T(C),rc) = (Ko(A), T(A), ra). (e7.40)

Then there exists a sequence of contractive completely positive linear maps L, : C — A and a
sequence of injective homomorphisms hy : C, — A such that

ILm | Ly, (ab) — Ly (a)L,(b)|] =0 for all a,b € C, (e7.41)
lim sup ||[7(Ln(a)) — Ar(7)(a)]| =0 for all a € C (e7.42)
N0 rcT(B)

and, for each fized m, li_>m | Ln(tm,00(€)) = hn(tmn(c))]| =0 for all c € Cp, (e7.43)

lim —sup |7 (hn(em,n(c))) = AT(7)(tm,00(€))]| = 0 for all ¢ € Cp, (e7.44)

"0 reT(B)

where Ay : T(A) — T(C) is the affine homeomorphism given by T.

Proof. By Proposition 6.2.3 of [32], Cu™(C) = Ko(C) U LA#T(T(C)). Also, by Theorem 6.1.1
of [34] (see also subsection 6.3 of [34]), Cu™(A) = Ko(A) ULAff7(T(A)). Let ec and e4 be
strictly positive elements of C' and A, respectively. By (e7.40), there is an isomorphism A :
Cu™(C) — Cu™~(A) (in Cu) such that A([ec]) = [ea]. Thus, the corollary follows from Theorem
7.5 immediately. O
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Corollary 7.6 plays an important role in achieving the following theorem which was first
obtained with the additional condition that A has stable rank one in an uncirculated preliminary
draft. The only place where we need the condition that A has stable rank one was to have
a homomorphism h : C — A, where C' = lim,,,oo(Ch,tp), C, € Iy and ¢, : C,y, — Cpiq
are injective, C' has continuous scale, and (Ko(C),T(C),r¢c) = (Ko(A),T(A),r4) such that
[h] induces the identification map on (Ko(C),T(C),rc). Note the identification map on the
invariant set gives a strictly positive morphism A : Cu™(C) — Cu™(A) with A([ec]) = [ea],
where ec and ey are strictly positive elements of C' and A, respectively. So the existence of
such h follows from Theorem 1.0.1 of [32]. In fact, one only needs an approximate version of
Robert’s result. Without assuming A has stable rank one, one may not apply the result of L.
Robert. However, one can apply Corollary 7.6 to obtain a sequence of homomorphisms Ay that
approximates A which improves the original version of the following theorem.

Theorem 7.7 (Theorem 7.13 of [21]). Let A be separable amenable simple stably projectionless
C*-algebra with continuous scale such that T(A) # {0} and satisfying the UCT. Then A ® Q
has generalized tracial rank one.
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