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ABSTRACT

The QC-MDPC code-based KEM BIKE is one of the Round-3 candidates
of the NIST PQC standardization project. Its Round-2 specification docu-
ment described variants claiming to have IND-CCA security. The security
proof used the Fujisaki-Okamoto transformation and a decoder targeting
a Decoding Failure Rate (DFR) of 27128 (for Level-1 security). However, sev-
eral aspects needed to be amended in order for the IND-CCA proof to hold.
The main issue is that using a decoder with DFR of 2128 does not necessar-
ily imply that the underlying PKE is 8-correct with § = 27128, as required. In
this paper, we handle the necessary aspects to ensure the security claim is
correct. In particular, we close the gap in the proof by defining the notion
of message-agnostic PKE. We show that the PKEs underlying the BIKE ver-
sions are message-agnostic. This implies that BIKE with a decoder that has
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a sufficiently low DFR is also an IND-CCA KEM.

1. Introduction

Bit Flipping Key Encapsulation (BIKE) is a code-based Key Encapsulation Mechanism (KEM) built
using Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC) codes, which combined the work
of [4,5] into a single submission to the NIST PQC standardization project. The original submis-
sion [1] in Round 1 featured three variants named BIKE-1, BIKE-2 and BIKE-3. In the Round 2
specification [2] three KEM additional variants were introduced, named BIKE-1-CCA, BIKE-2-CCA,
BIKE-3-CCA, which were claimed to be IND-CCA secure. We have identified several gaps affect-
ing this claim and casting doubts on its validity. The first gap is that the specified decoder was not
defined to have a constant number of steps, so it was inherently not a constant-time algorithm. In
addition, no constant-time implementation for this decoder was provided. This gap was resolved
in [6], together with a study that identified some efficient decoders and their constant-time imple-
mentations. The second gap, which was reported in [6], but not yet resolved, was the assumption that
8, as used in the implicit-rejection version of Fujisaki-Okamoto transformation (FOZ, as described
in [8]) for converting a §-correct Public Key Encryption (PKE) into an IND-CCA KEM, is the same
as the DFR of the decoder specified for BIKE in [2]. Without a proof to this effect, IND-CCA security
could not be claimed, even if the decoder presented were to achieve the target DFR (e.g. 27!%8 for
Category-1). Finally, the protocol formulation of BIKE-2-CCA (and BIKE-3-CCA) did not allow a
direct application of [8, Theorem 4] before first resolving the §-correctness gap. We argue that it is
easier to slightly modify the flows as described in the text.

CONTACT Edoardo Persichetti @ epersichetti@fau.edu

© 2021 Informa UK Limited, trading as Taylor & Francis Group


http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/23799927.2021.1930176&domain=pdf&date_stamp=2021-12-15
http://orcid.org/0000-0002-1895-377X
mailto:epersichetti@fau.edu

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS: COMPUTER SYSTEMS THEORY e 365

The subtle gap between § and the DFR affects other schemes that have a nonzero decapsulation fail-
ure probability, such as LEDAcrypt-PKC [3], based on the McEliece framework, for which, however,
a proof is only sketched (see [3, Lemma 1.4.1]). We fully flesh out this idea by defining the notion of
message-agnostic PKE and applying it to BIKE-1-CCA. LEDAcrypt-KEM [3], instead, solves the gap
by adding an Extensible Output Function (XOF). We generalize this notion, showing that all Hybrid
Encryption (HE) schemes, such as those underlying BIKE-2-CCA and BIKE-3-CCA, are message-
agnostic. We amend the description of the BIKE protocols where necessary. Thus, we are now able
to substantiate the claim that the BIKE-%-CCA variants actually achieved IND-CCA security, given
that there exists a decoder with a constant number of steps and a DFR of the required magnitude.

2. Message-agnostic PKEs

General notation. We denote a protocol failure by L. Uniform random sampling from a set W is

denoted by w & W.Foran algorithm A, we denote its output by out = A() if A is deterministic, and
by out <— A() otherwise.

A Public Key Encryption (PKE) scheme is defined over a parameter set, and three spaces: the key
space /C, the message space M and the ciphertext space C. It consists of three algorithms:

e aKey Generation algorithm (sk, pk) <— Gen() that generates a key pair, namely a secret key sk and
a public key pk;

e an Encryption algorithm ¢ <— Encrypt(pk, m) that encrypts a message m € M and produces a
ciphertext ¢ € C;

e a Decryption algorithm m’ = Decrypt(sk, c) that decrypts ¢ € C using sk to either a message m’ €
M upon successful decryption or a faijlure symbol L upon decryption failure.

We define the following probabilities

p1(sk, pk, m) = Pr [Decrypt(sk, ¢) # m|c < Encrypt(pk, m)] ; (1)
p2(sk, pk) = Pr[(sk, pk) < Gen()]. (2)

For a fixed (sk, pk) € K, and a fixed m € M, we say that p; (sk, pk, m) is the ‘per-(key,message) pair
decryption failure probability’, while p,(sk, pk) is the probability that Gen() outputs the key pair
(sk, pk). We also define the ‘overall decryption failure probability” as

p3 = Pr[Decrypt(sk,c) # m| (sk, pk) < Gen(), m & M,

¢ < Encrypt(pk, m)], 3)
or in other words:
1
p= 2 kPR pilsk phm) @
(sk,pk)elC,me M

since m is chosen uniformly at random from M.

Definition 2.1 (§-correct PKE [8]): A given PKE is said to be §-correct if
E |:max p1(sk, pk, m)i| <34 (5)
meM

Remark 2.1: Our discussion revolves around PKEs for which the decryption has a nonzero failure
probability (that could depend on the encrypted message and/or on the private key). We note that
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PKEs with no failures at all (also known as ‘perfectly correct’), can be viewed as a special case with
§=0.

Definition 2.2 (Message-agnostic PKE): A message-agnostic PKE is a PKE with the following
property: the equality

P (Sk>Pk, m) =p1 (Skapk> m/) (6)

holds for every (sk, pk) € K and every m, m’ € M. In other words, for a given key pair, the decryption
failure probability is the same for all possible messages.

Proposition 2.3: Consider a message-agnostic PKE. Then,

p3=E |:max p1(sk, pk, m)i| (7)
meM
where the expectation is taken over (sk, pk) <— Gen().
Proof: We have

1

E I:géaﬁpl (sk, pk, m)] =E [W m%\:/l D1(sk, pk, m):|

1
= Z ol Z p1(sk, pk, m) - po(sk, pk)
(sk,pk)ekC meM

1
= > pulsk, pk,m) - py(sk, pk)
(sk,pk)elC,me M

= p3 .
This concludes the proof. u

Corollary 2.4: A message-agnostic PKE is §-correct if p3 < 4.

3. Hybrid Encryption

The Hybrid Encryption (HE) paradigm [9] (also known as KEM-DEM) constructs PKEs by com-
bining an asymmetric component called Key Encapsulation Mechanism (KEM) with a symmetric
component called Data Encapsulation Mechanism (DEM). The latter is usually some sort of authen-
ticated cipher, but for our purposes, we can imagine it consists simply of two deterministic algorithms
Encrypt(pk, m)/Decrypt(sk, ). Since the focus of this work is the BIKE KEM, we do not give here
more details about DEMs, and move on to define KEMs accurately.

A Key Encapsulation Mechanism (KEM) is defined over a parameter set, and three spaces: the key
space KC, the ciphertext space C and the shared string space S. It consists of three algorithms:

e aKey Generation algorithm (sk, pk) <— Gen() that generates a key pair, namely a secret key sk and
a public key pk;

e an Encapsulation algorithm (c, k) < Encaps(pk) that generates a bit string! k € S and encapsu-
lates it in a ciphertext ¢ € C;

e aDecapsulation k = Decaps(sk, ¢) that returns k € S upon successful decapsulation of ¢ € C using
sk, or L upon failure (if using implicit rejection, decapsulation returns a uniform random value k’
instead of L).
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Remark 3.1: Some KEMs use a technique called implicit rejection. Here, in case of a failure, decap-
sulation returns a uniform random value k' instead of L. The reason is that a KEM is normally used
in conjunction with a DEM, which uses the KEM output as symmetric key, and therefore, unless a
collision occurs, returning the ‘wrong’ value k’ causes a failure in the DEM decryption process. In
this way, an incorrect ciphertext is still rejected in the overall HE scheme, as it would by a traditional
KEM, but without revealing information to an adversary.

Definition 3.1 (6-correct KEM [8]): A KEM is §-correct if

pa = Pr[Decaps(sk, c) # k|(sk, pk) < Gen(), (c,k) < Encaps(pk)] < & (8)

Corollary 3.2: Consider a KEM built using the FO* transformation [8] over an underlying message-
agnostic PKE. Then py = ps.

Proof: The FO* transformation [8] converts a PKE to a KEM by composing the T and the U+ trans-
formations. To be more precise, transformation T converts a §-correct PKE to a §;-correct PKE,,
where §; is a function of the number of random oracle calls, by adding a ‘derandomization” step
and a ‘re-encryption’ step. In particular, if the number of calls to the random oracle G is qg, we
have §1(qg) = qG - 6. Then, transformation U* converts a §;-correct PKE; (for FO*, exactly the

one resulting from T') to a §;-correct KEM by choosing a random plaintext m & Mand deriving the
shared secret from it. These two steps do not involve a failure option.
It follows that p4 is equivalent to

Pr[Decrypt, (sk,c) =L |(sk, pk) < Gen(),
¢ < Encrypt, (pk, m; G(m)), m <i M]. 9)

In T, Decrypt) (sk, ¢) returns L when Decrypt(sk, ¢) returns L or when the re-encryption failed, which
happens only if Decrypt(sk, c) # m. Thus, (9) is equivalent to

p3 = Pr[Decrypt(sk, c) # m| (sk, pk) < Gen(), m & M, ¢ < Encrypt(pk, m)].
This concludes the proof. [

We are now ready to show the main result of this section, that is, that the HE paradigm always
yields message-agnostic PKEs. We begin by briefly outlining the framework of an HE scheme.

A Hybrid Encryption (HE) scheme is defined over a parameter set, and three spaces: the key space
K, the message space M and the ciphertext space C. It consists of three algorithms:

e a Key Generation algorithm (sk, pk) < Gen(), same as that of the KEM;

e an Encryption algorithm ¢ = (cp, ¢1) < Encrypt(pk, m), that encrypts a message m € M and pro-
duces a ciphertext ¢ € C. The ciphertext is obtained by first computing (cp, k) = KEM.Encaps(pk)
and then ¢; = DEM.Encrypt(k, m).

e a Decryption algorithm m’ = Decrypt(sk, c) that decrypts ¢ € C using sk to either a message m’ €
M upon successful decryption, or a failure symbol L upon decryption failure. Here m’ is obtained
by first computing k' = KEM.Decaps(sk, cp) and then DEM.Decrypt(k’, c1).

Proposition 3.3: The HE scheme described above is message-agnostic.
Proof: Note that Decrypt can fail only in two cases: either KEM.Decaps(sk, co) returns the failure

symbol L, or it returns an output key kK’ # k. In both cases, the decapsulation algorithm depends
only on sk and ¢y, and therefore a decryption failure is independent of the message m. [
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Table 1. Hash function (random oracle) domains for the BIKE variants.

BIKE-1-CCA BIKE-2-CCA BIKE-3-CCA

H:{0, 1} — {0, 1} H:{0.1}* — {0, 1} H:{0, 1} — {0, 1}

K:{0,1}* — {0,1}¢ K :{0,1} 2t — {0,1}¢ K:{0,1}2+2t — {0,1}¢
L:{0,1}¥ — {0,1}¢ L:{0, 11 — {0, 1)¢

[t]

Remark 3.2: Hybrid encryption was, historically, introduced as a tool to design IND-CCA secure
PKEs. In fact, the advantage of such a construction is that IND-CCA security for the PKE provably
reduces to the IND-CCA security of the KEM and DEM components. In our case, however, we are
not interested in this feature, but only in the message-agnostic property, and it is enough for the HE
scheme to achieve a weaker security notion (e.g. IND-CPA, which is the case for BIKE). Fortunately,
it is trivial to show that, for a KEM-DEM scheme whose KEM component is not IND-CCA secure,
the resulting hybrid PKE, while not necessarily IND-CCA secure, does preserve the original notion
(e.g. IND-CPA).

4. Applications to BIKE

LetF, be the binary finite field and R be the polynomial ring IF, [X] /(X" — 1). For every v € R denote
its Hamming weight by wt(v). Note that every v € R with odd weight is also invertible [2]. We write
{0, l}l[ ) to denote the set of all [-bit strings with Hamming weight ¢. For BIKE, we set M = R,C = R?

and S = {0, 1} (hereafter, £; = 256). The parameters common to all schemes are the integers r, w, ¢,
plus an additional parameter £ corresponding to the desired length of the shared key. For example, [2]
specifies r = 11779, w = 142, t = 134 for BIKE-1-CCA Level-1. The parameter £ is set to £ = 256.

The scheme uses a QC-MDPC decoder. In the case of BIKE-1-CCA and BIKE-2-CCA, a decoder is
aprocedure decode: R®* —> {R?, L}. Both variants can (and do) use the same decoder. For BIKE-
3-CCA, the procedure decode is slightly tweaked, in order to obtain a so-called ‘noisy’ decoder
which returns an output in {R3, 1} instead.

The model for the BIKE schemes uses two functions H and K that are called, loosely, ‘hash func-
tions’ in [2]. For convenience, we keep this loose notion, but point out that, technically, H and K
should be viewed as random oracles over the appropriate domains. Our proofs for BIKE-2-CCA and
BIKE-3-CCA modify the original flows by adding another hash function, denoted by L. The domains
for these hash functions are summarized in Table 1.

Details and explanations about the subtle differences between the hash function, the random
oracles, and the relation to a concrete implementation are provided in Section 5.

4.1. §-correctness of the BIKE-CCA variants

The BIKE specification document in [2, Section 2.4] defines the DFR of a specific decoder decode
as ‘the probability for the decoder to fail when the input (ho, k1, €, €1) is distributed uniformly’. Sub-
sequently, the IND-CCA proofs of the BIKE-CCA variants replace the §-correctness definition of [8]
with the DFR in [2, Section 6.2] as follows:

the resulting KEM will have the exact same DFR as the underlying cryptosystem.

The authors of [6] have already indicated (see Section 7 in [6]) that there is a subtle difference
between the two definitions. Note also that Theorem 4 of [8] states that ‘If PKE; is &;-correct, so
is KEM+* [..]". However, this does not imply that if a KEM is §;-correct then PKE; is necessarily
81-correct. Corollary 2.3 shows that it is true when the underlying PKE is message-agnostic.
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4.2. The underlying PKEs

The BIKE [2] submission states that its IND-CCA proofs rely on applying the FO transformation
of [8] to the underlying cryptosystems. Note that [8] remarks that ‘all our transformations require
a PKE scheme (and not a KEM). We view it as an interesting open problem to construct similar
transformations that only assume (and yield) KEMs’. In fact this paper offers such a construction and
applies it to BIKE-2-CCA and BIKE-3-CCA. As a consequence, to properly analyse the proofs, one
first needs to extract the underlying PKEs. Since those are not explicitly described in [2], we do this
in this paper, by reversing the U# and T transformations.

In the next section, we discuss the three BIKE CCA variants, which are presented with all the
modifications necessary to fill the gaps. The modifications will then be explained and justified in
Section 5. We refer the reader to sections 2.2.1 to 2.2.3 of [2] for the original description of the three
schemes.

4.3. BIKE-1-CCA
BIKE-1-CCA consists of the following algorithms.

Key generation. Choose (hg, h1,00,01) & R* with wt(hg) = wt(h;) = w/2 of odd weight, and

choose another polynomial g <i R of odd weight wt(g) ~ r/2. Then, set pk = (fo,f1) = (gh1,gho)
and sk = (ho, h1, 00, 01).

Encapsulation. Generate m & R. Compute (e, e1) = H(mfy, mf1), where wt(ep) + wt(e1) = t.
Calculate the ciphertext ¢ = (co, ¢1) = (mfo + eo, mfi + e1) and the shared secret k = K(mfy, mfi, c).

Decapsulation. Compute the syndrome s = cohg + c1hy. Calculate (e, €}) <— decode(s, ho, h1)
and (ej, e) = H(co + €j, c1 + €}). If the decoder returns L, or wt(ey) + wt(e]) # t, or (e, €}) #
(e, €}), then return k = K(09, 01, ¢). Otherwise, return k = K(co + ej, ¢1 + €}, ¢).

We now proceed to extract the PKE underlying BIKE-1-CCA, which we denote by £-1. This is
essentially a version of the McEliece cryptosystem, instantiated with QC-MDPC codes. Thus, the key
generation algorithm of £-1 is the same as in BIKE-1-CCA, with the exception of the elements oy and
o1 which are added as part of the KEM conversion. The encryption/decryption algorithms of £-1 are:

Encryption. Generate (eg,e1) i R?, where wt(eg) + wt(e;) = t. Calculate the ciphertext ¢ =
(co>c1) = (mfo + eg, mfy + e1).

Decryption. Compute the syndrome s = cohg + c1h. Calculate (ef, €]) < decode(s, ho, h1). If the
decoding succeeds and wt(e;) + wt(e}) = t, then return m = fo_1 (co + €p); else return L.
Finally, we prove the following result about £-1.

Proposition 4.1: £-1 is message-agnostic.

Proof: The decryption of £-1 can fail to output m in two cases: a) (ep,e}) # (ep,e1); b)
decodel(s, hg, h1) returns L (i. e., decoding failure occurred). According to the analysis in [2], the
probability that Case a) occurs is negligible and we therefore ignore it here. Note that decode
depends only on hg, h; and the syndrome, s = hgpep + hje;, is independent of m. Therefore, the
probability that Case b) occurs is also independent of m. |

Remark 4.1: The case where ¢ = (cp, 0) = (mfy + ep, 0) is interesting and deserves to be treated sep-
arately. In this case, s = (mfy + eg)ho, and it may seem that the syndrome depends on m. However,
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this is not true. In fact, from ¢; = 0 = mf; + e; it follows that m = f; 'e;. Substituting this equality
in s yields

s=(f; eifo + eo)
(g_lghalhohlel + hoe()) = hje; + hoeg

The latter expression is independent of m, as expected.

4.4. BIKE-2-CCA
BIKE-2-CCA consists of the following algorithms.

Key generation. Choose o i {0,1}¢ and (hg, h1) i R? with wt(hg) = wt(h)) = w/2 of odd
weight. Then, set pk = h = hlhal and sk = (hg, hy,0).

Encapsulation. Generate m i {0, 1}¢. Compute (eg, e;) = H(m), where wt(eg) + wt(e;) = t. Cal-
culate the ciphertext ¢ = (¢, ¢1) = (eg + e1h, L(eo, e1) @ m) and the shared secret k = K(m, ¢).

Decapsulation. Compute the syndrome s = cohg. Set (e, e]) < decode(s, hy,h1) and m’' = ¢ @
L(ey, €)). If the decoder returns L, or wt(e) + wt(e}) # t, or (e, e}) # H(m'), then return k =
K(o,c). Otherwise, return k = K(n?/, c).

We now proceed to extract the PKE underlying BIKE-2-CCA, which we denote by £-2. There is a
substantial difference here, compared to the previous case of BIKE-1-CCA. In fact, the BIKE-2 KEM
was originally designed to follow the Niederreiter framework. However, this approach utilizes the
fixed-weight error vector (e, e1) as input for the key derivation, and this could create some security
issues: an adversary performing a reaction attack would be able to choose specific error patterns that
are potentially more likely to cause a decoding failure. As a consequence, the PKE underlying BIKE-
2-CCA is created as an HE scheme, composing a one-time pad (playing the role of the DEM) with
the simple IND-CPA KEM? described below.

Key generation. Choose sk = (hg, h;) & R? with wt(ho) = wt(h;) = w/2 of odd weight. Then, set
pk=h = hyhy" and sk = (ho, hy).

Encapsulation. Generate (eg, e1) & R2, where wt(eg) + wt(e;) = t. Calculate the ciphertext ¢ =
eo + erh and the shared secret k = L(ep, e1). Here, L is a hash function that generates the appropriate
value.

Decapsulation. Compute the syndrome s = chy. Set (e), €]) <= decode(s, hy, h1). If the decoder
returns L, or wt(e) + wt(e}) # t, then return L. Otherwise, return k = L(e, €}).

To avoid confusion, relative to the names of the various functions used in the scheme, we chose
to use a different notation for the hash function that is used for deriving the shared key in the two
KEMs. To this end, we introduced the hash function L. As mentioned above, the KEM and the DEM
are combined to obtain the PKE £-2. As in every HE scheme, the key generation algorithm of £-2 is
the same as that of the above IND-CPA KEM, and it is thus omitted here. The encryption/decryption
algorithms of £-2 are given as follows.

Encryption. Generate (e, e;) i R?, where wt(eg) + wt(e;) = t. Calculate the ciphertext ¢ =
(co>c1) = (eo + e1h, L(eg, e1) © m).
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Decryption. Compute the syndrome s = cohy. Set (e), e]) <— decode(s, hg, h1). If the decoding
succeeds and wt(e) + wt(e]) = t, then return m = ¢; @ L(ej, €}); else return L.
Finally, we prove the following result about £-2.

Proposition 4.2: £-2 is message-agnostic.

Proof: This follows immediately from Proposition 3.3. Note that, as in the case for Proposition 4.1, we
can deem negligible the probability that (eg, €]) # (eo, e1) (which would imply L(ej, €}) # L(eo, e1)
and thus cause a decryption failure). [

4.5. BIKE-3-CCA
BIKE-3-CCA consists of the following algorithms.

Key generation. Choose o & {0,1}¢ and (hg, h1) & R? with wt(hg) = wt(h)) = w/2 of odd

weight, and choose another polynomial g & Rofodd weight wt(g) ~ r/2. Then, set pk = (fo,f1) =
(hl + ghO)g) and sk = (h0> h1> U)

Encapsulation. Generate m i {0, 1}¢. Compute (e, €9, e1) = H(m), where wt(ep) + wt(e;) = t and
wt(e) = t/2. Calculate the ciphertext ¢ = (co, 1, ¢2) = (e + eifo, €0 + eifi, L(e, eo, e1) @ m) and the
shared secret k = K(m, ¢).

Decapsulation. Compute the syndrome s = ¢y + c1hg. Calculate (¢, ey, e]) < decode(s, ho, h1)
and m' = c; ® L(¢,e),€)). If the decoder returns L, or wt(e') + wt(ey) + wt(e)) # 3t/2, or
(¢, ey, €)) # H(m'), then return k = K(o, ¢). Otherwise, return k = K(m', c).

We now proceed to extract the PKE underlying BIKE-3-CCA, which we denote by £-3. Similarly
to the case of BIKE-2-CCA, and for the same reasons, this is also a hybrid PKE. The IND-CPA KEM?
is described below.

Key generation. Choose sk = (hg, h1) & R? with wt(ho) = wt(h1) = w/2 of odd weight, and

choose another polynomial g E R of odd weight wit(g) =~ r/2. Then, set pk = (fo,f1) = (Il +
gho, g) and sk = (hy, hy).

Encapsulation. Generate (e, e, €1) <i R3, where wt(eg) + wt(e;) = t and wt(e) = t/2. Calculate
the ciphertext ¢ = (co, 1) = (e + eifo, €0 + e1fi and the shared secret k = L(e, eg, e1). Here, L is a
hash function that generates the appropriate value.

Decapsulation. Compute the syndrome s = chyg. Compute (¢, e), €]) < decode (s, ho, hy). If the
decoder returns L, or wt(e') + wt(ey) + wt(e}) # 3t/2, then return L. Otherwise, return k =
L(¢, e, €)).

As before, to avoid confusion, we use L to denote the hash function that derives the shared key
in the above KEM. We now proceed to combine the KEM and the DEM to obtain the PKE &£-3.
The key generation algorithm of £-3 is the same as that of the above IND-CPA KEM, while the
encryption/decryption algorithms of £-3 are given by:

Encryption. Generate (e, ey, €]) i R3, where wt(ep) + wt(e;) = t and wt(e) = t/2. Calculate the
ciphertext ¢ = (co, 1, ¢2) = (e + eifo, eo + eif1, L(e, ep, e1) © m).
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Decryption. Compute the syndrome s = ¢y + c1h. Calculate (¢, e), €]) < decode(s, ho, hy). If the
decoding succeeds, wt(ey) + wt(e}) =t and wt(e') = t/2, then return m = ¢, @ L(€, ¢), €} ); else
return L.

Finally, we prove the following result about £-3.

Proposition 4.3: £-3 is message-agnostic.

Proof: This follows immediately from Proposition 3.3. Note that, similar to the case of Proposition 4.1
and Proposition 4.2, we can deem negligible the probability that (¢, e}, €]) # (e, eo, e1) (which would
imply L(¢, e), &) # L(e, g, e1) and thus cause a decryption failure). [ |

5. Protocol modifications

Our definition of the BIKE-2-CCA and BIKE-3-CCA protocols is slightly different from the descrip-
tion given in the specification document [2]. This section summarizes the modifications we made to
the protocols, and explains why they were necessary.

5.1. Key derivation

One of the crucial steps in the FO* transformation, and a fundamental part of the proof of [8,
Theorem 4], is that the shared key generated from the KEM is obtained by applying a random oracle
to the pair (message, ciphertext) of the underlying PKE. However, this is not the case for BIKE. In fact,
for BIKE-2-CCA, the algorithm specified in [2] derives the shared key as k = K(eo, €1, ¢). Similarly,
for BIKE-3-CCA, the algorithm specified in [2] derives the shared key as k = K(e, e, €1, ¢). In both
cases, this corresponds, effectively, to deriving the key from the randomness of the PKE, rather than
from the message. Now, by means of transformation T, this randomness is generated from the mes-
sage using a dedicated random oracle. It follows that a substantial modification in the proof would be
necessary for it to hold for BIKE-2-CCA and BIKE-1-CCA. Such a discrepancy is not discussed nor
justified in the BIKE specification document. In the end, we chose to deal with this issue by slightly
modifying the encapsulation (and decapsulation) flows.

Our description derives the shared key as k = K(m, ¢) for both BIKE-2-CCA and BIKE-3-CCA.
This modification has two advantages: a) It is consistent with the description of [8], which means
the security argument can be applied to BIKE directly; b) It is more efficient since the input to the
key derivation function is much shorter; in fact, this now consists only of the ¢ = 256 bits of the
string m instead of the t log, r bits of (eo, 1) (for BIKE-2-CCA) or the 3t/2 log, r bits of (e, ey, e1) (for
BIKE-3-CCA).

Note that, technically, the description of BIKE-1-CCA is also not exactly following the blueprint
given in [8]. In fact, the scheme derives the shared key as k = K(mfy, mfi, c), effectively replacing the
message m with (mfy, mf1). This vector corresponds to the codeword associated to the message m
in the quasi-cyclic code defined by the generator matrix (fy, f1). The modification, however, is much
less significant in this case: there is a one-to-one correspondence between messages and codewords
in a linear code (for a fixed choice of generator matrix), and no random oracle is involved in the
process. Furthermore, as mentioned in [2], this is a convenient choice. In fact, unlike the case of
BIKE-2-CCA and BIKE-3-CCA, where m is obtained immediately by ‘undoing’ the one-time pad, for
BIKE-1-CCA one would need to recover m from (mfy, mf;). This requires performing a polynomial
inversion, which is one of the most expensive operations, and one that BIKE-1 explicitly aimed to
avoid. Therefore, in the end, we chose to leave the description of BIKE-1-CCA as in [2].

5.2. Random oracles

The encapsulation algorithm in [2] uses the same function K for the encapsulation step, ¢ = (¢, ¢1) =
(eo + e1h, K(ep, e1) @ m), and for the key-derivation step, k = K(eo, e;, ¢). Our definition, instead,
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uses an independent function L for ¢ = (o, c1) = (eo + e1h, L(eo, e1) @ m) since this is, formally, a
different random oracle (it is, in fact, the key-derivation function in the underlying IND-CPA KEM).
Similarly, our definition of BIKE-3-CCA is also different from that of [2]. Encapsulation in [2] uses
the same function K for the encapsulation step ¢ = (¢, c1, ¢2) = (e + eifo, e0 + eif1, K(e, eg, e1) & m)
and for the key-derivation step k = K{(e, e, €1, ¢). Once again, in our definition we use an independent
function L for ¢ = (co, c1,¢2) = (e + eifo, e0 + eifi, L(e, e, e1) @ m). Obviously, the decapsulation
procedure is modified accordingly for both BIKE-2-CCA and BIKE-3-CCA.

For our model, we consider the functions H, K and L as being chosen uniformly at random from
the set of all functions with the associated domains and the required constraints on their range, as
defined in Table 1. The new model definition does not affect the way that BIKE-2-CCA and BIKE-3-
CCA can be (and are) instantiated in practice (see [2] for details). Indeed, K and H are implemented
by first ‘extracting’ the input with a hash function X (e.g. SHA-384) and subsequently ‘expanding’ the
hash digest to an output of the desired length (and constraints), using some pseudorandom generator.
This can be done for the new function L as well. Since the inputs to K, H and L have different lengths,
this already provides domain separation when applying the extraction step X. For the instantiations,
we assume that the SHA-384 digests are indistinguishable from random strings (of the proper lengths
and with the required constraints) by an observing adversary with a given number of queries and that
the distinguishing advantage from the pseudorandom expansion is also negligible here.

6. Conclusion

In this work, we formalized the notion of message-agnostic PKE, and proved that is always satisfied
for PKEs obtained via the KEM-DEM framework. As a consequence, we showed that constructing
a decoder with the required DFR is sufficient for supporting the IND-CCA claim of BIKE. Together
with [6], this completes the missing parts of the IND-CCA proof given in [2].

Some minor modifications were necessary for our analysis to fit the cases of BIKE-2-CCA and
BIKE-3-CCA. The subtlety lies in the difference between the PKEs underlying the three variants. For
BIKE-1-CCA, this is essentially McEliece, where the randomness (error vector) is already indepen-
dent of the message (codeword). On the other hand, BIKE-2-CCA and BIKE-3-CCA are based on the
Niederreiter and Ouroboros cryptosystems, respectively. Here, the message was originally conveyed
in the error vector. As a consequence, it was necessary to use a different approach, building a PKE
by means of the HE paradigm. This is obtained by combining the original IND-CPA KEM (BIKE-2
and BIKE-3, respectively) with a simple DEM (one-time pad), so that the message (a fixed-length
bit string) is effectively encrypted using the KEM output (a hash of the error vector) as key. In the
end, the small modification detailed in Section 5 makes the underlying PKE message-agnostic, and
extends the conclusion to BIKE-2-CCA and BIKE-3-CCA as well.

Of course, to complete the proof, the BIKE specification needs to define at least one decoder (or
multiple options for a decoder), decode, associated with the scheme and the chosen parameters,
that provably provides the appropriate DFR. To summarize, even after closing the §-correctness gap,
the IND-CCA proof still needs to rely on the three assumptions:

(1) decode has a DFR of 27128 (for Level-1).
(2) decode can be implemented in constant-time.
(3) The probability for a decoding success but a decryption failure is negligible.

Some examples for efficient and constant-time constructions for decode, their suggested param-
eters, and extrapolated DFR values, are explored in [6,7]. These extrapolations (perhaps tuned with
parameters that provide comfortable margins) may be perceived as enough practical evidence for a
sufficiently low DFR.

We remark that our solution is not the only valid one; for example, LEDAcrypt [3] independently
and concurrently proposed to use a XOF for the same purpose, following a different construction
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(based on transformation U,’ﬁ of [8]). Compared to LEDAcrypt’s choice, our formulation is slightly
more generic, as it can be instantiated with any hash function (not necessarily having variable output
length). Our solution may also present some computational advantages, although that is not the focus
of this work, and would deserve further investigation.

Notes

1. Generally, this is used as a shared key for a symmetric encryption scheme.
2. This corresponds to the BIKE-2 variant described in [2].
3. This corresponds to the BIKE-3 variant described in [2].
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